WO2002013224A2 - Protecteurs d'affichage d'information - Google Patents

Protecteurs d'affichage d'information Download PDF

Info

Publication number
WO2002013224A2
WO2002013224A2 PCT/US2001/024726 US0124726W WO0213224A2 WO 2002013224 A2 WO2002013224 A2 WO 2002013224A2 US 0124726 W US0124726 W US 0124726W WO 0213224 A2 WO0213224 A2 WO 0213224A2
Authority
WO
WIPO (PCT)
Prior art keywords
information display
hardcoat
layer
stack
protectors
Prior art date
Application number
PCT/US2001/024726
Other languages
English (en)
Other versions
WO2002013224A3 (fr
WO2002013224A8 (fr
Inventor
Bettie C. Fong
Junkang J. Liu
Bruce D. Kluge
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/633,835 external-priority patent/US6589650B1/en
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to AU2001281141A priority Critical patent/AU2001281141B2/en
Priority to JP2002518491A priority patent/JP2004511002A/ja
Priority to AU8114101A priority patent/AU8114101A/xx
Priority to KR1020037001712A priority patent/KR100847390B1/ko
Priority to EP01959602A priority patent/EP1312103A2/fr
Publication of WO2002013224A2 publication Critical patent/WO2002013224A2/fr
Publication of WO2002013224A3 publication Critical patent/WO2002013224A3/fr
Publication of WO2002013224A8 publication Critical patent/WO2002013224A8/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/34Microscope slides, e.g. mounting specimens on microscope slides
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1601Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
    • G06F1/1607Arrangements to support accessories mechanically attached to the display housing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/867Means associated with the outside of the vessel for shielding, e.g. magnetic shields
    • H01J29/868Screens covering the input or output face of the vessel, e.g. transparent anti-static coatings, X-ray absorbing layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1634Integrated protective display lid, e.g. for touch-sensitive display in handheld computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers
    • H04N5/65Holding-devices for protective discs or for picture masks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof

Definitions

  • This invention relates to protective films for information displays.
  • Optical displays, and especially touch panel displays typically have an exposed viewing surface made from a thermoplastic film or slab.
  • Commonly-employed thermoplastic polymers have very good optical transparency, dimensional stability and impact resistance, but unfortunately have poor abrasion resistance.
  • the optical displays of devices such as personal digital assistants ("PDAs"), cell phones, touch-sensitive screens and removable computer filters are subjected to frequent handling and contact with the user's face or fingers, styli, jewelry and other objects.
  • PDAs personal digital assistants
  • cell phones touch-sensitive screens and removable computer filters
  • touch-sensitive screens and removable computer filters are subjected to frequent handling and contact with the user's face or fingers, styli, jewelry and other objects.
  • facial oils can adversely affect contrast, color saturation or brightness of a cell phone display.
  • the screens of projection televisions and laptop computers are handled less frequently but nonetheless are sometimes touched, scratched or smudged. Consequently, the viewing face of the display is susceptible to scratches, abrasion and smudges arising during routine use. This
  • Protective films for PDAs, cellular phones and other display devices are available from many commercial sources including A.R.M. (SECURERTM Screen Protector), CompanionLink Software, Lac. (COMPANIONLLNKTM PDA Screen Protector), EC Film (PDA Screen Protector), Fellowes Corporation (WrightRIGHTTM PDA Screen Protector),
  • Hardcoats have also been used to protect the face of information displays. These hardcoats typically contain inorganic oxide particles, e.g., silica, of nanometer dimensions dispersed in a binder precursor resin matrix, and sometimes are referred to as "ceramers".
  • inorganic oxide particles e.g., silica
  • a binder precursor resin matrix e.g., acrylonitrile-butadiene copolymer
  • ceramers e.g., silica
  • U.S. Patent No. 5,104,929 Bosi 92929
  • a ceramer described in Bilkadi "929and known as 3M 906 Abrasion Resistant Coating has been used as a hardcoat on signage.
  • a transparent stack of anti-graffiti sheets is shown in PCT Published Application No. WO 00/24576 (Janssen et al.). The entire stack is applied to a glass or plastic window, signage or a display and the topmost sheet is removed once the sheet has become damaged.
  • the sheets in the stack can include an optional release layer.
  • the release layer is said preferably to comprise a material selected from the group consisting of acrylates, methacrylates, urethanes, polyolefins, silicones, fluorochemicals such as fluorocarbons, and mixtures thereof.
  • 3M 906 Abrasion resistant Coating is employed as an abrasion-resistant release layer atop polycarbonate sheets in the stack.
  • Stacks of removable plastic sheets for use on automotive windows are shown in U.S. Patent No. 5,002,326 (Westfield et al.) and in Offenlegungsschrift DE 36 37 188 Al (Altmann et al.).
  • U.S. Patent No. 5,851,674 (Pellerite et al.) describes a self-assembling fluorinated silane film that can be applied atop a multilayer antireflective film to provide a coating having antisoiling properties.
  • Coatings made from 3M 906 Abrasion Resistant coating are susceptible to smudges, staining and marks from pens or pencils. It can be difficult to mix the ingredients in the Kang et al. '798 and Kang et al. '833 compositions without experiencing flocculation. Owing to the high cost of the fluorochemical and its use throughout the hardcoat layer, these compositions are also relatively expensive.
  • the Pellerite et al. films have insufficient adhesion to a film made from a ceramer such as 3M 906 Abrasion Resistant Coating.
  • the present invention provides in one aspect protectors for a display device having an information display area (e.g., a screen), comprising a stack of flexible substantially transparent sheets, the sheets having on one side thereof an adhesive layer and having on the other side thereof a hardcoat layer comprising inorganic oxide particles dispersed in a binder matrix and a low surface energy fluorinated compound, the stack being cut so that the sheets will fit the information display area.
  • the low surface energy fluorinated compound can be blended into the hardcoat layer or can be a separate layer atop the hardcoat layer.
  • the present invention also provides a method for making information display protectors for electronic devices having an information display area, comprising: a) applying to one side of a substantially transparent generally planar substrate a curable hardcoat layer comprising inorganic oxide particles dispersed in a free- radically polymerizable binder matrix and a low surface energy fluorinated compound; b) curing the hardcoat layer; c) applying to the other side of the substrate an adhesive layer; d) forming the coated substrate into a stack of sheets; and e) converting the stack so that the sheets will fit the information display area.
  • the information display protectors of the invention have very good scratch, smudge and glare resistance and very good durability.
  • the stack of information display protectors can be stored on the display device (e.g., on a PDA or on a PDA cover or case).
  • Fig. 1 is a schematic side view of a screen protector of the prior art.
  • Fig. 2 is a perspective view of another screen protector of the prior art.
  • Fig. 3 is a schematic side view of an information display protector of the invention.
  • Fig. 3a is a schematic side view of another information display protector of the invention.
  • Fig. 4 is a plan view of a PDA, the screen being covered with an information display protector of Fig. 3.
  • Fig. 5 is a perspective view of a stack of screen protectors of the invention.
  • Fig. 6 is a perspective view of a PDA, the screen being covered with an information display protector of Fig. 3, and the inside front cover having a stack of the protectors of Fig. 5 adhered thereto.
  • Fig. 7 shows a rating chart used to evaluate ink repellency.
  • the information display protectors of the invention can be used in a variety of orientations and locations.
  • the information display protectors of the invention can be used on a variety of kinds of information displays having a variety of information display area configurations.
  • Such displays include multi-character and especially multi-character, multi-line displays such as liquid crystal displays (“LCDs”), plasma displays, front and rear projection displays, cathode ray tubes (“CRTs”) and signage.
  • the information display protectors of the invention can also be used on single-character or binary displays such as light emitting diodes (“LEDs”), signal lamps and switches.
  • the information display protectors of the invention can be used on illuminated or non-illuminated displays.
  • the information display protectors of the invention are especially useful on displays whose information display area is in the form of a viewing screen having a viewing surface that is susceptible to damage during normal use.
  • the display elements of the invention can be employed in a variety of portable and non-portable information display devices including PDAs, cell phones (including combination PDA/cell phones), touch-sensitive screens, wrist watches, car navigation systems, global positioning systems, depth finders, calculators, electronic books, CD or DVD players, projection television screens, computer monitors, notebook computer displays, instrument gauges, instrument panel covers, signage such as graphic displays (including indoor and outdoor graphics, bumper stickers, and the like), reflective sheeting, and the like.
  • These devices can have planar viewing faces, or non-planar viewing faces such as the slightly curved face of a typical CRT.
  • the display element is located on or in close physical proximity to a viewing face of the information display device rather than being spaced an appreciable distance therefrom.
  • Screen protector 10 is a single sheet of vinyl film 12 coated with an adhesive 14 and adhered to a liner 16.
  • Such screen protectors typically are sold as a set of sheets on liners, placed loosely in a box or packaged on a retail hang card. The stack is typically stored separately from the PDA and must be located when the user desires to put a new screen protector on the PDA.
  • screen protector 10 has a relatively soft surface that does not provide scratch resistance or smudge resistance. Instead, screen protector 10 serves mainly as a sacrificial membrane that shields the top membrane of the underlying PDA screen.
  • Fig. 2 shows another screen protector of the prior art, generally identified as 20, and having a curved bottom edge 21 and overall dimensions suited for use on a PALMTM
  • screen protector 20 is sold as a single sheet of film 22 coated with an adhesive 24 and adhered to a liner 26. However, a portion of the top surface 27 of screen protector 20 has a matte finished region 28 that provides some glare resistance and some improvement in stylus feel for the writing area on the PDA screen. Region 28 does not offer smudge resistance and thus is susceptible to staining, fingerprints and marking with ink and pencil lead. The remainder of the top surface 27 of screen protector 20 is relatively soft and does not provide scratch resistance or smudge resistance.
  • Fig. 3 shows an information display protector of the invention generally identified as 30.
  • the lower face of flexible membrane 33 is coated with an adhesive layer 34 to which has been applied a protective liner 32.
  • the lower surface of adhesive 34 is microtextured. Use of a microtextured adhesive layer is optional. Microtexturing helps air bubbles escape from beneath information display protector 30 when it is applied to a display screen, thereby helping to provide good optical coupling between information display protector 30 and the screen.
  • the upper face of membrane 33 is coated with a hardcoat layer 36.
  • Hardcoat 36 provides scratch and abrasion resistance to help protect the screen from damage.
  • Hardcoat 36 has a roughened upper surface 37. The inclusion of such a roughened surface is optional. It provides glare protection for a display screen and makes it easier to write upon the display screen using a stylus.
  • Antisoiling layer 38 contains a low surface energy fluorinated compound, and is sufficiently thin so that the roughened upper surface 37 of hardcoat 36 is replicated on viewing surface 31.
  • Antisoiling layer 38 provides oil and ink resistance to help prevent hardcoat 36 from being smudged or otherwise soiled by exposure to contaminants such as skin oils, cosmetics, pencil lead, inks and adventitious dirt. Antisoiling layer 38 can also make the hard coat easier to clean if it is soiled. Thus if necessary, a user can accidentally or deliberately write on the display with a pen or pencil, and easily remove the resulting pencil or ink marks. An optional antistatic coating can also be applied atop the hardcoat 36 or atop the antisoiling layer 38 in order to discourage dust and other contaminants from adhering to a display.
  • Fig. 3 a shows another information display protector of the invention generally identified as 30a.
  • the lower face of flexible membrane 33 is coated with an adhesive layer 34a to which has been applied a protective liner 32.
  • the lower surface of adhesive 34a is smooth rather than microtextured as in the protector of Fig. 3.
  • the upper face of membrane 33 is coated with a hardcoat layer 36a.
  • Hardcoat 36a contains a low surface energy fluorinated compound blended into layer 36a instead of as a separate antisoiling layer atop hardcoat 36a.
  • Hardcoat 36a has a roughened upper surface 37a, thus providing glare protection for a PDA screen.
  • Fig. 4 shows a PDA generally designated as 40 to which has been applied the information display protector 30 of Fig. 3.
  • Protector 30 serves as a screen protector for the PDA screen, and preferably is precut to slightly undersized dimensions so that the edges of protector 30 extend nearly to the perimeter of screen 42, while still permitting protector 30 to be easily removed later if desired.
  • the roughened viewing surface 31 reduces glare and makes it much easier to write upon screen 42, especially when using a stylus.
  • the antisoiling layer 38 (not shown in Fig. 4) provides oil and ink resistance to help prevent hardcoat 36 (also not shown in Fig. 4) of protector 30 from becoming smudged or otherwise soiled. This is especially helpful if a user accidentally uses a pen or pencil rather than a stylus to write on screen 42.
  • Fig. 5 shows a stack 50 of four PDA information display protectors of the type shown in Fig. 3.
  • Stack 50 has a single liner 32 protecting the adhesive layer 34a of the lowermost information display protector.
  • the remaining information display protectors can be adhered to one another by pressing adhesive layers 34b, 34c and 34d against antisoiling layers 38a, 38b and 38c, respectively.
  • a user can remove the uppermost protector from the stack and adhere it to the screen of a PDA as in Fig. 4. Ifthe thus- applied protector later becomes worn or damaged, it can be peeled off the PDA screen and replaced with another protector from stack 50.
  • a user can store the stack by adhering it to a display device or to its case or cover.
  • Fig. 6 shows a PDA generally designated as 60.
  • Protector 30 on substrate 33
  • Liner 32 has been removed from stack 50 so that stack 50 could be adhered to inside surface 64 of PDA front cover 62.
  • the stack could instead be adhered to the rear of PDA 60 or to any available surface of a separate PDA case.
  • the stack 50 contains a relatively low number of protectors (e.g., 10 or less, more preferably 5 or less), it will not unduly obscure underlying printed graphics on the front cover (such as the printed GRAFFITITM alphabet symbol guide that is supplied with some PDAs) and will not hamper closure of a PDA cover or case if applied to an inside surface thereof. Because the stack 50 can be stored with the PDA, spare protectors 30 are close at hand when needed. This is a much more convenient mode of storage than the typical storage mode for current PDA screen protector products sold as single sheets. When protector 30 on screen 42 becomes worn or damaged, a fresh protector can be removed from stack 50. For example, as shown in Fig. 6, the next protector in stack 50 can be removed by peeling adhesive layer 34c away from antisoiling layer 38b.
  • the substrate should be substantially transparent, that is, the substrate should have sufficient transparency or translucency at the intended wavelength and under the intended viewing conditions so that the information display protector does not unduly impede use and viewing of the underlying PDA screen.
  • Suitable substrate materials include thermosetting or thermoplastic polymers such as polycarbonate, poly(meth)acrylate (e.g., polymethyl methacrylate or "PMMA”) , polyolefins (e.g., polypropylene or "PP”), polyurethane, polyesters (e.g., polyethylene terephthalate or "PET”), polyamides, polyimides, phenolic resins, cellulose diacetate, cellulose triacetate, polystyrene, styrene-acrylonitrile copolymers, epoxies, and the like.
  • the substrate will be chosen based in part on the desired optical and mechanical properties for the intended use. Such mechanical properties typically will include flexibility, dimensional stability and impact resistance.
  • the substrate thickness typically also will depend on the intended use. For most applications, substrate thicknesses of less than about 0.5 mm are preferred, and more preferably about 0.02 to about 0.2 mm. Self-supporting polymeric films are preferred. Films made from polyesters such as PET or polyolefins such as PP (polypropylene), PE (polyethylene) and PVC (poly vinyl chloride) are particularly preferred.
  • the substrate can be formed into a film using conventional filmmaking techniques such as extrusion of the substrate resin into a film and optional uniaxial or biaxial orientation of the extruded film.
  • the substrate can be treated to improve adhesion between the substrate and the hardcoat, using, e.g., chemical treatment, corona treatment such as air or nitrogen corona, plasma, flame, or actinic radiation. If desired, an optional tie layer can also be applied between the substrate and the hardcoat to increase the interlayer adhesion.
  • chemical treatment corona treatment such as air or nitrogen corona, plasma, flame, or actinic radiation.
  • an optional tie layer can also be applied between the substrate and the hardcoat to increase the interlayer adhesion.
  • the hardcoat is a tough, abrasion resistant layer that protects the substrate and the underlying display screen from damage from causes such as scratches, abrasion and solvents.
  • the hardcoat preferably contains nanometer-sized inorganic oxide particles dispersed in a binder matrix and optionally contains the low surface energy fluorinated compound as an ingredient of the hardcoat layer.
  • the hardcoat is formed by coating a curable liquid ceramer composition onto the substrate and curing the composition in situ to form a hardened film. Suitable coating methods include, for example, spin coating, knife coating, die coating, wire coating, flood coating, padding, spraying, roll coating, dipping, brushing, foam application, and the like.
  • a variety of inorganic oxide particles can be used in the hardcoat.
  • the particles preferably are substantially spherical in shape and relatively uniform in size.
  • the particles can have a substantially monodisperse size distribution or a polymodal distribution obtained by blending two or more substantially monodisperse distributions.
  • the inorganic oxide particles are and remain substantially non-aggregated (substantially discrete), as aggregation can result in precipitation of the inorganic oxide particles or gelation of the hardcoat.
  • the inorganic oxide particles are colloidal in size, that is, they preferably have an average particle diameter of about 0.001 to about 0.2 micrometers, more preferably less than about 0.05 micrometers, and most preferably less than about 0.03 micrometers.
  • the average particle size of the inorganic oxide particles can be measured using transmission electron microscopy to count the number of inorganic oxide particles of a given diameter.
  • Preferred inorganic oxide particles include colloidal silica, colloidal titania, colloidal alumina, colloidal zirconia, colloidal vanadia, colloidal chromia, colloidal iron oxide, colloidal antimony oxide, colloidal tin oxide, and mixtures thereof.
  • the inorganic oxide particles can consist essentially of or consist of a single oxide such as silica, or can comprise a combination of oxides, such as silica and aluminum oxide, or a core of an oxide of one type (or a core of a material other than a metal oxide) on which is deposited an oxide of another type.
  • Silica is a particularly preferred inorganic particle.
  • the inorganic oxide particles are desirably provided in the form of a sol containing a colloidal dispersion of inorganic oxide particles in liquid media.
  • the sol can be prepared using a variety of techniques and in a variety of forms including hydrosols (where water serves as the liquid medium), organosols (where organic liquids so serve), and mixed sols (where the liquid medium contains both water and an organic liquid), e.g., as described in U.S. Patent Nos. 5,648,407 (Goetz et al.) and 5,677,050 (Bilkadi et al.), the disclosure of which is incorporated by reference herein.
  • Aqueous sols of amorphous silica are particularly preferred.
  • Preferred sols generally contain from about 2 to about 50 weight percent, preferably from about 25 to about 45 weight percent, of colloidal inorganic oxide particles based on the total weight of the sol.
  • Preferred sols can be obtained from suppliers such as ONDEO Nalco Co. (for example, NALCOTM 1040, 1042, 1050, 1060, 2327, and 2329 colloidal silicas), Nyacol Nano Technologies, Inc. (for example, NYACOLTM AL20 colloidal alumina and NYACOLTM A1530, A1540N, and A1550 colloidal antimony pentoxides), and W.R. Grace and Co. (for example, LUDOXTM colloidal silicas).
  • the surface of the inorganic particles can be "acrylate functionalized" as described in Bilkadi et al.
  • the sols can also be matched to the pH of the binder, and can contain counterions or water-soluble compounds (e.g., sodium aluminate), all as described in Kang et al. "798.
  • the hardcoat can conveniently be prepared by mixing an aqueous sol of inorganic oxide particles with a free-radically curable binder precursor (e.g., one or more free- radically curable monomers, oligomers or polymers that can participate in a crossiinking reaction upon exposure to a suitable source of curing energy).
  • a free-radically curable binder precursor e.g., one or more free- radically curable monomers, oligomers or polymers that can participate in a crossiinking reaction upon exposure to a suitable source of curing energy.
  • the resulting composition usually is dried before it is applied, in order to remove substantially all of the water. This drying step is sometimes referred to as "stripping".
  • an organic solvent can be added to the resulting ceramer composition before it is applied, in order to impart improved viscosity characteristics and assist in coating the ceramer composition onto the substrate.
  • the ceramer composition can be dried to remove any added solvent, and then can be at least partially hardened by exposing the dried composition to a suitable source of energy in order to bring about at least partial cure of the free-radically curable binder precursor.
  • the hardcoat preferably contains about 10 to about 50, and more preferably about 25 to about 40 parts by weight of inorganic oxide particles per 100 parts by weight of the binder. More preferably the hardcoat is derived from a ceramer composition containing about 15 to about 40% acrylate functionalized colloidal silica, and most preferably about
  • binders can be employed in the hardcoat.
  • the binder is derived from a free-radically polymerizable precursor that can be photocured once the hardcoat composition has been coated upon the substrate.
  • Binder precursors such as the protic group-substituted esters or amides of an acrylic acid described in Bilkadi, or the ethylenically-unsaturated monomers described in Bilkadi et al., are especially preferred.
  • Suitable binder precursors include polyacrylic acid or polymethacrylic acid esters of polyhydric alcohols, such as diacrylic acid or dimethylacrylic acid esters of diols including ethyleneglycol, triethyleneglycol, 2,2-dimethyl-l,3-propanediol, 1,3-cyclopentanediol, 1- ethoxy-2,3-propanediol, 2-methyl-2,4-pentanediol, 1,4-cyclohexanediol, 1,6- hexamethylenediol, 1,2-cyclohexanediol, 1,6-cyclohexanedimethanol, resorcinol, pyrocatechol, bisphenol A, and bis(2-hydroxyethyl) phthalate; triacrylic acid or trimethacrylic acid esters of triols including glycerin, 1,2,3-propanetrimethanol, 1,2,4- butanetriol, 1,2,5-p
  • the binder can also be derived from one or more monofunctional monomers as described in Kang et al. '798.
  • the binder comprises one or more N,N-disubstituted acrylamide and or N-substituted-N- vinyl-amide monomers as described in Bilkadi et al.
  • the hardcoat is derived from a ceramer composition containing about 20 to about 80% ethylenically unsaturated monomers and about 5 to about 40% N,N-disubstituted acrylamide monomer or N- substituted-N- vinyl-amide monomer, based on the total weight of the solids in the ceramer composition.
  • the inorganic particles, binder and any other ingredients in the hardcoat are chosen so that the cured hardcoat has a refractive index close to that of the substrate. This can help reduce the likelihood of Moire patterns or other visible interference fringes.
  • the hardcoat can be formed from an aqueous coating composition that is stripped to remove water prior to coating, and optionally diluted with a solvent to assist in coating the composition. Those skilled in the art will appreciate that selection of a desired solvent and solvent level will depend on the nature of the individual ingredients in the hardcoat and on the desired substrate and coating conditions. Kang et al. 798 describes several useful solvents, solvent levels and coating viscosities.
  • the hardcoat can be crosslinked with various agents to increase the internal cohesive strength or durability of the hardcoat.
  • Preferred crossiinking agents have a relatively large number of available functional groups, and include tri and tetra- acrylates, such as pentaerythritol triacrylate and pentaerythritol tetraacrylate.
  • the crossiinking agent preferably is less than about 60 parts, and more preferably about 30 to about 50 parts by weight per 100 parts by weight of the binder.
  • the hardcoat can contain other optional adjuvants, such as surface treatment agents, surfactants, antistatic agents (e.g., conductive polymers), leveling agents, initiators (e.g., photoinitiators), photosensitizers, UV absorbers, stabilizers, antioxidants, fillers, lubricants, pigments, dyes, plasticizers, suspending agents and the like. Kang et al. '798 contains an extensive discussion of such adjuvants and recommended use levels. If the hardcoat is prepared by combining an aqueous sol of colloidal inorganic oxide particles with the binder precursor, then preferably the sol has a pH such that the particles have a negative surface charge.
  • surface treatment agents e.g., surfactants, antistatic agents (e.g., conductive polymers), leveling agents, initiators (e.g., photoinitiators), photosensitizers, UV absorbers, stabilizers, antioxidants, fillers, lubricants, pigments, dyes, plasticizers
  • the sol preferably is alkaline with a pH greater than 7, more preferably greater than 8, and most preferably greater than 9.
  • the sol includes ammonium hydroxide or the like so that NH4 + is available as a counter cation for particles having a negative surface charge.
  • a suitable surface treatment agent can be blended into the sol, e.g., as described in Kang et al. '833, the disclosure of which is incorporated by reference herein.
  • the free-radically curable binder precursor is then added to the ceramer composition.
  • the ceramer composition is stripped to remove substantially all of the water.
  • an organic solvent of the type described in Kang et al. '798 preferably is added in an amount such that the ceramer composition includes from about 5% to about 99% by weight solids (preferably about 10 to about 70%).
  • the low surface energy fluorinated compound can be added if a blended hardcoat is desired, followed by addition of any other desired adjuvants.
  • the ceramer composition is coated at a coating weight sufficient to provide a cured hardcoat with a thickness of about 1 to about 100 micrometers, more preferably about 2 to about 50 micrometers, and most preferably about 3 to about 30 micrometers.
  • the solvent, if any, is flashed off with heat, vacuum, and/or the like.
  • the coated ceramer composition is then cured by irradiation with a suitable form of energy, such as heat energy, visible light, ultraviolet light or electron beam radiation. Irradiating with ultraviolet light in ambient conditions is presently preferred due to the relative low cost and speed of this curing technique.
  • the hardcoat surface optionally is roughened or textured to provide a matte surface.
  • the hardcoat or an antisoiling layer atop the hardcoat comprises a low surface energy fluorinated compound.
  • the low surface energy fluorinated compound When blended into the hardcoat, the low surface energy fluorinated compound preferably forms a compatible mixture with the binder matrix.
  • the low surface energy fluorinated compound preferably blooms to the upper surface of the hardcoat and forms a durable discontinuous or continuous region thereon containing a relatively higher concentration of the fluorinated compound than in the bulk of the hardcoat. If formed as a separate antisoiling layer atop the hardcoat, the low surface energy fluorinated compound preferably is a film-forming material that will adhere to the hardcoat or to an optional tie layer formed between the hardcoat and the antisoiling layer. A variety of low surface energy fluorinated compounds can be employed. The fluorinated compound can be perfluorinated or partially fluorinated.
  • the fluorinated compound has at least one and more preferably two or more reactive functional groups, such as an acrylate group, methacrylate group, alkoxy silane group, acetoxy silane group, epoxy group, isocyanate group of vinyl ether group.
  • reactive functional groups such as an acrylate group, methacrylate group, alkoxy silane group, acetoxy silane group, epoxy group, isocyanate group of vinyl ether group.
  • Suitable such compounds are described in Kang et al. '798, Kang et al. '833, and Liu '350.
  • Perfluoropolyethers containing two or more reactive functional groups are most preferred, especially when employed as a separate antisoiling layer atop the hardcoat layer.
  • Preferred perfluoropolyethers contain randomly distributed perfluoroalkylene oxide - ( c n F 2n°)- repeating units such as -CF2O- or-[(CF2) n CF2_ m (CF3) m O]- (in which m is 0 or 1 and n is preferably 1 to 7), and pendent (e.g., terminal) polymerizable (e.g., acrylate or methacrylate) groups.
  • Suitable perfluoropolyethers include those described in U.S.
  • Patent Nos. 3,810,874 Mitsubishi et al
  • 4,321,404 Wood et al.
  • 4,472,480 Oleson
  • 4,567,073 Lidson et al. '073
  • 4,830,910 Liarson et al. '910
  • 5,306,758 Pellerite
  • One preferred subclass of antisoiling layers is derived from perfluoropolyethers of the formula: Y-(C a F2 a O) b C a F 2 a-Y (I) wherein each Y comprises a polymerizable group attached to a chain of randomly distributed, — C a F2 a O — , repeating units, wherein each a is independently 1 to 7, b is the number of such repeating units, and b has a value from 1 to 300 such that the perfluoropolyether has a number average molecular weight of about 500 to about 20,000.
  • Another preferred subclass of antisoiling layers is derived from perfluoropolyethers of the formula:
  • each Z is an acrylate or methacrylate group; m is 0 or 1; c and d are 0 to 3 with the proviso that c + d is at least 2; e and f are greater than 5 when M is zero; e can be zero and f is greater than 5 when m is one; and each A is a c + l or d + 1 valent linking group such as.
  • Preferred linking groups A include:
  • Another preferred subclass of preferred antisoiling layers is derived from perfluoropolyethers of the formula:
  • Perfluoropolyethers in this class wherein Y is an acrylate group can be converted from perfluoropolyether diesters of the formula:
  • a further preferred subclass of antisoiling layers is derived from perfluoropolyethers of the formula:
  • Perfluoropolyethers in this class wherein Y is an acrylate group can be converted from perfluoropolyether diesters of the formula: CH3 ⁇ OC(CF2CFCF3 ⁇ ) g CFCF 3 COOCH 3 (VI) which are commercially available as KRYTOXTM diesters from E. I. du Pont de Nemours Co.
  • Especially preferred perfluoropolyethers include:
  • the low surface energy fluorinated compound can be combined with optional adjuvants such as those discussed above in connection with the hardcoat. However, it may be difficult to dissolve some adjuvants in the low surface energy fluorinated compound, and thus the choice of adjuvants can be somewhat more limited. Preferred adjuvants include photoinitiators.
  • the low surface energy fluorinated compound preferably is applied as a separate antisoiling layer using a solvent that assists in coating the low surface energy fluorinated compound onto the hardcoat or optional tie layer. Those skilled in the art will appreciate that selection of a desired solvent and solvent level will depend on the nature of the ingredients in the hardcoat (or tie layer) and the antisoiling layer and on the desired coating conditions.
  • Preferred solvents include fluorinated solvents such as hydrofluoroethers and perfluorinated octanes (especially when the perfluoropolyether does not contain polar linking groups in its backbone), and hydrocarbon solvents such as methyl ethyl ketone and ethyl acetate, at recommended dissolution levels at or above 20% solids. After adding the solvent, any other desired adjuvants can be added.
  • fluorinated solvents such as hydrofluoroethers and perfluorinated octanes (especially when the perfluoropolyether does not contain polar linking groups in its backbone)
  • hydrocarbon solvents such as methyl ethyl ketone and ethyl acetate
  • the low surface energy fluorinated compound can be applied to the hardcoat using a variety of conventional coating methods, including those mentioned above. Gravure, notch-bar, reverse roll coating and curtain coating are preferred. Notch bar and gravure coating are particularly preferred methods as they enable application of a very thin layer, on the order of about 1 to about 5 micrometers wet thickness.
  • the low surface energy fluorinated compound is coated at a coating weight sufficient to provide a cured antisoiling layer thickness of about 0.005 to about 2 micrometers, more preferably about 0.01 to about 0.1 micrometers, and most preferably about 0.02 to about 0.08 micrometers.
  • the wet coating is dried, typically using a forced air oven.
  • the dried coating can be further cured (to a partially or completely cured state) using an energy source.
  • Preferred energy sources include ultraviolet light curing devices that provide a UV "C" dosage of about 5 to 60 milli Joules per square centimeter (mJ/cm ⁇ ).
  • curing takes place in an environment containing low amounts of oxygen, e.g., less than about 100 parts per million. Nitrogen gas is a preferred environment.
  • the information display protector optionally can include an adhesive on the backside of the substrate.
  • the adhesive is transparent or sufficiently translucent so that it will not unduly hamper viewing of an underlying display device.
  • the adhesive can be derived from a natural product (e.g., a rubber-base adhesive) or can be a synthetic material such as a homopolymer, random copolymer, graft copolymer, or block copolymer.
  • the adhesive can be crosslinked or uncrosslinked, and if desired can have pressure-sensitive properties.
  • An accepted quantitative description for pressure sensitive adhesives (PSAs) is given by the Dahlquist criterion, which indicates that materials having a storage modulus (G') of less than about 3x10 ⁇ Pascals (measured at 10 radians/second at room temperature, about 20° to 22° C) have pressure sensitive adhesive properties while materials having a G' in excess of this value do not.
  • Non-pressure sensitive adhesives are preferred, especially those that provide selective adhesion, e.g., adhesives that have low tack or are non-tacky with respect to skin but have high tack with respect to a targeted surface such as the surface of a display. Display elements coated with such non-pressure sensitive selective adhesives can be easily handled and applied to a display surface, and can be cleanly removed if needed.
  • Suitable low tack or non-tacky adhesives include those described in U.S. Patent Nos. 5,389,438 (Miller et al.), 5,851,664 (Bennett et al.), 6,004,670 (Kobe et al.) and 6,099,682 (Krampe et al.).
  • thermoplastic block copolymer elastomers copolymers of segmented A and B blocks or segments, displaying both thermoplastic and elastomeric behavior
  • Useful thermoplastic block copolymer elastomers include multi-block copolymers having radial, linear A-B diblock, and linear A-B -A triblock structures, as well as blends of such copolymers.
  • Suitable commercially available thermoplastic block copolymer elastomers include the
  • Suitable adhesive materials include highly crosslinked acrylic adhesives, silicone polyurea elastomers such as are described in U.S. Patent No. 5,670,598 (Leir et al.), the SEPTONTM family of materials (Kuraray Co. Ltd.) and the KRATONTM family of materials (Shell Chemical Co.) such as KRATON D-1101, D-1102, D-1107, D- 1111, D-1112, D-1113, D-1114PX, D-1116, D-1117, D-1118, D-1119, D-1122X, D-1124,
  • the adhesive (or a liner that protects the adhesive from contamination and bears against the adhesive) can optionally be microtextured to provide air bleeding and easy handling features (as described, for example, in U.S. Patent No. 6,197,397).
  • the adhesive layer of a single sheet or the lowermost layer of a stack of sheets will be covered by a liner.
  • the liner preferably has a release coating on the side facing the adhesive, such as a silicone release coating. If the adhesive has low tack or is non-tacky, then a liner made of plain paper or other low surface energy material without a release coating may suffice.
  • the sheets can be converted (using techniques that will be familiar to those skilled in the art) so that they will fit the information display area of a desired information display device. Suitable conversion techniques include die cutting, slitting and laser cutting.
  • Suitable conversion techniques include die cutting, slitting and laser cutting.
  • Pencil Hardness A series of pencils of increasing hardness values ranging from 6B - IB, HB, F, through 1H - 9H were fastened in a handheld rolling test stand under a 1 kg applied load and rolled 3 or 5 times across the coated substrates for each tested pencil hardness. The coatings were rated based on the highest pencil hardness that did not scratch or dent the coating. The assigned rating was based on the highest 2 out of three passes when 3 passes were employed and for the highest 3 out of 5 passes when 5 passes were employed. Higher pencil hardness values thus indicate superior film hardness. Desirably a coating should have better than a 3H rating.
  • Durability A 2 Kg weight wrapped with dry cheesecloth or a 200g weight wrapped with Grade 0000 steel wool was rubbed several times back and forth across the coated substrate. Periodically, the rubbing was halted and an attempt was made to write on the rubbed surface using the above-described SHARPIE marker. The assigned durability rating was based on the maximum number of rub cycles for which the ink beaded up and could be wiped off with a dry soft tissue without leaving an ink residue. For some coatings where very high numbers of rub cycles could be performed, rubbing was stopped after many rubs (e.g., 200) and the durability rating was noted as being greater than the number of rubs at which the test was stopped. Desirably a coating should have better than a 40 rub cycle cheesecloth durability rating and better than a 60 rub cycle steel wool durability rating.
  • Tape Adhesion of the coating layers to the substrate was evaluated by crosshatching the coating with a sharp knife and applying and removing a tape strip to the crosshatched coating, according to ASTM Test Method D3359-97. The amount of coating removed was evaluated using the 5-point scale set out in the Test Method. Peel adhesion was evaluated according to ASTM Test Method D-3330, using an LMASSTM Model SP-2000 peel tester (Imass Inc.) operated at a 2.3 m min. peel rate (Method A, 180° peel).
  • Reflectance was evaluated using an MPC 3100 spectrophotometer (Shimadzu Scientific Instruments. The film sample was adhered to a glass slide whose backside had been coated with black tape. Total reflection and first surface reflection measurements were made and recorded as the percent of incident illumination. Average visible photopic light transmittance, haze and clarity were evaluated using a HAZE-GARD PLUSTM tester (Byk Gardner, Inc.). Gloss was evaluated at 20, 60 or 85 degrees using a MICRO-TRI- GLOSSTM meter (Byk Gardner, Inc.). Examples 1 - 24
  • a ceramer composition was prepared by first heating 51.5 Parts of the curable binder precursor PETA (pentaerythritol triacrylate) to approximately 49°C in a reaction vessel. 88 Parts of NALCOTM 2327 colloidal silica sol (a 40% solids, 20 nanometer average particle size silica sol, Nalco Corp.) were added to the PETA. The resulting mixture contained 32.4 parts of colloidal silica particles. 15.6 Parts DMA (N,N- dimethylacrylamide) were next added to the mixture. 0.15 Parts BHT (butylated hydroxytoluene) and 0.02 parts phenothiazine were mixed together and added to the mixture.
  • PETA penentaerythritol triacrylate
  • NALCOTM 2327 colloidal silica sol a 40% solids, 20 nanometer average particle size silica sol, Nalco Corp.
  • DMA N,N- dimethylacrylamide
  • BHT butylated hydroxytoluene
  • the mixture was "stripped" by subjecting it to a gentle vacuum distillation (at 100 ⁇ 20 mm Hg and 52° ⁇ 2°C) until most of the liquid was removed. A few weight- percent of water remained in the dried product.
  • the resulting dried ceramer precursor was diluted to 50% solids with a 14/1 isopropyl alcohol/distilled water mixture, then further diluted to 25% solids using the same alcohol/water mixture. 0.7 Parts IRGACURETM 184 photoinitiator (Ciba Specialty Chemicals) were added to the diluted product to provide a photocurable ceramer composition.
  • the ceramer composition was coated onto 0.04 mm PET film using a Meyer Rod or a gravure roller, at a coating weight sufficient to provide a dried coating thickness of about 3 to about 5 micrometers.
  • the wet coating was dried at 70°C and cured using a UV H lamp operated at an energy density of 10-60 mJ/cm2 UVC and a nitrogen purge.
  • An antisoiling layer was applied to the cured hardcoat by dissolving a series of low surface energy fluorinated compounds in varying amounts of HFE-7100TM G t F 9 OCH 3 hydrofluoroether solvent (3M) and coating the resulting solutions onto the cured hardcoat samples using a Meyer Rod at a coating weight sufficient to provide a dried coating thickness of about 0.03 to about 0.2 micrometers.
  • the wet coating was dried at 70°C and cured using a UV H lamp operated at an energy density of 5 mJ/cm ⁇ UVC under a nitrogen purge.
  • Control compositions and 24 formulations were prepared and evaluated. Set out below in Table 1 for each Control or Example is the coating method used to apply the hardcoat; the identity of the low surface energy fluorinated compound, photoinitiator (if any) and adjuvants (if any); and the amount of HFE solvent employed. Set out below in Table 1 for each Control or Example is the coating method used to apply the hardcoat; the identity of the low surface energy fluorinated compound, photoinitiator (if any) and adjuvants (if any); and the amount of HFE solvent employed. Set out below in Table 1 for each Control or Example is the coating method used to apply the hardcoat; the identity of the low surface energy fluorinated compound, photoinitiator (if any) and adjuvants (if any); and the amount of HFE solvent employed. Set out below in Table 1 for each Control or Example is the coating method used to apply the hardcoat; the identity of the low surface energy fluorinated compound, photoinitiator (if any) and adjuvants (if any); and the amount
  • Table 2 are the observed Ink Repellency, Pencil Hardness, and Durability results, and an evaluation of the appearance of the coated Controls and Examples. An entry of "ND" indicates that a value was not determined.
  • PFPE-A is (C2H5 ⁇ )2CH3SiC3H 6 NHCO(CF2 ⁇ ) 15 (C2F4 ⁇ ) 13 CF2CONHC3H 6 SiCH3(OC2H5)2.
  • PFPE-B is (C 2 H 5 O)3SiC3H 6 NHCO(CF 2 O) 15 (C 2 F4O) 13 CF2CONHC3H 6 Si(OC2H5)3.
  • PFPE-C is KRYTOXTM 1514 perfluoroether fluid F(CF(CF3)CF 2 O) 2 5CF2CF3 (E.I. DuPont de Nemours & Co.).
  • PFPE-D is C4H9NHCO(CF2 ⁇ ) 15 (C 2 F4 ⁇ ) 13 CF 2 CONHC4H9.
  • PFPE-G is (HOCH2)2CH2NHCO(CF2 ⁇ ) 15 C2F4 ⁇ ) 13 CF2CONHCH2(CH2 ⁇ H)2.
  • R2074 is RHODORSILTM 2074 diaryliodonium tetrakis(pentafluorophenylborate) from Rodia.
  • DEAP is 2,2-diethoxyacetophenone.
  • D-l 173 is DAROCURETM 1173 2-hydroxy-2-methyl-l-phenyl-propan-l-one from Ciba Specialty Chemicals.
  • D-l 173 is DAROCURETM 1173 2-hydroxy-2-methyl-l-phenyl-propan-l-one from Ciba Specialty Chemicals.
  • 1-184 is IRGACURETM 184 1-hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals).
  • A-174 is A-174 gamma-methacryloxypropyl trimethoxysilane (Union Carbide Corp.).
  • HFE is HFE-7100TM FgOCHg hydrofluoroether solvent (3M).
  • Example 14 The film of Example 14 was evaluated to determine the average visible photopic light transmittance through the film.
  • the measured transmittance was 93.8%, which is approximately the transmittance (94.5%) of a 0.13mm thick sample of uncoated PET film.
  • display elements were prepared by dissolving varying amounts PFPE-F in HFE-7100 solvent and coating the resulting antisoiling coating solutions onto the cured hardcoat samples at a coating weight sufficient to provide a dried coating thickness of about 0.03 to about 0.2 micrometers.
  • Half of the examples included IRGACURE 184 photoinitiator and half employed no photoinitiator.
  • the wet coatings were dried at 70°C and cured using a UV H lamp operated at an energy density of 35 mJ/cm 2 UVC under a nitrogen purge.
  • Table 3 is the amount of perfluoropolyether and photoinitiator for each example, and the observed Durability results.
  • display elements were prepared by dissolving a variety of perfluoropolyethers and 0.01% RHODORSJL 2074 photoinitiator in HFE-7100 solvent and coating the resulting antisoiling coating solutions onto the cured hardcoat samples at a coating weight sufficient to provide a dried coating thickness of about 0.08 micrometers.
  • the wet coatings were dried at 70°C and cured using a UV H lamp operated at an energy density of 12 mJ/cm 2 UVC under a nitrogen purge.
  • Table 4 Set out below in Table 4 is the identity of the perfluoropolyether and the observed Durability results for each example. Table 4
  • PFPE-I is (C2H 5 O)3Si(CH2)3NHCO(CF2CF2O) 8 CF2CONH(CH2)3Si(OC 2 H5)3.
  • PFPE-J is (C2H 5 O)3Si(CH2)3NHCO(CF2CF2O) 8 CF2CONH(CH2)3Si(OC 2 H5)3.
  • PFPE-K is (C2H5 ⁇ )2CH3Si(CH2)3NHCO(CF 2 CF2 ⁇ )i4CF2CONH(CH2)3SiCH3(OC2H5)2.
  • PFPE-L is (C2H5O)3Si(CH2)3NHCO(CF2C(CF3)FO) 12 CF2CONH(CH2)3Si(OC2H 5 )3.
  • PFPE-M is
  • each of the ceramer solutions was coated onto 0.13 mm thick PET film.
  • the coated PET substrate was dried at
  • Examples 1 - 24 the antisoiling coats were dried and cured under UV H lamps operated at an energy density of 10-60 mJ/cm 2 UVC.
  • Table 6 the ceramer solution numbers, the number of coats of ceramer solution, the ceramer coat thickness, and the conductivity, ink repellency and tape adhesion values for the coated substrates:
  • a 3-necked reaction vessel was fitted with a vacuum distillation head and condenser, mechanical stirrer, heating mantle, and thermocouple for controlling the heating.
  • the vessel was charged with 6,718 parts NALCOTM 1042 acidic aqueous sol (pH 3.5 sol from ONDEO Nalco Co., containing 34% of 20 nanometer average diameter silica particles), 1,122 parts hydroxyethyl acrylate, 562 parts 3-(trimethoxysilyl)propyl methacrylate, 2 parts butylated hydroxytoluene, and 0.2 parts phenothiazine.
  • the contents were stirred at room temperature for 1 hour, then heated to 55° C. over about 45 min.
  • the pressure in the vessel was slowly reduced using a vacuum pump to remove volatiles without causing undue foaming. As the foaming subsided, full pump vacuum was applied until nearly all volatiles were removed. This required about 6 to 7 hours of distillation. The vacuum was relieved and then 792 parts SR 444 pentaerythritol triacrylate (Sartomer, Inc.) were added to the vessel. Full pump vacuum was re-applied and the remaining volatiles were removed. When distillation was complete, the contents of the vessel were filtered through fine-mesh cheesecloth to provide a 100% solids solvent-free ceramer hardcoat.
  • the roughened coatings were formed by depositing the curable ceramer composition into the nip region between the film and the metal roll, applying pressure to the nip, moving the roll at a speed sufficient to form a bead of the ceramer composition in the nip and curing the ceramer composition through the film using
  • UV D lamps (Fusion Systems, Inc.) operated at an energy density of about 400 mJ/cm 2 UVA.
  • the cured ceramer coating and film were pulled away from the roll.
  • the surface of the cured ceramer coating replicated the roughened roll surface.
  • a curable antisoiling layer containing 1% PFPE-F perfluoropolyether in HFE- 7100 solvent was applied to and cured on the cured ceramer coating using UV H lamps operated at an energy density of 15 mJ/cm 2 UVC.
  • the backsides of the coated films were coated with a 35% solution of KRATONTM D-l 107 elastomer in toluene, using a fluid bearing die equipped with a 5 micrometer filter, to provide a non-tacky, void-free adhesive coating having a thickness of 0.03 mm.
  • coated films were evaluated for reflectance, transmission, haze, clarity, gloss, ink repellency and durability.
  • a typical commercially available PDA screen protector (WrightRIGHTTM PDA Screen Protector, Fellowes Corporation) was similarly evaluated. The results are set out below in Table 7.
  • the adhesive-coated side of the coated PET films was pressed against a plain paper liner, and the films were then die-cut to a rectangular shape to form custom screen protectors sized to fit just inside the perimeter of the screen of a PALMTM Vx PDA (Palm Computing Corp.) like the PDA shown in Fig. 6.
  • the screen protectors covered nearly the entire screen, leaving a small uncovered area between the curved bottom edge of the screen and the chord extending between the endpoints of the bottom edge.
  • the screen protectors were also hand-trimmed to fit just inside the perimeter of the screen of an IPAQTM color PDA (Compaq Corp.) like the PDA shown in Fig. 4.
  • the screen protector was removed from the liner and pressed into place over the screen of the PDA, using the edge of a credit card to assist in removing air bubbles from under the film.
  • the film provided substantial indoor and outdoor glare reduction without unduly reducing visibility through the PDA screen.
  • the matte finish on the screen protector made it easier to write on the screen using the PDA stylus, because the stylus point had a reduced tendency to skid across the screen.
  • a pen or pencil could also be used to write on the PDA screen protector.
  • a small amount of ink or graphite transferred to the screen protector, but was readily removed using a tissue without leaving any observable damage on the screen protector surface. In contrast, if a pen or pencil is used to write directly on the unprotected PDA screen, the screen typically will be permanently damaged.
  • Example 39 Using standard pad-making equipment, five layers of the adhesive-coated sheet of Example 39 were laminated directly atop one another. The lowermost sheet was laminated to a plain paper liner, and the resulting stacks were die-cut to shape to form pads. The pads were sized to fit just inside the perimeter of the screen of a PALMTM Vx PDA (Palm Computing Corp.) as in Example 39. The liner was removed from the pad and the pad was adhered to the inside front cover of the PDA. The uppermost screen protector was removed from a pad and pressed into place over the screen of the
  • Example 41 using the edge of a credit card as in Example 39.
  • the screen protector provided the same advantages as in Example 39, and additional screen protectors could be carried with the PDA so that spares would readily be available.
  • Example 41
  • Example 27 In a series of runs, the backside of the coated film of Example 27 was coated using a knife coater with two different adhesives and dried at 70° C for 15 minutes. The resulting adhesive-coated samples were applied to glass for varying dwell periods and then evaluated for 180° peel adhesion. Set out below in Table 8 is the run number, adhesive identity, dry adhesive thickness and the measured peel adhesion values.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

L'invention concerne des protecteurs d'affichage d'information destinés à des dispositifs d'affichage pourvus d'une zone d'affichage d'information, comprenant une pile de feuilles transparentes souples, lesdites feuilles présentant sur un côté une couche adhésive et sur l'autre côté une couche de revêtement dur renfermant des particules d'oxyde inorganique dispersées dans une matrice liante et un composé fluoré à faible énergie superficielle. La pile est coupée de telle manière que les feuilles s'adaptent à la zone d'affichage d'information. Ledit composé fluoré peut faire partie de la couche de revêtement dur ou peut constituer une couche séparée située au-dessus de la couche de revêtement dur. Les protecteurs ont une très bonne résistance aux rayures, au papillotage et aux éclats. On peut stocker la pile de protecteurs, par exemple, sur un assistant numérique personnel ou sur son couvercle ou boîtier.
PCT/US2001/024726 2000-08-07 2001-08-07 Protecteurs d'affichage d'information WO2002013224A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2001281141A AU2001281141B2 (en) 2000-08-07 2001-08-07 Information display protectors
JP2002518491A JP2004511002A (ja) 2000-08-07 2001-08-07 情報表示装置プロテクタ
AU8114101A AU8114101A (en) 2000-08-07 2001-08-07 Information display protectors
KR1020037001712A KR100847390B1 (ko) 2000-08-07 2001-08-07 정보 디스플레이 보호기
EP01959602A EP1312103A2 (fr) 2000-08-07 2001-08-07 Protecteurs d'affichage d'information

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/633,835 2000-08-07
US09/633,835 US6589650B1 (en) 2000-08-07 2000-08-07 Microscope cover slip materials
PCT/US2001/000996 WO2002012857A1 (fr) 2000-08-07 2001-01-11 Lamelle couvre-objets pour microscope
USPCT/US01/00996 2001-01-11

Publications (3)

Publication Number Publication Date
WO2002013224A2 true WO2002013224A2 (fr) 2002-02-14
WO2002013224A3 WO2002013224A3 (fr) 2002-08-01
WO2002013224A8 WO2002013224A8 (fr) 2003-11-20

Family

ID=26680399

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2001/024726 WO2002013224A2 (fr) 2000-08-07 2001-08-07 Protecteurs d'affichage d'information
PCT/US2001/024923 WO2002012404A2 (fr) 2000-08-07 2001-08-07 Film dur antisalissure

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2001/024923 WO2002012404A2 (fr) 2000-08-07 2001-08-07 Film dur antisalissure

Country Status (2)

Country Link
AU (4) AU2001281141B2 (fr)
WO (2) WO2002013224A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312104A2 (fr) * 2000-08-07 2003-05-21 3M Innovative Properties Company Film dur antisalissure
JP2005112900A (ja) * 2003-10-03 2005-04-28 Tdk Corp ハードコート剤組成物及びこれを用いた光情報媒体
JP2005126453A (ja) * 2003-10-21 2005-05-19 Tdk Corp ハードコート剤組成物及びこれを用いた光情報媒体
JP2005179613A (ja) * 2003-12-24 2005-07-07 Tdk Corp ハードコート剤組成物及びこれを用いた光情報媒体
US7396583B2 (en) 2003-07-18 2008-07-08 Mitsui Chemicals, Inc. Laminate and display filter using the same
CN113986039A (zh) * 2021-10-26 2022-01-28 京东方科技集团股份有限公司 一种显示装置和终端设备

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303707A (ja) * 2001-02-02 2002-10-18 Three M Innovative Properties Co 光学フィルタ及びタッチパネル型ディスプレー用フィルター
FR2848563B1 (fr) * 2002-12-16 2006-07-28 Rhodia Chimie Sa Composition silicone pour revetement dur, a base de silice colloidale, durcissable par voie cationique, antibuee et/ou antisalissures
WO2004111138A1 (fr) * 2003-06-14 2004-12-23 Kyung Won Jung Composition de revetement dur
ITMI20031914A1 (it) 2003-10-03 2005-04-04 Solvay Solexis Spa Perfluoropolieteri.
ITMI20031915A1 (it) * 2003-10-03 2005-04-04 Solvay Solexis Spa Processo per la preparazione di perfluoropolieteri.
US7288619B2 (en) 2004-05-07 2007-10-30 3M Innovative Properties Company Fluorinated polyether polyamine and method of making the same
US7342080B2 (en) * 2004-05-07 2008-03-11 3M Innovative Properties Company Polymerizable compositions, methods of making the same, and composite articles therefrom
DE102004058279A1 (de) * 2004-12-02 2006-06-08 Tesa Ag Doppelseitige Haftklebebänder zur Herstellung von LC-Displays mit lichtreflektierenden und absorbierenden Eigenschaften
US20090000727A1 (en) * 2007-06-29 2009-01-01 Kanta Kumar Hardcoat layers on release liners
DE102007045166A1 (de) * 2007-09-20 2009-04-02 Tesa Ag Transparentes Klebeband
TWI476223B (zh) * 2009-06-16 2015-03-11 Mitsubishi Rayon Co 防污組成物、防污膜、防污積層膜、轉印薄膜及樹脂積層體以及樹脂積層體的製造方法
US10213993B2 (en) 2013-12-19 2019-02-26 3M Innovative Properties Company Multilayer composite article
WO2015200003A1 (fr) 2014-06-23 2015-12-30 3M Innovative Properties Company Polymère contenant du silicium et procédé de fabrication d'un polymère contenant du silicium
KR102166845B1 (ko) * 2017-09-15 2020-10-16 주식회사 엘지화학 하드 코팅 필름
CN113874213B (zh) 2019-05-31 2022-07-01 3M创新有限公司 复合冷却膜和包括该复合冷却膜的制品
JP7138254B2 (ja) 2019-05-31 2022-09-15 スリーエム イノベイティブ プロパティズ カンパニー 複合冷却フィルム及び同フィルムを含む物品
WO2021124121A1 (fr) 2019-12-19 2021-06-24 3M Innovative Properties Company Film de refroidissement composite comprenant une couche polymère organique, une couche absorbant les uv et une couche métallique réfléchissante
EP4091003A4 (fr) 2020-01-16 2024-01-24 3M Innovative Properties Company Film de refroidissement composite comprenant une couche polymère organique non poreuse réfléchissante et une couche de protection contre les uv
WO2023203390A1 (fr) 2022-04-19 2023-10-26 3M Innovative Properties Company Réflecteurs à large bande comprenant des couches en polymères, et systèmes de refroidissement composites

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0278060A2 (fr) * 1987-02-13 1988-08-17 Toray Industries, Inc. Elément optique antireflet et procédé pour sa fabrication
US5104929A (en) * 1988-04-11 1992-04-14 Minnesota Mining And Manufacturing Company Abrasion resistant coatings comprising silicon dioxide dispersions
EP0797111A2 (fr) * 1996-03-21 1997-09-24 Sony Corporation Composition pour revêtement à propriétés antisalissure, produit optique et dispositif d'affichage
WO1999037720A1 (fr) * 1998-01-27 1999-07-29 Minnesota Mining And Manufacturing Company Revetements anti-salissures pour surfaces antireflet et procedes de preparation
WO1999057375A1 (fr) * 1998-05-04 1999-11-11 3M Innovative Properties Company Articles retroreflechissants avec revetement a base de composite de ceramere durci possedant des caracteristiques de resistance a l'abrasion et aux taches
WO1999064899A1 (fr) * 1998-06-10 1999-12-16 Cpfilms Inc. Films a faible pouvoir reflechissant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2259272A (en) * 1991-09-06 1993-03-10 James John Mcdaid Vehicle accessory
US5633049A (en) * 1995-04-20 1997-05-27 Minnesota Mining And Manufacturing Company Method of making protective coating for thermoplastic transparencies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0278060A2 (fr) * 1987-02-13 1988-08-17 Toray Industries, Inc. Elément optique antireflet et procédé pour sa fabrication
US5104929A (en) * 1988-04-11 1992-04-14 Minnesota Mining And Manufacturing Company Abrasion resistant coatings comprising silicon dioxide dispersions
EP0797111A2 (fr) * 1996-03-21 1997-09-24 Sony Corporation Composition pour revêtement à propriétés antisalissure, produit optique et dispositif d'affichage
WO1999037720A1 (fr) * 1998-01-27 1999-07-29 Minnesota Mining And Manufacturing Company Revetements anti-salissures pour surfaces antireflet et procedes de preparation
WO1999057375A1 (fr) * 1998-05-04 1999-11-11 3M Innovative Properties Company Articles retroreflechissants avec revetement a base de composite de ceramere durci possedant des caracteristiques de resistance a l'abrasion et aux taches
WO1999064899A1 (fr) * 1998-06-10 1999-12-16 Cpfilms Inc. Films a faible pouvoir reflechissant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1312103A2 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312104A2 (fr) * 2000-08-07 2003-05-21 3M Innovative Properties Company Film dur antisalissure
US7396583B2 (en) 2003-07-18 2008-07-08 Mitsui Chemicals, Inc. Laminate and display filter using the same
JP2005112900A (ja) * 2003-10-03 2005-04-28 Tdk Corp ハードコート剤組成物及びこれを用いた光情報媒体
JP2005126453A (ja) * 2003-10-21 2005-05-19 Tdk Corp ハードコート剤組成物及びこれを用いた光情報媒体
US7838097B2 (en) 2003-10-21 2010-11-23 Tdk Corporation Hardcoat agent composition and optical information medium thereof
JP2005179613A (ja) * 2003-12-24 2005-07-07 Tdk Corp ハードコート剤組成物及びこれを用いた光情報媒体
CN113986039A (zh) * 2021-10-26 2022-01-28 京东方科技集团股份有限公司 一种显示装置和终端设备
CN113986039B (zh) * 2021-10-26 2024-04-09 京东方科技集团股份有限公司 一种显示装置和终端设备

Also Published As

Publication number Publication date
WO2002013224A3 (fr) 2002-08-01
AU8114101A (en) 2002-02-18
AU8120201A (en) 2002-02-18
WO2002012404A2 (fr) 2002-02-14
WO2002013224A8 (fr) 2003-11-20
WO2002012404A3 (fr) 2002-04-04
AU2001281141B2 (en) 2005-09-01
AU2001281202B2 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
US6660389B2 (en) Information display protectors
AU2001281141B2 (en) Information display protectors
AU2001281141A1 (en) Information display protectors
AU2001281202A1 (en) Antisoiling hardcoat
US7351470B2 (en) Removable antireflection film
US6800378B2 (en) Antireflection films for use with displays
JP6080154B2 (ja) 耐指紋性ハードコート塗料及びそれを塗布した部材・物品
US7267850B2 (en) Article comprising fluorochemical surface layer
CN103797384B (zh) 具有改进的防指纹功能的防眩涂料组合物以及由其制备的防眩膜
JP2011201087A (ja) タッチパネル用ハードコートフィルム及びタッチパネル
JP2009151476A (ja) ペン入力装置用表面材及びそれを備えたペン入力装置
JP4178975B2 (ja) ペン入力装置用表面材およびペン入力装置
JP2010128363A (ja) ディスプレイ用表面材及びそれを備えた高精細ディスプレイ
JP6965582B2 (ja) ハードコートフィルム、該ハードコートフィルムを備えたタッチパネル、及び該タッチパネルを備えた画像表示装置
KR20080030695A (ko) 정보 디스플레이 보호기

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 176/CHENP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 018137938

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001959602

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037001712

Country of ref document: KR

Ref document number: 2002518491

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001281141

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020037001712

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001959602

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 07/2002 DUE TO A TECHNICAL PROBLEM AT THE TIME OF INTERNATIONAL PUBLICATION, SOME INFORMATION WAS MISSING (81). THE MISSING INFORMATION NOW APPEARS IN THE CORRECTED VERSION

Free format text: IN PCT GAZETTE 07/2002 DUE TO A TECHNICAL PROBLEM AT THE TIME OF INTERNATIONAL PUBLICATION, SOME INFORMATION WAS MISSING (81). THE MISSING INFORMATION NOW APPEARS IN THE CORRECTED VERSION

WWG Wipo information: grant in national office

Ref document number: 2001281141

Country of ref document: AU