WO2002033750A1 - Solvent assisted burnishing of pre-underfilled solder-bumped wafers for flipchip bonding - Google Patents
Solvent assisted burnishing of pre-underfilled solder-bumped wafers for flipchip bonding Download PDFInfo
- Publication number
- WO2002033750A1 WO2002033750A1 PCT/US2001/002385 US0102385W WO0233750A1 WO 2002033750 A1 WO2002033750 A1 WO 2002033750A1 US 0102385 W US0102385 W US 0102385W WO 0233750 A1 WO0233750 A1 WO 0233750A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adhesive
- conductive bumps
- bumps
- integrated circuit
- chip
- Prior art date
Links
- 239000002904 solvent Substances 0.000 title claims abstract description 35
- 235000012431 wafers Nutrition 0.000 title description 24
- 239000000853 adhesive Substances 0.000 claims abstract description 223
- 230000001070 adhesive effect Effects 0.000 claims abstract description 223
- 238000000034 method Methods 0.000 claims abstract description 109
- 239000000758 substrate Substances 0.000 claims abstract description 72
- 238000003825 pressing Methods 0.000 claims abstract description 6
- 230000008569 process Effects 0.000 claims description 42
- 238000002161 passivation Methods 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 9
- 230000001681 protective effect Effects 0.000 claims description 9
- 238000003475 lamination Methods 0.000 claims description 6
- 239000012943 hotmelt Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 229910000679 solder Inorganic materials 0.000 abstract description 55
- 230000009471 action Effects 0.000 abstract description 8
- 239000000463 material Substances 0.000 description 41
- 239000002245 particle Substances 0.000 description 23
- 229920005989 resin Polymers 0.000 description 20
- 239000011347 resin Substances 0.000 description 20
- 238000005299 abrasion Methods 0.000 description 17
- 238000005498 polishing Methods 0.000 description 13
- 239000002313 adhesive film Substances 0.000 description 12
- 230000004907 flux Effects 0.000 description 12
- 239000008393 encapsulating agent Substances 0.000 description 11
- 239000010410 layer Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 238000001000 micrograph Methods 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 239000000945 filler Substances 0.000 description 8
- 239000004593 Epoxy Substances 0.000 description 7
- 239000012790 adhesive layer Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000003082 abrasive agent Substances 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000004840 adhesive resin Substances 0.000 description 3
- 229920006223 adhesive resin Polymers 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000010297 mechanical methods and process Methods 0.000 description 3
- 230000005226 mechanical processes and functions Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007790 scraping Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- 238000005382 thermal cycling Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 239000004825 One-part adhesive Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910020816 Sn Pb Inorganic materials 0.000 description 1
- 229910020922 Sn-Pb Inorganic materials 0.000 description 1
- 229910007116 SnPb Inorganic materials 0.000 description 1
- 229910008783 Sn—Pb Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 235000012736 patent blue V Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
- H01L23/485—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/563—Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/118—Post-treatment of the bump connector
- H01L2224/1183—Reworking, e.g. shaping
- H01L2224/1184—Reworking, e.g. shaping involving a mechanical process, e.g. planarising the bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/27—Manufacturing methods
- H01L2224/274—Manufacturing methods by blanket deposition of the material of the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/27—Manufacturing methods
- H01L2224/278—Post-treatment of the layer connector
- H01L2224/2783—Reworking, e.g. shaping
- H01L2224/2784—Reworking, e.g. shaping involving a mechanical process, e.g. planarising the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/2919—Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/731—Location prior to the connecting process
- H01L2224/73101—Location prior to the connecting process on the same surface
- H01L2224/73103—Bump and layer connectors
- H01L2224/73104—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/811—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector the bump connector being supplied to the parts to be connected in the bonding apparatus
- H01L2224/81101—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector the bump connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a bump connector, e.g. provided in an insulating plate member
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/831—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
- H01L2224/83101—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83191—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01025—Manganese [Mn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01057—Lanthanum [La]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01075—Rhenium [Re]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/15786—Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
- H01L2924/15787—Ceramics, e.g. crystalline carbides, nitrides or oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/1579—Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
Definitions
- the present invention relates generally to methods for preparing and connecting pre-underfilled solder-bumped integrated circuit chip wafers to a circuit substrate. More specifically, the present invention relates to methods for exposing solder bumps after having laminated a highly filled adhesive film underfill to solder bumped integrated circuit chips, so that the solder bumps can make electrical connections between the integrated circuit chips and their packaging circuits.
- One technique used to reduce circuit size and improve performance involves attaching IC devices directly to a substrate using perimeter or area arrays of solder balls mounted on the face of a chip. By inverting or "flipping" the chip such that the balls are placed in contact with pads on the substrate and passing the entire assembly through a solder reflow process, the IC may be metallurgically bonded to the substrate.
- flip-chip assembly technology was first pioneered over 30 years ago, it has been successfully exploited in only a few different segments of the electronics industry. The most notable examples of electronic products which have exploited flip-chip assembly include wristwatches, automotive sensors/controllers and mainframe computers.
- solder is normally either a 95Pb-5Sn or a 63Sn-37Pb alloy, and it is normally reflowed to form a nearly spherical "bump" prior to final board assembly.
- a typical assembly process for flip-chip assembly involves the following steps: 1) flux paste is applied to the substrate bond pads; 2) the IC is aligned and placed on the substrate while the tackiness in the flux holds the chip in place; 3) the assembly is passed through the reflow oven and the solder melts and bonds metallurgically with the substrate pads; and 4) the sample is passed through a flux cleaning operation. Flux removal is normally done with solvent rinses. Originally it was required to use chlorinated solvents to remove the flux residues, but more recently improvements to the flux chemistry has permitted the use of more desirable solvents.
- the finished flip-chip assembly must then maintain electrical continuity throughout the lifetime of the device as measured by accelerated tests such as thermal cycling and thermal shock. Mismatches of both the coefficient of thermal expansion (CTE) and the elastic modulus (E) between the silicon IC and the PCB generate high stresses in the contact joints when the circuit is passed through thermal excursions. These stresses can lead to solder joint fatigue failure after repeated temperature cycles, and this is a primary failure mechanism for flip-chip joints.
- This mechanism has limited the selection of substrate materials mainly to ceramic hybrid substrates such as A1 2 0 3 , which has high modulus and low CTE, properties similar to silicon. Even with ceramic substrates, flip- chip assembly is limited to applications with small dice.
- underfill resin is applied as a liquid and is allowed to wick under the reflowed assembly via capillary action.
- This type of encapsulation is often referred to as "Capillary Underfill”.
- the current procedure for applying and curing underfill resins is separate from and is appended to the overall process sequence described above. After the reflow and flux removal steps, it is necessary to: pre-dry the bonded assembly, preheat the bonded assembly (to aid the wick-under), dispense resin, allow resin to wick under the die, dispense again, and then cure.
- Currently available underfill resins can require cures of up to 2 hours at 150°C.
- the liquid resin in this case is used in place of the aforementioned flux paste, and special adhesive formulations have been developed that are capable of providing fluxing action in the reflow oven before they begin to cure significantly.
- This type of material is often referred to as a "No-Flow Underfill" because of the elimination of the capillary flow step.
- Special adhesive formulations that are capable of providing some degree of a fluxing action as they cure in the reflow oven may be used. Because the resin is present on the board before the chip is placed, it is necessary to press the chip down into the resin and displace the resin from the contact sites. This approach is attractive in that it eliminates flux cleaning, dispensing and wicking steps. However, it has been shown that in order for this approach to work, the underfill resin must be unfilled.
- the present invention provides a new way to simplify the flip-chip assembly process and enables the use of a broader range of materials thereby reducing assembly cost and improving interconnect reliability.
- One aspect of the present invention relates to a method for connecting an integrated circuit chip to a circuit substrate.
- the method includes the step of pre-applying adhesive directly to a bumped side of the integrated circuit chip and removing portions of the adhesive to expose the bumps.
- the portions of adhesive can be removed after the adhesive application process, preferably by a solvent-assisted burnishing of the bumps.
- the method also includes the step of pressing the bumped side of the integrated circuit chip, which has previously been coated with adhesive, against the circuit substrate such that the bumps provide an electrical connection between the integrated circuit chip and the circuit substrate.
- the pre-applied adhesive on the chip forms a bond between the integrated circuit chip and the circuit substrate.
- the above-described method provides numerous advantages over the prior art. For example, by applying the adhesive to the bumped IC prior to substrate attachment, encapsulation of the bumps is easier to achieve and can be more easily inspected, irrespective of IC size and pitch. Also, because no wick under processes are used, the viscosity requirements for adhesive application are significantly relaxed as adhesives with viscosities on the order of about 1000 to about 30,000 poise may be used to achieve effective encapsulation. The removal of the viscosity constraint permits higher filler loading if necessary, as well as the use of alternative chemistries and catalysis systems. Such extra formulation latitude has the potential to enable higher reliability assemblies through improved adhesive material properties. Additionally, the above-described method offers the potential for fluxless attach due to the scrubbing action of the bumps as they deform in the bonding process.
- Another aspect of the present invention relates to a method for preparing integrated circuit chips for assembly.
- the method includes the step of providing a wafer including a bumped side having a plurality of conductive bumps.
- the method also includes the steps of applying adhesive to the bumped side of the wafer, softening the adhesive with a solvent, wiping the softened adhesive from the tips of the bumps, and then dicing the wafer into individual integrated circuit chips. Because the adhesive is deposited at the wafer level, rather than the chip level, no dispensing, wicking, or damming are required. The process is also faster when conducted at the wafer level, rather than at the chip level. Additionally, with the use of faster curatives, post curing may be eliminated.
- a further aspect of the present invention relates to an integrated circuit chip.
- the integrated circuit chip includes a bumped side having a plurality of conductive bumps.
- the chip also includes a layer of adhesive that covers the bumped side.
- the bumps have exposed contact regions that are substantially uncovered by the adhesive layer.
- the novel solvent assisted burnishing of the bumped side of the wafer allows the exposed contact regions of the bumps to retain their original rounded profile.
- Figs. 1A-1C illustrate a method for preparing an IC chip for connection to a circuit substrate
- Figs. 2A-2B illustrate a method for connecting the prepared IC chip of Fig. IC to a circuit substrate
- Figs. 3A-3B are micrographs of an IC chip processed via the method of Figs. 1 A-1C, Fig. 3A shows the chip prior to abrasion and Fig. 3B shows the chip after abrasion; Figs. 4A-4C illustrate an alternative method for preparing an IC chip for connection to a circuit substrate;
- Figs. 5A-5B are micrographs of an IC chip processed via the method of Figs. 4A-4C, Fig. 5A shows the chip prior to abrasion and Fig. 5B shows the chip after abrasion;
- Fig. 6A is a cross-sectional micrograph of an IC chip connected to a circuit substrate, the IC chip was not subjected to an abrasion step prior to connection;
- Fig. 6B is a cross-sectional micrograph of an IC chip connected to a circuit substrate, the IC chip was subjected to an abrasion step prior to connection;
- Figs. 7A and 7B illustrate a method for making a conductive tape
- Figs. 8A and 8B illustrate a method for making an electrical connection using the conductive tape of Figs. 7 A and 7B;
- Figs. 9A-9D illustrate a method for encapsulating bumps on wafer integrated circuits.
- Fig. 10 illustrates a thickness profile of the adhesive on an IC chip after dry burnishing with 1200 grit Emory paper.
- Fig. 1 1 is a micrograph of the IC chip of Figure 10, showing contamination of the adhesive and flattening of the solder bumps.
- Fig. 12 shows an IC chip after solvent assisted burnishing which provided poor uniformity and left excessive residue on the IC chip.
- Fig. 13 shows an IC chip after solvent assisted burnishing which provided fair uniformity and left minimal residue on the IC chip.
- Figs. 14A and 14B illustrate the thickness profile of the adhesive on an IC chip after solvent assisted burnishing.
- Figs. 15A-15C illustrate a solvent assisted burnishing method for preparing an IC chip for connection to a circuit substrate, where the adhesive thickness is greater than the height of the solder bumps.
- Figs. 16A-16C illustrate a solvent assisted burnishing method for preparing an IC chip for connection to a circuit substrate, where the adhesive thickness is less than the height of the solder bumps.
- the present invention provides an alternate means for applying underfill adhesive resin to an IC chips.
- underfill resin is applied to the bumped sides of IC chips, preferably at wafer level, before the chips have been bonded to an interconnect substrate such as a printed circuit board (PCB).
- the resin may be applied by techniques such as laminating a film material or by liquid coating.
- the present invention allows resin to be directly coated on the entire exposed surface/face of the IC chips. Consequently, the problems with entrapped air or incomplete filling typically associated with the traditional underfill are eliminated.
- underfill resin coverage and thickness can be controlled to ensure uniformity.
- portions of the adhesive resin are removed to expose the tops of the solder bumps.
- the adhesive removal may be accomplished by several means, including physical removal by abrasives that vigorously remove material (including some solder), physical removal by displacement of the adhesive, indirect physical removal such as with plasma treatment, or by combining physical and chemical agents for removal in which surfaces with lower (i.e., finer) abrasive quality are combined with solvents to scrub the adhesive clear of the solder balls.
- a mechanical process can be used to remove the previously applied adhesive from the tops of the bumps.
- Exemplary mechanical processes include rubbing the adhesive with an abrasive material, scraping the adhesive with a knife edge, or compressing the adhesive to thin and eventually crack or otherwise displace the adhesive material from the tops of the bumps.
- the above-described adhesive removal step is important because to achieve good metal-to-metal contact between the solder bumps and the interconnect substrate prior to the reflow step, the top surfaces of the bumps should preferably be at least partially exposed.
- the adhesive removal and bump exposing step also function to remove oxide films from the bumps that were formed during their initial reflow. In some instances, it may be desirable after the bump exposure operation has been completed, to apply a film or other type of protective cover to the wafer/chips to protect the adhesive and the exposed bumps.
- the wafer forming the chips is diced into a plurality of discrete chips. Following wafer dicing (and removal of the protective film, if any), a selected IC chip can be aligned and pre-attached to the interconnect substrate with heat and pressure. Normally a small amount of a no-flow underfill material is dispensed onto the PC board just prior to the chip placement step. This additional material serves to provide a complete filling of the bond line and also acts as a temporary adhered to hold the chip in place until it reaches the reflow oven.
- the solder bumps of the chip are deformed slightly in order to further ensure both good metal to metal contact between the IC and the interconnect substrate as well as good wetting of the adhesive to the substrate.
- the bump deformation accommodates the stand off of the IC from the substrate and allows the adhesive to be brought down to contact and fully wet the substrate surface thereby completely filling the cavity under the chip.
- the collapse of the bumps causes the surface oxides on the solder bumps to crack and open exposing fresh solder which is then smeared across the substrate pads forming a good metallurgical bond.
- the pre- applied adhesives forme and maintains a mechanical bond between the chip and the substrate significantly reducing the strain in the solder joints.
- the solder joints may be formed without flux and still form reliable interconnects.
- the adhesive serves to affix the IC to the board prior to reflow instead of a flux paste.
- the solder reflow process can also serve to partially or even fully cure the underfill resin, which can possibly eliminate the need for an additional post cure.
- Figs. 1 A-1C show an exemplary process, in accordance with the principles of the present invention, for preparing an IC chip for electrical connection to a circuit substrate.
- Fig. 1 A shows an IC chip 20 or wafer having a passivation surface 22 on which a plurality of conductive bumps 24, such as solder bumps, are disposed.
- the bumps 24 can be made of a variety of known conductive materials. Exemplary materials include meltable solid metals, gold, conductive slurries, conductive polymers, electroless nickel, and electroless gold.
- the bumps 24 are preferably deposited on input/output pads of the chip 20 and protrude or project outward from the passivation surface 22 of the chip 20.
- the bumped side of the chip 20 has been covered with a layer of adhesive material 26 such as adhesive film or adhesive solution.
- the adhesive can be deposited or applied to the bumped side of the chip by any number of known techniques.
- the adhesive can be coated as a hot melt, coated from solution, or bonded as a film in a lamination process.
- the adhesive material 26 fills the volume around the bumps 24 and protects the bumps 24 during handling prior to assembly. As shown in Fig. 1 A, the adhesive material 26 has a thickness which is less than the heights of the bumps 24. As a result, the exposed surface of the adhesive 26 has a plurality of adhesive protuberances 28 that correspond to the bumps 24. The protuberances 28 cover the bumps 24 and project outward from a substantially flat primary adhesive surface 30 that is located between the bumps 24. If the adhesive is applied as a liquid, the liquid is preferably b-stage cured or dried to form an adhesive film.
- an abrasion process is employed to remove the adhesive material located on top of the bumps 24 exposing the conductive bumps 24 for better electrical connection with a packaging substrate.
- an abrasive material 32 such as sandpaper, micro abrasive, abrasive pads available from 3M Company, St. Paul, MN under the trade designation Scotch Bright, a cloth, a scraping blade or a coating knife is brought in contact with the adhesive protuberances 28 that cover the bumps 24 such that the bumps 24 are exposed for electrical conduction. Because the protuberances project above the average adhesive height on the chip 20, such protuberances become pressure focal points that receive the most abrasion or cutting.
- Fig. IC shows the chip 20 after the bumps have been exposed via abrasion. Once the bumps have been exposed, a film, tape or other type of protective cover may be applied to the chip 20 to protect the adhesive 26 and the exposed bumps 24.
- a variety of techniques can be used to expose the conductive bumps 24. If the adhesive is coated as a liquid, a scraper or knife edge can be used to remove adhesive from the bumps during the coating process. For example, the knife could be used to spread the adhesive and simultaneously remove portions of the adhesive from over the bumps 24. Alternatively, the bumps 24 could be exposed via abrasion after the liquid adhesive has hardened. Furthermore, the adhesive could be applied as a film with portions of the film being removed by an abrasion process. As shown in Fig. IC, each bump 24 extends completely across the adhesive layer
- Figs. 2A and 2B illustrate a method for electrically connecting the prepared chip 20 to a circuit substrate 34 such as a packaging circuit. To connect the chip 20 to the circuit substrate 34, exposed regions 36 of the bumps 24 are aligned with circuit pads 38 of the circuit substrate 34. Next, the chip 20 is pressed against the circuit substrate 34 with sufficient force to generate electrical contact between the bumps 24 and the circuit pads
- the bumps 24 it is preferred for the bumps 24 to deform during the bonding process.
- the adhesive 26 may be cured during the bonding process or in a separate bake cure at a later time. Once cured, the adhesive 26 provides the mechanical bond between the IC chip 20 and substrate 34, redistributes the stresses at the solder joints and encapsulates the bumps 24 protecting them from the environment.
- an IC chip manufactured by Flipchip Technology was utilized. Solder bumps having 4 mil diameters were located on the perimeter of the chip.
- FIG. 3 A is a micrograph of the chip after having been coated with adhesive.
- the 4 mil tall bumps were higher than the thickness of the adhesive, so there was substantial protrusion of these bumps above the primary adhesive surface on the chip surface.
- An Imperial Lapping Film micro abrasive manufactured by 3M Corporation was used to remove the adhesive from the tops of the bumps so as to expose the bumps.
- Fig. 3B is a micrograph the chip after the bumps have been exposed via abrasion. Inspections of the abraded parts found no evidence of abraded conductive material on the processed parts. The abraded adhesive and bump materials were apparently carried away by the abrasive film.
- Figs. 4A-4C illustrate another process, in accordance with the principles of the present invention, for preparing an IC chip for connection to a circuit substrate. It will be appreciated that the process of Figs. 4A-4C has aspects that are similar to the process of Figs. 3A-3C.
- Fig. 4A shows an IC chip 120 including a plurality of conductive bumps 124 deposited on a passivation surface 122 of the chip 120.
- the bumped side of the chip 120 is covered with a layer of adhesive material 126 having a thickness equal to or greater than the heights of the bumps 124.
- the adhesive material 126 covers the bumps 124 and has an exposed primary surface 130 that is substantially parallel to the passivation surface 122.
- a cutting or abrasion process is employed to remove the adhesive material on top of the bumps 124 exposing the conductive bumps 124 for better electrical connection with a packaging substrate.
- an abrasive material 132 is used to burnish the entire primary surface 130 of the adhesive 126 such that the bumps 124 are exposed for electrical conduction.
- Fig. 4C shows the chip 120 after the bumps have been exposed via abrasion. Once the bumps have been exposed, a film, tape or other type of protective cover may be applied to the chip 120 to protect the adhesive 126 and the exposed bumps 124.
- each bump 124 extends completely across the thickness of the adhesive layer 126. In this manner, the height of each abraded bump 124 is roughly equal to the thickness of at least portions of the adhesive layer 126. Additionally, the exposed regions 136 of the bumps 124 are substantially flush with respect to the primary adhesive surface 130. It will be appreciated that the chip 120 can be connected to a circuit substrate in substantially the same manner previously described with respect to Figs. 2A and 2B.
- Fig. 5A is a micrograph of an exemplary chip having bumps which have been coated with adhesive in the same manner the chip 120 of Fig. 4A. Additionally, Fig. 5B is a micrograph of the chip of Fig. 5 A after portions of the adhesive have been abraded to expose the conductive bumps.
- Fig. 6A shows a cross-sectional image of a non-abraded chip bonded to a FR4 board using Pyralux, a no-flow adhesive manufactured by DuPont.
- the cross-sectional photo shows that the bumps are not in contact with the substrate because the adhesive is thick and covering the bumps.
- Fig. 6B shows a cross-sectional image of a polished/abraded chip bonded to a FR4 board using Pyralux.
- the cross-section photo of Fig. 6B shows that the bumps are in contact with the substrate because the polishing process was used to remove the extra adhesive from the bump tops.
- the adhesive coating flows significantly, the bumps will push through the adhesive somewhat during bonding. However, the adhesive 126 can get trapped under the bump, thereby preventing good metallurgical bond formation. Consequently, even when high flow adhesives are utilized, it is still typically preferred to abrade the adhesives.
- Figs. 7A-7B show another aspect of the present invention which relates to a method for making a z-axis conductive tape.
- the method includes the step of providing an array of conductive particles 210.
- An exemplary size distribution for the particles is from 20-75 micrometers.
- the method also includes the step of coating the particles 210 with a layer of adhesive 214 as shown in Fig. 7 A.
- the adhesive 214 can be applied to the particles 210 by a variety of techniques.
- the adhesive can be coated as a hot melt, coated from solution, pressed as a film upon the particles 210, or bonded as a film in a lamination process.
- the particles can be mixed within an adhesive suspension which is spread to form a layer or film of adhesive having a plurality of coated particles contained therein.
- the adhesive 214 has a primary thickness t that is less than the size of the particles 210.
- the adhesive 214 has a top surface 216 having a plurality of humps or top protuberances 218 that correspond to the particles 210.
- the adhesive 214 also includes a bottom surface 217 having a plurality of bottom humps or protuberances 219 that correspond to the particles 210.
- the adhesive may have a primary thickness equal to or greater than the size of the particles. In such an embodiment, the adhesive would preferably define substantially flat top and bottom surfaces.
- the particles 210 can be exposed by techniques such as burnishing or polishing the top and bottom surfaces 216 and 217 of the adhesive 214 with an abrasive material. In certain embodiments of the present invention, the particles 210 can initially be supported on a release liner (not shown) while adhesive is applied to the particles 210.
- the liner is removed from the back or bottom side 217 of the adhesive 214 allowing the bottom side 217 of the adhesive to be processed.
- Fig. 7B shows the adhesive 214 after the top and bottom contact regions 220 and 224 have been exposed.
- the product depicted in Fig. 7B comprises a strip of conductive tape 226 suitable for providing z-axis electrical connections.
- the particles 210 of the tape 226 have sizes substantially equal to or greater than the thickness of the adhesive 214. As a result, each particle 210 extends completely across the thickness of the adhesive 214.
- a protective film or cover can be used to protect the exposed top and bottom contact regions 220 and 224 until the tape 226 is actually used to provide an electrical connection.
- Figs. 8 A and 8B show a method of providing a z-axis connection between first and second electrical components 228 and 230 using the conductive tape 226.
- the conductive tape 226 is positioned between conducting pads 232 of the electrical components 228 and 230.
- the tape 226 is pressed between the electrical components 228 and 230 with sufficient force to generate electrical contact between the particles 210 and the circuit pads 232. While the tape 226 is pressed, the tape 226 is also heated such that the adhesive 214 wets and fills around the particles 210, and forms a bond between the electrical components 228 and 230.
- the adhesive can be cured during the bonding process or in a separate bake cure at a later time.
- Figs. 9A-9D illustrate an exemplary method for manufacturing integrated circuit chips in accordance with the principles of the present invention.
- Fig. 9A shows a wafer 320 having a passivation surface 322 on which a plurality of conductive bumps 324 are disposed.
- An adhesive film 326 with a protective backing 328 is located adjacent to the passivation surface 322.
- Fig. 9B shows the adhesive film 326 being pressed against the passivation surface
- the adhesive 326 covers the bumps 324 and deforms to fill the voids around the bumps 324.
- the adhesive film 326 bonds with the passivation surface 322 of the wafer 320.
- the wafer 320 which has been pre-coated with adhesive, is diced or divided into discrete integrated circuits 330. Finally, as shown in Fig.
- the backing layer 328 is removed from the integrated circuits 330 such that the adhesive layer 326 is exposed. With the backing 328 removed, the integrated circuits are ready for connection to a substrate.
- solder from the bumps is undesirable for several reasons. These reasons include loss of control of solder volume from bump to bump and from chip to chip, which could compromise the IC reliability. Additionally, solder debris may be spread over the surface of the encapsulant, thereby creating a contamination problem.
- solder bumps it is desirable to remove the encapsulant from the surface of the solder bumps without removing any solder from the solder bumps or causing the tips of the solder bumps to be flattened. That is, it is desirable for the solder bumps to retain their original rounded profile.
- the underfill material may be removed from the solder tips by means of a wiping action rather than an abrading action. That is, a relatively soft material such as a woven or non-woven fabric or an open cell foam may be used. Prior to use, the wiping pad is dampened with a small amount of an appropriate solvent to soften the encapsulant. Alternatively, a harder micro-structured surface can also be used in place of the wiping pad. When using a harder micro-structured surface, an appropriate amount of solvent is applied to the low spots on the micro-structured surface just prior to use. By employing this type of gentle, solvent assisted wiping action it is possible to remove the underfill encapsulant from the bump tips without altering the bump size and shape in any significant way. Examples of solvent assisted burnishing or wiping of the solder bumps are provided below.
- epoxy based underfill encapsulants were used.
- the encapsulants were formulated so as to provide a flexible film format. All of the materials were loaded with a spherical, amorphous silica powder at a level of two parts filler to one part adhesive solids by weight. The silica powder had a size range of 2 to 10 microns diameter nominally.
- the adhesive solids were comprised primarily of a blend of epoxy with a largely non-reactive thermoplastic component. The ratio of epoxy thermoplastic was in the range of 7:3 to 8:2.
- acetone was used as a solvent for the adhesives. Other suitable solvents may be used, as is appropriate for the particular adhesive underfill being used.
- a piece of silicon measuring approximately 2 x 2 inches and comprising an array of 9 x 9 bumped chips was used.
- the solder bumps were approximately 100 microns in diameter and were of a eutectic 63-37 Sn-Pb alloy.
- Each chip contained 68 bumps in a peripheral array.
- the chips were pre-encapsulated, using a heat-lamination process, with an uncured one -part epoxy based adhesive film having an initial thickness slightly greater than 100 microns.
- the pre-encapsulated wafer-section was attached bumped side-up to an aluminum puck which was then placed face down into a Struers Metallurgical polishing machine, available from Struers, Inc. of Westlake, Ohio.
- the 8 in. diameter turntable was provided with a single piece of 1200 grit Emory paper.
- the wafer-section was placed in contact with the Emory paper with a total force of 5N.
- the turntable and the wafer section were spun independently at 150 rpm for a period of 35s with no applied lubricant.
- the adhesive surface was found to be quite smooth. Many but not all of the solder bumps were exposed.
- a thickness profile of the adhesive revealed a crowned shape as illustrated in Figure 10.
- the photograph in Figure 11 illustrates the undesirable flattening of the bumps as well as evidence of contamination from possibly both solder debris and residual abrasive media trapped in the adhesive layer.
- a single chip was laminated with an uncured one-part epoxy based adhesive film.
- the chip contained solder bumps of roughly 100 micron diameter.
- the adhesive was laminated by pressing by hand at a temperature of 60 degrees C. Bump locations were visible but bumps were not exposed.
- Plasma etching was attempted with a Model PS0524 unit from Plasma Science, an RF type system operating at 13.5 MHz and delivering a maximum power of 500W with matching network capability. An oxygen plasma was used.
- the chip was placed in the middle of the plasma field, which was of a sky blue color. A maximum power in the range of 60% of full power was used, and the chip was exposed for a period of about 15 minutes. Afterwards the adhesive surface was examined with SEM.
- polishing pad materials are available from Struers, Inc. of Westlake, Ohio, Allied High Tech
- the polishing pad was slightly dampened with a small amount of acetone immediately prior to use. Care was taken to avoid having any standing liquid on top of the polishing pad.
- Each pad was sized at 8 inches diameter to match the turntable of the Struers Metalographic polishing machine.
- the chip array to be treated was placed bumped side up on an aluminum puck weighing 83g, and the puck was placed into the polisher with the bumped surface facing the polishing pad.
- the weight of the puck was the only z-axis force applied to the test piece.
- the turntable and the test piece were independently rotated at 150rpm for the time periods indicated.
- Example 3FI and 31 The preferred pad materials from Examples 3FI and 31 were used to assess the effect of adhesive thickness on both the required burnishing time and on the resulting thickness uniformity and surface appearance of the wafer-applied encapsulant material. Other than varying the adhesive thickness and resulting required burnishing times, all other details were as described in Example 3. After burnishing was completed, an adhesive thickness measurement was made for each of the sixteen chips on each test sample. Also, qualitative determinations were made of surface smoothness and condition of the bump surfaces. The results are summarized in Table II below. For Example 4H, it was not possible to complete the burnishing process with the MD-Plan alone because there was too much adhesive volume present compared with the volume of adhesive which the plate could accommodate in its low spots. In this example a second burnishing step using the Texwipe fabric was used in order to complete the exposure of the bumps.
- Example 5 (Present Invention, Burnishing at wafer level)
- the Texwipe "TX309" pad material was used to assess the ability to practice solvent-assisted burnishing at the near-wafer level.
- an array of 9 x 9 chips measuring approximately 1.8 x 1.8 inches was used. This was the largest wafer segment that could be placed successfully into the Metalographic polisher which was used.
- the chip type was the same as was used in Examples 3 and 4.
- Two different uncured one -part epoxy based adhesive films were tested for Example 5A and Example 5B. Adhesive film thicknesses were approximately 100 microns. Once again acetone was used as the solvent.
- surface profiles were generated from dial indicator readings to illustrate the degree of uniformity for the resulting adhesive thicknesses.
- the integrated circuit chips 420 which are prepared using the solvent assisted burnishing technique as described in the
- solder bumps 424 which have not been altered significantly or deformed in the adhesive underfill removal process.
- the processed IC chips 420 have a passivation surface 422 on which conductive bumps 424 are disposed.
- the passivation surface 422 and bumps 424 are covered by adhesive material 426.
- an IC chip 420 including conductive bumps 424 is covered with a layer of adhesive 426 with a thickness equal to or greater than the height of bumps 424.
- Adhesive material 426 covers bumps 424 and has an exposed primary surface 430 that is substantially parallel to the passivation surface 422.
- a polishing pad 432 is wetted with a suitable solvent 434 for softening the adhesive 426.
- the softened adhesive may then be wiped or polished away with polishing pad 432 until the rounded profile of bumps 424 are exposed. After the bumps 424 are exposed, they may be bonded to the printed circuit board substrate in a manner consistent with that described above for abrasive underfill removal techniques, as shown for example, in Figures 2A and 2B.
- the adhesive material 426 is of a thickness less than the height of the bumps 424.
- the exposed surface of the adhesive 426 has a plurality of adhesive protuberances 428 that correspond to the bumps 424.
- the protuberances 428 cover the bumps 424 and project outwardly from a substantially primary adhesive surface 430 that is located between the bumps 424.
- a polishing pad 432 is wetted with a suitable solvent 434, such as acetone or other solvent as may soften the adhesive 426.
- Solvent 434 softens the adhesive 426 such that polishing pad 432 may remove adhesive 426 without disturbing the rounded profile of bumps 424, as shown in Figure 16C.
- a film, tape or other protective cover may be applied to the chip 420 to protect the adhesive 426 and the exposed bumps 424.
- polishing pad 432 together with solvent 434 allows the exposed regions 436 of the bumps 424 to retain their original rounded shape. Retaining the rounded profile of the bumps confers additional benefits on the bonding process, as it allows easier deformation of the bumps 424 during the bonding process. As noted above, by deforming the bumps 424, the stand off between the IC chip 420 and the substrate is reduced and the adhesive is caused to fully wet and encapsulate the substrate circuit topography.
- the solvent assisted burnishing technique described herein provides significant advantages over other adhesive encapsulant removal techniques.
- the solvent assisted burnishing allows the solder bumps to remain unaltered and undeformed prior to connection to a circuit substrate, and thereby ensures greater uniformity of the solder bumps and greater reliability of the interconnects formed by the solder bumps.
- the adhesive can be coated as a hot melt or coated from solution.
- the above-described method can also include the step of removing portions of the adhesive from the bumps to generate exposed contact areas as previously disclosed in the detailed description.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Wire Bonding (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01906665A EP1327264A1 (en) | 2000-10-17 | 2001-01-25 | Solvent assisted burnishing of pre-underfilled solder-bumped wafers for flipchip bonding |
KR1020037005262A KR100801945B1 (en) | 2000-10-17 | 2001-01-25 | Solvent assisted burnishing of pre-underfilled solder-bumped wafers for flipchip bonding |
AU2001234550A AU2001234550A1 (en) | 2000-10-17 | 2001-01-25 | Solvent assisted burnishing of pre-underfilled solder-bumped wafers for flipchipbonding |
JP2002537050A JP5090610B2 (en) | 2000-10-17 | 2001-01-25 | Solvent burnishing of pre-underfilled solder bump wafers for flip chip bonding |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/690,600 | 2000-10-17 | ||
US09/690,600 US7170185B1 (en) | 1997-12-08 | 2000-10-17 | Solvent assisted burnishing of pre-underfilled solder bumped wafers for flipchip bonding |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002033750A1 true WO2002033750A1 (en) | 2002-04-25 |
Family
ID=24773130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/002385 WO2002033750A1 (en) | 2000-10-17 | 2001-01-25 | Solvent assisted burnishing of pre-underfilled solder-bumped wafers for flipchip bonding |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1327264A1 (en) |
JP (1) | JP5090610B2 (en) |
KR (1) | KR100801945B1 (en) |
CN (1) | CN1270375C (en) |
WO (1) | WO2002033750A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006009478A1 (en) * | 2006-02-27 | 2007-08-30 | Infineon Technologies Ag | Flip chip bonding fabricating method for semiconductor component, involves hardening of bumps after applying two-stage adhesive, and applying die with bumps made of hardened adhesive on substrate by contact of bumps with substrate contact |
US7795742B2 (en) | 2005-09-27 | 2010-09-14 | Infineon Technologies Ag | Semiconductor device having a semiconductor chip, and method for the production thereof |
KR101392781B1 (en) | 2003-12-12 | 2014-05-09 | 제너럴 일렉트릭 캄파니 | Method and apparatus for forming patterned coated films |
WO2016154191A1 (en) * | 2015-03-24 | 2016-09-29 | Chen Zhijin | Two-part urethane adhesive |
EP2168178B1 (en) * | 2007-07-09 | 2019-03-20 | Lumileds Holding B.V. | Substrate removal during led formation |
WO2020252071A1 (en) * | 2019-06-11 | 2020-12-17 | Facebook Technologies, Llc | Dielectric-dielectric and metallization bonding via plasma activation and laser-induced heating |
US20210111036A1 (en) * | 2018-06-29 | 2021-04-15 | Lintec Corporation | Mounting method of work |
US11404600B2 (en) | 2019-06-11 | 2022-08-02 | Meta Platforms Technologies, Llc | Display device and its process for curing post-applied underfill material and bonding packaging contacts via pulsed lasers |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003092311A (en) * | 2001-09-17 | 2003-03-28 | Nagase & Co Ltd | Method of mounting ic chip having projecting electrode |
JP2003092310A (en) * | 2001-09-17 | 2003-03-28 | Nagase & Co Ltd | Ic chip having projected electrode with seal resin |
JP2005347356A (en) * | 2004-05-31 | 2005-12-15 | Sanyo Electric Co Ltd | Manufacturing method for circuit arrangement |
JP2006140432A (en) * | 2004-10-15 | 2006-06-01 | Nippon Steel Corp | Method for manufacturing wafer-level package |
JP4789190B2 (en) * | 2006-03-29 | 2011-10-12 | 新日鐵化学株式会社 | Manufacturing method of semiconductor device provided with bump |
JP5152157B2 (en) * | 2009-11-16 | 2013-02-27 | 富士通セミコンダクター株式会社 | Manufacturing method of semiconductor device |
JP2012039045A (en) * | 2010-08-11 | 2012-02-23 | Nec Embedded Products Ltd | Package, electronic equipment, package connecting method, and package repairing method |
JP5662855B2 (en) * | 2011-03-25 | 2015-02-04 | 株式会社日立製作所 | Printed circuit board manufacturing apparatus and manufacturing method |
US10163847B2 (en) * | 2017-03-03 | 2018-12-25 | Tdk Corporation | Method for producing semiconductor package |
CN115938963B (en) * | 2023-03-13 | 2023-05-23 | 深圳市光为光通信科技有限公司 | Photoelectric co-packaging method based on silicon-based optoelectronic integrated chip |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992018600A1 (en) * | 1991-04-10 | 1992-10-29 | Minnesota Mining And Manufacturing Company | Low voc cleaning compositions and methods |
WO1999030362A1 (en) * | 1997-12-08 | 1999-06-17 | Minnesota Mining And Manufacturing Company | Method and apparatuses for making z-axis electrical connections |
EP0969058A2 (en) * | 1998-07-02 | 2000-01-05 | National Starch and Chemical Investment Holding Corporation | Method of making encapsulated electronic component with reworkable package encapsulants |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03108210A (en) * | 1989-09-21 | 1991-05-08 | Hitachi Chem Co Ltd | Manufacture of anisotropic conductive resin film mold |
JP3376203B2 (en) * | 1996-02-28 | 2003-02-10 | 株式会社東芝 | Semiconductor device, method of manufacturing the same, mounting structure using the semiconductor device, and method of manufacturing the same |
JPH09330992A (en) * | 1996-06-10 | 1997-12-22 | Ricoh Co Ltd | Semiconductor device mounting body and its manufacture |
JP3137322B2 (en) * | 1996-07-12 | 2001-02-19 | 富士通株式会社 | Semiconductor device manufacturing method, semiconductor device manufacturing mold, and semiconductor device |
JPH10242211A (en) * | 1996-12-24 | 1998-09-11 | Nitto Denko Corp | Manufacturing method of semiconductor device |
JP3326382B2 (en) * | 1998-03-26 | 2002-09-24 | 松下電器産業株式会社 | Method for manufacturing semiconductor device |
JP2000040711A (en) * | 1998-07-23 | 2000-02-08 | Sony Corp | Resin sealed semiconductor device and manufacture thereof |
JP2000077472A (en) * | 1998-09-01 | 2000-03-14 | Hitachi Chem Co Ltd | Semiconductor device |
JP4249827B2 (en) * | 1998-12-04 | 2009-04-08 | 株式会社ディスコ | Manufacturing method of semiconductor wafer |
JP4598905B2 (en) * | 1999-01-29 | 2010-12-15 | フリースケール セミコンダクター インコーポレイテッド | Manufacturing method of semiconductor device |
JP3413120B2 (en) * | 1999-02-23 | 2003-06-03 | ローム株式会社 | Semiconductor device with chip-on-chip structure |
-
2001
- 2001-01-25 CN CNB018173675A patent/CN1270375C/en not_active Expired - Fee Related
- 2001-01-25 EP EP01906665A patent/EP1327264A1/en not_active Withdrawn
- 2001-01-25 KR KR1020037005262A patent/KR100801945B1/en not_active IP Right Cessation
- 2001-01-25 JP JP2002537050A patent/JP5090610B2/en not_active Expired - Fee Related
- 2001-01-25 WO PCT/US2001/002385 patent/WO2002033750A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992018600A1 (en) * | 1991-04-10 | 1992-10-29 | Minnesota Mining And Manufacturing Company | Low voc cleaning compositions and methods |
WO1999030362A1 (en) * | 1997-12-08 | 1999-06-17 | Minnesota Mining And Manufacturing Company | Method and apparatuses for making z-axis electrical connections |
EP0969058A2 (en) * | 1998-07-02 | 2000-01-05 | National Starch and Chemical Investment Holding Corporation | Method of making encapsulated electronic component with reworkable package encapsulants |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101392781B1 (en) | 2003-12-12 | 2014-05-09 | 제너럴 일렉트릭 캄파니 | Method and apparatus for forming patterned coated films |
US7795742B2 (en) | 2005-09-27 | 2010-09-14 | Infineon Technologies Ag | Semiconductor device having a semiconductor chip, and method for the production thereof |
US8062928B2 (en) * | 2005-09-27 | 2011-11-22 | Infineon Technologies Ag | Semiconductor device having a semiconductor chip, and method for the production thereof |
US8168472B2 (en) | 2005-09-27 | 2012-05-01 | Infineon Technologies Ag | Semiconductor device having a semiconductor chip, and method for the production thereof |
US8574966B2 (en) | 2005-09-27 | 2013-11-05 | Infineon Technologies Ag | Semiconductor device having a semiconductor chip, and method for the production thereof |
DE102006009478A1 (en) * | 2006-02-27 | 2007-08-30 | Infineon Technologies Ag | Flip chip bonding fabricating method for semiconductor component, involves hardening of bumps after applying two-stage adhesive, and applying die with bumps made of hardened adhesive on substrate by contact of bumps with substrate contact |
EP2168178B1 (en) * | 2007-07-09 | 2019-03-20 | Lumileds Holding B.V. | Substrate removal during led formation |
WO2016154191A1 (en) * | 2015-03-24 | 2016-09-29 | Chen Zhijin | Two-part urethane adhesive |
US20210111036A1 (en) * | 2018-06-29 | 2021-04-15 | Lintec Corporation | Mounting method of work |
WO2020252071A1 (en) * | 2019-06-11 | 2020-12-17 | Facebook Technologies, Llc | Dielectric-dielectric and metallization bonding via plasma activation and laser-induced heating |
EP4009355A1 (en) * | 2019-06-11 | 2022-06-08 | Facebook Technologies, LLC | Selectively bonding light-emitting devices via a pulsed laser |
US11374148B2 (en) | 2019-06-11 | 2022-06-28 | Facebook Technologies, Llc | Dielectric-dielectric and metallization bonding via plasma activation and laser-induced heating |
US11404600B2 (en) | 2019-06-11 | 2022-08-02 | Meta Platforms Technologies, Llc | Display device and its process for curing post-applied underfill material and bonding packaging contacts via pulsed lasers |
US11557692B2 (en) | 2019-06-11 | 2023-01-17 | Meta Platforms Technologies, Llc | Selectively bonding light-emitting devices via a pulsed laser |
US11563142B2 (en) | 2019-06-11 | 2023-01-24 | Meta Platforms Technologies, Llc | Curing pre-applied and plasma-etched underfill via a laser |
US11575069B2 (en) | 2019-06-11 | 2023-02-07 | Meta Platforms Technologies, Llc | Employing deformable contacts and pre-applied underfill for bonding LED devices via lasers |
US11735689B2 (en) | 2019-06-11 | 2023-08-22 | Meta Platforms Technologies, Llc | Dielectric-dielectric and metallization bonding via plasma activation and laser-induced heating |
Also Published As
Publication number | Publication date |
---|---|
CN1470068A (en) | 2004-01-21 |
KR20030060913A (en) | 2003-07-16 |
EP1327264A1 (en) | 2003-07-16 |
CN1270375C (en) | 2006-08-16 |
JP5090610B2 (en) | 2012-12-05 |
JP2004512684A (en) | 2004-04-22 |
KR100801945B1 (en) | 2008-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7170185B1 (en) | Solvent assisted burnishing of pre-underfilled solder bumped wafers for flipchip bonding | |
US20070102827A1 (en) | Solvent Assisted Burnishing of Pre-Underfilled Solder-Bumped Wafers for Flipchip Bonding | |
EP1327264A1 (en) | Solvent assisted burnishing of pre-underfilled solder-bumped wafers for flipchip bonding | |
US6168972B1 (en) | Flip chip pre-assembly underfill process | |
JP4609617B2 (en) | Semiconductor device mounting method and mounting structure | |
CN101473425B (en) | Production method of semiconductor device and bonding film | |
JP3507349B2 (en) | Method for manufacturing semiconductor integrated circuit device containing elastic polymer | |
US6373142B1 (en) | Method of adding filler into a non-filled underfill system by using a highly filled fillet | |
JP3326382B2 (en) | Method for manufacturing semiconductor device | |
US6861285B2 (en) | Flip chip underfill process | |
JP2004072116A (en) | Polymer-buried solder bump used for reliable plastic package attachment | |
US9202714B2 (en) | Methods for forming semiconductor device packages | |
KR20070012237A (en) | Process for exposing solder bumps on an underfill coated semiconductor | |
US6916684B2 (en) | Wafer-applied underfill process | |
US6605491B1 (en) | Method for bonding IC chips to substrates with non-conductive adhesive | |
EP2141738A2 (en) | Chip-level underfill process and structures | |
JP6157206B2 (en) | Manufacturing method of laminated structure | |
US20010025874A1 (en) | Method of forming solder bumps, method of mounting flip chips, and a mounting structure | |
JP2006156794A (en) | Method and structure of joining semiconductor device | |
US6869822B2 (en) | Method of making a semiconductor device with adhesive sealing subjected to two-fold hardening | |
Su et al. | Development of a non-conductive, no-flow wafer level underfill | |
JP2001185577A (en) | Electronic appliances | |
JP2003297977A (en) | Method for producing electronic component | |
JP2006140432A (en) | Method for manufacturing wafer-level package | |
Lim et al. | Challenges and approaches of ultra-fine pitch Cu pillar assembly on organic substrate using wafer level underfill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001906665 Country of ref document: EP Ref document number: 1020037005262 Country of ref document: KR Ref document number: 018173675 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002537050 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001906665 Country of ref document: EP Ref document number: 1020037005262 Country of ref document: KR |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |