WO2002025710A1 - Systeme d'exposition, methode d'exposition et procede de fabrication d'un dispositif y relatif - Google Patents

Systeme d'exposition, methode d'exposition et procede de fabrication d'un dispositif y relatif Download PDF

Info

Publication number
WO2002025710A1
WO2002025710A1 PCT/JP2001/007994 JP0107994W WO0225710A1 WO 2002025710 A1 WO2002025710 A1 WO 2002025710A1 JP 0107994 W JP0107994 W JP 0107994W WO 0225710 A1 WO0225710 A1 WO 0225710A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
exposure
wavelength
ray
sub
Prior art date
Application number
PCT/JP2001/007994
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Nagasaka
Naomasa Shiraishi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to KR10-2003-7003314A priority Critical patent/KR20030097781A/ko
Priority to AU2001286245A priority patent/AU2001286245A1/en
Priority to JP2002529823A priority patent/JPWO2002025710A1/ja
Publication of WO2002025710A1 publication Critical patent/WO2002025710A1/ja
Priority to US10/389,816 priority patent/US6798495B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength

Definitions

  • the present invention relates to an exposure apparatus and an exposure method used in a photolithographic process for manufacturing various micro-port devices such as a semiconductor element, a liquid crystal display element, an imaging element, and a thin-film magnetic head, and a device manufacturing method using the method.
  • various micro-port devices such as a semiconductor element, a liquid crystal display element, an imaging element, and a thin-film magnetic head, and a device manufacturing method using the method.
  • the image of the reticle pattern as a mask is projected through a projection optical system.
  • An exposure apparatus that performs projection exposure on a wafer (or a glass plate or the like) coated with a photoresist or the like is used.
  • the wavelength of exposure light is shortened.
  • the exposure light was changed from g-line (wavelength 436 nm) and i-line (wavelength 365 nm) by a high-pressure water source lamp to KrF excimer laser (wavelength 248 nm) or ArF excimer laser. (Wavelength 193 nm) has come to be used. Recently, the use of an F 2 laser (wavelength: 157 nm) is being considered in order to support higher resolution.
  • Light F 2 laser oscillation is called vacuum ultraviolet light, oxygen and water in the atmosphere, Rui by absorption by a substance, such as organic Ah, 'it is impossible to transmit most, in the case of using it as exposure light
  • the vacuum is applied to the optical path, or a rare gas such as hemi (He), neon (Ne), argon (A r), krypton (K r), or about 157 nm such as nitrogen (N 2 ) It must be filled with an inert gas that transmits light of this wavelength.
  • an exposure amount control performed to maintain an exposure light amount (integrated exposure energy) for each point in each shot region of a wafer within an appropriate range
  • Various optical sensors are used to monitor whether the exposure light (exposure area) maintains an appropriate state without uneven illuminance and whether the optical path is maintained in an environment suitable for transmission of the exposure light.
  • Detector is installed permanently, and the energy (illuminance, light quantity, intensity, etc.) of the exposure light is measured.
  • a silicon photodiode, a pyroelectric or thermal light meter is often used from the viewpoint of performance / cost.
  • the F 2 laser has a wavelength of 1
  • the vacuum ultraviolet light (hereinafter sometimes referred to as the principal ray) of 57 it also emits red light (hereinafter sometimes referred to as the sub-light ray) that does not contribute to exposure with a wavelength of about 630 to 720 nm. It has characteristics that occur secondarily.
  • the intensity of this sub-beams just after emitted F 2 laser power et al, is about 5 to about 0% of the total.
  • the secondary light beam arrives at the optical sensor together with the main light beam because there is almost no attenuation by the optical system constituting the optical path of the exposure light.
  • silicon photodiodes, pyroelectric or thermal luminometers such as those described above, which are often used as optical sensors, have sensitivity not only to the main beam but also to the wavelength of the sub beam, If even the sub-beams are detected, the amount of the main beam contributing to the exposure cannot be measured accurately, so that the exposure control is not performed properly and a high-precision pattern cannot be formed. There is a problem that there is.
  • an object of the present invention is to provide a method for controlling the energy of a principal ray even when using a light source that also generates an unnecessary secondary ray as a secondary part with the oscillation of the principal ray having a wavelength that exposes the substrate. Is to accurately measure the exposure and control the exposure dose and other obstacles with high accuracy.
  • An exposure apparatus for achieving the above object, comprising: an exposure apparatus that exposes a substrate (W) as an exposure target through a mask (R) on which a pattern is formed; A light source (12) for emitting light including a chief ray (ML) and a secondary ray (SL) having a wavelength different from the wavelength of the chief ray generated secondary to the oscillation of the chief ray; A main optical system that guides light to the substrate via the mask, an optical sensor (39, 41) having sensitivity in a wavelength range including at least the main light, and an optical sensor provided on an optical path from the light source to the optical sensor. And a separation device (F1 to F3, F5, M1, M2) for separating the principal ray and the sub ray. According to the present invention, since the separation device that separates the principal ray and the sub ray on the optical path from the light source to the optical sensor is provided, only the principal ray can be made incident on the optical sensor. Detection errors caused by detection can be reduced.
  • the separation apparatus (F1 to F3, F5, M1, M2) May be provided between the branch optical system and the optical sensor (41).
  • the exposure apparatus further includes a control device (40) that controls an integrated light amount with respect to the substrate (W) based on the chief rays separated by the separation devices (F1 to F3, F5, Ml, and M2). Further provisions may be made. Since the control device can control the integrated light amount based on the measurement result of only the chief ray by the optical sensor, accurate control can be performed without the influence of the sub ray.
  • the separation device (F5) is disposed on a first position (P1) where the light is branched from the optical path of the light branched by the branching optical system (26) and on the optical path.
  • a moving device (46) that selectively moves between the second position (P2) and the optical sensor (41) when the separating device moves to the first position. ), The separation device is moved to the second position.
  • a correction device (45) for performing correction based on the measurement result of the optical sensor (41).
  • the separation device is set to the first position (a position evacuated from the optical path) and measured by the optical sensor, light in a state where the principal ray and the sub ray are not separated is incident on the optical sensor.
  • the separation device is set at the second position (position on the optical path) and measurement is performed by the optical sensor, only the sub-beam can be incident on the optical sensor. Therefore, an accurate measurement result of the principal ray not including the sub ray can be obtained from both the measurement results.
  • an optical filter (F1 to F3) that transmits light in a wavelength band including the wavelength of the main light beam and attenuates light in a wavelength band including the wavelength of the auxiliary light beam, or A reflection-transmission mirror (Ml, M2) that reflects light in a wavelength band including the wavelength of the main light beam and transmits light in a wavelength band including the wavelength of the sub-light beam
  • “attenuate” means the case where the light is completely shielded and the case where the light is transmitted through the — part without completely shielding the light (for example, when the amount of transmission is less than the minimum detection sensitivity of the optical sensor). And are included.
  • the present invention in the case of using the F 2 laser light source as the light source, is particularly suitable. That, F 2 laser light source, as described above, The rewritable oscillates light of 1 5 7 nm as a main ray, because the red light as secondary light (wavelength 6 3 0-7 2 about 0 nm) was also generated In this case, only the chief ray excluding the red light can be accurately measured. As a result, the integrated exposure amount can be controlled appropriately, and the accuracy of various types of fault monitoring can be improved. Can be improved.
  • the exposure apparatus of the present invention for achieving the above object includes a substrate as an exposure target.
  • a principal ray (ML) having a wavelength for exposing the substrate and a secondary ray generated by the oscillation of the principal ray.
  • a light source that emits light containing a sub-beam (SL) with a wavelength different from that of the main beam
  • a main optical system that guides light from the light source to the substrate via the mask, and a first optical sensor (42) that has sensitivity in a wavelength range including the wavelengths of the main light beam and the sub light beam. ), And a second optical sensor having sensitivity in a wavelength range including at least the wavelength of the sub-light beam.
  • a first branch optical system disposed in an optical path of the light in the main optical system, and guiding a part of the light to the first optical sensor; and the main optical system or the first branch optical.
  • a second branch optical system that is disposed in an optical path of the light in the system and guides a part of the light to the second optical sensor, and is provided between the second branch optical system and the second optical sensor;
  • a correction device (44) for correcting the measurement result by the first optical sensor based on the measurement result by the second optical sensor can be further provided.
  • the second optical sensor may have sensitivity to the principal ray.
  • the exposure method of the present invention for achieving the above object comprises a principal ray (ML) having a wavelength for exposing a substrate (W) to be exposed and a sub ray (SL) having a wavelength different from the wavelength of the principal ray.
  • An exposure method for exposing the substrate through a mask (R) on which a pattern is formed using exposure light including: separating the sub-light from the exposure light including the main light and the sub-light; The energy (light intensity, intensity, illuminance, etc.) of the exposure light after the separation is measured, and the integrated exposure amount for the substrate is controlled based on the measurement result.
  • ML principal ray
  • SL sub ray
  • R an exposing method for exposing the substrate, wherein a part of the exposure light including the main light beam and the sub light beam is branched, and the sub light beam is separated from the branched exposure light; The energy of the exposure light after the separation is measured, and the integrated exposure amount for the substrate is controlled based on the measurement result.
  • a pattern is formed by using exposure light based on light including a principal ray (ML) having a wavelength for exposing a substrate (W) as an object to be exposed and a sub ray (SL) having a wavelength different from the wavelength of the principal ray.
  • Separating the chief ray from the exposure light measuring the second energy of the exposure light after separating the chief ray, and calculating the first energy of the second energy. The energy is corrected based on the energy, and the integrated exposure amount for the substrate is controlled based on the corrected first energy.
  • a principal ray not including a sub ray can be accurately measured.
  • This method is particularly suitable when light including the principal ray and the secondary light beam is a laser beam emitted et or F 2 laser light source.
  • a device manufacturing method according to the present invention for achieving the above object includes a step of transferring an image of the pattern of the mask onto the substrate by using the above-described exposure method of the present invention.
  • FIG. 1 is a diagram showing an overall configuration of a step 'and' scan type projection exposure apparatus according to an embodiment of the present invention
  • FIG. 2 is a configuration diagram for explaining a first red light countermeasure of the embodiment of the present invention
  • FIG. 3 is a configuration diagram showing an example of changing the position of the filter in the first red light countermeasure of the embodiment of the present invention
  • FIG. 4 is a configuration diagram for explaining a second measure against red light of the embodiment of the present invention.
  • FIG. 5 is a structural diagram of a dichroic mirror in the second measure against red light of the embodiment of the present invention.
  • FIG. 6 is a configuration diagram showing an example of changing the position of the dichroic mirror in the second measure against red light according to the embodiment of the present invention.
  • FIG. 7 is a configuration diagram for explaining a third measure against red light of the embodiment of the present invention
  • FIG. 8 is a configuration diagram for explaining a fourth measure against red light of the embodiment of the present invention.
  • FIG. 1 is a diagram showing an overall configuration of an exposure apparatus according to an embodiment of the present invention.
  • This exposure apparatus is a step-and-scan type reduction projection type exposure apparatus.
  • Fig. 1 projected into the clean room on floor B1 on the floor where the semiconductor manufacturing plant is located.
  • An exposure equipment is installed, and in a so-called machine room (utility space) on the floor B2 below that floor, a gas through which the exposure light passes, such as an inert gas (this embodiment) Has a cylinder (supply device) 32 for supplying helium gas) and a purification device 55 for collecting and purifying the gas.
  • the laser light source 12 includes a laser oscillator in which helium gas serving as a buffer gas is mixed with fluorine (F 2 ) and sealed therein, a high-voltage power supply for applying a voltage to the electrodes of the laser oscillator, and the like.
  • a box-shaped, airtight environmental chamber 15 is installed next to case 11 and is set in the environmental chamber 15 on a floor B1 via a vibration isolator to attenuate vibration from the floor.
  • a plate 16 is provided, and a wafer stage 38 is provided on the surface plate 16.
  • a sub-chamber 18 with good airtightness is installed from the pipe 14 protruding from inside the case 11 to the inside of the environmental chamber 15, and most of the illumination optical system is stored in the sub-chamber 18. Have been.
  • Case 1 1 in the F 2 laser light source 1 2 emitted exposure light from the exposure light (wavelength of the main light beam 1 5 7 nm) (pulse light) IL with the the B MU 1 3 and the pipe 1 4 Through the interior, it reaches the inside of the subchamber 18.
  • the exposure light IL passes through a beam shaping optical system including a beam expander 19, a variable attenuator 20, and lens systems 21 and 22, and is reflected by a reflection mirror for bending an optical path.
  • the light is reflected by 23 and is incident on a fly-eye lens 24 as an optical integrator (a rod lens may be used instead of the fly-eye lens).
  • the fly-eye lens 24 forms a number of secondary light sources to illuminate a reticle R described later with a uniform illuminance distribution.
  • An aperture stop 25 of an illumination system is arranged on the exit surface of the fly-eye lens 24.
  • the exposure light IL emitted from the secondary light source in the aperture stop 25 has a small reflectance and a large transmittance.
  • the light enters the splitter 26.
  • the exposure light IL transmitted through the beam splitter 26 passes through the condenser lens system 27 It passes through the rectangular opening of the blind mechanism 28.
  • the reticle blind mechanism 28 is arranged near a conjugate plane with respect to the pattern surface of the reticle.
  • the reticle blind mechanism 28 also includes a fixed illumination field stop (fixed blind) 28 A having a slit-shaped opening, and the width of the illumination field area in the running direction separately from the fixed blind.
  • a movable blind 28 B is provided to make it variable.
  • the illumination area is further restricted via movable blinds, thereby preventing exposure to unnecessary parts.
  • the exposure light IL shaped like a slit by the fixed blind of the reticle blind mechanism 28 is transmitted to the circuit pattern area of the reticle R via the imaging lens system 29, the reflection mirror 30 and the main condenser lens system 31.
  • the upper slit-shaped illumination area is illuminated with a uniform intensity distribution.
  • the area from the light-exiting surface of the light-shielding pipe 14 to the main capacitor lens system 31 is housed in the sub-chamber 18, and the F 2 laser light source 12 is emitted from the inside of the pipe 14.
  • the space up to the surface is also sealed by the case 11.
  • Helium gas (H e) whose temperature has been controlled to a predetermined purity or higher is supplied from a lower-level helm cylinder 32 to the sub-chamber 18 and the case 11 via a pipe 33.
  • the piping 33 is provided with an opening / closing valve 34 and a pump 35, and by controlling the opening / closing of the opening / closing valve 34 and the operation of the pump 35 by a control system (not shown), a connection to the projection exposure apparatus is provided.
  • the supply of helium gas and its suspension can be switched.
  • the projection optical system PL of the present embodiment is a dioptric system (refractive system).
  • the projection optical system PL is limited. It is recommended that the PL be a catadioptric system (a catadioptric system) or a reflective system so as to increase the transmittance of the exposure light IL at the projection optical system PL.
  • the Z axis is taken parallel to the optical axis AX of the projection optical system PL
  • the X axis is taken parallel to the plane of Fig. 1 in the plane perpendicular to the Z axis
  • the Y axis is taken perpendicular to the plane of Fig. 1.
  • the wafer W is suction-held on a wafer holder (not shown) provided on the stage 38.
  • the wafer stage 38 is placed on the surface plate 16.
  • the wafer stage 38 controls the focus position (direction) and the tilt angle of the wafer W by an auto-focus method so that the surface of the wafer W is aligned with the image plane of the projection optical system PL. Performs constant speed running in the X direction and steving in the X and Y directions.
  • the two-dimensional position and rotation angle of wafer stage 38 (wafer W) are also controlled by a drive control unit (not shown) equipped with a laser interferometer.
  • the reticle R scans the illumination area of the exposure light IL via the reticle stage 36 in the + X direction (or one X direction) at the speed Vr, and the wafer stage 3
  • the wafer W is scanned in the -X direction (or + X direction) at a speed j3-Vr (jS is a projection magnification from the reticle R to the wafer W) with respect to the exposure area via 8.
  • a reticle chamber 51 is provided so as to cover a space including a portion between the illumination optical system and the reticle R and a portion between the reticle R and the projection optical system PL, and a portion between the projection optical system PL and the wafer W.
  • a wafer chamber 52 is provided so as to cover a space including.
  • the space inside the lens barrel of the projection optical system PL space between multiple lens elements
  • Helium gas whose temperature is controlled at a predetermined concentration or higher is supplied through a pipe 33 from the pipe 32.
  • the environment chamber 15 is supplied with nitrogen gas from a nitrogen cylinder (not shown).
  • the lens barrel of the projection optical system PL, the reticle chamber 51 and the wafer gas leaking from the wafer chamber 52 are lighter than the nitrogen gas in the environmental chamber 15, Ascends and accumulates in the space near the ceiling.
  • the gas in the space near the ceiling is a mixed gas in which nitrogen and air that has entered from outside the environmental chamber 15 are mixed in addition to the Helium gas.
  • One end of a pipe 53 is connected to the side wall 15 near the ceiling, and the other end of the pipe 53 is connected to a purification device 55 downstairs through an opening provided in the floor B1. .
  • a suction pump (or fan) 54 is arranged in the middle of the pipe 53 on the bottom side of the floor B1, and a collection system is composed of the pipe 53 and the pump 54.
  • the upper part of the environmental chamber 15 The gas mixture sucked from the space is sent to a purification device 55 downstairs.
  • the purification device 55 is a dust collection and drainage device that removes minute dust and moisture from the mixed gas, and the mixed gas is cooled to the liquid nitrogen temperature by adiabatic compression cooling to remove only nitrogen.
  • the system is provided with a cooling separation device that liquefies and separates gaseous helium, a chemical filter that further removes contaminants remaining in the separated helium gas, and the like.
  • the helium gas purified by the purifier 55 is returned to the helium cylinder 32 via the pipe 56 and the valve 57 so as to be ready for resupply.
  • the exposure apparatus main body 17 includes a wafer stage 38 holding a wafer W, a projection optical system PL, a reticle stage 36 holding a reticle R, and at least a part of an illumination optical system (for example, an environmental chamber). 15 A part of the illumination optical system arranged in 5).
  • an illuminometer 39 is provided as an optical sensor including a photoelectric conversion element.
  • the light receiving surface of the illuminometer 39 is set at the same height as the surface of the wafer W.
  • a silicon photodiode having sensitivity in the deep ultraviolet region and having a high response frequency for detecting pulsed illumination light is used.
  • illuminometer 39 a pyroelectric or thermal light meter may be used.
  • the detection signal of the illuminometer 39 is supplied to the exposure controller 40 via a peak hold circuit (not shown) and an analog / digital (AZD) converter.
  • the exposure light IL reflected by the beam splitter 26 is received by an integrator sensor 41 as an optical sensor composed of a photoelectric conversion element via a condenser lens (not shown),
  • the converted signal is output as an output DS (digital signal) via an unillustrated peak hold circuit and A / D converter.
  • the integrator sensor 41 a silicon photodiode, a pyroelectric or thermal light meter, or the like can be used.
  • the optical system from the laser light source 12 to the wafer W is referred to as the main optical system, and is branched from the main optical system by the beam splitter 26 to the integrator sensor 41.
  • the leading optical system may be referred to as a branch optical system.
  • the correlation coefficient between the output DS of the integrator sensor 41 and the pulse energy (exposure amount) of the exposure light IL per unit area on the surface (image plane) of the wafer W is determined by the measured value of the integrator sensor 41. It is obtained in advance based on the measurement value of the illuminometer 39 and the like and stored in the exposure controller 40. The measurement for obtaining the correlation coefficient is performed before the start of the exposure processing or as necessary.
  • the exposure controller 40 controls the light emission timing and light emission power of the light sources 12 by supplying control information TS to the laser light sources 12 in synchronization with stage system operation information from a stage controller (not shown). I do. Further, the exposure controller 40 controls the transmittance by switching the filters of the variable dimmer 20.
  • a stage controller (not shown) controls the opening and closing operation of the movable blind of the blind mechanism 28 in synchronization with the operation information of the stage system.
  • the exposure controller 40 sets the target value of the pulse energy at the time of the next pulse emission of the laser light source 12 by directly feeding back the output DS of the integrator sensor 41. That is, according to the known sensitivity of the photoresist applied on the wafer W, for example, the target exposure amount S, which is the target value of the integrated exposure amount for each point on W, input by the operator. Is determined, and the minimum number of exposure pulses of the exposure light IL for each point on the wafer W is determined based on the known variation of the pulse energy of the laser light sources 1 and 2 and the preset required exposure control reproduction accuracy. N min is determined.
  • the exposure controller 40 appropriately sets the transmittance of the variable dimmer 20 and causes the laser light source 12 to actually perform pulse emission a predetermined number of times.
  • the average pulse energy on the wafer W through 1 is measured through P, and the target value S of the integrated exposure is obtained from the measurement result.
  • the process proceeds to exposure as it is. If the exposure pulse number N is smaller than N min , the exposure controller 40 sets the exposure pulse number N to N min or more.
  • the transmittance of the variable dimmer 20 is increased in the range where. Assuming that the transmittance at this time is T, the number N of exposure pulses is (S./(P ⁇ T)). Actually, (So / (P ⁇ T)) is not always an integer, so it is necessary to convert it to an integer. However, for simplicity, it is assumed that it is an integer. As a result, the target energy per pulse is S. / N.
  • the width in the scanning direction (slit width) of the slit-shaped exposure region on the wafer W shown in FIG. 1 is D, the oscillation frequency of the laser light source 12 (or the reciprocal of the pulse repetition period).
  • F the scanning speed of the wafer W during scanning exposure
  • V the scanning interval of the wafer W during pulse emission. Since the interval at which the wafer W moves between pulses is VZF, the number N of exposure pulses is expressed by the following equation.
  • N D / (V / F) (1)
  • At least one of the oscillation frequency F and the scanning speed V is set so that the equation (1) is satisfied, and information on the scanning speed V is supplied to the stage controller.
  • the exposure controller 40 issues a command to the laser light source 12 to start pulse emission, and as an example, until the number of emission pulses reaches N min (or a predetermined number), the integrator sensor 41
  • the average value of each pulse energy on the wafer W detected by S is S.
  • the laser light source 12 emits pulse light at the frequency F so that ZN is obtained.
  • the exposure controller 40 obtains the exposure amount P i on the wafer W from the output DS from the integrator sensor 41 for each pulse light, integrates this exposure amount P i, and Obtain the actual integrated exposure (moving sum) on W.
  • the next pulse emission of the laser light source 12 is performed so that the integrated exposure amount (moving window) ST for a series of N min pulses is always the next target value.
  • the applied voltage at the time is controlled. Time for N min pulse is controlled It can also be regarded as a unit time for your system. The voltage is determined in consideration of the state of the gas in the laser resonator of the laser light source 12, the state of the laser resonator, and the like.
  • the high-voltage power supply is set so that the accumulated exposure amount S for the N min pulse up to that time approaches equation (2).
  • the fine adjustment of the energy per pulse in the laser light source 12 is performed.
  • the target value S is set at the required exposure amount control accuracy. Is given.
  • the light source of this embodiment is an F 2 laser light source using helium gas as a buffer gas, when oscillating a chief ray having a wavelength of 157 nm, a red light (wavelength of ).
  • the various optical sensors (illuminometer 39, integrator sensor 41) of this embodiment employ a photodiode or the like having such red light sensitivity. For this reason, the detected value includes not only the principal ray contributing to the exposure but also the sub-ray not contributing to the exposure, and especially the principal ray and the sub-ray are attenuated in the optical path.
  • FIG. 2 is a diagram showing a first countermeasure against red light, and shows a main part of the exposure apparatus shown in FIG.
  • a filter F1 is provided in the optical path of the exposure light in the branching optical system, that is, between the beam splitter 26 and the integrator sensor 41.
  • This finoleta F1 is provided on one or both sides of a base material that transmits vacuum ultraviolet light such as fluorite with low loss, and is provided with a dielectric thin film, a dielectric multilayer film, a metal thin film, a metal multilayer film, and a dielectric and metal film.
  • the optical filter has the following optical characteristics.
  • the filter F1 may employ a Fabry-Perot resonator, a prism, a diffraction grating, or the like to realize the above-described optical characteristics.
  • the light emitted from the laser light source 12 and reflected by the beam splitter 26 includes a chief ray ML having a wavelength of 157 nm and red light as a sub ray SL. And the sub-beam SL are separated, and the sub-beam SL is removed, so that light having a large proportion of the main beam ML is transmitted. Therefore, only the chief ray containing no red light is incident on the integrator sensor 41, so that even if the optical sensor 41 is sensitive to red light, the detection error due to the effect of the red light is reduced. Can be smaller. Therefore, it is possible to more accurately control the exposure amount using the detection result. Since it is practically impossible to separate red light by 100% by a filter, it is sufficient that the red light can be attenuated to such an extent that the detection result of the optical sensor 41 is not adversely affected.
  • an optical member a lens 27, a plurality of lenses constituting the projection optical system, Attenuation rate (including the transmittance of the above-mentioned lens and reflectance of the reflection mirror) of the exposure light generated by the reflection mirror 30 and the like, the space between the optical members, the reticle chamber 51 for accommodating the reticle R 51 Monitors the absorptance of exposure light caused by exposure light-absorbing substances (gases such as oxygen and carbon dioxide, water, organic substances, etc.) that exist inside, or uneven illuminance in the exposure area on the wafer surface. In such a case, the monitoring accuracy can be improved.
  • exposure light-absorbing substances gases such as oxygen and carbon dioxide, water, organic substances, etc.
  • the airtightness of the case 11, subchamber 18, and the lens barrel of the projection optical system PL in Fig. 1 is reduced and the outside air (atmosphere of the exposure equipment installation environment that absorbs principal rays such as oxygen and water) is at least
  • the outside air atmosphere of the exposure equipment installation environment that absorbs principal rays such as oxygen and water
  • the transmittance of the chief ray passing through that space becomes low, so that it is possible to detect a temporal change in illuminance or light amount.
  • light including the principal ray ML and the sub ray SL is incident on the illuminometer 39 on the wafer stage.
  • the optical sensor 41 detects the sub-beam SL Even if the optical sensor 39 is sensitive to the sub-beams SL and the main beam ML, the beam splitter 26 detects It is possible to accurately detect the arrival rate (in other words, the attenuation rate due to the light absorbing material existing in the optical member and the space in the optical path) of the light having a large proportion of the chief ray ML reaching 39.
  • the filter is separately provided in the main optical system so that the red light incident on the illuminometer 39 is separated from the chief ray and the illuminometer 39 can detect light having a large proportion of the chief ray ML. Well ,.
  • the filter may be provided integrally as a part of the integrator sensor 41 and the illuminometer 39.
  • a filter F3 may be provided on the downstream side (wafer W side) of the beam expander 19 in the optical path of the illumination optical system.
  • the filter F3 since the filter F3 is provided on the upstream side (the light source 12 side) of the beam splitter 26, both the integrator sensor 41 and the illuminometer 39 can be controlled with one filter. This is advantageous in terms of cost and optical characteristics (less attenuation).
  • the filter F 3 downstream of the beam expander 19 the cross-sectional area of the exposure light is enlarged by the beam expander 19, and the energy density is reduced. Can be lengthened.
  • the filter it is of course possible to dispose the filter at a position upstream of the beam expander 19 (for example, indicated by a symbol F2 in FIG. 3). Further, in the above-described embodiment, one filter F3 is provided. However, a plurality of filters may be collectively provided at one location or discretely on the optical path.
  • FIG. 4 is a diagram showing a second countermeasure for red light, and shows a main part of the exposure apparatus shown in FIG.
  • the filter F1 used in the first measure in the optical path branched by the beam splitter 26 as a branching optical system, that is, between the beam splitter 26 and the integrator sensor 41.
  • the difference is that a dichroic mirror is provided between them.
  • Other configurations and operations are the same as those of the first countermeasure, and thus description thereof is omitted.
  • This dichroic mirror reflects light in a short wavelength range (for example, 190 nm or less) including a wavelength range of about 157 nm, and a wavelength of about 630 to 720 nm.
  • This is a reflection / transmission type mirror that has optical characteristics to transmit light in a long wavelength range including the wavelength range (for example, 190 nm or more).
  • this dichroic mirror M1 forms a dielectric multilayer film 49 made of fluoride on the surface of a base material 48 that transmits vacuum ultraviolet light such as fluorite with little loss. It reflects the chief ray ML and transmits the secondary ray (red light) SL.
  • the dichroic mirror Ml may not be arranged in the optical path of the branching optical system, and a dichroic mirror M2 may be provided instead of the reflection mirror 23 as shown in FIG. .
  • the dichroic mirror M 2 is arranged on the downstream side (wafer W side) of the beam expander 19, so that it is located on the upstream side (the laser light source 12 side) of the beam expander 19. Since the energy density of the exposure light is lower than when provided, the life of the dichroic mirror M2 can be extended.
  • the dichroic mirror may be disposed at a position upstream of the beam expander 19.
  • one dichroic mirror M2 is provided, but a plurality of dichroic mirrors are discretely arranged on the optical path of the exposure light of the branch optical system, or Optical filters F1 to F3
  • FIG. 7 is a diagram showing the third measure against red light, showing the integrator sensor 41 and its vicinity.
  • two identical optical sensors (same as the integrator sensor 41) 42 and 43 are arranged adjacent to each other as the integrator sensor 41 in FIG.
  • the split optical system split by the beam splitter 26 is further split into two (equal parts), one of which is input to the optical sensor 42 and the other is input to the optical sensor 43.
  • a filter F 4 is provided on the optical path of the optical sensor 43.
  • This filter F4 has optical characteristics substantially opposite to those of the above-described filters F1 to F3, and has a long wavelength range including a wavelength range of about 630 to 720 nm (for example, 190 nm). optical filter that transmits light of a wavelength of at least 1 nm and absorbs, scatters, or reflects light in a short wavelength range (eg, 19 O nm or less) including a wavelength range of about 157 nm. It is.
  • the filter F4 optical glass, synthetic quartz, an acrylic plate, a plastic plate, a sodium chloride plate, or the like can be used, and it is preferable that the transmittance of red light is high.
  • a gas such as oxygen, water, carbon dioxide, carbon monoxide, an organic substance, or a silicon compound, which significantly attenuates vacuum ultraviolet light, is introduced on the optical path to the optical sensor 43, or provided in a container. You may do so.
  • the light including both the principal ray ML and the sub-beam SL is incident on the light receiving surface 42A of the optical sensor 42, and the principal ray ML is separated by the finoleta F4 on the light receiving surface 43A of the optical sensor 43.
  • the light having a large proportion of the sub-beams SL is incident.
  • the respective detected values of the optical sensor 42 and the optical sensor 43 are supplied to the capturing device 44.
  • the correction device 44 subtracts the detection value (detection value including only the sub-ray) from the optical sensor 43 from the detection value (detection value including both the principal ray and the sub-ray) from the optical sensor 42,
  • a detection value for the light information (for example, light intensity, light quantity, illuminance, etc.) of the principal ray is calculated and supplied to the exposure controller 40 as a detection result DS by the integrator sensor 41.
  • the filter F4 of this embodiment separates the sub-beam SL from the main beam ML, This is a separation device that transmits X-ray SL.In general, there are a limited number of substances that can transmit vacuum ultraviolet light.On the other hand, there are various types of substances that absorb this light. Compared to the filters F1 to F3 for preventing transmission, the configuration is simple and the cost is low, which is advantageous.
  • the branch optical system branched by the beam splitter 26 from the main optical system is further branched into two to guide light, respectively.
  • the light receiving surfaces 42 A and 43 A of the optical sensors 42 and 43 are made smaller than the cross-sectional area of the split light, and the split lights are respectively separated. It is also possible to configure the light-receiving surfaces 42A and 43A simultaneously.
  • the integrator sensor 41 has been described, but the same configuration can be applied to the illuminometer 39 as well.
  • FIG. 8 is a diagram showing the fourth measure against red light, showing the integrator sensor 41 and its vicinity.
  • the filter F5 which has substantially the same configuration as that shown in FIG. 3, is replaced by a filter F5 in front of the light receiving surface 41A of the integer sensor 41, instead of the filter F3 in FIG. Since the filter F5 is a filter that separates a principal ray and transmits only a sub ray in the same manner as the filter F4 described above, a description thereof will be omitted.
  • the filter F5 is selectively moved by the moving device to a second position P2 located immediately before the light receiving surface 41A of the integrator sensor 41 and a first position P1 retracted from the second position P2. It is configured to be moved. That is, the filter F5 is fixed to the holder 47, and the holder 47 is driven to rotate by the drive motor 46. By driving the filter F5 by the drive motor 46, the filter F5 can be moved at high speed between the first position P1 and the second position P2. As the moving device, a device that linearly slides the filter F5 between the first position P1 and the second position P2 may be adopted.
  • the filter F5 When the filter F5 is at the first position P1, light including both the chief ray ML and the sub ray SL is incident on the light receiving surface 41A of the integrator sensor 41, while the finoletor F5 is at the first position P1. 2 When in the position P2, the light receiving surface of the integrator sensor 41 At 41 A, light having a high ratio of the sub-beams SL from which the main beam ML is separated by the filter F5 is incident.
  • the detection value of the integrator sensor 41 is supplied to the exposure controller 40 via the correction device 45.
  • the correction device 45 determines that the filter F5 is in the second position based on the detection value (detection value including both the principal ray and the sub ray) by the integrator sensor 41 when the filter F5 is at the first position P1.
  • the detection value of the integrator sensor 41 at the position P2 detection value including only the sub-beam
  • the detection value of the chief ray is calculated, and this is detected by the integrator sensor 41.
  • the result is supplied to the exposure controller 40 as DS.
  • the filter F5 of this embodiment is a separation device that separates the sub-beam SL from the main beam ML and transmits the sub-beam SL similarly to the filter F4 described above, and generally, the material that transmits vacuum ultraviolet light is limited. On the contrary, since there are various substances that absorb this, the structure is simpler and the cost is lower than filters F1 to F3 that transmit vacuum ultraviolet light and do not transmit red light. Are also advantageous in that they are inexpensive. In addition to this, it is not necessary to provide two optical sensors (42, 43) as in the above-described fourth measure, and the configuration is simpler.
  • the switching of the position of the filter F5 by the moving devices 46 and 47 is controlled by a control device (not shown), but the switching cycle is preferably as fast as possible.
  • the switching cycle is preferably as fast as possible.
  • the detection result is used for fault monitoring, the occurrence of a fault can be detected earlier.
  • the integrator sensor 41 has been described, but the same configuration can be applied to the illuminometer 39 as well.
  • the integrator sensor 41 or the illuminometer 39 has been described.
  • the exposure apparatus is provided with various optical sensors.
  • a non-uniform illuminance sensor including a similar photoelectric conversion element is provided on the wafer stage 38, and the present invention can be applied to such a non-uniform illuminance sensor.
  • a cover glass is disposed on the light receiving surface of the optical sensor used in the present embodiment.
  • This cover glass is formed of the same glass material as that constituting the optical system of the exposure apparatus in the present embodiment.
  • This cover glass is placed in a space in the optical path, that is, a space filled with an inert gas. For this reason, the surface of the cover glass is desorbed from the light-absorbing substance adhered to the glass surface by the light washing effect of the irradiation of the vacuum ultraviolet light. Further, when the irradiation of the vacuum ultraviolet light is stopped, a phenomenon occurs in which the light absorbing substance existing in the space adheres to the surface of the cover glass.
  • This light-absorbing substance includes outgas generated from various components (wiring, circuit board, etc.) constituting the sensor itself. Therefore, the output of the optical sensor may fluctuate due to the attachment of the light absorbing substance and the light washing.
  • the light information of the exposure light detected in a state where the light absorbing effect is not attached to the cover glass surface by the light cleaning effect is stored as a reference, and at a predetermined timing, the actual measured value and the stored reference are stored. It is preferable to compare If the comparison shows that the values are different, it is desirable to carry out calibration.
  • calibrating the sensor prepare a reference optical sensor with the same detection sensitivity as the optical sensor attached to the exposure apparatus in advance, and based on the detection result of this reference optical sensor, The mounted optical sensor may be calibrated.
  • the comparison can be made for each pulse, and the illuminometer can be compared when the illuminance is detected, for example, every time the wafer is replaced.
  • the configuration in which the optical path of the exposure light is replaced with the Helium gas has been described.
  • a gas such as nitrogen, argon, neon, or krypton, or a mixed gas thereof is used to absorb light in the vacuum ultraviolet region. Gases with less volatile properties (Referred to as an inert gas).
  • the optical path of the exposure light may be divided into a plurality of parts, and the type of gas may be different for each divided optical path.
  • the illumination optical system, the reticle chamber, the projection optical system, and the wafer chamber may be replaced with helium gas, and the illumination optical system, the wafer chamber, and the reticle chamber may be replaced with nitrogen gas.
  • a configuration may be adopted in which a gas is always flowed between the projection optical system and the wafer without providing a wafer chamber.
  • fluorite, quartz, etc., as well as fluorite, quartz, etc., as well as fluorite, quartz, strontium fluoride, lithium-calcium-aluminum-flowride, and lithium strontium-aluminum Crystals such as ummonium fluoride, fluoride glass made of zirconium-barium-lanthanum-aluminum, quartz glass doped with fluorine, quartz glass doped with hydrogen and hydrogen, and OH Modified quartz such as quartz glass containing a group and quartz glass containing an OH group in addition to fluorine may be used.
  • the step-and-scan type reduction projection exposure apparatus (scanning stepper) has been described.
  • exposure light is applied to the entire surface of the reticle pattern while the reticle and the wafer are stationary.
  • the present invention is also applied to a reduction projection exposure apparatus (stepper) of the step-up / re-beat type, which irradiates and irradiates one section area (shot area) on the wafer where the reticle pattern is to be transferred. be able to.
  • the present invention can be applied to a step-and-stitch reduction projection type exposure apparatus, such as a mirror projection aligner.
  • the present invention is also applicable to an exposure apparatus that transfers a circuit pattern onto a glass substrate, a silicon wafer, or the like in order to manufacture a mask. That is, the present invention can be applied irrespective of the exposure method and application of the exposure apparatus.
  • FIG. 1 A light source 1, an illumination optical system including various optical elements or optical devices including filters F 1 to F 5 or dichroic mirrors M 1 to M 3, an integrator sensor 41 and an illuminometer 3 9 The elements shown in FIG.
  • an energy control system including a reticle stage 36, a mask alignment system including a reticle stage 36, a wafer alignment system including a wafer stage 38, and a projection optical system PL are electrically, mechanically, and Is manufactured by optically connecting and assembling and then performing comprehensive adjustments (electrical adjustment, operation check, etc.). It is desirable that the manufacture of the exposure apparatus be performed in a clean room where the temperature, cleanliness, etc. are controlled.
  • a device a semiconductor chip such as an IC or an LSI, a liquid crystal panel, a CCD, a thin-film magnetic head, a micromachine, etc.
  • the functional design of the device is performed.
  • a mask manufacturing step a mask on which the designed circuit pattern is formed is manufactured.
  • a wafer manufacturing step a wafer is manufactured using a material such as silicon.
  • a wafer process step an actual circuit or the like is formed on the wafer by lithography using the mask and the wafer prepared in the above step.
  • chips are formed using the wafer processed in the wafer process step.
  • This assembly step includes processes such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation).
  • inspection step inspections such as the operation confirmation test and the durability test of the device manufactured in the assembly step are performed. After these steps, the device is completed and shipped.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

明 細 書 露光装置、 露光方法、 及びデバイス製造方法 技術分野
本発明は、 半導体素子、 液晶表示素子、 撮像素子、 薄膜磁気ヘッド等の各種マ イク口デバイスを製造するためのフォトリソグラフイエ程で用いられる露光装置 及び露光方法並びに該方法を用いるデバイス製造方法に関する。 背景技術
半導体素子、 液晶表示素子、 撮像素子 (CCD等) 、 薄膜磁気ヘッド等のマイ クロデバイスをフォ トリソグラフィ技術を用いて製造する際に、 マスクとしての レチクルのパターンの像を投影光学系を介してフォトレジスト等が塗布されたゥ ェハ (又はガラスプレート等) 上に投影露光する露光装置が使用されている。 このような露光装置においては、 マイクロデバイスの微細化に対応してウェハ 上に形成するパタ一ンの解像度を高めるため、 露光光の短波長化が行われてレ、る。 このため、 露光光としては、 かっての高圧水源ランプによる g線 (波長 4 3 6 n m) や i線 (波長 3 6 5 n m) から、 Kr Fエキシマレーザ (波長 248 nm) や A r Fエキシマレ一ザ (波長 1 9 3 nm) が用いられるようになつてきた。 ま た、 近時においては、 さらなる高解像度化に対応するため、 F2レーザ (波長 1 5 7 nm) の使用が検討されている。
F 2レーザが発振する光はいわゆる真空紫外光であり、 大気中では酸素や水、 あ るいは有機物などの物質による吸収によって、 ほとんど透過することができない' ため、 これを露光光として用いる場合には、 その光路を真空にするか、 あるいは ヘリゥム (He) 、 ネオン (N e) 、 アルゴン (A r ) 、 クリプトン (K r ) 等 の希ガスや窒素 (N2) 等の 1 5 7 nm程度の波長の光を透過する不活性ガスで満 たす必要がある。
また、 このような露光装置では、 ウェハの各ショット領域内の各点に対する露 光量 (積算露光エネルギー) を適正範囲内に維持するために行われる露光量制御、 露光光 (露光領域) が照度むらのない適正な状態を保持しているかどうかの監視、 光路が露光光の透過にふさわしい環境に保たれているかどうかの監視等のために 各種の光センサ (光検知器) が常設的に取り付けられ、 露光光のエネルギ一 (照 度、 光量、 強度等) が計測される。 このような計測のための光センサとしては、 シリコンフォトダイォ一ド、 焦電式あるいは熱式の光量計が性能ゃコストの観点 から多く用いられている。
ここで、 上述した F 2レーザを光源として採用した場合、 F 2レーザは、 波長 1
5 7 の真空紫外光 (以下、 主光線という場合がある) を発振すると同時に、 波長 6 3 0〜7 2 0 n m程度の露光には寄与しない赤色光 (以下、 副光線という 場合がある) を副次的に発生する特質を有する。 この副光線の強度は F 2レーザ力 ら出射された直後で、 全体のおよそ 5〜1 0 %程度である。 副光線は、 露光光の 光路を構成する光学系による減衰がほとんど無いため、 主光線とともに光センサ に到達する。
—方、 光センサとして多く用いられている上述したようなシリコンフォトダイ オード、 焦電式あるいは熱式光量計は、 主光線のみならず、 副光線の波長にまで 感度を有しているため、 副光線までをも検出してしまい、 露光に寄与する主光線 の光量を正確に計測できず、 このため、 露光量制御が適正に行われず、 高精度な パタ一ンを形成できなレ、場合があるという問題がある。
また、 光路上への大気の進入や不純物の発生を、 光センサの検出結果を用いて 監視している場合には、 主光線の減衰は大きいが副光線は殆ど減衰せずに光セン サによって検出されてしまうため、 本来エラーとして運転を停止すべき場合であ つても、 問題無しとして処理が続行される可能性があり、 極めて問題である。 発明の開示
よって、 本発明の目的は、 基板を感光させる波長の主光線の発振に伴い不要な 副光線をも副次的に発生するような光源を用いた場合であっても、 主光線のエネ ルギ一を正確に計測し、 露光量制御やその他の障害監視等を高い精度で行えるよ うにすることである。
以下、 この項に示す説明では、 理解の容易化のため、 本発明の各構成要件に実 施の形態の図に示す参照符号を付して説明するが、 本発明の各構成要件は、 これ ら参照符号によって限定されるものではない。
1. 上記目的を達成するための本発明の露光装置は、 露光対象としての基板 (W) をパターンが形成されたマスク (R) を介して露光する露光装置において、 前記基板を感光させる波長の主光線 (ML) 及び該主光線の発振に伴い副次的に 発生する該主光線の波長と異なる波長の副光線 (S L) を含む光を出射する光源 (1 2) と、 前記光源からの光を前記マスクを介して前記基板に導く主光学系と、 少なくとも前記主光線を含む波長域に感度を有する光センサ (39, 41) と、 前記光源から前記光センサに至る光路上に設けられ、 前記主光線と前記副光線と を分離する分離装置 (F 1〜F 3, F 5, Ml, M2) とを備えて構成される。 本発明によると、 光源から光センサに至る光路上に主光線と副光線を分離する 分離装置を備えているので、 光センサに対して主光線のみを入射させるようにで き、 副光線をも検出してしまうことにより生じる検出誤差を低減することができ る。
前記露光装置が主光学系から前記光の一部を前記光センサに導く分岐光学系 (26) を備えている場合には、 前記分離装置 (F 1〜F 3, F 5, Ml, M2) を前記分岐光学系と前記光センサ (41) との間に設けることができる。 光セン サに光を導く分岐光学系内に分離装置を設けることにより、 主光学系を送られる 光の当該分離装置による減衰を無くすことができる。
前記露光装置は、 前記分離装置 (F 1〜F 3, F 5, Ml, M2) で分離され た前記主光線に基づいて、 前記基板 (W) に対する積算光量を制御する制御装置 (40) をさらに備えることができる。 制御装置は、 光センサによる主光線のみ の計測結果に基づいて積算光量を制御することができるので、 副光線による影響 を排除して正確な制御を行うことができる。
前記露光装置において、 前記分離装置 (F 5) を前記分岐光学系 (26) によ り分岐された前記光の光路から待避される第 1位置 (P 1) 及ぴ当該光路上に配 置される第 2位置 (P 2) との間で選択的に移動する移動装置 (46) を備える ことができ、 この場合において、 前記分離装置が前記第 1位置に移動したときの 前記光センサ (41) の計測結果を、 前記分離装置が前記第 2位置に移動したと きの前記光センサ (4 1 ) の計測結果に基づいて補正する補正装置 (4 5 ) をさ らに備えることができる。
分離装置を第 1位置 (光路上から待避された位置) に設定して光センサで計測 すれば、 光センサには主光線と副光線が分離されない状態の光が入射される。 一 方、 分離装置を第 2位置 (光路上の位置) に設定して光センサで計測すれば、 光 センサには副光線のみを入射させるようにできる。 従って、 両者の計測結果から 副光線を含まない主光線の正確な計測結果を得ることができる。
前記分離装置としては、 前記主光線の波長を含む波長域の光を透過し、 前記副 光線の波長を含む波長帯域の光を減衰する光学フィルタ (F 1〜F 3 ) を採用し、 あるいは前記主光線の波長を含む波長域の光を反射し、 前記副光線の波長を含む 波長帯域の光を透過する反射透過型のミラー (M l , M 2 ) を採用することがで きる。 ここで、 「減衰する」 とは、 完全に遮光する場合と、 完全には遮光せずに —部は透過する場合 (例えば、 その透過量が光センサの最低検出感度以下である ような場合) とが含まれる。
本発明は、 前記光源として F 2 レーザ光源を用いる場合に、 特に好適である。 即ち、 F 2レーザ光源は、 上述したように、 主光線として 1 5 7 n mの光を発振す るとともに、 副光線として赤色光 (波長 6 3 0〜7 2 0 n m程度) も発生するた め、 この場合に、 当該赤色光を除いた主光線のみを正確に計測することができ、 その結果、 積算露光量の制御を適正に実施することができるようになるとともに、 各種の障害監視の精度を向上することができる。
2 . 上記目的を達成するための本発明の露光装置は、 露光対象としての基板
(W) をパターンが形成されたマスク (R) を介して露光する露光装置において、 前記基板を感光させる波長の主光線 (M L ) 及ぴ該主光線の発振に伴い副次的に 発生する該主光線の波長と異なる波長の副光線 (S L ) を含む光を出射する光源
( 1 2 ) と、 前記光源からの光を前記マスクを介して前記基板に導く主光学系と、 前記主光線及び前記副光線の波長を含む波長域に感度を有する第 1光センサ (4 2 ) と、 少なくとも前記副光線の波長を含む波長域に感度を有する第 2光センサ
( 4 3 ) と、 前記主光学系における前記光の光路内に配置され、 前記光の一部を 前記第 1光センサに導く第 1分岐光学系と、 前記主光学系又は前記第 1分岐光学 系における前記光の光路内に配置され、 前記光の一部を前記第 2光センサに導く 第 2分岐光学系と、 前記第 2分岐光学系と前記第 2光センサとの間に設けられ、 前記主光線と前記副光線を分離する分離装置 (F 4 ) とを備えて構成される。 こ の場合において、 前記第 1光センサによる計測結果を前記第 2光センサによる計 測結果に基づいて捕正する補正装置 (4 4 ) をさらに備えることができる。 第 2 光センサは前記主光線に感度を有していてもよい。
第 1光センサには主光線と副光線が分離されない状態の光が入射される。 一方、 第 2光センサには副光線のみを入射させるようにできる。 従って、 第 1光センサ による計測結果を第 2光センサによる計測結果に基づいて補正することにより、 副光線を含まない主光線の正確な計測結果を得ることができる。
3 . 上記目的を達成するための本発明の露光方法は、 露光対象としての基板 (W) を感光させる波長の主光線 (M L ) 及ぴ該主光線の波長と異なる波長の副 光線 (S L ) を含む露光光を用いて、 パターンが形成されたマスク (R ) を介し て該基板を露光する露光方法において、 前記主光線及び前記副光線を含む前記露 光光から該副光線を分離し、 該分離した後の露光光のエネルギー (光量、 強度、 照度等) を計測し、 該計測結果に基づいて前記基板に対する積算露光量を制御す ることを特徴とする。
また、 露光対象としての基板 (W) を感光させる波長の主光線 (M L ) 及ぴ該 主光線の波長と異なる波長の副光線 (S L ) を含む露光光を用いて、 パターンが 形成されたマスク (R ) を介して該基板を露光する露光方法において、 前記主光 線及び前記副光線を含む前記露光光の一部を分岐し、 該分岐された露光光から前 記副光線を分離し、 該分離した後の露光光のエネルギーを計測し、 該計測結果に 基づいて前記基板に対する積算露光量を制御することを特徴とする。
さらに、 露光対象としての基板 (W) を感光させる波長の主光線 (M L ) 及ぴ 該主光線の波長と異なる波長の副光線 (S L ) を含む光に基づく露光光を用いて、 パターンが形成されたマスク (R ) を介して該基板を露光する露光方法において、 前記主光線及び前記副光線を含む前記露光光の第 1エネ^/ギーを計測し、 前記主 光線及び前記副光線を含む前記露光光から前記主光線を分離し、 前記主光線を分 離した後の露光光の第 2エネルギーを計測し、 前記第 1エネルギーを前記第 2ェ ネルギーに基づいて補正し、 補正された前記第 1エネルギーに基づいて前記基板 に対する積算露光量を制御することを特徴とする。
上記本発明の露光方法よると、 副光線を含まない主光線を正確に計測すること ができる。 この方法は、 前記主光線及び前記副光線を含む光が F 2 レーザ光源か ら出射されるレーザ光である場合に特に好適である。
4 . 上記目的を達成するための本発明のデバイス製造方法は、 上述した本発明 の露光方法を用いて前記マスクのパターンの像を前記基板に転写するステップを 有することを特徴とする。 図面の簡単な説明
図 1は本発明の実施形態に係るステップ 'アンド ' スキャン方式の投影露光装 置の全体構成を示す図、
図 2は本発明の実施形態の第 1の赤色光対策を説明するための構成図、 図 3は本発明の実施形態の第 1の赤色光対策におけるフィルタの位置の変更例 を示す構成図、
図 4は本発明の実施形態の第 2の赤色光対策を説明するための構成図、 図 5は本発明の実施形態の第 2の赤色光対策におけるダイクロイツクミラーの 構成図、
図 6は本発明の実施形態の第 2の赤色光対策におけるダイクロイツクミラ一の 位置の変更例を示す構成図、
図 7は本発明の実施形態の第 3の赤色光対策を説明するための構成図、 図 8は本発明の実施形態の第 4の赤色光対策を説明するための構成図である。 発明を実施するための最良の形態
以下、 本発明の実施形態を図面を参照して説明する。
[全体構成]
図 1は本発明の実施形態に係る露光装置の全体構成を示す図である。 この露光 装置は、 ステップ ' アンド . スキャン方式の縮小投影型露光装置である。
図 1において、 半導体製造工場のある階の床 B 1上のクリーンルーム内に投影 露光装匱が設置され、 その階下の床 B 2上のいわゆる機械室 (ユーティリティス ペース) 内に、 階上の投影露光装置に、 露光光が透過する気体、 例えば不活性ガ ス (本実施形態ではヘリウムガス) を供給するためのボンべ (供給装置) 3 2や 当該ガスを回収 ·浄化する浄化装置 5 5等が設置されている。
床 B 1上のクリーンルーム内において、 防振台を介して箱状のケース 1 1が設 置され、 ケース 1 1内に照明光源としての F 2レーザ光源 1 2 (主光線の発振波長 1 5 7 n m) 、 露光本体部との間で光路を位置的にマッチングさせるための可動 ミラー等を含むビームマッチングユニット (B MU) 1 3、 及び内部を照明光が 通過する遮光性のパイプ 1 4が設置されている。 レーザ光源 1 2は、 バッファガ スとしてのヘリウムガスにフッ素 (F 2) を混合して封入したレーザ発振器及ぴ該 レーザ発振器の電極に電圧を印加する高圧電源等を備えて構成される。
ケース 1 1の隣に箱状の気密性の良好な環境チャンバ 1 5が設置され、 環境チ ヤンバ 1 5内で床 B 1上に床からの振動を減衰するための防振台を介して定盤 1 6が設置され、 定盤 1 6上にウェハステージ 3 8が設置されている。 また、 ケ一 ス 1 1内から突き出ているパイプ 1 4から環境チャンバ 1 5の内部まで気密性の 良好なサブチャンバ 1 8が架設され、 サブチャンバ 1 8内に照明光学系の大部分 が収納されている。
露光時に、 ケース 1 1内の F 2レーザ光源 1 2から射出された露光光 (主光線の 波長が 1 5 7 n m) の露光光 (パルス光) I Lは、 B MU 1 3及びパイプ 1 4の 内部を経てサブチャンバ 1 8内に至る。 サブチャンバ 1 8内において、 露光光 I Lは、 ビームエキスパンダ 1 9、 可変減光器 2 0、 レンズ系 2 1 , 2 2等からな るビーム整形光学系を経て、 光路折り曲げ用の反射ミラ一 2 3で反射されて、 ォ プチカルインテグレータとしてのフライアイレンズ 2 4 (フライアイレンズの代 わりにロッドレンズを用いてもよい) に入射する。
フライアイレンズ 2 4は、 後述するレチクル Rを均一な照度分布で照明するた めに多数の 2次光源を形成する。 フライアイレンズ 2 4の射出面には照明系の開 口絞り 2 5が配置され、 開口絞り 2 5内の 2次光源から射出される露光光 I Lは、 反射率が小さく且つ透過率が大きなビームスプリッタ 2 6に入射する。 ビームス プリッタ 2 6を透過した露光光 I Lは、 コンデンサレンズ系 2 7を経てレチクル ブラインド機構 2 8の矩形の開口部を通過する。
レチクルブラインド機構 2 8は、 レチクルのパターン面に対する共役面の近傍 に配置されている。 また、 レチクルブラインド機構 2 8内には、 スリッ ト状の開 口部を有する固定照明視野絞り (固定ブラインド) 2 8 A、 及び該固定ブライン ドとは別に照明視野領域の走查方向の幅を可変とするための可動プラインド 2 8 Bが設けられている。 走査露光の開始時及び終了時には、 可動ブラインドを介し て照明領域をさらに制限することによって、 不要な部分への露光が防止される。 レチクルブラインド機構 2 8の固定ブラインドでスリット状に整形された露光 光 I Lは、 結像用レンズ系 2 9、 反射ミラー 3 0、 及び主コンデンサレンズ系 3 1を介して、 レチクル Rの回路パターン領域上のスリット状の照明領域を一様な 強度分布で照射する。 本実施形態では、 遮光性のパイプ 1 4の射出面から主コン デンサレンズ系 3 1までがサブチャンバ 1 8内に収納され、 更にパイプ 1 4の内 部から F 2レ一ザ光源 1 2の射出面までの空間もケース 1 1によって密閉されてい る。 そして、 サブチャンバ 1 8及ぴケース 1 1内には、 階下のヘリゥムボンべ 3 2から配管 3 3を介して所定の純度以上で温度制御されたヘリウムガス (H e ) が供給されている。 配管 3 3には開閉バルブ 3 4及ぴポンプ 3 5が設けられてお り、 不図示の制御系によって開閉バルブ 3 4の開閉及びポンプ 3 5の作動を制御 することによって、 投影露光装置へのヘリウムガスの供給、 及ぴその停止を切り 替えることができるようになっている。
露光光 I Lのもとで、 レチクル Rの照明領域内の回路パターンの像が投影光学 系 P Lを介してゥヱハ W上のレジス ト層のスリット状の露光領域に転写される。 その露光領域は、 ウェハ W上の複数のショット領域のうちの 1つのショット領域 上に位置している。 本実施形態の投影光学系 P Lは、 ジォプトリ ック系 (屈折系) であるが、 このような短波長の紫外光を透過できる硝材は蛍石や合成石英など限 られているため、 投影光学系 P Lをカタジォプトリック系 (反射屈折系) 、 又は 反射系として、 投影光学系 P Lでの露光光 I Lの透過率を高めるようにするとよ い。 以下では、 投影光学系 P Lの光軸 A Xに平行に Z軸を取り、 Z軸に垂直な平 面内で図 1の紙面に平行に X軸、 図 1の紙面に垂直に Y軸をとつて説明する。 レチクノレ Rは、 レチクルステージ 3 6上に吸着保持され、 レチクルステージ 3 6は、 レチクルベース 3 7上に X方向 (走査方向) に等速移動できるとともに、 X方向、 Y方向、 回転方向に微動できるように載置されている。 レチクルステー ジ 3 6 (レチクル R ) の 2次元的な位置、 及ぴ回転角は、 レーザ干渉計を備えた 不図示の駆動制御ュニットによつて制御されている。
一方、 ウェハ Wはゥヱハステージ 3 8上に設けられた不図示のウェハホルダ上 に吸着保持されている。 ウェハステージ 3 8は定盤 1 6上に載置されている。 ゥ ェハステージ 3 8は、 オートフォーカス方式でウェハ Wのフォーカス位置 ( 方 向の位置) 、 及ぴ傾斜角を制御してウェハ Wの表面を投影光学系 P Lの像面に合 わせ込むとともに、 ウェハ Wの X方向への等速走查、 及ぴ X方向、 Y方向へのス テツビングを行う。 ウェハステージ 3 8 (ウェハ W) の 2次元的な位置、 及び回 転角も、 レーザ干渉計を備えた不図示の駆動制御ュニットによって制御されてい る。
走查露光時には、 レチクルステージ 3 6を介して露光光 I Lの照明領域に対し てレチクル Rが + X方向 (又は一X方向) に速度 V rで走査されるのに同期して、 ウェハステージ 3 8を介して露光領域に対してウェハ Wが—X方向 (又は + X方 向) に速度 j3 - V r ( jSはレチクル Rからウェハ Wへの投影倍率) で走査される。 また、 照明光学系とレチクル R及ぴレチクル Rと投影光学系 P Lの間の部分を 含む空間を覆うようにレチクル室 5 1が設けられているとともに、 投影光学系 P Lとウェハ Wの間の部分を含む空間を覆うようにウェハ室 5 2が設けられている。 投影光学系 P Lの鏡筒内部の空間 (複数のレンズ素子間の空間) 、 レチクル室 5 1及びウェハ室 5 2内部には、 ケース 1 1及びサブチャンバ 1 8内と同様に、 階 下のヘリゥムボンべ 3 2からの配管 3 3を介して、 所定の濃度以上で温度制御さ れたヘリウムガスが供給されている。 尚、 環境チャンバ 1 5内には不図示の窒素 ボンベから窒素ガスが供給されている。
環境チャンバ 1 5内で、 サブチャンパ 1 8、 投影光学系 P Lの鏡筒、 レチクノレ 室 5 1及ぴウェハ室 5 2から漏れ出たヘリゥムガスは、 環境チャンバ 1 5内の窒 素ガスよりも軽いため、 上昇して天井付近の空間に溜まる。 この天井近傍の空間 内の気体は、 ヘリゥムガスの他に窒素や環境チャンバ 1 5の外部から進入した空 気が混じつた混合気体である。 1 5の側壁の該天井近傍には、 配管 5 3の一端が接続され、 配管 5 3の他端は床 B 1に設けられた開口を通過して階下の浄化装置 5 5に接続され ている。 床 B 1の底面側の配管 5 3の途中に吸引用のポンプ (又はファン) 5 4 が配置されており、 配管 5 3及びポンプ 5 4によって回収系が構成され、 環境チ ヤンバ 1 5の上部空間から吸引された混合気体は、 階下の浄化装置 5 5に送られ る。
浄化装置 5 5は、 詳細な図示は省略するが、 混合気体から微小な埃塵や水分を 除去する集塵排水装置、 混合気体を断熱圧縮冷却によって液体窒素温度にまで冷 却して窒素のみを液化させて気体のヘリウムを分離する冷却分離装置、 分離され たヘリゥムガスに残存する汚染物質をさらに除去する化学フィルタ等を備えて構 成される。 浄化装置 5 5で浄ィヒされたヘリウムガスは、 配管 5 6及びバルブ 5 7 を介してヘリウムボンべ 3 2に戻され、 再供給に備える。
本実施形態において、 露光装置本体 1 7は、 ウェハ Wを保持するウェハステー ジ 3 8、 投影光学系 P L、 レチクル Rを保持するレチクルステージ 3 6、 照明光 学系の少なくとも一部 (例えば、 環境チャンバ 1 5内に配置される照明光学系の 一部) で構成される。
[露光量制御]
ウェハステージ 3 8上のウェハ Wの近傍には、 光電変換素子からなる光センサ としての照度計 3 9が設けられている。 この照度計 3 9の受光面はウェハ Wの表 面と同じ高さに設定されている。 照度計 3 9としては、 遠紫外域に感度があり且 つパルス照明光を検出するために高い応答周波数を有するシリコンフォトダイォ
—ド等を使用することができる。 尚、 照度計 3 9としては、 焦電式あるいは熱式 の光量計等を用いてもよい。 照度計 3 9の検出信号は、 図示しないピークホール ド回路及びアナログ/デジタル (AZD ) 変換器を介して露光コントローラ 4 0 に供給される。
一方、 ビームスプリッタ 2 6で反射された露光光 I Lは、 不図示の集光レンズ を介して光電変換素子からなる光センサとしてのィンテグレータセンサ 4 1で受 光され、 インテグレータセンサ 4 1の光電変換信号は、 図示しないピークホール ド回路及び A/D変換器を介して出力 D S (デジタル信号) として露光コント口 —ラ 4 0に供給される。 尚、 インテグレ一タセンサ 4 1としては、 シリコンフォ トダイオード、 焦電式あるいは熱式の光量計等を用いることができる。 尚、 本実 施形態においては、 レーザ光源 1 2からウェハ Wに至る光学系を主光学系とレ、い、 ビ一ムスプリッタ 2 6により主光学系から分岐されてィンテグレータセンサ 4 1 に至る光学系を分岐光学系という場合がある。
インテグレータセンサ 4 1の出力 D Sと、 ウェハ Wの表面 (像面) 上における 露光光 I Lの単位面積当たりのパルスエネルギー (露光量) との相関係数は、 ィ ンテグレータセンサ 4 1の計測値と照度計 3 9の計測値等に基づいて予め求めら れて露光コントローラ 4 0内に記憶されている。 この相関係数を求めるための計 測は、 露光処理の開始前にあるいは必要に応じて行われる。 露光コントローラ 4 0は、 不図示のステージコントローラからのステージ系の動作情報に同期して、 制御情報 T Sをレーザ光源 1 2に供給することによって、 光源 1 2の発光タイミ ング及び発光パワー等を制御する。 さらに、 露光コントローラ 4 0は、 可変減光 器 2 0のフィルタを切り替えることによって透過率を制御する。 不図示のステ一 ジコントロ一ラは、 ステージ系の動作情報に同期してブラインド機構 2 8の可動 ブラインドの開閉動作を制御する。
次に、 走査露光時の基本的な露光量制御について説明する。 露光コントローラ 4 0は、 ィンテグレータセンサ 4 1の出力 D Sを直接フィードバックすることに よって、 レーザ光源 1 2の次のパルス発光時のパルスエネルギーの目標値を設定 する。 即ち、 例えばオペレータによって入力される、 ウェハ W上に塗布されてい るフォトレジストの既知の感度に応じて、 ゥヱハ W上の各点に対する積算露光量 の目標値である目標露光量 S。 が定められるとともに、 レーザ光源 1 2のパルス エネルギーの既知のばらつき、 及び予め設定されている必要な露光量制御再現精 度に基づいて、 ウェハ W上の各点に対する露光光 I Lの最小露光パルス数 Nm i n が定められる。
これらのパラメータに基づいて、 露光コントローラ 4 0は、 可変減光器 2 0の 透過率を適宜に設定して、 実際にレーザ光源 1 2に所定回数パルス発光を行わせ て、 ィンテグレータセンサ 4 1を介してウェハ W上での平均的なパルスエネルギ 一 Pを計測し、 この計測結果でその積算露光量の目標値 S。 を割ることによって
Π 露光パルス数 Nを求める。 尚、 実際には S。/Pは必ずしも整数にはならないため、
S。/Pを整数化した値が使用される。 ここでは、 簡単のため、 S。ZPが整数で あるとして説明する。
そして、 求められた露光パルス数 Nが既に Nmin 以上であれば、 そのまま露光 に移行するが、 露光パルス数 Nが Nmin より小さいときには、 露光コントローラ 40は、 その露光パルス数 Nが Nmin 以上となる範囲で可変減光器 20の透過率 を高める。 このときの透過率を Tとすると、 露光パルス数 Nは (S。/ (P · T) ) となる。 実際には、 (So/ (P · T) ) も必ずしも整数とはならないため、 整数 化の必要があるが、 ここでは簡単のために整数であるとする。 この結果、 1パル ス当たりの目標エネルギーは S。/Nとなる。
また、 図 1に示されるウェハ W上のスリ ッ ト状の露光領域の走查方向の幅 (ス リ ッ ト幅) を D、 レーザ光源 12の発振周波数 (又はパルスの繰り返し周期の逆 数) を F、 走查露光時のウェハ Wの走査速度を Vとすると、 パルス発光間にゥェ ハ Wが移動する間隔は V Z Fであるから、 その露光パルス数 Nは次式で表される。
N = D/ (V/F) ··· (1)
即ち、 その露光パルス数 Nが得られるように、 スリ ッ ト幅 D、 及ぴ発振周波数 F等を設定し直す必要がある。 但し、 通常そのスリ ッ ト幅 Dは一定であるため、
(1) 式が成立するように発振周波数 F及び走査速度 Vの少なくとも一方が設定 され、 走査速度 Vの情報はステージコントローラに供給される。
その後の走査露光時に露光コントローラ 40は、 レーザ光源 1 2にパルス発光 を開始する指令を発した後、 一例として発光パルス数が Nmin (又は所定の数) に達するまでは、 ィンテグレータセンサ 41で検出されるウェハ W上での各パル スエネルギーの平均値が S。 ZNとなるように、 レーザ光源 12に周波数 Fでパ ルス発光を行わさせる。 これと平行して、 露光コントローラ 40は、 各パルス光 毎にィンテグレータセンサ 41からの出力 D Sよりウェハ W上での露光量 P iを求 め、 この露光量 P iを積算して、 ウェハ W上での実際の積算露光量 (移動和) を求 める。 そして、 発光パルス数が Nmin に達してからは、 順次一連の Nmin パルス 分の積算露光量 (移動ウィンドウ) STが常に次の目標値となるように、 レーザ 光源 1 2の次のパルス発光時の印加電圧を制御する。 Nmin パルス分の時間は制 御系にとっての単位時間ともみなすことができる。 尚、 その電圧は、 レーザ光源 1 2のレーザ共振器内のガスの状態及びレーザ共振器の状態等を考慮して決定さ れる。
S T = Nmin · (So /N) ··· (2)
そして、 k番目、 (k+ 1) 番目、 (k + 2) 番目、 …のパルス発光時には、 それぞれそれまでの Nmin パルス分の積算露光量 S丁が (2) 式に近づくように、 高圧電源による印加電圧が制御され、 レーザ光源 1 2における 1パルス当たりの エネルギーの微調整が行われる。 これによつて、 走査露光後のウェハ W上の各点 には、 必要な露光量制御精度で目標値 S。 となる積算露光量が与えられる。
[赤色光対策]
この実施形態の光源は、 バッファガスとしてヘリゥムガスを用いた F 2レーザ光 源であるため、 波長 1 57 nmの主光線を発振する際に副次的に波長 630〜7 2O nm程度の赤色光 (副光線) をも発生させてしまう。 そして、 この実施形態 の各種光センサ (照度計 39、 インテグレータセンサ 41) は、 そのような赤色 光に感度を有するフォトダイオード等を採用している。 このため、 その検出値に は、 露光に寄与する主光線のみならず、 露光に寄与しない副光線をも含めて検出 してしまうことになり、 特に主光線と副光線とでは、 光路中における減衰率が異 なることもあり (主光線の方が高い) 、 検出結果に誤差を生じ、 その検出結果に 基づいて上述したような露光量制御等を行うと、 十分に高精度なパターンの形成 をなし得ない場合がある。 以下、 この対策について説明する。
[第 1の対策]
図 2は第 1の赤色光対策を示す図であり、 図 1に示した露光装置の要部を示し ている。 この例では、 分岐光学系における露光光の光路内、 即ち、 ビ一ムスプリ ッタ 26とインテグレータセンサ 41の間にフィルタ F 1を設けている。 このフ イノレタ F 1は、 蛍石等の真空紫外光を少ない損失で透過させる母材の片面又は両 面に、 誘電体薄膜、 誘電体多層膜、 金属薄膜、 金属多層膜、 誘電体と金属の複合 膜等を形成して構成され、 波長 1 57 nm前後の波長域を含む短い波長域 (例え ば、 1 90 nm以下) の光を透過し、 波長 630〜 720 n m程度の波長域を含 む長い波長域 (例えば、 1 90 nm以上) の光を、 吸収、 散乱、 又は反射等させ る光学特性を有する光学フィルタである。 なお、 このフィルタ F 1は、 フアブリ ペロー型の共振器、 プリズム、 回折格子等を用いて上記の光学特性を実現するよ うにしたものを採用してもよレ、。
レーザ光源 1 2から出射され、 ビームスプリッタ 2 6で反射された光は波長 1 5 7 n mの主光線 M Lと副光線 S Lとしての赤色光とを含んでいるが、 フィルタ F 1によって、 主光線 M Lと副光線 S Lとが分離される共に、 副光線 S Lが除去 されて主光線 M Lの占める割合が多い光が透過される。 従って、 インテグレータ センサ 4 1には、 赤色光を含まない主光線のみが入射されるので、 光センサ 4 1 が赤色光に感度を有するものであっても、 当該赤色光の影響による検出の誤差を 小さくすることができる。 従って、 当該検出結果を用いて露光量制御をより正確 に行うことが可能になる。 尚、 フィルタによって赤色光を 1 0 0 %分離すること は実際上は不可能であるから、 光センサ 4 1の検出結果に悪影響を与えない程度 に減衰させることができればよい。
また、 光センサ 4 1の検出結果を用いて、 ビームスプリッタ 2 6から投影光学 系 P Lのウェハ側の光学素子までの間における光学部材 (レンズ 2 7、 投影光学 系を構成する複数のレンズや、 反射ミラー 3 0などを含む) で生じる露光光の減 衰率 (上記レンズの透過率、 反射ミラーの反射率を含む) や、 光学部材の間の空 間、 レチクル Rを収容するレチクル室 5 1内に存在する露光吸光物質 (酸素、 二 酸化炭素などの気体や、 水、 有機物質など) により生じる露光光の吸収率、 又は ウェハ面上での露光領域内の照度ムラの監視を行うような場合においても、 その 監視の精度を向上させることができる。
例えば、 図 1のケース 1 1、 サブチャンバ 1 8、 投影光学系 P Lの鏡筒等の気 密性が低下して外気 (酸素、 水など主光線を吸収する露光装置設置環境の大気) が少なくとも 1つの空間に進入した場合にはその空間を通過する主光線の透過率 は低くなるから、 時間的な照度ないし光量の変化を検出することができる。 この 場合、 ウェハステージ上の照度計 3 9には、 主光線 M Lと副光線 S Lとを含む光 が入射する。
しかしながら、 赤色光は、 少なくとも一つの空間内に外気が侵入しても、 赤色 光自身の透過率に殆ど変化が生じない。 従って、 光センサ 4 1が、 副光線 S Lを 除去した後の主光線 M Lが占める割合が多い光を検出しているために、 光センサ 3 9で副光線 S L及ぴ主光線 M Lに感度をもっていたとしても、 ビ一ムスプリッ タ 2 6から光センサ 3 9に到達する主光線 M Lが占める割合が多い光の到達率 (言いかえれば、 光学部材及び光路中の空間に存在する吸光物質により減衰率) を正確に検出することができる。
すなわち、 主光学系の光路内の少なくとも一つの空間に対して、 外気の侵入が あったり、 光学部材表面の露光光が通過する領域の汚染状態を軽微な段階で、 精 度良く検出することが可能となる。 また、 真空紫外光のビームスプリッタ 2 6か ら光センサ 3 9の間に配置される光学部材の表面に対する真空紫外光の照射を停 止すると、 その空間中に存在する不純物質 (ここでは、 吸光物質を示す) が光学 部材表面に付着する。 しかしながら、 再び、 真空紫外光の照射を開始すると、 光 学部材表面に付着していた不純物質が表面から脱離する、 所謂、 光洗浄効果が起 きる。 本実施の形態では、 このような光洗浄の効果が光センサ 3 9と、 光センサ 4 1との出力によって、 正確に確認することができる。
なお、 照度計 3 9に入射する赤色光を主光線から分離し、 主光線 M Lが占める 割合が多い光を照度計 3 9が検出できるように、 主光学系内に当該フィルタを別 途設けてもよレ、。 当該フィルタをインテグレータセンサ 4 1、 照度計 3 9の直前 に設ける場合には、 当該フィルタをインテグレータセンサ 4 1、 照度計 3 9の一 部として一体的に設けるようにしてもよレ、。
また、 図 3に示すように、 照明光学系の光路中でビ一ムエキスパンダ 1 9の下 流側 (ウェハ W側) にフィルタ F 3を設けてもよレ、。 この構成では、 フィルタ F 3をビームスプリッタ 2 6よりも上流側 (光源 1 2側) に設けているので、 イン テグレータセンサ 4 1及び照度計 3 9の両者について、 1個のフィルタで対策で きる点で、 コスト的にあるいは光学特性上も有利 (減衰が少ない) であるといえ る。 また、 フィルタ F 3をビームエキスパンダ 1 9の下流側に配置することによ り、 露光光の断面積がビームエキスパンダ 1 9によって拡大されて、 エネルギー 密度が低下するので、 フィルタ F 3の寿命を長くすることができる。 但し、 フィ ルタを配置する位置は、 ビームエキスパンダ 1 9よりも上流側の位置 (例えば、 図 3に符号 F 2で示す) に配置することも勿論可能である。 さらに、 上述した実施形態では、 フィルタ F 3は 1個を設けるものとしている が、 複数個のフィルタを光路上に集合的に 1箇所に、 あるいは離散的に配設する ようにしてもよレヽ。
[第 2の対策]
図 4は第 2の赤色光対策を示す図であり、 図 1に示した露光装置の要部を示し ている。 この実施形態では、 第 1の対策で用いたフィルタ F 1の代わりに、 分岐 光学系としてのビームスプリッタ 2 6で分岐された光路内、 即ち、 ビームスプリ ッタ 2 6とインテグレータセンサ 4 1との間にダイクロイツクミラ一 M lを設け ている点で異なる。 その他の構成及ぴ作用については、 第 1の対策と同じなので、 説明を省略する。
このダイクロイツクミラ一 M lは、 波長 1 5 7 n m前後の波長域を含む短い波 長域 (例えば、 1 9 0 n m以下) の光を反射し、 波長 6 3 0〜7 2 0 n m程度の 波長域を含む長い波長域 (例えば、 1 9 0 n m以上) の光を透過させる光学特性 を有する反射透過型のミラ一である。
このダイクロイツクミラー M lは、 例えば、 図 5に示すように、 蛍石等の真空 紫外光を少ない損失で透過させる母材 4 8の表面に、 弗化物からなる誘電体多層 膜 4 9を形成して構成され、 主光線 M Lを反射し、 副光線 (赤色光) S Lを透過 する。
なお、 変形例として、 ダイクロイツクミラー M lを分岐光学系の光路内に配置 せずに、 図 6に示すように反射ミラ一2 3に代えてダイクロイツクミラー M 2を 設けてもよレ、。 この構成では、 ダイクロイツクミラー M 2はビームエキスパンダ 1 9の下流側 (ウェハ W側) に配置されているので、 ビ一ムエキスパンダ 1 9の 上流側 (レ一ザ光源 1 2側) に設ける場合と比較して、 露光光のエネルギー密度 が低いので、 ダイクロイツクミラー M 2の寿命を長くすることができる。 但し、 ダイクロイツクミラーを配置する位置は、 ビームエキスパンダ 1 9よりも上流側 の位置に設けるようにしてもよレ、。
さらに、 上述した実施形態では、 ダイクロイツクミラ一 M 2は 1個を設けるも のとしているが、 複数個のダイクロイックミラーを分岐光学系の露光光の光路上 に離散的に配設し、 あるいは上述した光学フィルタ F 1〜F 3と組み合わせて設
L6 けるようにしてもよレ、。
[第 3の対策]
図 7は第 3の赤色光対策を示す図であり、 ィンテグレータセンサ 4 1及ぴその 近傍を示している。 この実施形態では、 図 1のインテグレ一タセンサ 4 1として、 同一の光センサ (インテグレータセンサ 4 1と同じもの) 4 2 , 4 3を互いに隣 接して二つ配置している。 そして、 図 1において、 ビ一ムスプリッタ 2 6により 分岐された分岐光学系をさらに二つ (等分) に分岐させて、 一方を光センサ 4 2 に、 他方を光センサ 4 3に入射させるようにし、 光センサ 4 3の光路上にフィル タ F 4を設けている。
このフィルタ F 4は、 上述したフィルタ F 1〜F 3とほぼ反対の光学特性を有 しており、 波長 6 3 0〜7 2 0 n m程度の波長域を含む長い波長域 (例えば、 1 9 0 n m以上) の光を透過し、 波長 1 5 7 n m前後の波長域を含む短い波長域 (例えば、 1 9 O n m以下) の光を吸収、 散乱、 又は反射等させる光学特性を有 する光学フィルタである。
このフィルタ F 4としては、 光学硝子、 合成石英、 アクリル板、 プラスチック 板、 塩化ナトリウム板等を採用することができ、 赤色光の透過率が高いことが望 ましい。 また、 光センサ 4 3に対する光路上に酸素、 水、 二酸化炭素、 一酸化炭 素、 有機物、 珪素化合物等の真空紫外光を著しく減衰させるガスを導いたり、 何 らかの容器に封入して設けるようにしてもよい。
光センサ 4 2の受光面 4 2 Aには主光線 M L及び副光線 S Lの両者を含む光が 入射され、 光センサ 4 3の受光面 4 3 Aにはフイノレタ F 4によって主光線 M Lが 分離された副光線 S Lの占める割合が多い光が入射されることになる。
光センサ 4 2及び光センサ 4 3のそれぞれの検出値は、 捕正装置 4 4に供給さ れる。 補正装置 4 4は、 光センサ 4 2による検出値 (主光線及ぴ副光線の両者を 含む検出値) から光センサ 4 3による検出値 (副光線のみを含む検出値) を減算 することにより、 主光線の光情報 (例えば、 光強度、 光量、 照度など) について の検出値を算出し、 これをインテグレ一タセンサ 4 1による検出結果 D Sとして、 露光コントローラ 4 0に供給する。
この実施形態のフィルタ F 4は、 主光線 M Lから副光線 S Lを分離して、 副光 線 S Lを透過する分離装置であり、 一般に真空紫外光を透過させる物質は限定さ れており、 反対にこれを吸収する物質は各種のものがあるので、 真空紫外光を透 過させ赤色光を透過させないためのフィルタ F 1〜F 3と比較して、 その構成が 簡略で、 そのコストも安価である点で有利であるといえる。
尚、 上述した説明では、 一対の光センサ 4 2 , 4 3に対して、 主光学系からビ 一ムスプリッタ 2 6により分岐させた分岐光学系をさらに二分岐させて光をそれ ぞれ導くものと説明したが、 分岐光学系を二分岐させずに、 光センサ 4 2 , 4 3 の受光面 4 2 A, 4 3 Aを分岐光の断面積よりも小さくして当該分岐光をそれぞ れの受光面 4 2 A , 4 3 Aに同時に入射するように構成してもよレ、。
また、 上述した説明では、 インテグレ一タセンサ 4 1についての説明としたが、 照度計 3 9についても、 同様の構成を適用することができる。
[第 4の対策]
図 8は第 4の赤色光対策を示す図であり、 インテグレ一タセンサ 4 1及ぴその 近傍を示している。 この対策では、 図 3に示したものとほぼ同様の構成である力 図 3のフィルタ F 3に代えてフィルタ F 5をィンテグレ一タセンサ 4 1の受光面 4 1 Aの直前に配置している。 このフィルタ F 5は、 上述したフィルタ F 4と同 様に主光線を分離して副光線のみを透過するフィルタであるので、 その説明は省 略する。
このフィルタ F 5は、 移動装置によってインテグレータセンサ 4 1の受光面 4 1 Aの直前に位置する第 2位置 P 2と、 該第 2位置 P 2から待避される第 1位置 P 1に選択的に移動されるように構成されている。 即ち、 フィルタ F 5はホルダ 4 7に固定されており、 ホルダ 4 7は駆動モータ 4 6によって回転駆動されるよ うになつている。 駆動モータ 4 6によりフィルタ F 5を駆動することにより、 フ ィルタ F 5を第 1位置 P 1と第 2位置 P 2との間で高速に移動することができる。 尚、 移動装置としては、 当該フィルタ F 5を第 1位置 P 1と第 2位置 P 2との間 で直線的にスライ ドさせるものを採用してもよい。
フィルタ F 5が第 1位置 P 1にあるときには、 インテグレータセンサ 4 1の受 光面 4 1 Aには主光線 M L及び副光線 S Lの両者を含む光が入射され、 一方、 フ イノレタ F 5が第 2位置 P 2にあるときには、 インテグレータセンサ 4 1の受光面 4 1 Aにはフィルタ F 5によって主光線 M Lが分離された副光線 S Lの割合が多 い光が入射されることになる。
この対策では、 インテグレータセンサ 4 1の検出値は、 補正装置 4 5を介して 露光コントローラ 4 0に供給されるようになっている。 補正装置 4 5は、 フィル タ F 5が第 1位置 P 1にあるときのィンテグレータセンサ 4 1による検出値 (主 光線及び副光線の両者を含む検出値) から、 フィルタ F 5が第 2位置 P 2にある ときのインテグレータセンサ 4 1による検出値 (副光線のみを含む検出値) を減 算することにより、 主光線についての検出値を算出し、 これをインテグレ一タセ ンサ 4 1による検出結果 D Sとして、 露光コントローラ 4 0に供給する。
この実施形態のフィルタ F 5は、 上述のフィルタ F 4と同様に主光線 M Lから 副光線 S Lを分離して副光線 S Lを透過する分離装置であり、 一般に真空紫外光 を透過させる物質は限定されており、 反対にこれを吸収する物質は各種のものが あるので、 真空紫外光を透過させ赤色光を透過させないためのフィルタ F 1〜F 3と比較して、 その構成が簡略で、 そのコストも安価である点で有利であるとい える。 また、 これに加えて、 上述の第 4の対策のように光センサ (4 2 , 4 3 ) を二つ設ける必要がなく、 構成がより簡単となる。
尚、 移動装置 4 6 , 4 7によるフィルタ F 5の位置の切り換えの制御は、 不図 示の制御装置によってなされるが、 切り換えの周期はなるべく速い方がよい。 例 えば、 レーザ光源 1 2によるパルス発振の 1パルス毎に位置 P 1 , P 2が切り換 わるような周期で行うようにするとよい。 露光光の照度は経時的に変化するので、 速い周期で切り換えを行った方が検出結果の精度を向上することができるからで ある。 また、 検出結果を障害監視に用いる場合においては、 障害の発生をより早 期に検出することができるからである。
また、 上述した説明では、 インテグレ一タセンサ 4 1についての説明としたが、 照度計 3 9についても、 同様の構成を適用することができる。
[その他]
以上説明した実施形態は、 本発明の理解を容易にするために記載されたもので あって、 本発明を限定するために記載されたものではない。 したがって、 上記の 実施の形態に開示された各要素は、 本発明の技術的範囲に属する全ての設計変更 や均等物をも含む趣旨である。
上述の説明では、 ィンテグレ一タセンサ 4 1又は照度計 3 9についての説明と したが、 その他に露光装置には各種の光センサが設けられる。 例えば、 ウェハス テージ 3 8上には、 照度計 3 9の他に同様の光電変換素子からなる照度むらセン サも設けられるが、 そのような照度むらセンサについても本発明を適用すること ができる。
本実施形態で用いられる光センサの受光面には、 カバーガラスが配置されてい る。 このカバーガラスは、 本実施形態における露光装置の光学系を構成する硝材 と同じ硝材で形成される。
このカバ一ガラスは、 光路内の空間、 即ち、 不活性ガスで満たされた空間内に 配置されている。 そのために、 カバーガラスの表面は、 真空紫外光の照射による 光洗浄効果によって、 ガラス表面に付着した吸光物質の脱離が起きる。 また、 真 空紫外光の照射を停止した時に、 その空間中に存在する吸光物質がカバーガラス の表面に付着する現象が生じる。 この吸光物質は、 センサ自身を構成する各種部 品 (配線や、 回路基板など) から発生するアウトガスが含まれる。 そのため、 吸 光物質の付着及び光洗浄により、 光センサの出力が変動する可能性がある。 その ため、 光洗浄効果によって、 カバーガラス表面に吸光物質が付着していない状態 で検出した露光光の光情報をリファレンスとして記憶しておき、 所定タイミング で、 実際の計測値と、 記憶されたリファレンスとを比較することが好ましい。 また、 比較した結果、 値がずれていた場合には、 キヤリブレ一シヨンすること が望ましい。 センサをキャリブレーションする場合には、 予め露光装置に取り付 けられている光センサと同じ検出感度をもつ基準の光センサを用意し、 この基準 の光センサの検出結果に基づいて、 露光装置に取り付けられている光センサをキ ャリブレーションしてもよい。
インテグレータセンサであれば、 1パルス毎に比較することも可能であり、 ま た、 照度計は、 照度検出時、 例えば、 ウェハ交換毎に比較することができる。 上述した実施形態では、 露光光の光路をヘリゥムガスで置換する構成について の説明としたが、 窒素、 アルゴン、 ネオン、 クリプトンなどのガス、 またはそれ の混合ガスであって、 真空紫外域の光に対する吸収性の少ない特性を有するガス (不活性ガスと称する) を用いてもよい。 また、 露光光の光路を複数に分割し、 各分割した光路毎にガスの種類を異ならせてもよい。 例えば、 照明光学系、 レチ クル室、 投影光学系、 ウェハ室とし、 投影光学系をヘリウムガスで置換し、 照明 光学系、 ウェハ室及ぴレチクル室を窒素ガスで置換してもよい。 さらに、 ウェハ 室を設けずに、 投影光学系とウェハとの間にガスを常時流す構成であってもよい。 また、 露光装置の光学系を構成する硝材として、 蛍石、 石英などのほかに、 フ ツイヒリチウム、 フッ化マグネシウム、 フッ化ストロンチウム、 リチウム一カルシ ゥム一アルミニウム一フローライ ド、 及びリチウムーストロンチウムーアルミ二 ゥム一フローライ ドなどの結晶や、 ジルコニウム一バリウム一ランタン一アルミ ニゥムからなるフッ化ガラスや、 フッ素をド一プした石英ガラス、 フッ素に加え て水素もド一プされた石英ガラス、 O H基を含有させた石英ガラス、 フッ素に加 えて O H基を含有した石英ガラスなどの改良石英を用いてもよい。
また、 上述の説明では、 ステップ ' アンド ' スキャン方式の縮小投影型露光装 置 (スキャニング .ステッパー) についての説明としたが、 レチクルとウェハと を静止させた状態でレチクルパターンの全面に露光光を照射して、 そのレチクル パターンが転写されるべきウェハ上の 1つの区画領域 (ショット領域) を静止露 光するステップ 'アップ · リビート方式の縮小投影型露光装置 (ステッパー) に も本発明を適用することができる。 さらに、 ステップ ·アンド ·スティツチ方式 の縮小投影型露光装置ゃミラープロジェクシヨン ·ァライナー等にも適用するこ とができる。
さらに、 半導体素子や液晶表示素子の製造に用いられる露光装置だけでなく、 プラズマディスプレイ、 薄膜磁気ヘッド、 撮像素子 (C C Dなど) 、 マイクロマ シン、 D N Aチップなどの製造に用いられる露光装置、 及びレチクル又はマスク を製造するために、 ガラス基板又はシリコンウェハなどに回路パターンを転写す る露光装置にも本発明を適用できる。 即ち本発明は、 露光装置の露光方式や用途 等に関係なく適用可能である。
また、 上述した実施形態では、 露光装置の光源として、 F 2レーザ光源を例示し たが、 露光に用いる主光線以外に副次的に不要光 (副光線) を発生する光源であ れば、 本発明を適用することができる。 前述した本発明の実施形態に係る露光装置 (図 1 ) は、 ウェハ Wを精度よく高 速に位置制御することができ、 スル一プットを向上しつつ高い露光精度で露光が 可能となるように、 光源 1 2、 フィルタ F 1〜F 5又はダイクロイツクミラ一 M 1〜M 3を含む各種の光学素子ないし光学装置を含んで構成される照明光学系、 インテグレータセンサ 4 1及ぴ照度計 3 9を含むエネルギー制御系、 レチクルス テージ 3 6を含むマスクァライメント系、 ウェハステージ 3 8を含むウェハァラ ィメント系、 投影光学系 P L等の図 1に示された各要素等が電気的、 機械的、 又 は光学的に連結して組み上げられた後、 総合調整 (電気調整、 動作確認等) をす ることにより製造される。 尚、 露光装置の製造は、 温度及びクリーン度等が管理 されたクリーンルームで行うことが望ましい。
本発明の実施形態に係る露光装置を用いてデバイス ( I Cや L S I等の半導体 チップ、 液晶パネル、 C C D、 薄膜磁気ヘッド、 マイクロマシン等) を生産する には、 まず、 設計ステップにおいて、 デバイスの機能設計 (例えば、 半導体デバ イスの回路設計等) を行い、 その機能を実現するためのパターン設計を行う。 引 き続き、 マスク製作ステップにおいて、 設計した回路パターンを形成したマスク を製作する。 一方、 ウェハ製造ステップにおいて、 シリコン等の材料を用いてゥ ヱハを製造する。
次に、 ウェハプロセスステップにおいて、 上記ステップで用意したマスクとゥ ヱハを使用して、 リソグラフィ技術によってウェハ上に実際の回路等を形成する。 次いで、 組立ステップにおいて、 ウェハプロセスステップにおいて処理されたゥ ェハを用いてチップ化する。 この組立ステップには、 アッセンブリ工程 (ダイシ ング、 ボンディング) 、 パッケージング工程 (チップ封入) 等の工程が含まれる。 最後に、 検查ステップにおいて、 組立ステップで作製されたデバイスの動作確認 テスト、 耐久性テスト等の検査を行う。 こうした工程を経た後にデバイスが完成 し、 これが出荷される。
以上説明したように、 本発明によると、 露光に寄与する主光線及ぴ該主光線の 波長と異なる副光線を含む光を出射する光源を用いた場合であっても、 主光線の エネルギーを正確に計測することができ、 その結果、 露光量制御やその他、 障害 監視等を高い精度で行うことができるようになるという効果がある。 本開示は、 2000年 9月 1 9日に提出された日本国特許出願第 2000-2 82980号に含まれた主題に関連し、 その開示の全てはここに参照事項として 明白に組み込まれる。

Claims

請 求 の 範 囲
1 . 露光対象としての基板をパターンが形成されたマスクを介して露 光する露光装置であって、
前記基板を感光させる波長の主光線及び該主光線の発振に伴い副次的に発生す る該主光線の波長と異なる波長の副光線を含む光を出射する光源と、
前記光源からの光を前記マスクを介して前記基板に導く主光学系と、
少なくとも前記主光線を含む波長域に感度を有する光センサと、
前記光源から前記光センサに至る光路上に設けられ、 前記主光線と前記副光線 とを分離する分離装置と、 を備えた露光装置。
2 . 前記主光学系内に配置され、 前記光の一部を前記光センサに導く 分岐光学系を備え、
前記分離装置を前記分岐光学系と前記光センサとの間に設けた請求項 1に記載 の露光装置。
3 . 前記分離装置で分離された前記主光線に基づいて、 前記基板に対 する積算光量を制御する制御装置を有する請求項 1又は 2に記載の露光装置。
4 . 前記分離装置を前記分岐光学系により分岐された前記光の光路か ら待避される第 1位置及び当該光路上に配置される第 2位置との間で選択的に移 動する移動装置を備えた請求項 2に記載の露光装置。
5 . 前記分離装置が前記第 1位置に移動したときの前記光センサの計' 測結果を、 前記分離装置が前記第 2位置に移動したときの前記光センサの計測結 果に基づいて補正する捕正装置をさらに備えた請求項 4に記載の露光装置。
6 . 前記分離装置は前記主光線の波長を含む波長帯域の光を透過し、 前記副光線の波長を含む波長帯域の光を減衰する光学フィルタである請求項 1〜 5のいずれか一項に記載の露光装置。
7 . 前記分離装置は前記主光線の波長を含む波長域の光を反射し、 前 記副光線の波長を含む波長帯域の光を透過する反射透過型のミラーである請求項 1〜 5のいずれか一項に記載の露光装置。
8 . 露光対象としての基板をパターンが形成されたマスクを介して露 光する露光装置であって、
前記基板を感光させる波長の主光線及ぴ該主光線の発振に伴い副次的に発生す る該主光線と異なる波長の副光線を含む光を出射する光源と、
前記光源からの光を前記マスクを介して前記基板に導く主光学系と、
前記主光線及び前記副光線の波長を含む波長域に感度を有する第 1光センサと、 少なくとも前記副光線の波長を含む波長帯域に感度を有する第 2光センサと、 前記主光学系における前記光の光路内に配置され、 前記光の一部を前記第 1光 センサに導く第 1分岐光学系と、
前記主光学系又は前記第 1分岐光学系における前記光の光路内に配置され、 前 記光の一部を前記第 2光センサに導く第 2分岐光学系と、
前記第 2分岐光学系と前記第 2光センサとの間に設けられ、 前記主光線と前記 副光線とを分離する分離装置と、 を備えた露光装置。
9 . 前記第 1光センサによる計測結果を前記第 2光センサによる計測 結果に基づいて補正する補正装置をさらに備えた請求項 8に記載の露光装置。
1 0 . 前記光源は F 2 レーザ光源である請求項 1〜 9のいずれか一項に
1 1 . 露光対象としての基板を感光させる波長の主光線及び該主光線の 波長と異なる波長の副光線を含む露光光を用いて、 パターンが形成されたマスク を介して該基板を露光する露光方法であって、
前記主光線及び前記副光線を含む前記露光光から該副光線を分離し、 該分離した後の露光光のエネルギーを計測し、
該計測結果に基づいて前記基板に対する積算露光量を制御する露光方法。
1 2 . 露光対象としての基板を感光させる波長の主光線及び該主光線の 波長と異なる波長の副光線を含む露光光を用いて、 パターンが形成されたマスク を介して該基板を露光する露光方法であって、
前記主光線及び前記副光線を含む前記露光光の一部を分岐し、
該分岐された露光光から前記副光線を分離し、
該分離した後の露光光のエネルギーを計測し、
該計測結果に基づいて前記基板に対する積算露光量を制御する露光方法。
1 3 . 露光対象としての基板を感光させる波長の主光線及ぴ該主光線の 波長と異なる波長の副光線を含む光に基づく露光光を用いて、 パターンが形成さ れたマスクを介して該基板を露光する露光方法であって、
前記主光線及ぴ前記副光線を含む前記露光光の第 1エネルギーを計測し、 前記主光線及び前記副光線を含む前記露光光から前記主光線を分離し、 前記主光線を分離した後の露光光の第 2エネルギーを計測し、
前記第 1エネルギーを前記第 2エネルギーに基づいて補正し、 補正された前記 第 1エネルギーに基づいて前記基板に対する積算露光量を制御する露光方法。
1 4 . 前記主光線及ぴ前記副光線を含む光は F 2 レーザ光源から出射さ れるレ一ザ光である請求項 1 1 , 1 2又は 1 3に記載の露光方法。
1 5 . 請求項 1 1〜 1 4のいずれか一項に記載の露光方法を用いて前記 マスクのパターンの像を前記基板に転写するステツプを有するデバイス製造方法。
PCT/JP2001/007994 2000-09-19 2001-09-14 Systeme d'exposition, methode d'exposition et procede de fabrication d'un dispositif y relatif WO2002025710A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2003-7003314A KR20030097781A (ko) 2000-09-19 2001-09-14 노광장치, 노광방법, 및 디바이스 제조방법
AU2001286245A AU2001286245A1 (en) 2000-09-19 2001-09-14 Exposure system, exposure method, and production method for device
JP2002529823A JPWO2002025710A1 (ja) 2000-09-19 2001-09-14 露光装置、露光方法、及びデバイス製造方法
US10/389,816 US6798495B2 (en) 2000-09-19 2003-03-18 Exposure apparatus, exposure method and device production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-282980 2000-09-19
JP2000282980 2000-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/389,816 Continuation US6798495B2 (en) 2000-09-19 2003-03-18 Exposure apparatus, exposure method and device production method

Publications (1)

Publication Number Publication Date
WO2002025710A1 true WO2002025710A1 (fr) 2002-03-28

Family

ID=18767401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007994 WO2002025710A1 (fr) 2000-09-19 2001-09-14 Systeme d'exposition, methode d'exposition et procede de fabrication d'un dispositif y relatif

Country Status (6)

Country Link
US (1) US6798495B2 (ja)
JP (1) JPWO2002025710A1 (ja)
KR (1) KR20030097781A (ja)
CN (1) CN1459124A (ja)
AU (1) AU2001286245A1 (ja)
WO (1) WO2002025710A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI311691B (en) * 2003-10-30 2009-07-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2006339448A (ja) * 2005-06-02 2006-12-14 Canon Inc 受光ユニットを有する露光装置
TWI401538B (zh) * 2007-03-28 2013-07-11 Orc Mfg Co Ltd Exposure drawing device
NL1036026A1 (nl) * 2007-10-10 2009-04-15 Asml Netherlands Bv Apparatus and method for obtaining information indicative of the uniformity of a projection system of a lithographic apparatus.
NL2002968A1 (nl) * 2008-06-30 2009-12-31 Asml Netherlands Bv Optical element, lithographic apparatus including such an optical element, device manufacturing method, and device manufactured thereby.
US9268061B2 (en) * 2010-02-22 2016-02-23 Vaisala Oyj Method for calibrating or testing a detector surface of a device for detecting hydrometeors and a calibration and testing device
US10514607B1 (en) 2018-08-28 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Radiation source supply system for lithographic tools

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190425A (ja) * 1992-01-13 1993-07-30 Nikon Corp 照明装置
JP2001284227A (ja) * 2000-03-31 2001-10-12 Canon Inc 露光方法、露光装置、およびデバイス製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3448670B2 (ja) 1993-09-02 2003-09-22 株式会社ニコン 露光装置及び素子製造方法
JP3367167B2 (ja) 1993-10-26 2003-01-14 株式会社ニコン 照明光学装置、該装置に使用される放電ランプ、及び露光装置
JPH09129550A (ja) * 1995-08-30 1997-05-16 Canon Inc 露光装置及びそれを用いたデバイスの製造方法
JPH10116766A (ja) * 1996-10-11 1998-05-06 Canon Inc 露光装置及びデバイス製造方法
US6546037B2 (en) * 1999-02-10 2003-04-08 Lambda Physik Ag Molecular fluorine laser with spectral linewidth of less than 1 pm
JP3710321B2 (ja) * 1999-04-01 2005-10-26 キヤノン株式会社 露光量制御方法、露光装置およびデバイス製造方法
US6570713B2 (en) 2001-02-27 2003-05-27 Silicon Valley Group, Inc. Method and apparatus for optimizing the output beam characteristics of a laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190425A (ja) * 1992-01-13 1993-07-30 Nikon Corp 照明装置
JP2001284227A (ja) * 2000-03-31 2001-10-12 Canon Inc 露光方法、露光装置、およびデバイス製造方法

Also Published As

Publication number Publication date
JPWO2002025710A1 (ja) 2004-01-29
US6798495B2 (en) 2004-09-28
KR20030097781A (ko) 2003-12-31
AU2001286245A1 (en) 2002-04-02
US20030156268A1 (en) 2003-08-21
CN1459124A (zh) 2003-11-26

Similar Documents

Publication Publication Date Title
US6614504B2 (en) Exposure apparatus, exposure method, and device manufacturing method
KR20010020502A (ko) 투영 노광 장치, 그 장치의 제조 방법, 그 장치를 이용한노광방법 및 그 장치를 사용한 회로 장치의 제조 방법
WO1998048452A1 (fr) Procede et dispositif de commande de l'exposition, procede et dispositif d'exposition, et procede de fabrication dudit dispositif
US6850313B2 (en) Exposure method, exposure apparatus and its making method, device manufacturing method, and device
JPWO2002043123A1 (ja) 露光装置、露光方法及びデバイス製造方法
EP1582927A1 (en) Lithographic apparatus and device manufacturing method
JP3473649B2 (ja) 投影露光装置
KR19980032735A (ko) 노광장치 및 이를 이용한 디바이스제조방법
WO2002025710A1 (fr) Systeme d'exposition, methode d'exposition et procede de fabrication d'un dispositif y relatif
WO2001003170A1 (fr) Procede et dispositif d'exposition
JP2001068400A (ja) 吸光物質検出方法、並びに露光方法及び装置
US7092072B2 (en) Calibration apparatus and method of calibrating a radiation sensor in a lithographic apparatus
US7251014B2 (en) Exposing method, exposing apparatus and device manufacturing method utilizing them
JPH11260688A (ja) 投影露光装置
JP4268364B2 (ja) リソグラフィ装置、デバイス製造方法、およびそれによって製造したデバイス
JP2001267196A (ja) 位置検出装置、位置検出方法、露光装置、及び露光方法
WO2003036695A1 (fr) Procede d'alimentation en gaz de purge d'un appareil d'exposition, appareil d'exposition, et procede de fabrication de cet appareil
US7283208B2 (en) Lithographic apparatus, method of manufacturing a device, and device manufactured thereby
JPH11354409A (ja) 照明装置、これを備えた投影露光装置、及び半導体装置の製造方法
JPH11154636A (ja) 投影露光装置
JP2001284235A (ja) 投影露光装置及びデバイス製造方法
JP2001210582A (ja) 投影露光装置とその光洗浄方法、およびマイクロデバイス並びにマイクロデバイスの製造方法
US7595862B2 (en) Exposure apparatus and method of manufacturing device
JP2001102293A (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2003037040A (ja) 光学装置及びそれを有する露光装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037003314

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002529823

Country of ref document: JP

Ref document number: 018158080

Country of ref document: CN

Ref document number: 10389816

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020037003314

Country of ref document: KR

122 Ep: pct application non-entry in european phase