WO2002027280A2 - Verfahren und vorrichtung zum bestimmen des füllstandes einer flüssigkeit in einem behälter - Google Patents

Verfahren und vorrichtung zum bestimmen des füllstandes einer flüssigkeit in einem behälter Download PDF

Info

Publication number
WO2002027280A2
WO2002027280A2 PCT/DE2001/003592 DE0103592W WO0227280A2 WO 2002027280 A2 WO2002027280 A2 WO 2002027280A2 DE 0103592 W DE0103592 W DE 0103592W WO 0227280 A2 WO0227280 A2 WO 0227280A2
Authority
WO
WIPO (PCT)
Prior art keywords
container
level
reference electrode
fill level
liquid
Prior art date
Application number
PCT/DE2001/003592
Other languages
English (en)
French (fr)
Other versions
WO2002027280A3 (de
Inventor
Gordon Pielmeier
Manfred Weigl
Gerhard Wissler
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to KR1020037004371A priority Critical patent/KR100865597B1/ko
Priority to EP01980172A priority patent/EP1322921A2/de
Priority to JP2002530612A priority patent/JP2004510151A/ja
Publication of WO2002027280A2 publication Critical patent/WO2002027280A2/de
Publication of WO2002027280A3 publication Critical patent/WO2002027280A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • G01F23/18Indicating, recording or alarm devices actuated electrically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/241Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid for discrete levels
    • G01F23/242Mounting arrangements for electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/148Arrangement of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1808Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1814Tank level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method and a device for determining the fill level of a liquid, in particular for a reducing agent for exhaust gas aftertreatment in an internal combustion engine which is stored in a container and carried in a motor vehicle.
  • the nitrogen oxide emission of an internal combustion engine working with excess air can be reduced to atmospheric nitrogen (N 2 ) and water vapor (H 2 O) using the SCR process (selective catalytic reduction).
  • Gaseous ammonia (NH 3 ), ammonia in aqueous solution or urea in aqueous solution can be used as reducing agents.
  • the urea serves as an ammonia carrier and is injected into the exhaust system with the aid of a dosing system in front of a hydrolysis catalytic converter, where it is converted to ammonia by hydrolysis, which then in turn reduces the nitrogen oxides in the actual SCR catalytic converter, often referred to as DeNOx catalytic converter.
  • Such an exhaust gas aftertreatment system working with liquid reducing agent has as essential components a reducing agent tank, a pump, a pressure regulator, a pressure sensor, a metering valve and the necessary connecting lines.
  • the pump conveys the reducing agent stored in the reducing agent container to the metering valve, by means of which the reducing agent is injected into the exhaust gas stream upstream of the hydrolysis catalytic converter.
  • the metering valve is controlled via signals from a control device in such a way that a specific, currently required amount of reducing agent is supplied to the internal combustion engine depending on operating parameters (DE 197 43 337 Cl). Reliable monitoring of the fill level in the reducing agent tank is necessary to ensure the continuous availability of such an SCR exhaust gas aftertreatment system.
  • the driver of the motor vehicle should be made visually and / or acoustically aware of refilling the container, for example during the next refueling stop.
  • the level is determined by measuring the electrical resistance between two highly conductive electrodes (stainless steel rods).
  • the electrical resistance results from the limited conductivity of the reducing agent solution between the electrodes. In principle, the electrical resistance is therefore indirectly proportional to the immersion depth of the electrodes.
  • the conductivity of the reducing agent solution depends on the concentration, temperature and chemical composition (proportion of free ammonia in the solution when using an aqueous urea solution)
  • the conductivity is also measured with level-independent reference electrodes in order to determine the ratio of the measured values from the reference and level electrodes to calculate the tank level.
  • the relatively large variation range of the conductivity requires a large measuring range in the erteelektronik, which limits the resolution and accuracy of the measurement (DE 198 41 770 AI).
  • the invention is based on the object of specifying a method and a device with which or with which the fill level of an electrically conductive liquid in a container can be determined in a simple manner.
  • the electrodes for the level measurement are rather designed in such a way that the measured value changes abruptly when certain limit values of the level are exceeded or fallen below. These jumps in measured values can be reliably recognized without high demands on the measuring accuracy.
  • the states "full container”, “minimum fill level in the container” and “empty container” are usefully defined as such limit values.
  • the solution described combines the accuracy advantages of limit switches with the advantages of a continuous level indicator.
  • the mechanically simple principle of conductivity measurement is combined with the possibilities offered by a control computer in the dosing control unit, thus enabling an exact and continuous level display, which also enables self-calibration of the reducing agent dosage due to the absolutely stable limit value detection.
  • Figure 1 is a block diagram of an internal combustion engine with associated exhaust gas aftertreatment system, in which the device and the method for level determination is used and
  • Figure 2 is a schematic representation of a container with the device according to the invention
  • FIG. 1 in the form of a block diagram, an internal combustion engine operated with excess air with an exhaust gas aftertreatment system assigned to it is shown in a very simplified manner. Only those parts are shown that are necessary for understanding the invention. In particular, the representation of the fuel circuit has been omitted.
  • a diesel internal combustion engine is shown as the internal combustion engine, and aqueous urea solution is used as the reducing agent for aftertreatment of the exhaust gas.
  • the internal combustion engine 1 is supplied with the air required for combustion via an intake line 2.
  • An injection system which can be designed, for example, as a high-pressure accumulator injection system (common rail) with injection valves that inject fuel KST directly into the cylinders of internal combustion engine 1, is identified by reference number 3.
  • the exhaust gas of the internal combustion engine 1 flows via an exhaust gas line 4 to an exhaust gas aftertreatment system 5 and from there via a silencer (not shown) to the outside.
  • a known engine control unit 6 is connected to the internal combustion engine 1 via a data and control line 7, which is only shown schematically here. Via this data and control line 7, signals from sensors (e.g. temperature sensors for intake air, charge air, coolant, load sensor, speed sensor) and signals for actuators (e.g. injectors, actuators) are transmitted between the internal combustion engine 1 and the engine control unit 6.
  • sensors e.g. temperature sensors for intake air, charge air, coolant, load sensor, speed sensor
  • actuators e.g. injectors, actuators
  • the exhaust gas aftertreatment system 5 has a reduction catalytic converter 8 which contains a plurality of catalytic converter units which are connected in series and are not designated in any more detail. Downstream and / or upstream of the reduction catalytic converter 8, an oxidation catalytic converter can each be additionally arranged (not shown). Furthermore, a metering control device 9 is provided, which is assigned to a reducing agent storage container, hereinafter simply referred to as container 10, with an electrically controllable reducing agent pump 11 for conveying the reducing agent. The reducing agent pump 11 can also be arranged inside the container 10.
  • aqueous urea solution which is stored in the container 10, serves as the reducing agent.
  • This has an electrical heating device 12 and sensors 13, 14, which determine the temperature of the urea solution or record the level in the container 10.
  • the signals of a temperature sensor arranged upstream of the reduction catalytic converter 8 and of an exhaust gas measuring sensor arranged downstream of the reduction catalytic converter 8, for example a NOx sensor (not shown), are also transferred to the metering control device 9.
  • the metering control device 9 controls an electromagnetic metering valve 15, to which urea solution is fed from the container 10 via a feed line 16 with the aid of the reducing agent pump 11.
  • a pressure sensor 18 is inserted into the feed line 16, which detects the pressure in the metering system and emits a corresponding signal to the metering control device 9.
  • the urea solution is injected by means of the metering valve 15 into the exhaust line 4 upstream of the reduction catalytic converter 8.
  • the metering control device 9 is connected to the engine control device 6 for mutual data transfer via an electrical bus system 17.
  • the operating parameters relevant for calculating the amount of urea solution to be metered such as e.g. Machine speed, air mass,
  • the metering control unit 9 calculates the amount of urea solution to be injected and emits a corresponding electrical signal to the metering valve 15 via an electrical connection line (not specified).
  • the urea is hydrolyzed and mixed by the injection into the exhaust line 4.
  • the catalytic converter the catalytic reduction of NOx in the exhaust gas to N 2 and " H 2 O.
  • the metering valve 15 for introducing the urea solution into the exhaust line 4 largely corresponds to a conventional low-pressure gasoline injection valve, which e.g. is releasably attached to a valve receptacle device firmly connected to a wall of the exhaust pipe 4.
  • FIG. 2 shows a sectional view of the container 10 for storing aqueous reducing agent 19, such as urea solution, only the components necessary for determining the fill level being shown.
  • aqueous reducing agent 19 such as urea solution
  • supply and discharge openings for the reducing agent 19, the reducing agent pump used for conveying the reducing agent, filter and the associated connecting lines are not shown.
  • the container 10 is preferably made of an electrically poorly conductive or non-conductive material, for example of plastic, and is either installed freely accessible inside the vehicle or only the filler opening of the container 10 is accessible to the driver. If the container 10 is installed in the vehicle at a point which ensures that at least one of its side walls is visible, it is expedient to choose a transparent material for the container 10, since then an additional visual control of the fill level is made possible ,
  • the container 10 from metal, for example from aluminum. However, it must be ensured that walls of the container 10, as an additional ground potential, do not exert too great an influence on the level measurement.
  • a carrier part 101 is arranged on the top of the container 10 and is preferably releasably attached to the container 10. is used and is used for mounting and mutual electrical insulation of electrodes used for level measurement.
  • these are a fill level electrode 141, a reference electrode 142 and a common reference electrode 143.
  • the electrodes 141, 142, 143 mentioned are made of identical, sufficiently good electrical conductivity and reducing agent-resistant material, for example stainless steel or an electrically conductive plastic material. It only has to be ensured that the electrical resistance of the electrodes 141, 142, 143 is significantly lower than the electrical resistance of the reducing agent between two electrodes used for the measurement.
  • the electrodes 141, 142, 143 each have a rod-like shape with the same cross section, but different lengths within the container 10. Starting from the carrier part 101, they each run parallel to one another within the container 10.
  • the filling level electrode 141 is covered with an electrically insulating material 1411 over most of its length. No such insulating material 1411 is applied to an upper region 1412 facing the carrier part 101 and to its free end region 1413 facing the container bottom, so that an electrical contact to the reducing agent is possible in these regions 1412, 1413 with appropriate fill levels.
  • the reference electrode 142 is likewise surrounded by an electrically insulating material 1411 and thus runs in an isolated manner up to a point close to the bottom of the container 10 at which an electrically insulating separating element 144 is arranged, while the free one protruding below the separating element 144 End of the reference electrode 142 carries no insulation and thus falls below a correspondingly low fill level FS4, electrical contact to the reducing agent 19 is possible.
  • the electrically insulating material 1411 for the fill level electrode 141 and the reference electrode 142 can be designed, for example, as an insulating hose or insulating tube, or these electrodes 141, 142 are coated or extrusion-coated with a corresponding material. Furthermore, it is also possible to design the two electrodes 141, 142 as so-called hollow electrodes in the form of tubular pieces which at the same time take over the function of a supply or removal line for the reducing agent, as described in DE 198 42 484 A1.
  • the separating element 144 splits the total volume of the container 10 into two partial volumes, the volume enclosed between the container bottom, the container side walls and the separating element 144, in which the reference measurement is carried out, being significantly smaller than that between the partition 144, container side walls and the container top included volume.
  • the separating element 144 can, as shown in FIG. 2, be designed as a plate or disk, each of which is adapted to the geometry of the container 10 in the base area in such a way that a mutual influence of the fill level electrode 141 and the reference electrode 142 can be avoided. If the separating element 144 has a large area, as shown in FIG. 2, then it must be ensured by cutouts, openings or the like that sufficient reducing agent can also get into the volume below the separating wall 144.
  • the reducing agent pump and a filter or sieve upstream of the reducing agent pump can also advantageously be arranged in this largely separated volume.
  • a reference electrode 143 (ground electrode) is arranged between the fill level electrode 141 and the reference electrode 142, which common ground electrode for the fill level 1 1 1 1 1 P 1 xi
  • the electrode areas 1412, 1413 immersed in the reducing agent 19 represent a parallel connection of two identical electrical resistors, and when the container 10 is full, the lower area 1421 of the reference electrode 142 is also immersed in the reducing agent 19, the value of the measured resistance R meSs is half as much large as the value of the reference resistance Rref-
  • the two measured values R meS s and R re -. equal. If the reducing agent in the container 10 drops below the area 1413 of the fill level electrode 141, that is to say both areas 1412, 1413 are not wetted with reducing agent, the measured electrical resistance is very high, which is equivalent to the insulation resistance (ideally an infinitely large resistance). This level is called the minimum level FS3.
  • the value for the minimum fill level FS3 and thus the clear distance between the lower end of the area 1413 and the bottom of the container 10 is determined such that when the minimum fill level FS3 is reached in the container 10 there is still so much reducing agent 19 in the container 10 that the vehicle can still be operated with the exhaust gas aftertreatment system until the next fuel stop, at which fuel is also to be refueled anyway, even if the vehicle was refueled shortly before the minimum fill level FS3 was reached.
  • rö ⁇ P 0 co Xi 0 ⁇ -P ⁇ M co g ⁇ : rö d P 4-> xi rö ⁇ 4-1 i O XI ddo M Di 4-1> M ⁇ N ⁇ £ P to i XI -P ⁇ cn ⁇ J co P o 4- ) ⁇ ⁇ P ⁇ ⁇ PJMXP d N d C-, M Di ⁇ ⁇ i -P -P co
  • CO ro 4-1 is PQ> 2 4-1 -P H Q 4H E CO co 4-1 EL. s> co co to s Di 44 -P CO i> Q N M
  • reducing agent 19 flows into the container 10 until the fill level FS2 is reached and then the metering control unit 9 switches off the pump and therefore due to the full Container 10 stops filling.
  • the continuous fill level display is now 100% or the maximum fill quantity e.g. display in liters.
  • the metering control device 9 continuously adds up the metered amount of reducing agent and uses it to calculate the current fill level. If the actual fill level reaches the "minimum fill level" (fill level Fs3), the vehicle operator is signaled that the next time the fuel is stopped, reducing agent must also be refilled.
  • the metering control device 9 can now compare its calculation with the actual fill level and, if necessary, correct the data used for the throughput of the metering valve 15. If no reducing agent 19 is refilled at the next fuel stop or if the limit value "empty" (fill level FS4) is reached beforehand due to special circumstances, the metering of the reducing agent is stopped in order to prevent the metering system from running dry.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

Um an den kritischen Füllstandspunkten eine zuverlässige Anzeige zu erreichen, wird darauf verzichtet, den Füllstand im Behälter (10) über den gesamten Bereich kontinuierlich zu messen. Die Elektroden (141, 142, 143) für die Füllstandsmessung werden vielmehr so ausgebildet, dass sich der Messwert sprungartig ändert, wenn bestimmte Grenzwerte des Füllstandes über- bzw. unterschritten werden. Diese Messwertsprünge können ohne hohe Anforderungen an die Messgenauigkeit zuverlässig erkannt werden. Als solche Grenzwerte werden sinnvollerweise die Zustände 'voller Behälter' (FS2), 'Mindestfüllstand im Behälter' (FS3) und 'leerer Behälter' (FS4) definiert.

Description

Beschreibung
Verfahren und Vorrichtung zum Bestimmen des Füllstandes einer Flüssigkeit in einem Behälter
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Bestimmen des Füllstands einer Flüssigkeit, insbesondere für ein in einem Behälter gespeichertes und in einem Kraftfahrzeug mitgeführtes Reduktionsmittel zur Abgasnachbehandlung bei einer Brennkraftmaschine.
Die Verminderung der Stickoxidemission einer mit Luftüber- schuss arbeitenden Brennkraftmaschine, insbesondere einer Diesel-Brennkraftmaschine kann mit Hilfe des SCR-Verfahrens (Selektive katalytische Reduktion) zu Luftstickstoff (N2) und Wasserdampf (H2O) erfolgen. Als Reduktionsmittel können beispielsweise gasförmiges Ammoniak (NH3) , Ammoniak in wässeriger Lösung oder Harnstoff in wässeriger Lösung eingesetzt werden. Der Harnstoff dient dabei als Ammoniakträger und wird mit Hilfe eines Dosiersystems vor einem Hydrolysekatalysator in das AuspuffSystem eingespritzt, dort mittels Hydrolyse zu Ammoniak umgewandelt, der dann wiederum in dem eigentlichen SCR-Katalysator, vielfach auch als DeNOx-Katalysator bezeichnet, die Stickoxide reduziert.
Ein solches, mit flüssigem Reduktionsmittel arbeitendes Abgasnachbehandlungssystem weist als wesentliche Komponenten einen Reduktionsmittelbehälter, eine Pumpe, einen Druckregler, einen Drucksensor, ein Dosierventil und die nötigen Verbindungsleitungen auf. Die Pumpe fördert das in dem Reduktionsmittelbehälter bevorratete Reduktionsmittel zu dem Dosierventil, mittels dessen das Reduktionsmittel in den Abgasstrom stromaufwärts des Hydrolysekatalysators eingespritzt wird. Das Dosierventil wird über Signale einer Steuereinrich- tung derart angesteuert, dass abhängig von Betriebsparametern der Brennkraftmaschine eine bestimmte, aktuell nötige Menge an Reduktionsmittel zugeführt wird (DE 197 43 337 Cl) . Zur Sicherstellung der kontinuierlichen Verfügbarkeit einer solchen SCR-Abgasnachbehandlungsanlage ist eine zuverlässige Überwachung des Füllstandes im Reduktionsmittelbehälter nö- tig. Sinkt der Füllstand unter einen vorgegebenen Wert, so soll der Fahrer des Kraftfahrzeuges optisch und/oder akustisch darauf aufmerksam gemacht werden, den Behälter z.B. im Rahmen des nächsten Tankstopps wieder zu füllen. Für diverse Anwendungen soll es auch möglich sein, aus einer Veränderung des Füllstandes auf einen Verbrauch an Reduktionsmittel zu schließen, um eine verbesserte Steuerung des SCR-Verfahrens oder eine Diagnose des zugehörigen Dosiersystems zu ermöglichen.
Herkömmliche Systeme für Füllstandsgeber mit Schwimmer und Potentiometer wie sie für Kraftstofftanks üblicherweise eingesetzt werden, sind für die Anwendung in wässeriger Harnstofflösung wegen der Leitfähigkeit der Flüssigkeit, der Kor- rosivität und der Kristallisation beim Austrocknen proble a- tisch.
In bisher existierenden Systemen wird der Füllstand durch Messung des elektrischen Widerstandes zwischen zwei gut leitfähigen Elektroden (Edelstahlstäbe) bestimmt. Der elektrische Widerstand ergibt sich aus der begrenzten Leitfähigkeit der Reduktionsmittellösung zwischen den Elektroden. Somit ist der elektrische Widerstand prinzipiell indirekt proportional zur Eintauchtiefe der Elektroden. Da die Leitfähigkeit der Reduktionsmittellösung von der Konzentration, Temperatur und chemischer Zusammensetzung (Anteil freien Ammoniaks in der Lö- sung bei Verwendung von wässeriger Harnstofflösung) abhängt, wird die Leitfähigkeit zusätzlich mit füllstandsunabhängigen Referenzelektroden gemessen, um aus dem Verhältnis der Messwerte von Referenz- und Füllstandselektroden den Tankfüllstand zu berechnen. Der relativ große Variationsbereich der Leitfähigkeit erfordert einen großen Messbereich in der Aus- erteelektronik, wodurch die Auflösung und die Genauigkeit der Messung eingeschränkt werden (DE 198 41 770 AI) .
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung anzugeben, mit dem bzw. mit der auf einfache Weise der Füllstand einer elektrisch leitenden Flüssigkeit in einem Behälter ermittelt werden kann.
Diese Aufgabe wird für das Verfahren durch die Merkmale des Patentanspruches 1 und für die Vorrichtung durch die Merkmale des Patentanspruches # gelöst. Vorteilhafte Weiterbildungen sind in den ünteransprüchen angegeben.
Um trotz der eingeschränkten Genauigkeit des bisherigen Sensorprinzips, an den kritischen Füllstandspunkten eine zuver- lässige Anzeige zu erreichen, wird darauf verzichtet, den
Füllstand im Behälter über den gesamten Bereich kontinuierlich zu messen. Die Elektroden für die Füllstandsmessung werden vielmehr so ausgebildet, daß sich der Messwert sprungartig ändert, wenn bestimmte Grenzwerte des Füllstandes über- bzw. unterschritten werden. Diese Messwertsprünge können ohne hohe Anforderungen an die Messgenauigkeit zuverlässig erkannt werden. Als solche Grenzwerte werden sinnvollerweise die Zustände "voller Behälter", "Mindestfüllstand im Behälter" und "leerer Behälter" definiert.
Dies hat den Vorteil, dass eine einfache Dimensionierung der Sensorelektroden genügt und es müssen keine hohen Anforderungen an die Genauigkeit der Oberflächen der Elektroden gestellt werden. Durch die hohe Messgenauigkeit an den definierten Punkten, ermöglicht eine Selbstkalibrierfähigkeit der Dosiermenge an Reduktionsmittel.
Wenn sichergestellt werden kann, daß beim Nachtanken von Reduktionsmittel der Füllstand den Grenzwert "voller Behälter- ter" erreicht, kann selbst eine kontinuierliche Füllstandsan- zeige mit höherer Genauigkeit erreicht werden als mit dem bisher bekannten System mit kontinuierlicher Messung.
Die beschriebene Lösung vereint die Genauigkeitsvorteile von Grenzwertschaltern mit den Vorteilen einer kontinuierlichen Füllstandsanzeige. Dazu wird das mechanisch einfache Prinzip der Leitfähigkeitsmessung mit den Möglichkeiten welche ein Steuerrechner in dem Dosiersteuergerät bietet, kombiniert und somit eine genaue und kontinuierliche Füllstandsanzeige ermöglicht, welche zudem, wegen der absolut stabilen Grenzwert- erkennung, eine Eigenkalibrierung der Reduktionsmitteldosierung ermöglicht.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnung näher erläutert. Es zeigen:
Figur 1 eine Blockdarstellung einer Brennkraftmaschine mit zugehöriger Abgasnachbehandlungsanlage, bei der die Vorrichtung und das Verfahren zur Füllstandsbestimmung eingesetzt wird und
Figur 2 eine schematische Darstellung eines Behälters mit der erfindungsgemäßen Vorrichtung
In Figur 1 ist in Form eines Blockschaltbildes sehr verein- facht eine mit Luftüberschuß betriebene Brennkraftmaschine mit einer ihr zugeordneten Abgasnachbehandlungsanlage gezeigt. Dabei sind nur diejenigen Teile dargestellt, die für das Verständnis der Erfindung notwendig sind. Insbesondere ist auf die Darstellung des Kraftstoffkreislaufes verzichtet worden. In diesem Ausführungsbeispiel ist als Brennkraftmaschine eine Dieselbrennkraftmaschine gezeigt und als Reduktionsmittel zum Nachbehandeln des Abgases wird wässerige Harnstofflösung verwendet. Der Brennkraftmaschine 1 wird über eine Ansaugleitung 2 die zur Verbrennung notwendige Luft zugeführt. Eine Einspritz- anlage, die beispielsweise als Hochdruckspeichereinspritz- anlage (Common rail) mit Einspritzventilen ausgebildet sein kann, die Kraftstoff KST direkt in die Zylinder der Brennkraftmaschine 1 einspritzen, ist mit dem Bezugszeichen 3 bezeichnet. Das Abgas der Brennkraftmaschine 1 strömt über eine Abgasleitung 4 zu einer Abgasnachbehandlungsanlage 5 und von diesem über einen nicht dargestellten Schalldämpfer ins Freie.
Zur Steuerung und Regelung der Brennkraftmaschine 1 ist ein an sich bekanntes Motorsteuergerät 6 über eine hier nur schematisch dargestellte Daten - und Steuerleitung 7 mit der Brennkraftmaschine 1 verbunden. Über diese Daten - und Steuerleitung 7 werden Signale von Sensoren (z.B. Temperatursensoren für Ansaugluft, Ladeluft, Kühlmittel, Lastsensor, Geschwindigkeitssensor) und Signale für Aktoren (z.B. Einspritzventile, Stellglieder) zwischen der Brennkraftmaschine 1 und dem Motorsteuergerät 6 übertragen.
Die Abgasnachbehandlungsanlage 5 weist einen Reduktionskata- lysator 8 auf, der mehrere in Reihe geschaltete, nicht näher bezeichnete Katalysatoreinheiten beinhaltet. Stromabwärts und/oder stromaufwärts des Reduktionskatalysators 8 kann zusätzlich je ein Oxidationskatalysator angeordnet sein (nicht dargestellt) . Ferner ist ein Dosiersteuergerät 9 vorgesehen, das einem Reduktionsmittelvorratsbehälter, im nachfolgenden vereinfacht als Behälter 10 bezeichnet, mit einer elektrisch ansteuerbaren Reduktionsmittelpumpe 11 zum Fördern des Reduktionsmittels zugeordnet ist. Die Reduktionsmittelpumpe 11 kann auch innerhalb des Behälters 10 angeordnet sein.
Als Reduktionsmittel dient in diesem Ausführungsbeispiel wäs- serige Harnstofflösung, die in dem Behälter 10 gespeichert ist. Dieser weist eine elektrische Heizeinrichtung 12 und Sensoren 13,14 auf, welche die Temperatur der Harnstofflösung bzw. den Füllstand im Behälter 10 erfassen. An das Dosiersteuergerät 9 werden außerdem noch die Signale eines stromaufwärts des Reduktionskatalysators 8 angeordneten Temperatursensors und eines stromabwärts des Reduktionskatalysators 8 angeordneten Abgasmessaufnehmers, z.B. eines NOx-Sensors ü- bergeben (nicht dargestellt) .
Das Dosiersteuergerät 9 steuert ein elektromagnetisches Dosierventil 15 an, dem bedarfsweise über eine Zuführungslei- tung 16 Harnstofflösung mit Hilfe der Reduktionsmittelpumpe 11 aus dem Behälter 10 zugeführt wird. In die Zuführungsleitung 16 ist ein Drucksensor 18 eingefügt, der den Druck im Dosiersystem erfaßt und ein entsprechendes Signal an das Dosiersteuergerät 9 abgibt. Die Einspritzung der Harnstofflö- sung mittels des Dosierventiles 15 erfolgt in die Abgasleitung 4 stromaufwärts des Reduktionskatalysators 8.
Im Betrieb der Brennkraftmaschine 1 strömt das Abgas in der eingezeichneten Pfeilrichtung durch die Abgasleitung 4.
Das Dosiersteuergerät 9 ist zum gegenseitigen Datentransfer über ein elektrisches Bussystem 17 mit dem Motorsteuergerät 6 verbunden. Über das Bussystem 17 werden die zur Berechnung der zu dosierenden Menge an Harnstofflösung relevanten Be- triebsparameter, wie z.B. Maschinendrehzahl, Luftmasse,
Kraftstoffmasse, Regelweg einer Einspritzpumpe, Abgasmassenstrom, Betriebstemperatur, Ladelufttemperatur, Spritzbeginn usw. dem Dosiersteuergerät 9 übergeben.
Ausgehend von diesen Parametern und den Meßwerten für die Abgastemperatur und dem NOx-Gehalt berechnet das Dosiersteuergerät 9 die einzuspritzende Menge an Harnstofflösung und gibt über eine nicht näher bezeichnete elektrische Verbindungsleitung ein entsprechendes elektrisches Signal an das Dosierven- til 15 ab. Durch die Einspritzung in die Abgasleitung 4 wird der Harnstoff hydrolysiert und durchmischt. In den Katalysa- toreinheiten erfolgt die katalytische Reduktion des NOx im Abgas zu N2 und "H2O.
Das Dosierventil 15 zum Einbringen der Harnstofflösung in die Abgasleitung 4 entspricht weitgehend einem üblichen Niederdruck-Benzineinspritzventil, das z.B. in eine mit einer Wandung der Abgasleitung 4 fest verbundenen Ventilaufnahmevorrichtung lösbar befestigt ist.
Die Figur 2 zeigt in Schnittdarstellung den Behälter 10 zur Bevorratung von wässerigem Reduktionsmittel 19, wie beispielsweise Harnstofflösung, wobei nur die zur Bestimmung des Füllstandes notwendigen Komponenten dargestellt sind. Insbesondere sind Zuführ- und Abführöffnungen für das Reduktions- mittel 19, die zur Förderung des Reduktionsmittels eingesetzte Reduktionsmittelpumpe, Filter und die zugehörigen Verbindungsleitungen nicht gezeigt.
Der Behälter 10 ist vorzugsweise aus einem elektrisch schlechtleitenden oder nichtleitenden Material gefertigt, beispielsweise aus Kunststoff und ist innerhalb des Fahrzeuges entweder frei zugänglich eingebaut oder es ist nur die Einfüllöffnung des Behälters 10 für den Fahrer zugänglich. Ist der Behälter 10 in dem Fahrzeug an einer Stelle eingebaut, die sicherstellt, dass zumindest eine seiner Seitenwan- düngen sichtbar ist, so ist es zweckmäßig, ein durchsichtiges Material für den Behälter 10 zu wählen, da dann zusätzlich eine optische Kontrolle des Füllstandes ermöglicht wird.
Des weiteren ist es möglich, den Behälter 10 auch aus Metall, beispielsweise aus Aluminium zu fertigen. Dabei muß aber si- chergestellt sein, dass Wandungen des Behälters 10 als zusätzliches Massepotential keinen zu großen Einfluß auf die Füllstandsmessung ausüben.
An der Oberseite des Behälters 10 ist ein Trägerteil 101 angeordnet, das vorzugsweise lösbar an dem Behälter 10 befes- tigt ist und zur Halterung und gegenseitiger elektrischer I- solierung von zur Füllstandsmessung verwendeter Elektroden dient. Im einzelnen sind dies eine Füllstandselektrode 141, eine Referenzelektrode 142 und eine gemeinsame Bezugselektro- de 143.
Die genannten Elektroden 141,142,143 sind aus identischem, ausreichend gut elektrisch leitendem und reduktionsmittelre- sistem Material gefertigt, beispielsweise aus Edelstahl oder aus einem elektrisch leitenden Kunststoffmaterial. Es muss lediglich sichergestellt sein, dass der elektrische Widerstand der Elektroden 141, 142, 143 deutlich geringer ist als der elektrische Widerstand des Reduktionsmittels zwischen zwei zur Messung benutzten Elektroden.
Ferner weisen die Elektroden 141, 142, 143 jeweils stabför i- ge Gestalt gleichen Querschnitts, aber unterschiedliche Längen innerhalb des Behälters 10 auf. Sie verlaufen ausgehend von dem Trägerteil 101 jeweils parallel zueinander innerhalb des Behälters 10.
Die Füllstandselektrode 141 ist auf dem Großteil ihrer Länge mit einem elektrisch isolierenden Material 1411 umhüllt. An einem dem Trägerteil 101 zugewandten oberen Bereich 1412 und an ihrem, dem Behälterboden zugewandten freien Endbereich 1413 ist kein solches isolierendes Material 1411 aufgebracht, so dass in diesen Bereichen 1412, 1413 ein bei entsprechenden Füllständen, ein elektrischer Kontakt zum Reduktionsmittel möglich ist.
Die Referenzelektrode 142 ist ausgehend von dem Trägerteil 101 ebenfalls mit einem elektrisch isolierenden Material 1411 umgeben und verläuft somit isoliert bis zu einer Stelle nahe am Boden des Behälters 10, an der ein elektrisch isolierendes Trennelement 144 angeordnet ist, während das unterhalb des Trennelements 144 ragende freie Ende der Referenzelektrode 142 keine Isolierung trägt und somit bis zum Unterschreiten eines entsprechend niedrigen Füllstandes FS4 ein elektrischer Kontakt zum Reduktionsmittel 19 möglich ist.
Das elektrisch isolierende Material 1411 für die Füllstandselektrode 141 und die Referenzelektrode 142 kann beispiels- weise als Isolierschlauch, Isolierrohr ausgebildet sein oder diese Elektroden 141, 142 sind mit einem entsprechendem Material beschichtet oder umspritzt. Ferner ist es auch möglich, die beiden Elektroden 141, 142 als sogenannte Hohlelektroden in Form von Rohrstücken auszuführen, die zugleich die Funkti- on einer Zufuhr- bzw. Entnahmeleitung für das Reduktionsmittel übernehmen, wie es in der DE 198 42 484 AI beschrieben ist.
Das Trennelement 144 spaltet das Gesamtvolumen des Behälters 10 in zwei Teilvolumina auf, wobei das zwischen dem Behälter- boden, den Behälterseitenwänden und dem Trennelement 144 eingeschlossene Volumen, in dem die Referenzmessung erfolgt, dabei deutlich kleiner ist als das zwischen Trennwand 144, Behälterseitenwänden und Behälteroberseite eingeschlossene Volumen. Das Trennelement 144 kann wie in der Figur 2 darge- stellt ist, als Platte oder Scheibe ausgebildet sein, die jeweils der Geometrie des Behälters 10 im Bodenbereich derart angepasst sind, dass eine gegenseitige Beeinflussung von Füllstandselektrode 141 und Referenzelektrode 142 vermieden werden kann. Ist das Trennelement 144 wie in der Figur 2 ge- zeigt, großflächig ausgebildet, so muß durch Aussparungen, Durchbrüche oder dergleichen sichergestellt sein, dass auch genügend Reduktionsmittel in das Volumen unterhalb der Trennwand 144 gelangen kann. In diesem, weitgehend abgetrennten Volumen kann in vorteilhafter Weise auch die Reduktionsmit- telpumpe und ein der Reduktionsmittelpumpe vorgeschaltetes Filter oder Sieb angeordnet sein.
Zwischen der Füllstandselektrode 141 und der Referenzelektrode 142 ist eine Bezugselektrode 143 (Masseelektrode) angeordnet, welche die gemeinsame Gegenelektrode zur Füllstands- 1 1 1 1 P 1 xi
-H co CO CM -P co 1 1 φ d d • • O υ 1
-H 4-1 =P *-r ES Öl -P oo -P Di 1 1 1 M φ 1 1 φ :rö d M xi -P cn M f Φ -d -Q l co M M P Eä ^ φ d P 1 00 -P rö M Xi M N x . 4-) Φ o Φ M rö
Kfi -H υ Φ φ -d φ N N M g 1 P φ co ^ Xi rö d M d φ CO xs P -P P 4J c. C 2 w ^f -H xs o φ . Φ P -d -Q s xs ε M N φ =P φ Di P P Φ φ Φ M co
© -H "^ M co xs • υ PQ xi Φ φ o -P -P d 0-. d d 4-1 Öl Cn P P N Φ 4-1 P PQ Φ φ o • P M M d O d ω d XI > -P Φ Ss rö Φ Φ d 4-1 rö φ φ Es M φ 4-1 Di
4-> -P 00 rö KJ3 P φ -P P rö o φ P 4J XS XS P rö -P P P 4H Φ :rö PQ φ 4-1 co o M >. 4-1 "sr -H 4-> XS P Φ 4-> P P M i φ co d O Φ -^ d 4-1 Φ φ 4-1 xs d xi P -P P
M Φ d M 4-J d A d 4-1 XS co 4-> N CD υ -d M rö P 4-. -d Xi
H X -P d Φ Φ Φ φ g <
Φ M Φ d Φ Φ P -M P -! co υ M 4-i 4-1 Φ co υ Di g Φ s PQ P 4-1 co
U 4-> Φ g φ φ 4-1 M -Q φ xs φ Φ σ. φ Φ co :p CO ---! PC. Φ co d 00 P rö Di Φ Φ d d d ßπ to φ xs -P Φ Φ P M d X) M M d PQ -P h P Φ -P P P M φ Q M -P g -Q P o Φ
P g M 0 0 d N φ φ P -P Φ x. P Φ M O Q. Φ P xs o -d Φ 0 -P > rö Φ φ P 0. -d d > ES CO • M o φ 4-1 P XS Φ M P φ M • 4-1 o 4-1 P 4-1 -P xs x. d 4J φ o φ P M Öl 4-1 φ S M Φ -P CO rö . α -P xi d co M P φ ---: 4-1 υ d M to -P P T. φ ^ Φ P N 4-1 g d Φ XS Es D X3 M -d ü Φ xs P M Φ i P M
CM -H Φ φ co Φ Φ Xi M . N 4-1 4-1 o Φ M P d d g O -P co d Φ =P XS xs 0
sf M P M rö N 4-1 CO o Φ Φ -P P Di φ Xi P N φ -P Φ CO -H φ -P P J 4-1 -d Φ P
M Di H Φ 2 Φ Φ φ co φ CO PQ CO g 4-1 M d φ Φ Xi co -d H Φ P Φ d Φ M υ P-\ 4J φ CO -Q P-\ -P 4-1 Xi •P Φ co co o P P d PQ d o P φ S d P Dl -d P CO
Φ -n co Öl g :rö -P o P P Dl d M 4π φ Φ Φ ,d to Φ Φ PQ 4H Φ o rö co 0
Xi r 0 Φ P P P φ P 4-1 Φ o φ -d S CO O 0 D υ -P d -Q P -d d M ES rö O o d Xi N Tf Φ φ Φ co 4-1 M X! D -P co υ T co Φ M -P 4-1 -P XS φ rö υ Φ M o co Xi M
P o Φ X! XS Öi P M Φ d 4-1 xi rö co M Φ -d o Φ d Φ d P :rö d O co M
+J > -ö PQ 4-1 :rö P φ Φ M XS P -y υ 0 CO g υ 4H M Φ M w φ Φ M d > rö 0 0 , υ 0 d xs Φ d M Φ d X. P φ rö Φ Φ co D s 4-1 D 4-i :0 4-1 •P Φ
Φ -H P Φ rö d P -P Φ P Φ i ES φ s S Di P g -P P φ d d P ---: -d >. 4->
M Φ 0 co 4-1 P Φ φ O P -P φ -P O & -P co φ P P :rö Φ M υ M M M
P xs φ c3 -d 4J Xi Φ CM N P- 4-1 Xi *-. P co N M -P Xi φ -Q CO P -vf ^f X!
4-4 -H P ü M CO xs d XI f Φ -P 4-1 4-> M .. -P Φ 4-1 P O Φ M rö M M :rö
^ d 4-> Q M -P •^ P P rö M PQ g g P N M rö xs Csl φ -Q 00 d φ Φ xs Φ -P 5
Φ Φ Öi -d d M Φ -P 4-> co φ :p 4-1 Φ d ^ 5 P i Xi d d 4-1 Φ Φ Φ
P Di . o -P 5 co 4-1 Φ d XS d ÜJ Φ M d rö M φ co M υ φ rö 4-1 •*. S s Di
Φ d p o co φ Φ CO M -P X) -P φ O Φ Φ 4-1 -n co P φ -P P 4-1 -P CM o O m :f M d -P X5 o Öi M Φ o d Di • φ O Xi co Φ rö Φ -P φ φ co g co P P P
Φ 1-4 xs Q O Q d :P CO P φ -p d 4-1 D Di d P Xi ^. i CM xs -ä M X) M O [x. 4-1 4-1 Φ t--; 0 CO P P In P -P -P P P co P φ φ O 4-1 "^f o Di M 0 M M Xi d 0 P g • -P co co φ ^ P φ co -d P N Öi xi P Φ .- M xs co P :P O xs Φ Φ
P Φ φ Φ σ, M Φ co P X) Φ φ co co :p rö Φ M -p 4J d d d CO :P tu -P 0 M M S
P -P M 4-> p Φ Xi φ Φ d M IS o φ 4-1 P PQ 0 ES M X. Φ .- P *-. M 4-t 4-> rö Φ Φ d
N g rö M -d co M g XS rö Φ φ s Φ O 4H Φ υ xs M M -P CO M 4-> CO CO P rö -H :rö -H φ Φ d co N φ N Di > P P M -P P "ςf CM f Φ Φ Φ 0 co xs Xi P xs CG P X! 4-1 CO Φ xs d X) d co o φ Xi Φ g Φ Φ Φ Φ M M M 5 4-> XS XS M d d Di d ' Φ Φ Φ 4-> :rÖ Xi Öi 0 Φ d Φ φ P co υ S Xi -P S N N -ä vf Φ P Φ M rö rö 4H
0 Cd -μ PQ -H P d d rö . P P -P Q. φ P P d Φ d M φ -n Φ ,d PH :P 4-1 4-1 P rö g Φ rö :rö -P o Φ Xi φ -P P -P 0 S Φ -Q 4-) Φ Xi ES o ü< CO CO rö
M P S to Öi 4-> Di 10 to ro m co Xi Xi £ Φ M d P . xs -d 0 CM -P 4-1 M M
<Φ Φ Φ Φ P to d M -P ^r Φ Xi Xi ^f P Φ o o P •^ Φ M -P XS M M co
M P g CO Φ M -P M £ M PS d M d M Di 0 M 4H .. -P P -P 4-1 M -d 4-) g d :P :P Φ
Ä Φ -P 0 M ω :p N P o Φ -P d CO 4-> Φ t Φ 4-1 φ M ü X! Φ txj fc. -P
Φ -H Tf 0 φ Φ -•P hi Φ P P S Φ P -P Φ φ Ct. P M P φ Φ -P ü g X. XS xs d Φ & 4-1 k. 4-1 XS S Φ 0 4-> P 4-1 to 5 Xi 0 Xi P Φ Φ M i Φ -P φ υ P P o
90 O 4-4 Φ Xi co CO -P Φ d o Xi φ Λ. Φ d o N O Xi P d Φ M PQ φ o M co 0 Φ Φ Φ rö
P P P O Öl P P g -P rö P co φ s rö φ P υ Φ rö PQ co P Di d -P P xs i Q r~~ f*l 4-1 ro φ PQ 0 Φ Φ X. 4-1 4-> d co M g S X! 4-> -P Xi -P -d φ Xi J -P Φ
- -P N -P xs xs co M Φ φ ω o 0 M Φ co -P P 0 M xi xi CO CM 00 •
Φ 4-> M g P CO d P P Φ -d g d P P rö Φ N S P P Φ φ rö Φ υ -P 4-1 M M 0 to O
O M P O O Φ -P 0 Φ M υ φ g Φ 4-1 φ 4-) M Φ d Φ P P -Q 4-1 M -P Φ Φ d ^r ^r -P
Φ -H CO N > Q CO co xs Φ CO Di D S co i CO Φ -Q P Xi Xi i o co Φ co s PQ Φ M M Φ
LD o m o LO o
M M C\J CM co
tung der in das Reduktionsmittel 19 eintauchenden Elektrodenbereiche 1412, 1413 eine Parallelschaltung zweier gleicher e- lektrischer Widerstände darstellt, und bei vollem Behälter 10 auch der untere Bereich 1421 der Referenzelektrode 142 in das Reduktionsmittel 19 eintaucht, ist der Wert des gemessenen Widerstandes RmeSs halb so groß wie der Wert des Referenzwiderstandes Rref-
Ist der Füllstand FS1 im Behälter 10 unterhalb des oberen Bereiches 1412 der Füllstandselektrode 141, aber noch oberhalb des unteren Bereichs 1413 der Füllstandselektrode 141, so sind die beiden Messwerte RmeSs und Rre-. gleich. Sinkt das Reduktionsmittel im Behälter 10, unter den Bereich 1413 der Füllstandselektrode 141, sind also beide Bereiche 1412, 1413 nicht mit Reduktionsmittel benetzt, so ist der gemessene e- lektrische Widerstand sehr hoch, gleichbedeutend mit dem Isolationswiderstand (im Idealfall unendlich großer Widerstand) . Dieser Füllstand wird als Mindestfüllstand FS3 bezeichnet.
Der Wert für den Mindestfüllstand FS3 und damit der lichte Abstand zwischen dem unteren Ende des Bereiches 1413 und dem Boden des Behälters 10 wird so festgelegt, dass bei Erreichen des Mindestfüllstandes FS3 im Behälter 10 noch immer so viel Reduktionsmittel 19 im Behälter 10 vorhanden ist, dass das Fahrzeug noch bis zum nächsten Tankstopp, bei dem ohnehin auch Kraftstoff nachgetankt werden uss, mit der Abgasnachbe- handlungsanlage betrieben werden kann, selbst wenn das Fahrzeug erst kurz vor dem Unterschreiten des Mindestfüllstandes FS3 mit Kraftstoff betankt worden ist.
Wird kein Reduktionsmittel 19 nachgefüllt, so sinkt aufgrund der Dosierung des Reduktionsmittels 19 der Pegel im Behälter 10 weiter, bis auch zu einem bestimmten Zeitpunkt der untere Bereich 1421 der Referenzelektrode 142 nicht mehr in das Reduktionsmittel 19 eintaucht (Füllstand FS4) . Auch dieser Zustand kann auf einfache Weise erkannt werden, da in diesem Fall sowohl der elektrische Widerstand RmeSs an der Füll- 1 Φ 1 Φ P 1 1 1 1 rö d -P 4-1 Xi P M P cn 1 φ 0 1 1 CO d 1 P
M Φ xs -P o N | M :P M P -P -P rö P o d d φ f Di O P 4H g :rö S-l =P 1 1 4-1 φ g Φ P φ M -P rö
CO Φ Q, d to M Xi Φ i r*. P α M 1 4-1 -P £ P -P Xi Di co Di c. xs M Xi o Φ d 4H o 0 φ o Φ φ M N 1 co -P P o co υ φ o xs d
© d — o P Di o P -P 0 d 4-> Dl 4-1 M 4-1 -P o 4-1 O > o cn PQ M d P rö co o EH -H -P Φ M Φ d Φ -P 4-1 0 Φ Φ Q CO J φ Q Φ rö g ω 4-> d -P 4-> 4-1 X. 4-> P-i 4-1 Di P co Φ -H hl CO X. Φ rö X. Di P P 4-1 g
O CO Φ P P xi M O d P -P -P N g Φ co X. co M N Φ cn -P
P g 4-> Φ υ 0 Φ i < -P s Φ d co P D d φ . 0 XI o 4-1 M -P
H Φ XI -y S :rö s P CO d i 0 5 rö d P d d s Φ M rö rö M co M M co
U X) Φ Φ 0 P φ φ Φ P P υ rö co CO o N -P rö d rö N cn :rö 0 φ
Q- -P d M 4-> X Xi 5 Φ -P 4-1 Di Xi -P φ Λ. co -P 4-1 Φ d P rö i PH X.
ES d Φ g d -P Es co P d 4-1 Di φ Φ rö Di <! φ Xi Φ CO rö M -P 0 d d 0 M N rö ,y 0 xs Φ 4-1 M d 4-1 PQ , d xs φ P -P φ -P rö Φ ß 0 co M P 4-1 P 0 d Di P co Φ φ P M • φ d xi φ φ 4-1 φ X) PC. rö φ =P 0 co Xi 0 Φ -P Φ M co g φ :rö d P 4-> xi rö υ 4-1 i O XI d d o M Di 4-1 > M φ N Φ £ P to i XI -P φ cn υ J co P o 4-) φ φ P Φ Φ P J M X P d N d C-, M Di Φ Φ i -P -P co
-P φ Xi -P d xi 4-1 4-1 4-1 -Q Φ CO d :p O :rö 0 Φ g O d d PQ CO M M
P is Φ φ υ M P N Φ Φ t. Φ d Di rö xl -P P rö Φ CO 4-1 P M
4-1 X! . xi P o Φ Φ Xi P s s Di < P co υ P xs Di P g 4-> Φ M φ 0 . φ υ Di o rö P M ES Xi 0 P Φ -P Φ s Φ φ . co Φ -P M Xi M P ,
Φ x: -P -P P 4-1 EH PQ -P rö -P Φ Xi co Φ d Ct. -P PC! P -P M d 0 P
M o M CO 4-> d P CO PH S 3= υ co 0 Φ rö co g Xi Φ rö 44 d 4J
Φ X. xs CO Λ. -H i P Φ -P :p Φ co 4-1 co o d P d 4-1 4-> Φ -P . d :p φ ω υ Φ Xi d co ^-~. . M M X. -P CO Φ Q Φ P P rö CO co Dl 4-1 d
P P Φ M M o XS rö Φ oo P 4-1 P 44 Φ φ M d Xi Φ co 4-1 Φ M d P
Φ X! d tu w g d Di Xi w φ Di φ -P IS M -P O 4-) 4H co Di M M o P
CM τ> Φ P P d 0 d Pπ φ -P -P Φ P =P φ P d 0 P M P :P Φ ; co P d N «. Φ 0 -P P M φ P -P Xi P P-ι 0-, -P 0 rt! M Φ fa 44 1
^ Xi M Φ φ 4-> X! 4J Φ ._ N d P υ Φ Φ rö :P XI 4-> d 00 o CM M d xs d Xi P cn P . — . P φ -P Φ cn 4-> Φ Di rö σs. . XI Pπ ü 0 -P Φ
P ^r rö Φ Φ ü -P Φ XI P Φ Di 4-1 Xi Φ 4H XI rö Q M Φ υ -H Φ g xi d rö M m xs d Xi -P φ ES 4-1 rö Φ 4-1 d d O -Q rö M X. P 0 CO M cn o Φ
M d rö o i P co :rö ki 4-1 M rö o -P XI -P XS • M P Φ M 0 M d co Φ rö rö -P υ φ • P P M :rÖ -y Φ φ M M d 0 φ -P X5 0 O Φ o o Φ d
M Xi Φ X! σi M co PQ 0 Φ 0 :rö X! 4-i α. -P -P P P Φ 4-> Φ rö CO P -P cn X. Φ rö O XS P M D Φ Di Φ XI Φ 4-> φ cn i Φ Φ P Di -P X. M 4-1 M 4-> 4-> Φ X!
P H O P Φ d Di Φ P i Φ PQ φ d Φ 4-1 -P M -P Φ d rö ,y ! P -P φ
«. 4-) > M Φ d φ rö -p Φ PQ — P -P Di d P P O g d 4-1 Φ rö P φ P Di
M . g φ > d xs P XS P P -Q Φ d O 0 P 4H co d 4-1 g co Xi d xi P
^ Φ -P X! -P --P d 4-1 Φ :p P ^r d o rö S> -P φ P d rö -P o co co Φ -P o O
M M υ 4-1 rö xs Φ -P xs 4-1 4-1 Φ Λ φ Di M Λ! 4-1 xs Φ o M g g P φ X Φ co >
Φ «-» o -P S xi Φ d CO M PH P P d d -P O g Xi φ
Φ N XS 0 g Φ o -Q P P -P M P φ P .- -P 0 4-t σi 4-1 0 d 4-> d X. to
Xi d d co *» d Φ φ Φ O Xi 4-1 N φ 4-1 M P A. Xi o Φ cn Di -P o Φ
O Φ rö M d 4-1 -P P 4-1 Xi -P P > 0 rö P 4-1 cn Di rö co P P -P Xi PQ 0 g -P P xs
P P 4-> • M 0 i Φ 0-, P υ cn τs ^-' P e i M P d Φ Φ i -P 4-1 0 4-> φ d
4-) φ CO ^^ Φ -P υ co Φ -P 0 P rö :rö P 0 Φ 4-) φ -S M 4H . 0 Öl rö xs Φ . 4-1 P Xi P 4J -P P 4-> M Φ Q φ CM ,--. <! pH Xi d co -P cn :rö Cti 0 P d Xi -P 0 D
Φ Φ Φ d 4-1 . d Φ d Di M -P α. d Φ Φ co PQ -P P 4-1 i rö Φ υ i -P 4-1 M
M o PC. XS rö 0 P s φ -P Di g Q Pπ Φ g g PQ i Φ Φ Φ 0 N Φ Xi φ d X. -P O
00 Φ -H 4-1 Φ xs Di Φ xi P -P 4-1 rö -P Φ g • 5 Di rö 4-1 X Φ P P :rö g g 4H f co P 3= CO > φ d ä d :rö φ • φ 4J g cn co d cn P -P CO Φ φ 4-1 o
XS φ CO P Φ P, P Φ 4H > +J φ xs -P i co -P Φ xs Φ M Φ φ P g M Eä PQ co « φ 4-1
0 xs d Φ co .. Xi -P Di co d P υ M Di 0 xs Φ P Di 0. φ P M Di -Q o rö o XS 0 0 co M -P P M -P :rÖ i co M cn P rö P -P Φ d CO 4-> P-, d P M φ -P P o 4-1 d -P -P -P o Φ Φ d Φ φ O φ 4-> υ -P rö rö o 4-> Φ α. 4-> φ Φ Φ g Φ Φ o -P Φ rö
CO rö 4-1 is PQ > 2 4-1 -P H Q 4H E CO co 4-1 EL. s > co co to s Di 44 -P CO i > Q N M
LD o O o LO o
M r-H CM CM 00 .
Ist der Behälter 10 an einer nicht zugänglichen Stelle im Fahrzeug eingebaut und wird dieser mittels einer Pumpe befüllt, fließt solange Reduktionsmittel 19 in den Behälter 10, bis der Füllstand FS2 erreicht ist und daraufhin das Dosier- Steuergerät 9 die Pumpe abschaltet und damit aufgrund des vollen Behälters 10 die Befüllung abbricht. Die kontinuierliche Füllstandsanzeige wird nun 100% oder die maximale Füllmenge z.B. in Liter anzeigen. Während des Betriebs des Fahrzeugs summiert das Dosiersteuergerät 9 laufend die dosierte Menge an Reduktionsmittel auf und berechnet daraus den aktuellen Füllstand. Erreicht der tatsächliche Füllstand die Schwelle "Mindestfüllstand" (Füllstand Fs3),wird dem Fahrzeuglenker signalisiert, daß beim nächsten Tankstopp auch Reduktionsmittel nachzufüllen ist. Zudem kann das Dosiersteuer- gerät 9 nun seine Berechnung mit dem tatsächlichen Füllstand vergleichen und gegebenenfalls die verwendeten Daten zum Durchsatz des Dosierventils 15 korrigieren. Wird beim nächsten Tankstopp kein Reduktionsmittel 19 nachgefüllt oder wird aufgrund besonderer Umstände schon vorher der Grenzwert "leer" (Füllstand FS4) erreicht, wird die Dosierung des Reduktionsmittels gestoppt, um ein Trockenlaufen des Dosiersystems zu vermeiden.

Claims

Patentansprüche
1. Verfahren zum Bestimmen des Füllstandes einer elektrisch leitenden Flüssigkeit (19) in einem Behälter (10) , insbe- sondere für eine Harnstofflösung in einem Harnstoffvorratsbehälter, wobei
- der elektrische Widerstand (RmeSs) zwischen einer Füllstandselektrode (141) und einer Bezugselektrode (143) gemessen wird, - der elektrische Widerstand (Rref) zwischen einer Referenzelektrode (142) und der Bezugselektrode (143) gemessen wird,
- aus den Werten für den elektrischen Widerstand (Rmess? Rref) auf den Füllstand im Behälter (lo) geschlossen wird, dadurch gekennzeichnet, dass der elektrische Widerstand (Rmess) zwischen der Füllstandselektrode (141) und der Bezugselektrode (143) und der e- lektrische Widerstand (Rref) zwischen Referenzelektrode (142) und der Bezugselektrode (143) punktuell ermittelt werden,
- so dass sich der jeweilige Wert für den elektrischen Widerstand (Rmess.- Rref) signifikant ändert, wenn mindestens ein vorgegebener Grenzwert (FS2, FS3, FS4) für den Füllstand unter- oder überschritten wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Unter- oder Überschreiten der Grenzwerte (FS2, FS3, FS4) optisch dem Fahrer angezeigt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Grenzwert ein Füllstand (FS2) gewählt wird, der einen vollständig mit Flüssigkeit (19) gefüllten Behälter (10) repräsentiert .
4. . Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Grenzwert ein Füllstand (FS3) gewählt wird, der einen Mindestfüllstand von Flüssigkeit (19) im Behälter (10) repräsentiert.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Grenzwert ein Füllstand (FS4) gewählt wird, der einen leeren Behälter (10) repräsentiert.
6. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass bei Erreichen des Füllstandes (FS2) eine zur Befüllung des Behälters (10) mit Flüssigkeit (19) verwendete Pumpe abgeschaltet wird.
7. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass bei Unterschreiten des Mindestfüllstandes (FS3) eine Warn- einrichtung aktiviert wird.
8. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass bei Unterschreiten des Füllstandes (FS4) eine zur Dosierung des Reduktionsmittels (19) dienende Dosierpumpe (11) abgeschaltet wird.
9. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass bei Erkennen eines vollständig gefüllten Behälters (10) dieser Zustand zum Kalibrieren einer im Fahrzeug vorhande- nen kontinuierlichen Füllstandsanzeige verwendet wird.
10.Vorrichtung zum Bestimmen des Füllstandes einer elektrisch leitenden Flüssigkeit (19) in einem Behälter (10) , insbesondere für eine Harnstofflösung in einem Harnstoffvor- ratsbehälter, mit jeweils einer elektrisch leitenden
- Füllstandselektrode (141) , einer Referenzelektrode (142) und einer Bezugselektrode (143) , die innerhalb des Behälters (10) angeordnet sind, wobei
- der elektrische Widerstand (Rmess) zwischen der Füllstands- elektrode (141) und der Bezugselektrode (143) , sowie der elektrische Widerstand (Rref) zwischen der Referenzelektrode (142) und der Bezugselektrode (143) gemessen und als Kriterium für den Füllstand im Behälter (10) herangezogen wird, dadurch gekennzeichnet, dass die Füllstandselektrode (141) und die Referenzelektrode (142) teilweise mit einem elektrisch isolierenden Material (1411) umhüllt sind, so dass nur ausgewählte Bereiche (1412, 1413, 1421), entsprechend punktuell zu detektieren- den Füllständen (FS2, FS3, FS4) elektrischen Kontakt zur Flüssigkeit (19) aufweisen, so dass sich der Wert für den elektrischen Widerstand (RmeSs/ Rref) signifikant ändert, wenn die Flüssigkeit (19) diese Bereiche (1412, 1413, 1421) erreicht oder verlässt
11.Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Füllstandselektrode (141) im wesentlichen entlang seiner Längserstreckung mit elektrisch isolierenden Material (1411) umhüllt ist und in einem, der Oberseite des Behälters (10) zugewandten unteren Bereich (1412) und in einem dem Boden des Behälters (10) zugewandten Bereich (1413) frei von isolierendem Material (1411) ist.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die axiale Länge der Füllstandselektrode (141) abhängig von der Höhe des Behälters (10) derart gewählt ist, dass der untere Bereich (1412) solange einen elektrischen Kontakt mit der Flüssigkeit (19) aufweist, bis ein Mindestfüllstand (FS3) unterschritten wird.
13.Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass Die Lage des oberen Bereichs (1412) derart gewählt ist, dass er solange keinen elektrischen Kontakt mit der Flüssigkeit (19) aufweist, bis ein Mximalfüllstand (FS2) unerreicht wird.
14.Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Referenzelektrode (142) im wesentlichen entlang seiner Längserstreckung mit elektrisch isolierenden Material (1411) umhüllt ist und in einem, dem Boden des Behälters (10) zugewandten Bereich (1413) frei von isolierendem Material (1421) ist.
15.Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass die axiale Länge der Referenzelektrode (142) abhängig von der Höhe des Behälters (10) derart gewählt ist, dass der untere Bereich (1421) solange einen elektrischen Kontakt mit der Flüssigkeit (19) aufweist, bis ein Füllstand (FS3) unterschritten wird, der einen leeren Behälter (10) repräsentiert.
16.Vorrichtung nach Anspruch 1 und 15, dadurch gekennzeichnet, dass das Volumen des Behälters (10) mittels eines e- lektrisch isolierenden Trennelementes (144) in zwei Teilvolumina unterschiedlicher Größe abgetrennt ist und der untere Bereich (1421) der Referenzelektrode (142) in dem dem Boden des Behälters (10) zugewandten Volumen liegt.
17.Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass, die axiale Länge der Bezugselektrode (143) bis zum Boden des Behälters (10) reicht.
18.Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Füllstandselektrode (141), die Referenzelektrode (142) und die Bezugselektrode (143) aus einem elektrisch leitendem Material bestehen, dessen elektrischer Widerstand deutlich geringer ist als die Leitfähigkeit der Flüssigkeit (19) im Behälter.
19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass die Elektroden (141, 142, 143) aus Edelstahl bestehen.
20.Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass die Elektroden (141, 142, 143) aus elektrisch leitendem Kunststoff bestehen.
PCT/DE2001/003592 2000-09-26 2001-09-18 Verfahren und vorrichtung zum bestimmen des füllstandes einer flüssigkeit in einem behälter WO2002027280A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020037004371A KR100865597B1 (ko) 2000-09-26 2001-09-18 용기 내부의 액체 레벨을 측정하기 위한 방법 및 장치
EP01980172A EP1322921A2 (de) 2000-09-26 2001-09-18 Verfahren und vorrichtung zum bestimmen des füllstandes einer flüssigkeit in einem behälter
JP2002530612A JP2004510151A (ja) 2000-09-26 2001-09-18 タンク内の液体の水位を測定するための方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10047594.9 2000-09-26
DE10047594A DE10047594A1 (de) 2000-09-26 2000-09-26 Verfahren und Vorrichtung zum Bestimmen des Füllstandes einer Flüssigkeit in einem Behälter

Publications (2)

Publication Number Publication Date
WO2002027280A2 true WO2002027280A2 (de) 2002-04-04
WO2002027280A3 WO2002027280A3 (de) 2002-06-27

Family

ID=7657643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/003592 WO2002027280A2 (de) 2000-09-26 2001-09-18 Verfahren und vorrichtung zum bestimmen des füllstandes einer flüssigkeit in einem behälter

Country Status (5)

Country Link
EP (1) EP1322921A2 (de)
JP (1) JP2004510151A (de)
KR (1) KR100865597B1 (de)
DE (1) DE10047594A1 (de)
WO (1) WO2002027280A2 (de)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003489A1 (en) * 2002-05-31 2004-01-08 Honda Giken Kogyo Kabushiki Kaisha Liquid level sensor using a non linear rheostat and a float
WO2005026710A1 (ja) * 2003-09-11 2005-03-24 Mitsui Mining & Smelting Co., Ltd. 尿素溶液の尿素濃度識別装置
WO2005026709A1 (ja) * 2003-09-11 2005-03-24 Mitsui Mining & Smelting Co., Ltd. 尿素溶液の尿素濃度識別装置
WO2005040567A1 (ja) * 2003-10-27 2005-05-06 Nissan Diesel Motor Co., Ltd. 液体判別装置及び液体判別方法
WO2005040570A1 (ja) * 2003-10-28 2005-05-06 Nissan Diesel Motor Co., Ltd. エンジンの排気浄化装置及び排気浄化方法
WO2005042936A1 (ja) * 2003-10-31 2005-05-12 Nissan Diesel Motor Co., Ltd. 液体還元剤の濃度及び残量検出装置
US7030629B1 (en) 2004-11-18 2006-04-18 Siemens Vdo Automotive Corporation In line fluid quality sensor
WO2006051770A1 (ja) * 2004-11-15 2006-05-18 Nissan Diesel Motor Co., Ltd. 濃度検出装置及びこれを備えるエンジンの排気浄化装置
EP1731882A1 (de) * 2004-03-29 2006-12-13 Nissan Diesel Motor Co., Ltd. Struktur für reduktionsmittelbehälter
WO2006132056A1 (ja) * 2005-06-10 2006-12-14 Nissan Diesel Motor Co., Ltd. 液体還元剤判別装置
US7222528B2 (en) 2005-03-03 2007-05-29 Siemens Vdo Automotive Corporation Fluid level sensor
EP1950386A2 (de) 2007-01-25 2008-07-30 Hydraulik-Ring Gmbh Kalibrierte Dosiereinheit, insbesondere einer Abgasnachbehandlungseinheit
CN100439667C (zh) * 2004-05-13 2008-12-03 日产柴油机车工业株式会社 还原剂容器的结构
US7466147B2 (en) 2005-08-08 2008-12-16 Continental Automotive Systems Us, Inc. Fluid quality sensor
US7587288B2 (en) 2004-10-29 2009-09-08 Nissan Diesel Motor Co., Ltd. Condition discriminating apparatus for liquid reducing agent
WO2010023011A1 (de) * 2008-08-29 2010-03-04 Robert Bosch Gmbh Tank zur bevorratung eines flüssigen wirkstoffes
US7743603B2 (en) 2004-11-05 2010-06-29 Nissan Diesel Motor Co., Ltd. Exhaust gas purification apparatus
US7758826B2 (en) 2004-05-13 2010-07-20 Nissan Diesel Motor Co., Ltd. Structure of reducing agent container
US7805930B2 (en) 2004-10-29 2010-10-05 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
US7842267B2 (en) 2004-12-24 2010-11-30 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
US7902838B2 (en) 2004-11-17 2011-03-08 Continental Automotive Systems Us, Inc. Sensor device for determining a fluid property
WO2011110574A1 (de) * 2010-03-11 2011-09-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Tank mit einem sensor zur bestimmung des füllstands
US8033096B2 (en) 2005-06-10 2011-10-11 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus for engine
US8122764B2 (en) 2004-10-29 2012-02-28 Ngk Spark Plug Co., Ltd. Liquid state detecting sensor
WO2011128186A3 (de) * 2010-04-16 2012-03-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur bevorratung einer betriebsflüssigkeit für ein kraftfahrzeug
US8171802B2 (en) 2008-03-28 2012-05-08 Brita Gmbh Method for measuring the volume flow of electrically conductive liquids through a vessel
US8293180B2 (en) 2007-03-29 2012-10-23 Nissan Diesel Motor Co., Ltd. Apparatus for distinguishing liquid reducing agent and exhaust emission control apparatus of engine
EP2633800A1 (de) * 2011-07-08 2013-09-04 Olympus Medical Systems Corp. Chemikalienflasche für eine vorrichtung zur endoskopreinigung/-desinfektion und vorrichtung zur endoskopreinigung/-desinfektion
US8893477B2 (en) 2008-12-22 2014-11-25 Volvo Powertrain Aktiebolag Exhaust emission purifying apparatus and liquid level measuring device
WO2016200308A1 (en) * 2015-06-09 2016-12-15 Scania Cv Ab A method and a system for evaluating an effective component content of a reducing agent
CN110494719A (zh) * 2017-01-10 2019-11-22 罗伯特·博世有限公司 探测液体的液位的液位传感器

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147779A (ja) 2003-11-13 2005-06-09 Alps Electric Co Ltd 液面レベルセンサ
JP2006003343A (ja) * 2004-05-18 2006-01-05 Ngk Spark Plug Co Ltd 静電容量式液状態検知センサ
JP2006038830A (ja) * 2004-06-24 2006-02-09 Ngk Spark Plug Co Ltd 静電容量式液状態検知センサ
JP4559293B2 (ja) * 2004-10-29 2010-10-06 日本特殊陶業株式会社 液状態検知センサ
JP4700581B2 (ja) * 2006-09-07 2011-06-15 株式会社ケーヒン 多気筒エンジンの燃料供給装置
DE102008012780B4 (de) 2008-03-05 2012-10-04 Hydraulik-Ring Gmbh Abgasnachbehandlungseinrichtung
KR101405695B1 (ko) 2008-07-02 2014-06-10 기아자동차주식회사 선택적 촉매 환원 시스템의 요소 레벨 센서의 고장 진단방법
DE102009004936A1 (de) * 2009-01-16 2010-07-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Apparat zur Bestimmung eines Tankfüllstandes
DE102009035940C5 (de) 2009-08-03 2017-04-20 Cummins Ltd. SCR-Abgasnachbehandlungseinrichtung
JP5564988B2 (ja) * 2010-02-26 2014-08-06 いすゞ自動車株式会社 液体還元剤貯蔵タンクのブリーザーパイプ構造
JP5617348B2 (ja) * 2010-05-17 2014-11-05 いすゞ自動車株式会社 Scrシステム
DE102010040877A1 (de) 2010-09-16 2012-03-22 Robert Bosch Gmbh Reduktionsmittel-Vorratsbehälter
DE102010062302A1 (de) 2010-12-01 2012-06-06 Continental Automotive Gmbh Verfahren zum Bestimmen einer aktuellen Füllmenge einer Flüssigkeit in einem Behälter, insbesondere für ein Kraftfahrzeug
DE102010061222B4 (de) 2010-12-14 2015-05-07 Cummins Ltd. SCR-Abgasnachbehandlungseinrichtung
LT2567737T (lt) 2011-09-07 2016-11-25 Minimax Gmbh & Co. Kg Įrenginys užpildymo lygio išlyginimui
DE102012004269A1 (de) * 2012-03-02 2013-09-05 Emitec Gesellschaft Für Emissionstechnologie Mbh Fördereinheit für ein flüssiges Additiv zur Abgasnachbehandlung
DE102012007691A1 (de) * 2012-04-19 2013-10-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zum Bereitstellen eines flüssigen Additivs
JP2016506776A (ja) * 2013-01-14 2016-03-07 サンビーム プロダクツ, インコーポレイテッドSunbeam Products, Inc. ホット飲料製造機及び飲料レベル表示計付き飲料容器
KR101532325B1 (ko) * 2013-11-25 2015-06-30 첸포휴이 수위 제어기를 갖춘 자동 배수 장치
JP6498448B2 (ja) * 2015-01-15 2019-04-10 新明和工業株式会社 高圧洗浄車
JP2017110955A (ja) * 2015-12-15 2017-06-22 本田技研工業株式会社 液位推定装置
KR20230044932A (ko) 2021-09-27 2023-04-04 가부시키가이샤 호리바 에스텍 수위 및 도전율 검출 장치, 도전율 검출 장치, 수소 발생기, 수위 및 도전율 검출 방법, 도전율 검출 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR551022A (fr) * 1922-05-05 1923-03-26 Dispositif pour observer à distance les hauteurs de liquides
DE29805413U1 (de) * 1998-03-25 1998-05-20 Ab Elektronik Gmbh, 59368 Werne Füllstandsgeber
DE19841770A1 (de) * 1998-09-11 2000-04-06 Siemens Ag Vorrichtung und Verfahren zur Füllstandsmessung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3522616A1 (de) * 1985-06-25 1987-01-08 Jun Waldemar Tobler Einrichtung zur rberwachung des wasserstandes im kanalisationssystem eines gebaeudes
JP3111002B2 (ja) * 1995-12-01 2000-11-20 リンナイ株式会社 水位検出器
DE19743337C1 (de) * 1997-09-30 1999-01-07 Siemens Ag NOx-Reduktionssystem mit einer Einrichtung zur Reduktionsmitteldosierung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR551022A (fr) * 1922-05-05 1923-03-26 Dispositif pour observer à distance les hauteurs de liquides
DE29805413U1 (de) * 1998-03-25 1998-05-20 Ab Elektronik Gmbh, 59368 Werne Füllstandsgeber
DE19841770A1 (de) * 1998-09-11 2000-04-06 Siemens Ag Vorrichtung und Verfahren zur Füllstandsmessung

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003489A1 (en) * 2002-05-31 2004-01-08 Honda Giken Kogyo Kabushiki Kaisha Liquid level sensor using a non linear rheostat and a float
WO2005026710A1 (ja) * 2003-09-11 2005-03-24 Mitsui Mining & Smelting Co., Ltd. 尿素溶液の尿素濃度識別装置
WO2005026709A1 (ja) * 2003-09-11 2005-03-24 Mitsui Mining & Smelting Co., Ltd. 尿素溶液の尿素濃度識別装置
US7722813B2 (en) 2003-09-11 2010-05-25 Mitsui Mining & Smelting Co., Ltd. Urea concentration identification device for urea solution
US7829024B2 (en) 2003-09-11 2010-11-09 Mitsui Mining & Smelting Co., Ltd. Urea concentration identification device for urea solution
WO2005040567A1 (ja) * 2003-10-27 2005-05-06 Nissan Diesel Motor Co., Ltd. 液体判別装置及び液体判別方法
US7658093B2 (en) 2003-10-27 2010-02-09 Nissan Diesel Motor Co., Ltd. Liquid discriminating apparatus and liquid discriminating method
CN100390380C (zh) * 2003-10-27 2008-05-28 日产柴油机车工业株式会社 液体辨别装置及液体辨别方法
WO2005040570A1 (ja) * 2003-10-28 2005-05-06 Nissan Diesel Motor Co., Ltd. エンジンの排気浄化装置及び排気浄化方法
CN100416055C (zh) * 2003-10-28 2008-09-03 日产柴油机车工业株式会社 发动机的排气净化装置和排气净化方法
US7467512B2 (en) 2003-10-28 2008-12-23 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus and exhaust gas purifying method of an engine
CN100390383C (zh) * 2003-10-31 2008-05-28 日产柴油机车工业株式会社 液体还原剂的浓度及剩余量检测装置
WO2005042936A1 (ja) * 2003-10-31 2005-05-12 Nissan Diesel Motor Co., Ltd. 液体還元剤の濃度及び残量検出装置
US7499814B2 (en) 2003-10-31 2009-03-03 Nissan Diesel Motor Co., Ltd. Apparatus for detecting concentration and remaining amount of liquid reducing agent
EP1731882A1 (de) * 2004-03-29 2006-12-13 Nissan Diesel Motor Co., Ltd. Struktur für reduktionsmittelbehälter
EP1731882A4 (de) * 2004-03-29 2013-03-06 Nissan Diesel Motor Co Struktur für reduktionsmittelbehälter
US7758826B2 (en) 2004-05-13 2010-07-20 Nissan Diesel Motor Co., Ltd. Structure of reducing agent container
CN100439667C (zh) * 2004-05-13 2008-12-03 日产柴油机车工业株式会社 还原剂容器的结构
US7805930B2 (en) 2004-10-29 2010-10-05 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
US8122764B2 (en) 2004-10-29 2012-02-28 Ngk Spark Plug Co., Ltd. Liquid state detecting sensor
US7587288B2 (en) 2004-10-29 2009-09-08 Nissan Diesel Motor Co., Ltd. Condition discriminating apparatus for liquid reducing agent
US7743603B2 (en) 2004-11-05 2010-06-29 Nissan Diesel Motor Co., Ltd. Exhaust gas purification apparatus
WO2006051770A1 (ja) * 2004-11-15 2006-05-18 Nissan Diesel Motor Co., Ltd. 濃度検出装置及びこれを備えるエンジンの排気浄化装置
US7902838B2 (en) 2004-11-17 2011-03-08 Continental Automotive Systems Us, Inc. Sensor device for determining a fluid property
US7030629B1 (en) 2004-11-18 2006-04-18 Siemens Vdo Automotive Corporation In line fluid quality sensor
US7842267B2 (en) 2004-12-24 2010-11-30 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
US7222528B2 (en) 2005-03-03 2007-05-29 Siemens Vdo Automotive Corporation Fluid level sensor
WO2006132056A1 (ja) * 2005-06-10 2006-12-14 Nissan Diesel Motor Co., Ltd. 液体還元剤判別装置
US8033096B2 (en) 2005-06-10 2011-10-11 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus for engine
US7651262B2 (en) 2005-06-10 2010-01-26 Nissan Diesel Motor Co., Ltd. Apparatus for discriminating liquid reducing agent
US7466147B2 (en) 2005-08-08 2008-12-16 Continental Automotive Systems Us, Inc. Fluid quality sensor
EP1950386A2 (de) 2007-01-25 2008-07-30 Hydraulik-Ring Gmbh Kalibrierte Dosiereinheit, insbesondere einer Abgasnachbehandlungseinheit
EP1950386A3 (de) * 2007-01-25 2009-09-16 Hydraulik-Ring Gmbh Kalibrierte Dosiereinheit, insbesondere einer Abgasnachbehandlungseinheit
US8293180B2 (en) 2007-03-29 2012-10-23 Nissan Diesel Motor Co., Ltd. Apparatus for distinguishing liquid reducing agent and exhaust emission control apparatus of engine
US8171802B2 (en) 2008-03-28 2012-05-08 Brita Gmbh Method for measuring the volume flow of electrically conductive liquids through a vessel
CN102131668A (zh) * 2008-08-29 2011-07-20 罗伯特·博世有限公司 用于储存液态有效物料的箱
WO2010023011A1 (de) * 2008-08-29 2010-03-04 Robert Bosch Gmbh Tank zur bevorratung eines flüssigen wirkstoffes
RU2502612C2 (ru) * 2008-08-29 2013-12-27 Роберт Бош Гмбх Бак для хранения запаса жидкой активной добавки
US8919370B2 (en) 2008-08-29 2014-12-30 Robert Bosch Gmbh Tank for storing a liquid active ingredient
US8893477B2 (en) 2008-12-22 2014-11-25 Volvo Powertrain Aktiebolag Exhaust emission purifying apparatus and liquid level measuring device
WO2011110574A1 (de) * 2010-03-11 2011-09-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Tank mit einem sensor zur bestimmung des füllstands
US9074510B2 (en) 2010-03-11 2015-07-07 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Reducing agent tank having a sensor for determining a fill level and motor vehicle having the tank
US8955308B2 (en) 2010-03-11 2015-02-17 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Method for operating a reducing agent tank and motor vehicle in which the method is carried out
US20140096512A1 (en) * 2010-03-11 2014-04-10 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Reducing agent tank having a sensor for determining a fill level and motor vehicle having the tank
WO2011128186A3 (de) * 2010-04-16 2012-03-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur bevorratung einer betriebsflüssigkeit für ein kraftfahrzeug
US9335199B2 (en) 2010-04-16 2016-05-10 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Device for storage of an operating fluid for a motor vehicle, method for mounting the device, method for monitoring the device and motor vehicle
US8858731B2 (en) 2011-07-08 2014-10-14 Olympus Medical Systems Corp. Chemical bottle for endoscope cleaning/disinfecting apparatus and endoscope cleaning/disinfecting apparatus
EP2633800A4 (de) * 2011-07-08 2013-12-25 Olympus Medical Systems Corp Chemikalienflasche für eine vorrichtung zur endoskopreinigung/-desinfektion und vorrichtung zur endoskopreinigung/-desinfektion
EP2633800A1 (de) * 2011-07-08 2013-09-04 Olympus Medical Systems Corp. Chemikalienflasche für eine vorrichtung zur endoskopreinigung/-desinfektion und vorrichtung zur endoskopreinigung/-desinfektion
WO2016200308A1 (en) * 2015-06-09 2016-12-15 Scania Cv Ab A method and a system for evaluating an effective component content of a reducing agent
US10337371B2 (en) 2015-06-09 2019-07-02 Scania Cv Ab Method and a system for evaluating an effective component content of a reducing agent
CN110494719A (zh) * 2017-01-10 2019-11-22 罗伯特·博世有限公司 探测液体的液位的液位传感器

Also Published As

Publication number Publication date
JP2004510151A (ja) 2004-04-02
DE10047594A1 (de) 2002-04-18
EP1322921A2 (de) 2003-07-02
KR100865597B1 (ko) 2008-10-27
WO2002027280A3 (de) 2002-06-27
KR20030036841A (ko) 2003-05-09

Similar Documents

Publication Publication Date Title
WO2002027280A2 (de) Verfahren und vorrichtung zum bestimmen des füllstandes einer flüssigkeit in einem behälter
DE19933798C2 (de) Vorrichtung und Verfahren zur Abgasnachbehandlung bei einer Brennkraftmaschine
EP2524196B1 (de) Verfahren und vorrichtung zur bestimmung der aus einem tank entnommenen menge eines flüssigen reduktionsmittels
DE102016223247B4 (de) Fehlerdiagnosevorrichtung für abgasreinigungssystem
DE102013104752B4 (de) Verfahren und System zur Ermittlung einer Fehlfunktion eines Harnstoff-Füllstandssensors
EP1328333B1 (de) Verfahren und vorrichtung zur dosierung eines reduktionsmittels zur entfernung von stickoxiden aus abgasen
EP1073509B1 (de) Verfahren und vorrichtung zur katalytischen reduzierung von stickoxiden im abgas einer verbrennungsanlage
DE112014002317T5 (de) Einrichtung zur Rückführung von Abgasbehandlungsfluid
WO2002024311A1 (de) Verfahren und vorrichtung zur dosierung eines reduktionsmittels zur entfernung von stickoxiden aus abgasen
DE102009010888B4 (de) Verfahren und Vorrichtung zur Steuerung eines SCR-Abgasnachbehandlungssystems einer Brennkraftmaschine
DE102005062120A1 (de) Verfahren und Vorrichtung zur Überwachung eines Abgasnachbehandlungssystems
DE10004614A1 (de) Drucksensor zum Erfassen des Druckes einer Flüssigkeit
WO2012160009A1 (de) Verfahren und vorrichtung zum betreiben eines scr-systems
EP2521843A1 (de) Verfahren zum betrieb einer fördervorrichtung für ein reduktionsmittel
DE102008031645B4 (de) Füllstandssensor und Verfahren zur Sensierung des Füllstands eines Tanks
DE19940298A1 (de) Verfahren und Vorrichtung zur Bestimmung eines Reduktionsmittels und/oder der Reduktionsmittelkonzentration einer Reduktionsmittellösung in einem Katalysatorsystem zugeordneten Reduktionsmitteltank
WO2012072666A1 (de) Verfahren zum bestimmen einer aktuellen füllmenge einer flüssigkeit in einem behälter, insbesondere für ein kraftfahrzeug
DE102006033476A1 (de) Verfahren zur Überwachung eines Abgasnachbehandlungssystems
DE102009000061A1 (de) Verfahren zur Reduzierung von Mengentoleranzen einer Dosiervorrichtung
EP2136208A2 (de) Verfahren zur Kompensation der Anströmabhängigkeit des Messsignals eines Gassensors
DE102013209134B4 (de) Verfahren und Vorrichtung zur Erkennung eines Ankeranschlags eines elektromechanischen Aktuators
EP0048960B1 (de) Mengenmesseinrichtung für flüssige Kraft- und Brennstoffe in Einspritzanlagen für Triebwerke, insbesondere in Einspritzanlagen für Verbrennungsmotore sowie stationäre Brenneranlagen
DE102008044335A1 (de) Verfahren zur Füllstandsbestimmung
DE10027183A1 (de) Verfahren und Vorrichtung zum Bestimmen des Füllstandes einer Flüssigkeit in einem Behälter
DE102009028459A1 (de) Verfahren zum Betreiben eines SCR-Katalysators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

AK Designated states

Kind code of ref document: A3

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001980172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037004371

Country of ref document: KR

Ref document number: 2002530612

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020037004371

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001980172

Country of ref document: EP