WO2002012319A1 - Nouveau polypeptide, pompe sodium-potassium humaine 14.85, et polynucleotide codant ce polypeptide - Google Patents

Nouveau polypeptide, pompe sodium-potassium humaine 14.85, et polynucleotide codant ce polypeptide Download PDF

Info

Publication number
WO2002012319A1
WO2002012319A1 PCT/CN2001/000938 CN0100938W WO0212319A1 WO 2002012319 A1 WO2002012319 A1 WO 2002012319A1 CN 0100938 W CN0100938 W CN 0100938W WO 0212319 A1 WO0212319 A1 WO 0212319A1
Authority
WO
WIPO (PCT)
Prior art keywords
polynucleotide
polypeptide
potassium pump
human sodium
sequence
Prior art date
Application number
PCT/CN2001/000938
Other languages
English (en)
French (fr)
Inventor
Yumin Mao
Yi Xie
Original Assignee
Biowindow Gene Development Inc. Shanghai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biowindow Gene Development Inc. Shanghai filed Critical Biowindow Gene Development Inc. Shanghai
Priority to AU89530/01A priority Critical patent/AU8953001A/en
Publication of WO2002012319A1 publication Critical patent/WO2002012319A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention belongs to the field of biotechnology. Specifically, the present invention describes a novel polypeptide, a human sodium and potassium pump 14.85, and a polynucleotide sequence encoding the polypeptide. The invention also relates to a preparation method and application of the polynucleotide and polypeptide. Background technique
  • Maintaining a stable ion concentration in the cell is critical to the cell's homeostasis and function.
  • the difference between the high concentration of potassium and the low concentration of sodium is maintained by the sodium-potassium-ATPase.
  • Sodium-potassium-ATPase is also called Alkaline-potassium pump. Its role is to remove sodium ions from the cell and remove potassium ions from the cell. Unbalanced ion distribution of high potassium in the membrane and high sodium in the membrane.
  • Sodium-potassium pump is a special protein embedded in the lipid bilayer of the membrane. It not only has the function of transporting sodium ions and potassium ions, but also has the activity of ATPase. It can break down ATP to release energy, and Use this energy for active transport of sodium and potassium ions.
  • Sodium and potassium pump activity can be regulated by hormones, second messengers, protein kinase A1 and protein kinase C.
  • the sodium and potassium pump consists of two subunits. These two subunits are indispensable for the transport of sodium and potassium ions.
  • the alpha subunit contains cation and ATP binding sites and is often referred to as the catalytic subunit.
  • the ⁇ subunit is related to the structural stability of the pump. And affect the degree of sensitivity to potassium ions. [L B.C, Volume 272,
  • the significance of the sodium potassium pump activity on the cell membrane is: 1.
  • the intracellular high potassium ion caused by the sodium and potassium pump activity is a necessary condition for many metabolic reactions to take place, and is the basis for excitability of nerve and muscle tissues;
  • Ecv304 cell line thymus normal fibroblasts 1024NC, Fibroblast, growth factor stimulation,
  • Bladder cancer construct cell EJ bladder cancer, bladder cancer, liver cancer, liver cancer cell line, fetal skin, spleen, prostate cancer, jejunum adenocarcinoma, cardia cancer, expression profile of the polypeptide of the present invention and human sodium and potassium pump
  • the expression profiles of the ⁇ subunits are very similar, so the functions of the two may be similar.
  • the invention is named human sodium potassium pump
  • the human sodium and potassium pump 14.85 protein plays an important role in regulating important functions of the body, such as cell division and embryonic development, and it is believed that a large number of proteins are involved in these regulatory processes, so there has been a need to identify more involved in these Process of the human sodium-potassium pump 14.85 protein, especially the amino acid sequence of this protein is identified.
  • the separation of the new human sodium and potassium pump 14.85 protein encoding gene also provides a basis for the study to determine the role of the protein in health and disease states. This protein may form the basis for the development of diagnostic and / or therapeutic drugs for disease 1 and it is therefore important to isolate its coding DNA. Disclosure of invention
  • Another object of the invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a recombinant vector comprising a polynucleotide encoding a human sodium-potassium pump 14.85.
  • Another object of the invention is to provide a genetically engineered host cell containing a polynucleotide encoding a human sodium-potassium pump 14.85.
  • Another object of the present invention is to provide a method for producing a human sodium-potassium pump 14.85.
  • Another object of the present invention is to provide an antibody against the polypeptide of the present invention-human sodium potassium pump 14.85.
  • Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors directed to the polypeptide of the present invention-human sodium potassium pump 14.85.
  • Another object of the present invention is to provide a method for diagnosing and treating diseases associated with abnormalities in human sodium and potassium pumps.
  • the present invention relates to an isolated polypeptide, which is of human origin, and includes: a polypeptide having the amino acid sequence of SEQ ID D. 2, or a conservative variant, biologically active fragment, or derivative thereof.
  • the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
  • the sequence of the polynucleotide is one selected from the group consisting of: (a) a sequence having positions 242-649 in SEQ ID NO: 1; and (b) a sequence having 1-757 in SEQ ID NO: 1 Sequence of bits.
  • the present invention further relates to a vector, particularly an expression vector, containing the polynucleotide of the present invention; a host cell genetically engineered with the vector, including transformed, transduced or transfected host cells; and a culture cell The method for preparing a polypeptide of the present invention by describing a host cell and recovering an expressed product is described.
  • the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
  • the invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit the activity of human sodium and potassium pump 14.85 protein, which comprises utilizing the polypeptide of the invention.
  • the invention also relates to compounds obtained by this method.
  • the present invention also relates to a method for in vitro detection of a disease or susceptibility to disease associated with abnormal expression of a human sodium-potassium pump 14.85 protein, comprising detecting a mutation in the polypeptide or a polynucleotide sequence encoding the same in a biological sample, or Detection of the amount or biological activity of a polypeptide of the invention in a biological sample.
  • the invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a polypeptide of the invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
  • the present invention also relates to the use of the polypeptide and / or polynucleotide of the present invention in the preparation of a medicament for treating cancer, developmental disease or immune disease or other diseases caused by abnormal expression of human sodium and potassium pump 14.85. ,
  • Nucleic acid sequence refers to an oligonucleotide, a nucleotide or a polynucleotide and a fragment or part thereof, and may also refer to a genomic or synthetic DNA or RNA, they can be single-stranded or double-stranded, representing the sense or antisense strand.
  • amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof.
  • amino acid sequence in the present invention relates to the amino acid sequence of a naturally occurring protein molecule, such "polypeptide” or “protein” does not mean to limit the amino acid sequence to a complete natural amino acid related to the protein molecule .
  • a “variant" of a protein or polynucleotide refers to an amino acid sequence having one or more amino acids or nucleotide changes or a polynucleotide sequence encoding it.
  • the changes may include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or nucleotide sequence.
  • Variants can have "conservative" changes, in which the amino acid substituted has a structural or chemical property similar to the original amino acid, such as replacing isoleucine with leucine.
  • Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
  • “Deletion” refers to the deletion of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence.
  • “Insertion” or “addition” refers to changes in the amino acid sequence or nucleotide sequence that result in The molecule is increased compared to one or more amino acids or nucleotides. “Replacement” refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
  • Bioactivity refers to a protein that has the structure, regulation, or biochemical function of a natural molecule.
  • immunologically active refers to the ability of natural, recombinant or synthetic proteins and fragments thereof to induce a specific immune response in appropriate animals or cells and to bind to specific antibodies.
  • An "agonist” refers to a molecule that, when combined with human sodium and potassium pumps 14.85, causes a change in the protein to regulate the activity of the protein.
  • An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that can bind human sodium potassium pump 14.85.
  • Antagonist refers to a molecule that can block or regulate the biological or immunological activity of human sodium and potassium pump 14.85 when combined with human sodium and potassium pump 14.85.
  • Antagonists and inhibitors can include proteins, nucleic acids, carbohydrates, or any other molecule that can bind human sodium and potassium pumps 14.85.
  • Regular refers to a change in the function of human sodium potassium pump 14.85, including an increase or decrease in protein activity, a change in binding characteristics, and any other biological, functional, or immune properties of human sodium potassium pump 14.85 change.
  • Substantially pure means substantially free of other proteins, lipids, carbohydrates or other substances with which it is naturally associated.
  • Those skilled in the art can purify human sodium and potassium pumps using standard protein purification techniques 14.85.
  • Substantially pure human sodium-potassium pump 14.85 produces a single main band on a non-reducing polyacrylamide gel.
  • Human sodium potassium pump 14. 85 The purity of the peptide can be analyzed by amino acid sequence.
  • Complementary refers to the natural binding of polynucleotides by base-pairing under conditions of acceptable salt concentration and temperature.
  • sequence C-T-G-A
  • complementary sequence G-A-C-T.
  • the complementarity between two single-stranded molecules may be partial or complete.
  • the degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
  • “Homology” refers to the degree of complementarity and can be partially homologous or completely homologous.
  • Partial homology refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid. This inhibition of hybridization can be detected by performing hybridization (Sou the rn imprint or Nor thern blot, etc.) under conditions of reduced stringency.
  • Substantially homologous sequences or hybridization probes can compete and inhibit the binding of fully homologous sequences to the target sequence under conditions of reduced stringency. This does not mean that conditions with reduced stringency allow non-specific binding, because conditions with reduced stringency require that the two sequences bind to each other as either specific or selective interactions.
  • Percent identity refers to the percentage of sequences that are identical or similar in the comparison of two or more amino acid or nucleic acid sequences. The percent identity can be determined electronically, such as by the MEGALIGN program (Lasergenes of tware package, DNASTAR, Inc., Mad is on Wis.). MEGAL I GN The program can compare two or more sequences according to different methods such as the Clus ter method (Hi gg ins, DG and PM Sharp (1988) Gene 73: 237-244). The C luster method will check the distance between all pairs by Each group of sequences is arranged into clusters. Then the clusters are allocated in pairs or groups.
  • the percent identity between two amino acid sequences such as sequence A and sequence B is calculated by the following formula: The residues of the match between sequence A and sequence B Number of bases X 100 The number of residues in sequence A-the number of spacer residues in sequence A-the number of spacer residues in sequence B can also be determined by Clus ter method or by methods known in the art such as Jotun He in Percent identity (He in J., (1990) Me thods in emzumo l ogy 183: 625-645) 0
  • Similarity refers to the degree to which the amino acid residues at the corresponding position are identical or conservatively substituted when the alignment between amino acid sequences is aligned.
  • Amino acids used for conservative substitutions for example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; having an uncharged head group is Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
  • Antisense refers to a nucleotide sequence that is complementary to a particular DM or RNA sequence.
  • Antisense strand refers to a nucleic acid strand that is complementary to a “sense strand.”
  • Derivative refers to a chemical modification of HFP or a nucleic acid encoding it. This chemical modification may be the replacement of a hydrogen atom with an alkyl, acyl or amino group. Nucleic acid derivatives can encode polypeptides that retain the main biological properties of natural molecules.
  • Antibody refers to a complete antibody molecule and its fragments, such as Fa,? ( ⁇ ') 2 and? ⁇ It can specifically bind to the epitope of human sodium potassium pump 14.85.
  • a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
  • isolated refers to the removal of a substance from its original environment (for example, its natural environment if it is naturally occurring).
  • a naturally-occurring polynucleotide or polypeptide is not isolated when it is present in a living thing, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist with it in the natural system.
  • Such a polynucleotide may be part of a certain vector, or such a polynucleotide or polypeptide may be part of a certain composition. Since the carrier or composition is not part of its natural environment, they are still isolated.
  • isolated means that the substance is separated from its original environment (if it is natural Natural material, the original environment is the natural environment).
  • natural Natural material the original environment is the natural environment.
  • polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances existing in the natural state. .
  • isolated human sodium-potassium pump 14. 85 means human sodium-potassium pump 14. 85 is substantially free of other proteins, lipids, sugars, or other substances naturally associated with it. Those skilled in the art can purify human sodium and potassium pumps using standard protein purification techniques 14.85. Substantially pure polypeptides can produce a single main band on a non-reducing polyacrylamide gel. Human sodium potassium pump 14. The purity of 85 peptides can be analyzed by amino acid sequence.
  • the present invention provides a new polypeptide, a human sodium and potassium pump 14.85, which is basically composed of the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
  • the polypeptides of the present invention can be naturally purified products or chemically synthesized products, or can be produced from prokaryotic or eukaryotic hosts (eg, bacteria, yeast, higher plants, insects, and mammalian cells) using recombinant techniques. Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
  • the invention also includes fragments, derivatives and analogs of the human sodium potassium pump 14.85.
  • fragment refers to a polypeptide that substantially maintains the same biological function or activity of the human sodium-potassium pump 14.85 of the present invention.
  • a fragment, derivative or analog of the polypeptide of the present invention may be: (I) a type in which one or more amino acid residues are substituted with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substitution The amino acid may or may not be encoded by the genetic code; or (II) such a type in which a group on one or more amino acid residues is substituted by other groups to include a substituent; or (III) such A type in which a mature polypeptide is fused to another compound (such as a compound that extends the half-life of a polypeptide, such as polyethylene glycol); or (IV) a type of polypeptide sequence in which an additional amino acid sequence is fused into a mature polypeptide (such as the leader sequence or secreted sequence or the sequence used to purify this polypeptide or protease sequence) As explained herein, such fragments, derivatives and analogs are considered to be within the knowledge of those skilled in the art.
  • the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1.
  • the polynucleotide of the present invention is found from a CDM library of human fetal brain tissue. It contains a full-length polynucleotide sequence of 757 bases, and its open reading frames 242-649 encode 135 amino acids.
  • this peptide has a similar expression profile to the ⁇ -subunit of human sodium-potassium pump, and it can be inferred that the human sodium-potassium-pump 14.85 has similar functions to the ⁇ -subunit of human sodium-potassium pump.
  • the polynucleotide of the present invention may be in the form of DNA or RM.
  • DM forms include cDM, genomic DNA or synthetic DNA.
  • DM can be single-stranded or double-stranded.
  • DNA can be a coding strand Or non-coding chain.
  • the coding region sequence encoding a mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
  • a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but different from the coding region sequence shown in SEQ ID NO: 1 in the present invention.
  • the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
  • polynucleotide encoding a polypeptide refers to a polynucleotide comprising the polypeptide and a polynucleotide comprising additional coding and / or non-coding sequences.
  • the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
  • Variants of this polynucleotide can be naturally occurring allelic variants or non-naturally occurring variants. These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
  • the present invention also relates to a polynucleotide that hybridizes to the sequence described above (the two sequences have at least 5 and preferably 70% identity).
  • the present invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the present invention under stringent conditions.
  • “strict conditions” means: (1) hybridization and elution at lower, ionic strength and higher temperature, such as 0.2 xSSC, 0.1% SDS, 60 ° C; or ( 2) Add a denaturant during hybridization, such as 50% (v / v) formamide, 0.1% calf serum / 0.1 »/ oF i co ll, 42 ° C, etc .; or (3) only between two Hybridization occurs only when the identity between the strip sequences is at least 95% and more preferably 97%.
  • the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
  • nucleic acid fragments that hybridize to the sequences described above.
  • a "nucleic acid fragment” contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, most preferably at least 100 More than nucleotides.
  • Nucleic acid fragments can also be used in nucleic acid amplification techniques (such as PCR) to identify and / or isolate polynucleotides encoding human sodium and potassium pump 14.85.
  • genome isolation is the least commonly used. Direct chemical synthesis of DNA sequences is often the method of choice.
  • the more commonly used method is the separation of cDM sequences.
  • the standard method for isolating the cDNA of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
  • the construction of cDNA libraries is also a common method (Sambrook, et al., Molecuar ar Clinging, A Labora tory Manua 1, Collspring Harbor Labora tory. New York, 1989).
  • Commercially available cDNA libraries are also available, such as different cDM libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
  • genes of the present invention can be selected from these cDNA libraries by conventional methods. These methods include (but are not limited to): (l) DNA-DNA or DM-RNA hybridization; (2) the presence or absence of marker gene functions; (3) determination of the level of transcripts of human sodium and potassium pump 14.85; ( 4) Detecting gene-expressed protein products by immunological techniques or by measuring biological activity. The above methods can be used singly or in combination.
  • the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides.
  • the length of the probe is usually within 2000 nucleotides, preferably within 1000 nucleotides.
  • the probe used here is generally a DNA sequence chemically synthesized based on the gene sequence information of the present invention.
  • the genes or fragments of the present invention can of course be used as probes.
  • DNA probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
  • the protein product expressed by the human sodium and potassium pump 14.85 gene can be detected by immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA).
  • immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA).
  • a method using DNA technology to amplify DNA / RNA is preferably used to obtain the gene of the present invention.
  • the RACE method RACE-cDM terminal rapid amplification method
  • the primers for PCR may be appropriately based on the polynucleotide sequence information of the present invention disclosed herein.
  • the amplified DNA / RM fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
  • polynucleotide sequence of the gene of the present invention or various DNA fragments and the like obtained as described above can be measured by a conventional method such as dideoxy chain termination method (Sanger etal. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDNA sequence, sequencing must be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length CDM sequence.
  • the present invention also relates to a vector comprising a polynucleotide of the present invention, and a host cell produced by genetic engineering using the vector of the present invention or directly using a human sodium-potassium pump 14.85 coding sequence, and a method for producing a polypeptide of the present invention by recombinant technology.
  • a polynucleotide sequence encoding the human sodium-potassium pump 14.85 can be inserted into a vector to constitute a recombinant vector containing the polynucleotide of the present invention.
  • vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses, or other vectors well known in the art.
  • Vectors suitable for use in the present invention include, but are not limited to: Expression vectors based on ⁇ promoters (Rs eiierg, et al.
  • any plasmid and vector can be used to construct a recombinant expression vector.
  • An important feature of expression vectors is that they usually contain an origin of replication, a promoter, a marker gene, and translational regulatory elements.
  • Methods known to those skilled in the art can be used to construct expression vectors containing a DNA sequence encoding human sodium potassium pump 14.85 and appropriate transcriptional / translational regulatory elements. These methods include in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombination technology (Sambrsssk, et al. Mslecular Clsning, a Labsratsry Manual, csld Spring Harbsr Labsrat sry. New Ysrk, 1989).
  • the DNA sequence can be operably linked to an appropriate promoter in an expression vector to direct mRNA synthesis. Representative examples of these promoters are: the lac or trp promoter of E.
  • the expression vector also includes a ribosome binding site for translation initiation, a transcription terminator, and the like. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors for DNA expression, usually about 10 to 3Q0 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers of 100 to 270 base pairs on the late side of the origin of replication, polytumor enhancers on the late side of the origin of replication, and adenoviral enhancers.
  • the 7 expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • selectable marker genes such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • GFP Fluorescent protein
  • tetracycline or ampicillin resistance for E. coli.
  • a polynucleotide encoding human sodium potassium pump 14.85 or a recombinant vector containing the polynucleotide The host cell can be transformed or transduced to constitute a genetically engineered host cell containing the polynucleotide or a recombinant vector.
  • the term "host cell” refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E.
  • coli Streptomyces
  • bacterial cells such as Salmonella typhimurium
  • fungal cells such as yeast
  • plant cells such as fly S2 or Sf 9
  • animal cells such as CH0, COS, or Bowes s melanoma cells, etc. .
  • Transformation of a host cell with a DM sequence according to the present invention or a recombinant vector containing the DNA sequence can be performed by conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • competent cells capable of DNA uptake can be in the exponential growth phase were harvested, treated with CaC l 2 method used in steps well known in the art. Alternatively, M g C l 2 is used.
  • transformation can also be performed by electroporation.
  • the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging.
  • the polynucleotide sequence of the present invention can be used to express or produce recombinant human sodium and potassium pump 14. 85 (Scence, 1984; 224: 1431). Generally there are the following steps:
  • the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
  • a suitable method such as temperature conversion or chemical induction
  • the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell.
  • recombinant proteins can be separated and purified by various separation methods using their physical, chemical and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography
  • FIG. 1 is a comparison diagram of gene chip expression profiles of the inventor's sodium potassium pump 14.85 and human sodium and potassium pump ⁇ subunits. Up The figure is a graph of the expression profile of the human sodium and potassium pump 14. 85, and the figure below is the graph of the expression profile of the beta subunit of the human sodium and potassium pump.
  • 1-bladder mucosa 2-PMA + Ecv304 cell line, 3-LPS + Ecv304 cell line thymus, 4-normal fibroblasts 1024NC, 5-Fibroblas t, growth factor stimulation, 1024NT, 6- scar growth into fc Factor stimulation, 1013HT, 7-scar scar into fc without stimulation with growth factor, 1013HC, 8-bladder cancer construct cell EJ, 9-bladder cancer, 10-bladder cancer, 11-liver cancer, 12-liver cancer cell line, 13- Placenta, 14-spleen, 15-prostate cancer, 16-jejunum adenocarcinoma, 17 cardia cancer.
  • Figure 2 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of the separated human sodium and potassium pump 14.85. 15kDa is the molecular weight of the protein. The arrow indicates the isolated protein band. The best way to implement the invention
  • the sequences at the 5 'and 3' ends of all clones were determined using a Dye terminate cycl reacting sequencing kit (Perkin-Elmer) and an ABI 377 automatic sequencer (Perkin-Blmer).
  • the determined cDNA sequence was compared with the public DNA sequence database (Genebank), and it was found that the cDNA sequence of one of the clones 0636D06 was new DNA.
  • the inserted cDNA fragments contained in this clone were determined in both directions by synthesizing a series of primers.
  • the 0636D06 clone contained a full-length cDNA of 757bp (as shown in Seq ID NO: 1), and a 407bp open reading frame (0RF) from 242bp to 649bp, encoding a new protein (such as Seq ID NO : Shown in 2).
  • This clone pBS-0636D06 and the encoded protein was named human sodium potassium pump 14.85.
  • Example 2 Cloning of a gene encoding human sodium potassium pump 14.85 by RT-PCR
  • CDNA was synthesized using fetal brain cell total RNA as a template and ol igo-dT as a primer for reverse transcription reaction. After purification using Qiagene's kit, the following primers were used for PCR amplification: Primerl: 5'- GGGAAATGGCTGTGCTCCCAACAT -3 '(SEQ ID NO: 3)
  • Primer2 5'- AGTAACAGTGAGCTTTATTTTCAT -3 '(SEQ ID NO: 4)
  • Primerl is a forward sequence starting at lbp of the 5th end of SEQ ID NO: 1;
  • Primer2 is the 3 'end reverse sequence in SEQ ID NO: 1.
  • Amplification conditions 50 mmol / L KC1, 10 mmol / L Tris- in a reaction volume of 50 ⁇ 1
  • This method involves acid guanidinium thiocyanate phenol-chloroform extraction. That is, the tissue is homogenized with 4M guanidinium isothiocyanate-25mM sodium citrate, 0.2M sodium acetate (pH4.0), and 1 volume of phenol and 1/5 volume of chloroform-isoamyl alcohol (49: 1 ), Mix and centrifuge. Aspirate the aqueous layer, add isopropanol (0: 8 volume) and centrifuge the mixture to obtain RNA precipitate. The resulting RNA pellet was washed with 70% ethanol, dried and dissolved in water.
  • RNA was electrophoresis was performed on a 1.2% agarose gel containing 20 mM 3- (N-morpholino) propanesulfonic acid (PH7.0)-5 mM sodium acetate-ImM EDTA-2.2M formaldehyde. It was then transferred to a nitrocellulose membrane.
  • the DNA probe used was the 14.85 coding region sequence (242bp to 649bp) of the PCR amplified human sodium and potassium pump 14.85 shown in FIG.
  • a 32P-labeled probe (about 2 x 10 6 cptn / ml) was hybridized with a nitrocellulose membrane to which RM was transferred at 42 ° C overnight in a solution containing 50% formamide-25mM KH 2 P0 4 (pH 7.4) -5 x SSC-5 x Denhardt's solution and 200 ⁇ g / ml salmon sperm DNA. After hybridization, the filter was washed in i x SSC-0.1 ° / »SDS at 55 ° C for 30 min. Then, Phosphor Imager was used for analysis and quantification.
  • Example 4 In vitro expression, isolation and purification of recombinant human sodium-potassium pump 14.85
  • Primer3 5'-CCCCATATGATGGGGTCTTGCCATATTTGCCAG-3 '(Seq ID No: 5)
  • Primer4 5,-CCCGAATTCTCAACAGTCACCAATACATTGACT- 3, (Seq ID No: 6)
  • the 5 'ends of these two primers contain Ndel and EcoRI digestion sites, respectively, and the 5' end of the target gene And the 3 'end coding sequence, the Ndel and EcoRI restriction sites correspond to the selective endonuclease sites on the expression vector plasmid pET- 2 8b (+) (Novagen, Cat. No. 69865.3).
  • the pBS-0636D06 plasmid containing the full-length target gene was used as a template for the PCR reaction.
  • the PCR reaction conditions are as follows: a total volume of 50 ⁇ 1 contains 10 pg of pBS-0636D06 plasmid, primers Primer-3 and Primer- 4 points separately! ] Is lOpmol, Advantage polymerase Mix (Clontecli) 1 ⁇ 1. Cycle parameters: 94 ° C 20s, 60 ° C 30s, 68 ° C 2 min, a total of 25 cycles. Ndel and EcoRI were used to double digest the amplified product and plasmid pET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase. The ligation product was transformed into coliform bacteria DH5 ⁇ by the calcium chloride method.
  • a peptide synthesizer (product of PB) was used to synthesize the following peptides specific to human sodium and potassium pump 14.85:
  • NH2-Met-Gly-Ser-Cys-His-Ile-Cys-Gln-Ala-Gly-Leu-Asn-Ser-Tyr-Asn-COOH SEQ ID NO: 7
  • the polypeptide is coupled to hemocyanin and bovine serum albumin to form a complex, respectively.
  • hemocyanin and bovine serum albumin for methods, see: Avrameas, et al. Immunochemistry, 1969; 6: 43. Rabbits were immunized with 4 mg of the hemocyanin peptide complex plus complete Freund's adjuvant, and 15 days later, the hemocyanin peptide complex plus incomplete Freund's adjuvant was used to boost immunity once.
  • oligonucleotide fragments from the polynucleotides of the present invention for use as hybridization probes. Uses: if the probe can be used to hybridize to the genomic or cDNA library of normal tissue or pathological tissue from different sources to identify whether it contains the polynucleotide sequence of the present invention and detect a homologous polynucleotide sequence, it can be further used. The probe detects whether the polynucleotide sequence of the present invention or a homologous polynucleotide sequence thereof is abnormally expressed in cells of normal tissue or pathological tissue.
  • the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by a filter hybridization method Acid sequence or a homologous polynucleotide sequence thereof.
  • Filter hybridization methods include dot blotting, Sou thern imprinting, Northern blotting, and copying methods. They are all used to fix the polynucleotide sample to be tested on the filter and then hybridize using basically the same steps.
  • the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer to saturate the non-specific binding site of the sample on the filter with the carrier and the synthesized polymer.
  • the pre-hybridization solution is then replaced with a hybridization buffer containing labeled probes and incubated to hybridize the probes to the target nucleic acid.
  • the unhybridized probes are removed by a series of membrane washing steps.
  • This embodiment uses higher-intensity washing conditions (such as lower salt concentration and higher temperature) to reduce the hybridization background and retain only strong specific signals.
  • the probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; the second type of probes are partially related to the present invention
  • the polynucleotide SEQ ID NO: 1 is the same or complementary oligonucleotide fragment.
  • the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained.
  • oligonucleotide fragments from the polynucleotide SEQ ID NO: 1 of the present invention for use as hybridization probes should follow the following principles and several aspects to be considered:
  • the preferred range of probe size is 18-50 nucleotides
  • the GC content is 30% -70%, and the non-specific hybridization increases when the GC content is exceeded;
  • Those that meet the above conditions can be used as primary selection probes, and then further computer sequence analysis, including the primary selection probe and its source sequence region (ie, SEQ ID NO: 1) and other unknown genomic sequences and their complements The regions are compared for homology. If the homology with the non-target molecular region is greater than 85% or there are more than 15 consecutive bases, the primary probe should not be used;
  • Probe 1 which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 (41Nt): 5'-TGGGGTCTTGCCATATTTGCCAGGCTGGTTTGAACTCCTAC-3 '(SEQ ID NO: 8)
  • Probe 2 which belongs to the second class of probes, is equivalent to the replacement mutant sequence of the gene fragment or its complementary fragment of SEQ ID NO: 1 (41M):
  • PBS phosphate buffered saline
  • step 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
  • NC membrane nitrocellulose membrane
  • Gene chip or gene microarray is a new technology that many national laboratories and large pharmaceutical companies are currently researching and developing. It refers to the orderly and high-density arrangement of a large number of target gene fragments on slopes. , Silicon and other carriers, and then use fluorescence detection and computer software to compare and analyze the data, in order to achieve the purpose of rapid, efficient, high-throughput analysis of biological information.
  • the polynucleotide of the present invention can be used as Targeting DNA for gene chip technology for high-throughput research on new gene functions; finding and screening new tissue-specific genes, especially new genes related to diseases such as tumors; diagnosis of diseases such as hereditary diseases.
  • a total of 4,000 polynucleotide sequences of various full-length cDNAs are used as target DNA, including the polynucleotide of the present invention. They were amplified by PCR respectively. After purification, the amplified product was adjusted to a concentration of about 500 ng / ul, and spotted on a glass medium using a Cartesian 7500 spotter (purchased from Cartesian, USA). The distance is 280 ⁇ . The spotted slides were hydrated, dried, and cross-linked in a purple diplomatic coupling instrument. After elution, the DNA was fixed on a glass slide to prepare a chip. The specific method steps have been reported in the literature in various ways. The post-spot processing steps of this embodiment are:
  • Total mRNA was extracted from human mixed tissues and specific tissues (or stimulated cell lines) in one step, and mRNA was purified with Oligotex mRNA Midi Kit (purchased from QiaGen).
  • the fluorescent reagent Cy3dUTP 5- Amino- propargy 1-2'- deoxyuridine 5'_triphate coupled to Cy3 fluorescent dye (purchased from Amersham Phamacia Biotech) was used to label the mRNA of human mixed tissue, and the fluorescent reagent Cy5dUTP (5-Amino-propargy l-2'-deoxyur idine 5'-triphate coupled to Cy5 fluorescent dye, purchased from Amersham Phamacia Biotech, labeled the body's specific tissue (or stimulated cell line) mRNA, and purified the probe to prepare a probe.
  • Cy3dUTP 5- Amino- propargy 1-2'- deoxyuridine 5'_triphate coupled to Cy3 fluorescent dye (purchased from Amersham Phamacia Biotech) was used
  • the probes from the above two tissues and the chip were respectively hybridized in a UniHyb TM Hybridization Solution (purchased from TeleCtiem) hybridization solution for 16 hours, and washed with a washing solution (lx SSC, 0.2 SDS) at room temperature. Scanning was performed with a ScanArray 3000 scanner (purchased from General Scanning, USA), and the scanned images were analyzed and processed with Imagene software (Biodiscovery, USA) to calculate the Cy3 / Cy5 ratio of each point.
  • the above specific tissues are bladder mucosa, PMA + Ecv304 cell line, LPS + Ecv304 cell line thymus, normal fibroblasts 1024NC, Fibroblas t, growth factor stimulation, 1024NT, scar-like fc growth factor Stimulation, 1013HT, scar into fc without stimulation with growth factors, 1013HC, bladder cancer cell EJ, bladder cancer, bladder cancer, liver cancer, liver cancer cell line, fetal skin, spleen, prostate cancer, jejunum adenocarcinoma, cardia cancer. Draw a graph based on these 17 Cy3 / Cy5 ratios. (figure 1 ) . It can be seen from the figure that the expression profiles of the ⁇ subunits of the human sodium and potassium pump 14.85 and human sodium and potassium pump according to the present invention are very similar. Industrial applicability
  • polypeptide of the present invention and the antagonists, agonists and inhibitors of the polypeptide can be directly used in the treatment of diseases, for example, it can treat malignant tumors, adrenal deficiency, skin diseases, various inflammations, HIV infections and immune diseases.
  • Maintaining a stable ion concentration in a cell is critical to the cell's homeostasis and function.
  • the difference between the high concentration of potassium ions and the low concentration of sodium ions is maintained by the sodium-potassium-ATPase.
  • Sodium-potassium-ATPase also known as Alkaline-potassium pump, its role is to remove sodium ions from the cell outside the membrane by inverse concentration difference while consuming metabolic energy, while moving potassium ions from the cell into the membrane, thereby maintaining Unbalanced ion distribution of high potassium in the membrane and high sodium in the membrane.
  • the sodium and potassium pump consists of two subunits. Both subunits are indispensable for the transport of sodium and potassium ions.
  • Alpha subunits contain cation and ATP binding sites and are often referred to as catalytic subunits.
  • the P subunit is related to the structural stability of the pump. It also affects the sensitivity to potassium ions.
  • Human sodium and potassium pump ⁇ subunit is an important component of sodium-potassium-ATPase in the body, and its abnormal expression can affect the function of sodium-potassium-ATPase, causing excitability disorders of nerve cells and the corresponding tissues they control ( Dysfunction of skeletal muscle, smooth muscle, etc.), leading to the occurrence of related diseases.
  • the expression profile of the polypeptide of the present invention is consistent with the expression profile of the human sodium and potassium pump ⁇ subunit protein, and both have similar biological functions.
  • the polypeptide of the present invention is an important component of sodium-potassium-ATPase in the body, and its abnormal expression can affect the function of sodium-potassium-ATPase, cause excitability disorders of nerve cells and the corresponding tissues they control (skeletal muscle, smooth muscle) Etc.), which leads to the occurrence of neurological disorders, including but not limited to: Peripheral nervous system includes: 12 pairs of cerebral nerves, 31 pairs of spinal nerves, and autonomic nerves (sympathetic and parasympathetic). Its functional disorders can cause related diseases or / and clinical symptoms. These diseases or / and clinical symptoms include, but are not limited to:
  • olfactory nerve Loss of olfactory taste (olfactory nerve), visual impairment and / or visual field defect (optic nerve), ophthalmoplegia, diplopia, changes in pupil size / reflexes (eye movement nerve, pulley nerve, abductor nerve), facial sensory disorders, masticatory muscles Paralysis, neuroparalytic keratitis (trigeminal nerve), facial paralysis (facial nerve), deafness, tinnitus, vertigo, balance disorders, nystagmus (auditory nerve), hoarseness, dysphagia, loss of pharyngeal reflex (glossopharyngeal nerve, vagus nerve), shoulder Sagging, turning neck / shrugs, fatigue (collateral nerve), paralysis of the tongue muscle (sublingual nerve), etc .; 2. Spinal nerve dysfunction:
  • Paresthesia Inhibitory paresthesia (lack of sensation, hypoparesis), irritating paresthesia (allergy, paresthesia, pain), etc .;
  • Dyskinesias Central paralysis (monoplegia, hemiplegia, paraplegia), peripheral paralysis, etc. 3. Autonomic (sympathetic and parasympathetic) functional disorders:
  • Cardio-cerebral vascular system
  • arrhythmia such as early atrial, early ventricular, sinus tachycardia, supraventricular tachycardia, ventricular tachycardia, atrial firing, atrial fibrillation, sinus bradycardia, sinus arrest,
  • Sinus syndrome indoor conduction block, etc .
  • CAD angina pectoris
  • myocardial infarction cardiovascular neurosis
  • acute heart failure chronic heart failure
  • HBP chronic heart failure
  • Pulmonary edema respiratory muscle paralysis, respiratory failure, bronchial asthma, etc .
  • Gastrointestinal neurosis Hydatid disease, psychogenic vomiting, nervousness, anorexia nervosa, irritable bowel syndrome, etc .;
  • Diabetes hypoglycemia, lipidemia, hyperlipoproteinemia, obesity, pheochromocytoma, etc .;
  • dysmenorrhea dysmenorrhea, glaucoma, visual impairment and ischemic necrosis of multiple organs, such as renal necrosis (renal failure), liver necrosis, intestinal necrosis, etc .;
  • the dysfunction of the sodium-potassium-ATPase will cause a large amount of extracellular sodium ions to enter the membrane, which in turn will cause too many water molecules to enter the membrane, which will cause the cells to swell and destroy the crusts of the cells.
  • the polypeptide of the present invention is an important component of sodium-potassium-ATPase in the body, and its abnormal expression can affect the function of sodium-potassium-ATPase and cause edema of tissue cells. These diseases include but are not limited to:
  • Cerebral edema headache, vomiting, coma
  • pulmonary edema cough, sputum, dyspnea
  • the polypeptide of the present invention and its antagonist, agonist and inhibitor can be directly used in a variety of diseases Treatments, such as disorders of the nervous system, edema of histiocytic cells, etc.
  • the invention also provides methods for screening compounds to identify agents that increase (agonist) or inhibit (antagonist) human sodium and potassium pumps. Agonists enhance human sodium and potassium pumps. 14. 85 Stimulates biological functions such as cell proliferation, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers.
  • mammalian cells or membrane formulations expressing human sodium-potassium pump 14.85 and labeled human sodium-potassium pump 14.85 can be cultured in the presence of drugs. The ability of the drug to increase or block this interaction is then determined.
  • Antagonists of human sodium and potassium pump 14.85 include antibodies, compounds, receptor deletions, and the like that have been screened.
  • the antagonist of human sodium potassium pump 14.85 can bind to human sodium potassium pump 14.85 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot exert its biology Features.
  • human sodium and potassium pump 14.85 can be added to the bioanalytical assay to determine whether the compound is an antagonist by measuring the effect of the compound on the interaction between human sodium and potassium pump 14.85 and its receptor.
  • Receptor deletions and analogs that act as antagonists can be screened in the same manner as described above for screening compounds.
  • Polypeptide molecules capable of binding to human sodium and potassium pump 14.85 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. When screening, generally, 14.85 molecules of human sodium potassium pump should be labeled.
  • the present invention provides a method for producing antibodies using polypeptides, and fragments, derivatives, analogs or cells thereof as antigens. These antibodies can be polyclonal or monoclonal antibodies.
  • the invention also provides antibodies directed against the 14.85 epitope of the human sodium and potassium pump. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments generated from Fab expression libraries.
  • polyclonal antibodies can be obtained by direct injection of human sodium and potassium pump 14.85 into immunized animals (such as rabbits, mice, rats, etc.).
  • immunized animals such as rabbits, mice, rats, etc.
  • adjuvants can be used to enhance the immune response, including but not limited to Freund's adjuvant .
  • Techniques for preparing monoclonal antibodies against human sodium and potassium pump 14.85 include, but are not limited to, hybridoma technology (Kohler and Milstein. Nature, 1975, 256: 495-497), triple tumor technology, human beta-cell hybridoma technology, and EBV-hybridization. Tumor technology, etc.
  • Chimeric antibodies that bind human constant regions and non-human-derived variable regions can be produced using existing techniques (Morrison et al, PNAS, 1985, 81: 6851).
  • the existing technology for producing single-chain antibodies (U.S. Pat No. 4946778) can also be used to produce single-chain antibodies against human sodium and potassium pump 14.85.
  • Anti-human sodium potassium pump 14 Antibodies to S5 can be used in immunohistochemistry to detect human sodium potassium pump 14.85 in biopsy specimens.
  • Monoclonal antibodies that bind to human sodium and potassium pump 14.85 can also be labeled with radioisotopes and injected into the body to track their location and distribution. This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
  • Antibodies can also be used to design immunotoxins that target a particular part of the body.
  • human potassium pump 14.85 High affinity monoclonal antibodies can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
  • a common method is to attack the amino group of the antibody with a thiol cross-linking agent such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds.
  • This hybrid antibody can be used to kill human sodium-potassium pump 14.85-positive cells.
  • the antibodies of the invention can be used to treat or prevent diseases related to human sodium and potassium pump 14.85. Administration of appropriate doses of antibodies can stimulate or block the production or activity of human sodium and potassium pump 14.85.
  • the invention also relates to a diagnostic test method for quantitative and localized detection of human sodium-potassium pump .85 levels. These tests are well known in the art and include FISH assays and radioimmunoassays. People tested in the test The level of sodium potassium pump 14.85 can be used to explain the importance of human sodium potassium pump 14.85 in various diseases and to diagnose diseases in which human sodium potassium pump 14.85 works.
  • polypeptide of the present invention can also be used for peptide mapping analysis.
  • the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
  • the polynucleotide encoding human sodium potassium pump 14.85 can also be used for a variety of therapeutic purposes.
  • Gene therapy technology can be used to treat abnormal cell proliferation, development or metabolism caused by the non-expression or abnormal / inactive expression of human sodium and potassium pump 14.85.
  • Recombinant gene therapy vectors (such as viral vectors) can be designed to express variant human sodium and potassium pump 14.85 to inhibit endogenous human sodium and potassium pump 14.85 activity.
  • a variant human sodium-potassium pump 14.85 may be a shortened human sodium-potassium pump 14.85 lacking a signaling domain, although it can bind to downstream substrates, but lacks signaling activity. Therefore, the recombinant gene therapy vector can be used to treat diseases caused by abnormal expression or activity of human potassium pump 14.85.
  • Virus-derived expression vectors such as retrovirus, adenovirus, adenovirus-associated virus, herpes simplex virus, parvovirus, etc. can be used to transfer a polynucleotide encoding human sodium-potassium pump 14.85 into cells.
  • a recombinant polynucleotide encoding human sodium and potassium pump 14.85 can be packaged into liposomes and transferred into cells.
  • Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
  • a vector such as a virus, phage, or plasmid
  • Oligonucleotides including antisense RNA and DNA
  • shuttle enzymes that inhibit human sodium and potassium pump 14.85 mRNA are also within the scope of the present invention.
  • a ribozyme is an enzyme-like RNA molecule that specifically decomposes specific RNA. Its mechanism is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation.
  • Antisense RNA, DNA, and ribozymes can be obtained using any existing RNA or DNA synthesis technology, such as solid-phase phosphoramidite chemical synthesis, which is widely used.
  • Antisense RNA molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the RM.
  • This DNA sequence is integrated downstream of the RNA polymerase promoter of the vector.
  • it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the phosphorothioate or peptide bond instead of the phosphodiester bond is used for the ribonucleoside linkage.
  • the polynucleotide encoding human sodium potassium pump 14.85 can be used for the diagnosis of diseases related to human sodium potassium pump 14.85.
  • the polynucleotide encoding human sodium and potassium pump 14.85 can be used to detect the expression of human sodium and potassium pump 14.85 or the abnormal expression of human sodium and potassium pump 14.85 in a disease state.
  • the DNA sequence encoding human sodium and potassium pump 14.85 can be used to hybridize biopsy specimens to determine the expression of human sodium and potassium pump 14.85.
  • Hybridization techniques include Southern blotting, Northern blotting, in situ hybridization, and the like. These technical methods are publicly available Commercially available techniques and related kits are available.
  • a part or all of the polynucleotides of the present invention can be used as probes to be fixed on a micro array (Mi croarray ) or a DNA chip (also known as a "gene chip") for analyzing differential expression analysis and gene diagnosis of genes in tissues.
  • Human sodium-potassium pump 14.85 specific primers can be used for RNA-polymerase chain reaction (RT-PCR) in vitro amplification to detect the human sodium-potassium pump 14.85 transcript.
  • Detection of mutations in the human sodium and potassium pump 14.85 gene can also be used to diagnose human sodium and potassium pump 14.85-related diseases.
  • Human sodium and potassium pump 14.85 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to normal wild-type human sodium and potassium pump 14.85 DNA sequences. Mutations can be detected using well-known techniques such as Southern imprinting, DNA sequence analysis, PCR and in situ hybridization. In addition, mutations may affect the expression of proteins, so Northern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
  • the sequences of the invention are also valuable for chromosome identification.
  • the sequence specifically targets a specific position on a human chromosome and can hybridize to it.
  • specific sites for each gene on the chromosome need to be identified.
  • only a few chromosome markers based on actual sequence data are available for marking chromosome positions.
  • an important first step is to locate these DNA sequences on a chromosome.
  • the PCR primers (preferably 15-35bp) are prepared based on the cDNA, and the sequences can be located on the chromosomes. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those heterozygous cells containing the human gene corresponding to the primer will produce amplified fragments.
  • PCR localization of somatic hybrid cells is a quick way to localize DNA to specific chromosomes.
  • oligonucleotide primers of the present invention in a similar manner, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
  • Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and pre-selection of hybridization to construct chromosome-specific cDNA libraries.
  • Fluorescent in situ hybridization of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step.
  • FISH Fluorescent in situ hybridization
  • the physical location of the sequence on the chromosome can be correlated with the genetic map data. These data can be found in, for example, V. Mckusick, Mendel ian Inheritance in Man (available online with Johns Hopkins University Welch Medical Library). Linkage analysis can then be used to determine the relationship between genes and diseases that are mapped to chromosomal regions.
  • the differences in cDNA or genomic sequences between the affected and unaffected individuals need to be determined. If at A mutation is observed in some or all of the affected individuals, and the mutation is not observed in any normal individuals, then the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in the chromosome, such as deletions or translocations that are visible at the chromosomal level or detectable using cDNA sequence-based PCR. According to the resolution capabilities of current physical mapping and gene mapping technology, the CDM that is accurately mapped to a disease-related chromosomal region can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping resolution Capacity and each 20kb corresponds to a gene).
  • the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
  • suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
  • the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
  • the invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell.
  • the polypeptides of the invention can be used in combination with other therapeutic compounds.
  • the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
  • Human sodium and potassium pump 14. 85 Dosage in an amount effective to treat and / or prevent a specific indication.
  • the amount and range of human sodium-potassium pump 14.85 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

一种新的多肽一一人钠钾泵 14.85和编码这种多肽的多核苷酸 技术领域
本发明属于生物技术领域, 具体地说, 本发明描述了一种新的多肽一一人 钠钾泵 14.85, 以及编码此多肽的多核苷酸序列。 本发明还涉及此多核苷酸和 多肽的制备方法和应用。 背景技术
胞中维持离子浓度的稳定对细胞的动态平衡和功能都是至关重要的。 在真 核细胞中高浓度的钾离子和低浓度的钠离子浓度差是由钠 -钾 - ATP 酶维持 的。 钠 -钾 - ATP 酶又称概-钾泵, 其作用是在消耗代谢能的情况下逆浓度差 将细胞内的钠离子移出膜外, 同时把细胞外的钾离子移入膜内, 从而保持了膜 内高钾膜外高钠的不均衡离子分布。
钠钾泵是镶嵌在膜的脂质双分子层的一种特殊蛋白质, 它除了具有对钠离 子, 钾离子的转运功能外, 还具有 ATP酶的活性, 可以分解 ATP使之释放能量, 并能利用此能量进行钠离子和钾离子的主动转运。 钠钾泵的活性可以被激素, 第二信使, 蛋白激酶 A1和蛋白激酶 C所调控。
钠钾泵由两个亚基构成。 对于钠离子和钾离子的转运来说, 这两个亚基都 是不可缺少的。 α亚基包含阳离子和 ATP 结合位点, 常被称为催化亚基。 β亚 基与泵的结构稳定有关。 并且影响对钾离子的敏感程度。 【L B.C, Volume 272,
Number 19, Issue of May 9, 1997 12366-12372】
细胞膜上的纳钾泵活动的意义是: 1、 由钠钾泵活动造成的细胞内高钾离 子, 是许多代谢反应进行的必须条件, 是神经和肌肉等组织具有兴奋性的基础;
2、 如果细胞允许大量细胞外钠离子进入膜内, 必然会导致过多水分子进入膜 内, 将引起细胞肿胀而破坏细胞的结构; 3、 能够建立起一种势能储备。
通过基因芯片的分析发现, 在膀胱粘膜、 PMA+的 Ecv304 细胞株、 LPS+的
Ecv304 细胞株胸腺、 正常成纤维细胞 1024NC, Fibroblast, 生长因子刺激,
1024NT, 疤痕成 fc 生长因子刺激, 1013HT、 疤痕成 fc 未用生长因子刺激,
1013HC, 膀胱癌建株细胞 EJ、 膀胱癌旁、 膀胱癌、 肝癌、 肝癌细胞株、 胎皮、 脾脏、 前列腺癌、 空肠腺癌、 贲门癌中, 本发明的多肽的表达谱与人钠钾泵 β 亚基的表达谱非常近似, 因此二者功能也可能类似。 本发明被命名为人钠钾泵
14.85。 由于如上所述人钠钾泵 14. 85 蛋白在调节细胞分裂和胚胎发育等机体重要 功能中起重要作用, 而且相信这些调节过程中涉及大量的蛋白, 因而本领域中 一直需要鉴定更多参与这些过程的人钠钾泵 14. 85 蛋白, 特别是鉴定这种蛋白 的氨基酸序列。 新人钠钾泵 14. 85 蛋白编码基因的分离也为研究确定该蛋白在 健康和疾病状态下的作用提供了基础。 这种蛋白可能构成开发疾 1 病诊断和 / 或治疗药的基础, 因此分离其编码 DNA是非常重要的。 发明的公开
本发明的一个目的是提供分离的新的多肽一一人钠钾泵 14. 85 以及其片 段、 类似物和衍生物。
本发明的另一个目的是提供编码该多肽的多核苷酸。
本发明的另一个目的是提供含有编码人钠钾泵 14. 85 的多核苷酸的重组载 体。
本发明的另一个目的是提供含有编码人钠钾泵 14. 85 的多核苷酸的基因工 程化宿主细胞。
本发明的另一个目的是提供生产人钠钾泵 14. 85的方法。
本发明的另一个目的是提供针对本发明的多肽一一人钠钾泵 14. 85 的抗 体。
本发明的另一个目的是提供了针对本发明多肽一一人钠钾泵 14. 85 的模拟 化合物、 拮抗剂、 激动剂、 抑制剂。
本发明的另一个目的是提供诊断治疗与人钠钾泵 . 85 异常相关的疾病的 方法。
本发明涉及一种分离的多肽, 该多肽是人源的, 它包含: 具有 SEQ I D No. 2 氨基酸序列的多肽、 或其保守性变体、 生物活性片段或衍生物。 较佳地, 该多 肽是具有 SEQ ID NO: 2氨基酸序列的多肽。
本发明还涉及一种分离的多核苷酸, 它包含选自下组的一种核苷酸序列或 其变体:
(a)编码具有 SEQ ID No.. 2氨基酸序列的多肽的多核苷酸;
(b)与多核苷酸(a)互补的多核苷酸;
(c)与(a)或(b)的多核苷酸序列具有至少 70%相同性的多核苷酸。
更佳地, 该多核苷酸的序列是选自下组的一种: (a)具有 SEQ ID NO: 1 中 242- 649位的序列; 和(b)具有 SEQ ID NO: 1中 1-757位的序列。 本发明另外涉及一种含有本发明多核苷酸的载体, 特别是表达载体; 一种 '用该载体遗传工程化的宿主细胞, 包括转化、 转导或转染的宿主细胞; 一种包 括培养所述宿主细胞和回收表达产物的制备本发明多肽的方法。
本发明还涉及一种能与本发明多肽特异性结合的抗体。
本发明还涉及一种筛选的模拟、 激活、 拮抗或抑制人钠钾泵 14. 85蛋白活 性的化合物的方法, 其包括利用本发明的多肽。 本发明还涉及用该方法获得的 化合物。
本发明还涉及一种体外检测与人钠钾泵 1 4. 85蛋白异常表达相关的疾病或疾 病易感性的方法, 包括检测生物样品中所述多肽或其编码多核苷酸序列中的突变, 或者检测生物样品中本发明多肽的量或生物活性。
本发明也涉及一种药物组合物, 它含有本发明多肽或其模拟物、 激活剂、 拮 抗剂或抑制剂以及药学上可接受的载体。
本发明还涉及本发明的多肽和 /或多核苷酸在制备用于治疗癌症、 发育性 疾病或免疫性疾病或其它由于人钠钾泵 14. 85 表达异常所引起疾病的药物的用 途。 ,,
本发明的其它方面由于本文的技术的公开, 对本领域的技术人员而言是显而 易见的。
本说明书和权利要求书中使用的下列术语除非特别说明具有如下的含义: "核酸序列" 是指寡核苷酸、 核苷酸或多核苷酸及其片段或部分, 也可以 指基因组或合成的 DNA或 RNA, 它们可以是单链或双链的, 代表有义链或反义链。 类似地, 术语 "氨基酸序列" 是指寡肽、 肽、 多肽或蛋白质序列及其片段或部 分。 当本发明中的 "氨基酸序列" 涉及一种天然存在的蛋白质分子的氨基酸序 列时, 这种 "多肽" 或 "蛋白质" 不意味着将氨基酸序列限制为与所述蛋白质 分子相关的完整的天然氨基酸。
蛋白质或多核苷酸 "变体" 是指一种具有一个或多个氨基酸或核苷酸改变 的氨基酸序列或编码它的多核苷酸序列。 所述改变可包括氨基酸序列或核苷酸 序列中氨基酸或核苷酸的缺失、 插入或替换。 变体可具有 "保守性" 改变, 其 中替换的氨基酸具有与原氨基酸相类似的结构或化学性质, 如用亮氨酸替换异 亮氨酸。 变体也可具有非保守性改变, 如用色氨酸替换甘氨酸。
"缺失" 是指在氨基酸序列或核苷酸序列中一个或多个氨基酸或核苷酸的 缺失。
"插入" 或 "添加" 是指在氨基酸序列或核苷酸序列中的改变导致与天然存在 的分子相比, 一个或多个氨基酸或核苷酸的增加。 "替换" 是指由不同的氨基酸或 核苷酸替换一个或多个氨基酸或核苷酸。
"生物活性" 是指具有天然分子的结构、 调控或生物化学功能的蛋白质。 类似 地, 术语 "免疫学活性" 是指天然的、 重组的或合成蛋白质及其片段在合适的动 物或细胞中诱导特定免疫反应以及与特异性抗体结合的能力。
"激动剂" 是指当与人钠钾泵 14. 85结合时, 一种可引起该蛋白质改变从而 调节该蛋白质活性的分子。 激动剂可以包括蛋白质、 核酸、 碳水化合物或任何 其它可结合人钠钾泵 14. 85的分子。
"拮抗剂" 或 "抑制物" 是指当与人钠钾泵 14. 85结合时, 一种可封闭或调 节人钠钾泵 14. 85的生物学活性或免疫学活性的分子。 拮抗剂和抑制物可以包 括蛋白质、 核酸、 碳水化合物或任何其它可结合人钠钾泵 14. 85的分子。
"调节" 是指人钠钾泵 14. 85的功能发生改变, 包括蛋白质活性的升高或降 低、 结合特性的改变及人钠钾泵 14. 85的任何其它生物学性质、 功能或免疫性 质的改变。
"基本上纯"是指基本上不含天然与其相关的其它蛋白、 脂类、 糖类或其它物 质。 本领域的技术人员能用标准的蛋白质纯化技术纯化人钠钾泵 14. 85。 基本上纯 的人钠钾泵 14. 85在非还原性聚丙烯酰胺凝胶上能产生单一的主带。人钠钾泵 14. 85 多肽的纯度可用氨基酸序列分析。
"互补的" 或 "互补" 是指在允许的盐浓度和温度条件下通过碱基配对的 多核苷酸天然结合。 例如, 序列 " C- T- G- A" 可与互补的序列 " G- A- C- T" 结合。 两个单链分子之间的互补可以是部分的或全部的。 核酸链之间的互补程度对于 核酸链之间杂交的效率及强度有明显影响。
"同源性" 是指互补的程度, 可以是部分同源或完全同源。 "部分同源" 是指一种部分互补的序列, 其至少可部分抑制完全互补的序列与靶核酸的杂 交。 这种杂交的抑制可通过在严格性程度降低的条件下进行杂交 (Sou the rn印 迹或 Nor thern印迹等) 来检测。 基本上同源的序列或杂交探针可竟争和抑制完 全同源的序列与靶序列在的严格性程度降低的条件下的结合。 这并不意味严格 性程度降低的条件允许非特异性结合, 因为严格性程度降低的条件要求两条序 列相互的结合为特异性或选择性相互作用。
"相同性百分率" 是指在两种或多种氨基酸或核酸序列比较中序列相同或 相似的百分率。 可用电子方法测定相同性百分率, 如通过 MEGALIGN程序 ( Las ergene s of tware package, DNASTAR, Inc. , Mad i s on Wi s . ) 。 MEGAL I GN 程序可根据不同的方法如 Clus ter法比较两种或多种序列(Hi gg ins , D. G. 和 P. M. Sharp (1988) Gene 73: 237-244)„ C lus ter法通过检查所有配对之间的 距离将各组序列排列成簇。 然后将各簇以成对或成组分配。 两个氨基酸序列如 序列 A和序列 B之间的相同性百分率通过下式计算: 序列 A与序列 B之间匹配的残基个数 X 100 序列 A的残基数一序列 A中间隔残基数一序列 B中间隔残基数 也可以通过 Clus ter法或用本领域周知的方法如 Jotun He in 测定核酸序列 之间的相同性百分率(He in J. , (1990) Me thods in emzumo l ogy 183: 625-645) 0
"相似性" 是指氨基酸序列之间排列对比时相应位置氨基酸残基的相同或 . 保守性取代的程度。 用于保守性取代的氨基酸例如, 带负电荷的氨基酸可包括 天冬氨酸和谷氨酸; 带正电荷的氨基酸可包括赖氨酸和精氨酸; 具有不带电荷 的头部基团有相似亲水性的氨基酸可包括亮氨酸、 异亮氨酸和缬氨酸; 甘氨酸 和丙氨酸; 天冬酰胺和谷氨酰胺; 丝氨酸和苏氨酸; 苯丙氨酸和酪氨酸。
"反义" 是指与特定的 DM或 RNA序列互补的核苷酸序列。 "反义链" 是指 与 "有义链" 互补的核酸链。
"衍生物" 是指 HFP或编码其的核酸的化学修饰物。 这种化学修饰物可以是 用烷基、 酰基或氨基替换氢原子。 核酸衍生物可编码保留天然分子的主要生物 学特性的多肽。
"抗体" 是指完整的抗体分子及其片段, 如 Fa、 ?(^') 2及?^ 其能特异 性结合人钠钾泵 14. 85的抗原决定簇。
"人源化抗体" 是指非抗原结合区域的氨基酸序列被替换变得与人抗体更 为相似, 但仍保留原始结合活性的抗体。
"分离的" 一词指将物质从它原来的环境 (例如, 若是自然产生的就指其 天然环境) 之中移出。 比如说, 一个自然产生的多核苷酸或多肽存在于活动物 中就是没有被分离出来, 但同样的多核苷酸或多肽同一些或全部在自然系统中 与之共存的物质分开就是分离的。 这样的多核苷酸可能是某一载体的一部分, 也可能这样的多核苷酸或多肽是某一组合物的一部分。 既然载体或组合物不是 它天然环境的成分, 它们仍然是分离的。
如本发明所用, "分离的" 是指物质从其原始环境中分离出来 (如果是天 然的物质, 原始环境即是天然环境) 。 如活体细胞内的天然状态下的多聚核苷 酸和多肽是没有分离纯化的, 但同样的多聚核苷酸或多肽如从天然状态中同存 在的其他物质中分开, 则为分离纯化的。
如本文所用, "分离的人钠钾泵 14. 85" 是指人钠钾泵 14. 85 基本上不含 天然与其相关的其它蛋白、 脂类、 糖类或其它物质。 本领域的技术人员能用标 准的蛋白质纯化技术纯化人钠钾泵 14. 85。 基本上纯的多肽在非还原聚丙烯酰 胺凝胶上能产生单一的主带。 人钠钾泵 14. 85多肽的纯度能用氨基酸序列分析。
本发明提供了一种新的多肽一一人钠钾泵 14. 85 , 其基本上是由 SEQ ID NO: 2 所示的氨基酸序列组成的。 本发明的多肽可以是重组多肽、 天然多肽、 合成多肽, 优选重组多肽。 本发明的多肽可以是天然纯化的产物, 或是化学合成的产物, 或 使用重组技术从原核或真核宿主 (例如, 细菌、 酵母、 高等植物、 昆虫和哺乳动物 细胞)中产生。 根据重组生产方案所用的宿主, 本发明的多肽可以是糖基化的, 或 可以是非糖基化的。 本发明的多肽还可包括或不包括起始的甲硫氨酸残基。
本发明还包括人钠钾泵 14. 85 的片段、 衍生物和类似物。 如本发明所用, 术语 "片段" 、 "衍生物"和 "类似物"是指基本上保持本发明的人钠钾泵 14. 85 相同的生物学功能或活性的多肽。 本发明多肽的片段、 衍生物或类似物可以是: ( I ) 这样一种, 其中一个或多个氨基酸残基被保守或非保守氨基酸残基 (优 选的是保守氨基酸残基) 取代, 并且取代的氨基酸可以是也可以不是由遗传密 码子编码的; 或者 ( I I ) 这样一种, 其中一个或多个氨基酸残基上的某个基团 被其它基团取代包含取代基; 或者 ( I I I ) 这样一种, 其中成熟多肽与另一种 化合物 (比如延长多肽半衰期的化合物, 例如聚乙二醇) 融合; 或者 ( I V ) 这 样一种, 其中附加的氨基酸序列融合进成熟多肽而形成的多肽序列 (如前导序 列或分泌序列或用来纯化此多肽的序列或蛋白原序列) 通过本文的阐述, 这样 的片段、 衍生物和类似物被认为在本领域技术人员的知识范围之内。
本发明提供了分离的核酸 (多核苷酸) , 基本由编码具有 SEQ ID NO: 2 氨 基酸序列的多肽的多核苷酸组成。 本发明的多核苷酸序列包括 SEQ ID N0: 1 的 核苷酸序列。 本发明的多核苷酸是从人胎脑组织的 cDM 文库中发现的。 它包 含的多核苷酸序列全长为 757个碱基, 其开放读框 242-649编码了 1 35个氨基 酸。 根据基因芯片表达谱比较发现, 此多肽与人钠钾泵 β亚基有相似的表达谱, 可推断出该人钠钾泵 14. 85具有人钠钾泵 β亚基相似的功能。
本发明的多核苷酸可以是 DNA形式或是 RM形式。 DM形式包括 cDM、 基 因组 DNA或人工合成的 DNA。 DM可以是单链的或是双链的。 DNA可以是编码链 或非编码链。 编码成熟多肽的编码区序列可以与 SEQ I D NO: 1 所示的编码区序 列相同或者是简并的变异体。 如本发明所用, "简并的变异体" 在本发明中是 指编码具有 SEQ ID NO: 2 的蛋白质或多肽, 但与 SEQ ID NO: 1所示的编码区序 列有差别的核酸序列。
编码 SEQ ID NO: 2的成熟多肽的多核苷酸包括: 只有成熟多肽的编码序列; 成熟多肽的编码序列和各种附加编码序列; 成熟多肽的编码序列 (和任选的附 加编码序列) 以及非编码序列。
术语 "编码多肽的多核苷酸" 是指包括编码此多肽的多核苷酸和包括附加 编码和 /或非编码序列的多核苷酸。
本发明还涉及上述描述多核苷酸的变异体, 其编码与本发明有相同的氨基 酸序列的多肽或多肽的片断、 类似物和衍生物。 此多核苷酸的变异体可以是天 然发生的等位变异体或非天然发生的变异体。 这些核苷酸变异体包括取代变异 体、 缺失变异体和插入变异体。 如本领域所知的, 等位变异体是一个多核苷酸 的替换形式, 它可能是一个或多个核苷酸的取代、 缺失或插入, 但不会从实质 上改变其编码的多肽的功能。
本发明还涉及与以上所描述的序列杂交的多核苷酸 (两个序列之间具有至 少 5 , 优选具有 70%的相同性) 。 本发明特别涉及在严格条件下与本发明所 述多核苷酸可杂交的多核苷酸。 在本发明中, "严格条件" 是指: (1)在较低, 离子强度和较高温度下的杂交和洗脱, 如 0. 2 xSSC, 0. 1%SDS, 60 °C ;或(2)杂交 时加用变性剂, 如 50% (v/v)甲酰胺, 0. 1 %小牛血清 / 0. l »/oF i co l l , 42 °C等; 或(3) 仅在两条序列之间的相同性至少在 95%以上,更好是 97%以上时才发生杂交。 并 且, 可杂交的多核苷酸编码的多肽与 SEQ ID NO : 2 所示的成熟多肽有相同的 生物学功能和活性。
本发明还涉及与以上所描述的序列杂交的核酸片段。 如本发明所用, "核 酸片段"的长度至少含 1 0个核苷酸, 较好是至少 20- 30个核苷酸, 更好是至少 50-60 个核苷酸, 最好是至少 1 00 个核苷酸以上。 核酸片段也可用于核酸的扩 增技术(如 PCR)以确定和 /或分离编码人钠钾泵 14. 85的多核苷酸。
本发明中的多肽和多核苷酸优选以分离的形式提供, 更佳地被纯化至均质。 本发明的编码人钠钾泵 14. 85 的特异的多核苷酸序列能用多种方法获得。 例如, 用本领域熟知的杂交技术分离多核苷酸。 这些技术包括但不局限于: 1) 用探针与基因组或 cDNA 文库杂交以检出同源的多核苷酸序列, 和 2)表达文库 的抗体筛选以检出具有共同结构特征的克隆的多核苷酸片段。 本发明的 DNA片段序列也能用下列方法获得 ·· 1)从基因组 DNA分离双链 DNA 序列; 2)化学合成 DNA序列以获得所述多肽的双链 DM。
上述提到的方法中, 分离基因组 最不常用。 DNA 序列的直接化学合成 是经常选用的方法。 更经常选用的方法是 cDM序列的分离。 分离感兴趣的 cDNA 的标准方法是从高表达该基因的供体细胞分离 mRNA并进行逆转录, 形成质粒或 噬菌体 cDNA 文库。 提取 mRNA 的方法已有多种成熟的技术, 试剂盒也可从商业 途径获得(Qiagene)。 而构建 cDNA 文库也是通常的方法(Sambrook, e t a l. , Molecu l ar Cl oning, A Labora tory Manua l, Co ld Spr ing Harbor Labora tory. New York , 1989)。还可得到商业供应的 cDNA文库, 如 C lontech公司的不同 cDM 文库。 当结合使用聚合酶反应技术时, 即使极少的表达产物也能克隆。
可用常规方法从这些 cDNA 文库中筛选本发明的基因。 这些方法包括(但不 限于): (l) DNA- DNA 或 DM-RNA 杂交; (2)标志基因功能的出现或丧失; (3)测 定人钠钾泵 14. 85 的转录本的水平; (4)通过免疫学技术或测定生物学活性, 来 检测基因表达的蛋白产物。 上述方法可单用, 也可多种方法联合应用。
在第(1)种方法中, 杂交所用的探针是与本发明的多核苷酸的任何一部分同 源, 其长度至少 10个核苷酸, 较好是至少 30个核苷酸, 更好是至少 50个核苷 酸, 最好是至少 100个核苷酸。 此外, 探针的长度通常在 2000个核苷酸之内, 较佳的为 1000个核苷酸之内。 此处所用的探针通常是在本发明的基因序列信息 的基础上化学合成的 DNA序列。 本发明的基因本身或者片段当然可以用作探针。 DNA探针的标记可用放射性同位素, 荧光素或酶(如碱性磷酸酶)等。
在第(4)种方法中, 检测人钠钾泵 14. 85基因表达的蛋白产物可用免疫学技 术如 Wes tern印迹法, 放射免疫沉淀法, 酶联免疫吸附法(ELISA)等。
应 用 PCR 技术 扩 增 DNA/RNA 的 方 法 (Sa ik i , et a l . Sc i ence 1985; 230: 1350- 1354)被优选用于获得本发明的基因。 特别是很难从文库中得到 全长的 cDM 时, 可优选使用 RACE法(RACE - cDM末端快速扩增法), 用于 PCR 的引物可根据本文所公开的本发明的多核苷酸序列信息适当地选择, 并可用常 规方法合成。 可用常规方法如通过凝胶电泳分离和纯化扩增的 DNA/RM片段。
如上所述得到的本发明的基因, 或者各种 DNA 片段等的多核苷酸序列可用 常规方法如双脱氧链终止法(Sanger e t a l . PNAS , 1977 , 74: 5463- 5467)测定。 这类多核苷酸序列测定也可用商业测序试剂盒等。为了获得全长的 cDNA序列, 测 序需反复进行。 有时需要测定多个克隆的 cDNA 序列, 才能拼接成全长的 cDM 序列。 本发明也涉及包含本发明的多核苷酸的载体, 以及用本发明的载体或直接 用人钠钾泵 14.85 编码序列经基因工程产生的宿主细胞, 以及经重组技术产生 本发明所述多肽的方法。 '
本发明中, 编码人钠钾泵 14.85 的多核苷酸序列可插入到载体中, 以构成 含有本发明所述多核苷酸的重组载体。 术语 "载体" 指本领域熟知的细菌质粒、 噬菌体、 酵母质粒、 植物细胞病毒、 哺乳动物细胞病毒如腺病毒、 逆转录病毒 或其它载体。 在本发明中适用的载体包括但不限于: 在细菌中表达的基于: Π启 动子的表达载体(Rs eiierg, et al. Gene, 1987, 56: 125) 在哺乳动物细胞 中表达的 pMSXND表达载体(Lee and Nathan , J Bis Chem. 263: 321, 1988)和 在昆虫细胞中表达的来源于杆状病毒的载体。 总之, 只要能在宿主体内复制和 稳定, 任何质粒和载体都可以用于构建重组表达载体。 表达载体的一个重要特 征是通常含有复制起始点、 启动子、 标记基因和翻译调控元件。
本领域的技术人员熟知的方法能用于构建含编码人钠钾泵 14.85 的 DNA序 列和合适的转录 /翻译调控元件的表达载体。 这些方法包括体外重组 DNA技术、 DNA 合成技术、 体内重组技术等(Sambrsssk, et al. Mslecular Clsning, a Labsratsry Manual, csld Spring Harbsr Labsrat sry. New Ysrk, 1989)。 所 述的 DNA序列可有效连接到表达载体中的适当启动子上, 以指导 mRNA合成。 这 些启动子的代表性例子有: 大肠杆菌的 lac或 trp启动子; λ噬菌体的 PL启动 子;真核启动子包括 CMV立即早期启动子、 HSV胸苷激酶启动子、早期和晚期 SV40 启动子、 反转录病毒的 LTR 和其它一些已知的可控制基因在原核细胞或真核细 胞或其病毒中表达的启动子。 表达载体还包括翻译起始用的核糖体结合位点和 转录终止子等。 在载体中插入增强子序列将会使其在高等真核细胞中的转录得 到增强。 增强子是 DNA表达的顺式作用因子, 通常大约有 10到 3Q0个碱基对, 作用于启动子以增强基因的转录。 可举的例子包括在复制起始点晚期一侧的 100 到 270个碱基对的 SV40增强子、 在复制起始点晚期一侧的多瘤增强子以及腺病 毒增强子等。
此外 7 表达载体优选地包含一个或多个选择性标记基因, 以提供用于选择 转化的宿主细胞的表型性状, 如真核细胞培养用的二氢叶酸还原酶、 新霉素抗 性以及绿色荧光蛋白(GFP), 或用于大肠杆菌的四环素或氨苄青霉素抗性等。
本领域一般技术人员都清楚如何选择适当的载体 /转录调控元件 (如启动 子、 增强子等) 和选择性标记基因。
本发明中, 编码人钠钾泵 14.85 的多核苷酸或含有该多核苷酸的重组载体 可转化或转导入宿主细胞, 以构成含有该多核苷酸或重组载体的基因工程化宿 主细胞。 术语 "宿主细胞" 指原核细胞, 如细菌细胞; 或是低等真核细胞, 如 酵母细胞; 或是高等真核细胞, 如哺乳动物细胞。 代表性例子有: 大肠杆菌, 链霉菌属; 细菌细胞如鼠伤寒沙门氏菌; 真菌细胞如酵母; 植物细胞; 昆虫细 胞如果蝇 S2或 Sf 9 ; 动物细胞如 CH0、 COS或 Bowe s黑素瘤细胞等。
用本发明所述的 DM序列或含有所述 DNA序列的重组载体转化宿主细胞可 用本领域技术人员熟知的常规技术进行。 当宿主为原核生物如大肠杆菌时, 能 吸收 DNA 的感受态细胞可在指数生长期后收获, 用 CaC l2法处理, 所用的步骤 在本领域众所周知。 可供选择的是用 MgC l 2。 如果需要, 转化也可用电穿孔的方 法进行。 当宿主是真核生物, 可选用如下的 DNA 转染方法: 磷酸钙共沉淀法, 或者常规机械方法如显微注射、 电穿孔、 脂质体包装等。
通过常规的重组 DNA 技术, 利用本发明的多核苷酸序列可用来表达或生产 重组的人钠钾泵 14. 85 (Sc i ence , 1984 ; 224 : 1431)。 一般来说有以下步骤:
(1) .用本发明的编码人 人钠钾泵 14. 85的多核苷酸(或变异体), 或用含有 该多核苷酸的重组表达载体转化或转导合适的宿主细胞;
(2) .在合适的培养基中培养宿主细胞;
(3) .从培养基或细胞中分离、 纯化蛋白质。
在步驟 ( 2 ) 中, 根据所用的宿主细胞, 培养中所用的培养基可选自各种 常规培养基。 在适于宿主细胞生长的条件下进行培养。 当宿主细胞生长到适当 的细胞密度后, 用合适的方法(如温度转换或化学诱导)诱导选择的启动子, 将 细胞再培养一段时间。
在步骤 ( 3 ) 中, 重组多肽可包被于细胞内、 或在细胞膜上表达、 或分泌到 细胞外。 如果需要, 可利用其物理的、 化学的和其它特性通过各种分离方法分 离和纯化重组的蛋白。 这些方法是本领域技术人员所熟知的。 这些方法包括但 并不限于: 常规的复性处理、 蛋白沉淀剂处理(盐析方法)、 离心、 渗透破菌、 超声波处理、 超离心、 分子筛层析(凝胶过滤)、 吸附层析、 离子交换层析、 高 效液相层析(HPLC)和其它各种液相层析技术及这些方法的结合。 附图的简要说明
下列附图用于说明本发明的具体实施方案, 而不用于限定由杈利要求书所 界定的本发明范围。
图 1是本发明人纳钾泵 14. 85和人钠钾泵 β亚基的基因芯片表达谱比较图。 上 图是人钠钾泵 14. 85的表达谱折方图, 下图是人钠钾泵 β亚基的表达谱折方图。 其 中, 1-膀胱粘膜、 2- ΡΜΑ+的 Ecv304细胞株、 3- LPS+的 Ecv304细胞株胸腺、 4 -正常 成纤维细胞 1024NC、 5- Fibroblas t , 生长因子刺激, 1024NT, 6-疤痕成 fc生长因 子刺激, 1013HT, 7-疤痕成 fc未用生长因子刺激, 1013HC, 8-膀胱癌建株细胞 EJ、 9-膀胱癌旁、 10-膀胱癌、 11-肝癌、 12-肝癌细胞株、 13-胎皮、 14-脾脏、 15 -前 列腺癌、 16-空肠腺癌、 17贲门癌。
图 2为分离的人钠钾泵 14. 85的聚丙烯酰胺凝胶电泳图 (SDS- PAGE ) 。 15kDa 为蛋白质的分子量。 箭头所指为分离出的蛋白条带。 实现本发明的最佳方式
下面结合具体实施例, 进一步阁述本发明。 应理解, 这些实施例仅甩于说 明本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方 法,通常按照常规条件如 Sambrook等人, 分子克隆:实验室手册(New York: Co l d Spr ing Harbor Labora tory Pres s , 1989)中所述的条件, 或按照制造厂商所 建议的条件。
实施例 1 : 人钠钾泵 14. 85的克隆
用异硫氰酸胍 /酚 /氯仿一步法提取人胎脑总 Α。 用 Quik mRNA I sola t ion K i t ( Qiegene 公司产品) 从总 RNA中分离 poly (A) mRNA。 2ug po ly (A) mRNA经逆转录 形成 cMA。用 Smart cDM克隆试剂盒(购自 Clontech )将00 片段定向插入到 pBSK (+) 载体 (Clontech公司产品)的多克隆位点上, 转化 DH5 α , 细菌形成 cDNA文库。 用 Dye terminate cycl e react ion sequenc ing ki t (Perkin- Elmer公司产品) 禾口 ABI 377 自动测序仪 (Perkin-Blmer公司)测定所有克隆的 5'和 3'末端的序列。 将测定的 cDNA 序列与巳有的公共 DNA序列数据库 (Genebank ) 进行比较, 结果发现其中一个克隆 0636D06的 cDNA序列为新的 DNA。 通过合成一系列引物对该克隆所含的插入 cDNA片 段进行双向测定。 结果表明, 0636D06克隆所含的全长 cDNA为 757bp (如 Seq ID NO: 1 所示) , 从第 242bp至 649bp有一个 407bp的开放阅读框架 (0RF ) , 编码一个新的 蛋白质 (如 Seq ID NO: 2所示) 。 我们将此克隆命名为 pBS-0636D06 , 编码的蛋白 质命名为人钠钾泵 14. 85。 实施例 2: 用 RT-PCR方法克隆编码人钠钾泵 14. 85的基因
用胎脑细胞总 RNA为模板,以 ol igo-dT为引物进行逆转录反应合成 cDNA,用 Qiagene的试剂盒纯化后,用下列引物进行 PCR扩增: Primerl: 5'- GGGAAATGGCTGTGCTCCCAACAT -3' (SEQ ID NO: 3)
Primer2: 5'- AGTAACAGTGAGCTTTATTTTCAT -3' (SEQ ID NO: 4)
Primerl为位于 SEQ ID NO: 1的 5,端的第 lbp开始的正向序列;
Primer2为 SEQ ID NO: 1的中的 3'端反向序列。
扩增反应的条件: 在 50 μ 1的反应体积中含有 50mmol/L KC1, 10mmol/L Tris-
CI, (pH8.5), 1.5隱 ol/L MgCl2, 200 μ mol/L dNTP, lOpmol引物, 1U的 Taq DNA聚合 酶(Clontech公司产品)。 在 PE9600型 DNA热循环仪(Perkin-Elmer公司)上按下列条 件反应 25个周期: 94°C 30sec; 55°C 30sec; 72°C 2min。 在 RT-PCR时同时设 β - act in 为阳性对照和模板空白为阴性对照。 扩增产物用 QIAGEN公司的试剂盒纯化, 用 TA 克隆试剂盒连接到 PCR载体上 (Invitrogen公司产品) 。 DNA序列分析结果表明 PCR 产物的 DM序列与 SEQ ID N0: 1所示的 1- 757bp完全相同。 实施例 3: Northern 印迹法分析人钠钾泵 14.85基因的表达:
用一步法提取总 RNA[Anal. Biochem 1987, 162, 156-159]。 该法包括酸性硫 氰酸胍苯酚-氯仿抽提。 即用 4M异硫氰酸胍- 25mM柠檬酸钠, 0.2M乙酸钠 ( pH4.0 ) 对组织进行匀浆, 加入 1倍体积的苯酚和 1/5体积的氯仿-异戊醇 (49: 1 ) , 混合 后离心。 吸出水相层, 加入异丙醇 (0: 8体积) 并将混合物离心得到 RNA沉淀。 将 得到的 RNA沉淀用 70%乙醇洗涤, 干燥并溶于水中。 用 20 g RNA, 在含 20mM 3- ( N- 吗啉代) 丙磺酸 (PH7.0 ) -5mM乙酸钠 -ImM EDTA- 2.2M甲醛的 1.2%琼脂糖凝胶上进 行电泳。 然后转移至硝酸纤维素膜上。 用 a- 32P dATP通过随机引物法制备 32P-标记 的 DNA探针。 所用的 DNA探针为图 1所示的 PCR扩增的人钠钾泵 14.85编码区序列 (242bp至 649bp)。 将 32P-标记的探针 (约 2 χ 106cptn/ml ) 与转移了 RM的硝酸纤维 素膜在一溶液中于 42°C杂交过夜, 该溶液包含 50%甲酰胺 - 25mM KH2P04 ( pH7.4 ) -5 χ SSC- 5 χ Denhardt's溶液和 200 μ g/ml鲑精 DNA。 杂交之后, 将滤膜在 i x SSC- 0.1°/»SDS中于 55°C洗 30min。 然后, 用 Phosphor Imager进行分析和定量。 实施例 4: 重组人钠钾泵 14.85的体外表达、 分离和纯化
根据 SEQ ID N0: 1和图 1所示的编码区序列, 设计出一对特异性扩增引物, 序 列如下:
Primer3: 5'-CCCCATATGATGGGGTCTTGCCATATTTGCCAG-3' ( Seq ID No: 5 )
Primer4: 5,- CCCGAATTCTCAACAGTCACCAATACATTGACT- 3, (Seq ID No: 6 ) 此两段引物的 5'端分别含有 Ndel和 EcoRI酶切位点, 其后分别为目的基因 5'端 和 3'端的编码序列, Ndel和 EcoRI酶切位点相应于表达载体质粒 pET- 28b(+) (Novagen 公司产品, Cat. No.69865.3)上的选择性内切酶位点。 以含有全长目的基因的 pBS- 0636D06质粒为模板, 进行 PCR反应。 PCR反应条件为: 总体积 50 μ 1中含 pBS- 0636D06 质粒 10pg、 引物 Primer- 3和 Primer- 4分另!]为 lOpmol、 Advantage polymerase Mix (Clontecli公司产品) 1μ1。 循环参数: 94°C 20s, 60°C 30s, 68°C 2 min,共 25个 循环。 用 Ndel和 EcoRI分别对扩增产物和质粒 pET- 28 (+)进行双酶切,分别回收大片 段,并用 T4连接酶连接。 连接产物转化用氯化钙法大肠杆细菌 DH5 α,在含卡那霉素 (终浓度 30 g/ral ) 的 LB平板培养过夜后, 用菌落 PCR方法筛选阳性克隆, 并进行 测序。 挑选序列正确的阳性克隆 (pET-0636D06)用氯化钙法将重组质粒转化大肠 杆菌 BL21(DE3)plySs (Novagen公司产品)。 在含卡那霉素 (终浓度 30 μ g/ml ) 的 LB 液体培养基中, 宿主菌 BL21 (pET-0636D06) 在 37°C培养至对数生长期, 加入 IPTG 至终浓度 lmmol/L, 继续培养 5小时。 离心收集菌体, 经超声波破菌,离心收集上清, 用能与 6个组氨酸 ( 6His- Tag ) 结合的亲和层析柱 His. Bind Quick Cartridge (Novagen公司产品)进行层析,得到了纯化的目的蛋白人钠钾泵 14.85。经 SDS-PAGE 电泳, 在 15kDa处得到一单一的条带 (图 2) 。 将该条带转移至 PVDF膜上用 Edams水 解法进行 N-端氨基酸序列分析, 结果 N-端 15个氨基酸与 SEQ ID NO: 2所示的 N-端 15 个氨基酸残基完全相同。 . 实施例 5 抗人钠钾泵 14.85抗体的产生
用多肽合成仪 (PB公司产品)合成下述人钠钾泵 14.85特异性的多肽:
NH2-Met-Gly-Ser-Cys-His-Ile-Cys-Gln-Ala-Gly-Leu-Asn-Ser-Tyr-Asn- COOH (SEQ ID NO: 7)。 将该多肽分别与血蓝蛋白和牛血清白蛋白耦合形成复合, 方法参见: Avrameas, et al. Immunochemistry, 1969; 6: 43。 用 4mg上述血蓝蛋白 多肽复合物加上完全弗氏佐剂免疫家兔, 15天后再用血蓝蛋白多肽复合物加不完 全弗氏佐剂加强免疫一次。 采用经 15 g/ml牛血清白蛋白多肽复合物包被的滴定 板做 EL I SA测定兔血清中抗体的滴度。 用蛋白 A- Sephar os e从抗体阳性的家兔血清 中分离总 IgG。将多肽结合于溴化氰活化的 Sepharos B柱上,用亲和层析法从总 IgG 中分离抗多肽抗体。 免疫沉淀法证明纯化的抗体可特异性地与人钠钾泵 14.85结 合。 实施例 6: 本发明的多核苷酸片段用作杂交探针的应用
从本发明的多核苷酸中挑选出合适的寡核苷酸片段用作杂交探针有多方面的 用途, 如用该探针可与不同来源的正常组织或病理组织的基因组或 cDNA文库杂交 以鉴定其是否含有本发明的多核苷酸序列和检出同源的多核苷酸序列,进一步还可 用该探针检测本发明的多核苷酸序列或其同源的多核苷酸序列在正常组织或病理 组织细胞中的表达是否异常。
本实施例的目的是从本发明的多核苷酸 SEQ ID NO: 1 中挑选出合适的寡核苷 酸片段用作杂交探针, 并用滤膜杂交方法鉴定一些组织中是否含有本发明的多核 苷酸序列或其同源的多核苷酸序列。 滤膜杂交方法包括斑点印迹法、 Sou thern 印 迹法、 Northern 印迹法和复印方法等, 它们都是将待测的多核苷酸样品固定在滤 膜上后使用基本相同的步骤杂交。 这些相同的步骤是: 固定了样品的滤膜首先用 不含探针的杂交缓冲液进行预杂交, 以使滤膜上样品的非特异性的结合部位被载 体和合成的多聚物所饱和。 然后预杂交液被含有标记探针的杂交缓冲液替换, 并 保温使探针与靶核酸杂交。 杂交步骤之后, 未杂交上的探针被一系列洗膜步骤除 掉。 本实施例利用较高强度的洗膜条件 (如较低盐浓度和较高的温度), 以使杂交 背景降低且只保留特异性强的信号。 本实施例选用的探针包括两类: 第一类探针 是完全与本发明的多核苷酸 SEQ ID NO: 1相同或互补的寡核苷酸片段; 第二类探 针是部分与本发明的多核苷酸 SEQ ID NO: 1相同或互补的寡核苷酸片段。 本实施 例选用斑点印迹法将样品固定在滤膜上, 在较高强度的的洗膜条件下, 第一类探 针与样品的杂交特异性最强而得以保留。
一、 探针的选用
从本发明的多核苷酸 SEQ ID NO: 1中选择寡核苷酸片段用作杂交探针, 应遵 循以下原则和需要考虑的几个方面:
1 , 探针大小优选范围为 18- 50个核苷酸;
2 , GC含量为 30%- 70% , 超过则非特异性杂交增加;
3 , 探针内部应无互补区域;
4, 符合以上条件的可作为初选探针, 然后进一步作计算机序列分析, 包括将该 初选探针分别与其来源序列区域 (即 SEQ ID NO: 1 ) 和其它巳知的基因组序 列及其互补区进行同源性比较, 若与非靶分子区域的同源性大于 85%或者有超 过 15个连续碱基完全相同, 则该初选探针一般就不应该使用;
5 , 初选探针是否最终选定为有实际应用价值的探针还应进一步由实验确定。
完成以上各方面的分析后挑选并合成以下二个探针:
探针 1 ( probel ), 属于第一类探针, 与 SEQ ID NO: 1 的基因片段完全 同源或互补 ( 41Nt ): 5'-TGGGGTCTTGCCATATTTGCCAGGCTGGTTTGAACTCCTAC-3' ( SEQ ID NO: 8 ) 探针 2 (probe2), 属于笫二类探针, 相当于 SEQ ID NO: 1 的基因片段 或其互补片段的替换突变序列 (41M):
5'-TGGGGTCTTGCCATATTTGCCAGGCTGGTTTGAACTCCTAC-3' ( SEQ ID NO: 9 ) 与以下具体实验步骤有关的其它未列出的常用试剂及其配制方法请参考文 献: DNA PROBES G. H. Keller; M. M. Manak; Stockton Press, 1989 (USA)以及更常 用的分子克隆实验手册书籍如 《分子克隆实验指南》( 1998 年第二版) [美]萨姆 布鲁克等著, 科学出版社。
样品制备:
1, 从新鲜或冰冻组织中提取 DNA
步骤: 1 )将新鲜或新鲜解冻的正常肝组织放入浸在冰上并盛有磷酸盐缓冲液 (PBS) 的平皿中。 用剪刀或手术刀将组织切成小块。 操作中应保持组织湿润。 2) 以 lOOOg离心切碎组织 10分钟。 3)用冷匀浆缓冲液 (0.25mol/L蔗糖; 25mmol/L Tris-HCl,pH7.5; 25隱 ol/LnaCl; 25隱 ol/L MgCl2 ) 悬浮沉淀 (大约 10ml/g )。 4) 在 4°C用电动匀浆器以全速匀浆组织悬液, 直至组织被完全破碎。 5) lOOOg 离心 10分钟。 6) 用重悬细胞沉淀(每 O. lg最初组织样品加 l-5ml), 再以 lOOOg离心 10分钟。 7) 用裂解缓冲液重悬沉淀(每 O. lg最初组织样品加 lml), 然后接以下 的苯酚抽提法。
2, DNA的苯酚抽提法
步骤: 1 )用 1- 10ml 冷 PBS洗细胞, 1000g 离心 10分钟。 2)用冷细胞裂解 液重悬浮沉淀的细胞 (lx 108细胞 /ml) 最少应用 lOOul 裂解缓冲液。 3) 加 SDS 至终浓度为 1%, 如果在重悬细胞之前将 SDS直接加入到细胞沉淀中, 细胞可能会 形成大的团块而难以破碎, 并降低的总产率。 这一点在抽提 >107细胞时特别严重。 4)加蛋白酶 K 至终浓度 200ug/ml。 5) 50°C保温反应 1小时或在 37。C轻轻振摇 过夜。 6)用等体积苯酚: 氯仿: 异戊醇 ( 25: 24: 1 )抽提, 在小离心机管中离 心 10分钟。 两相应清楚分离, 否则重新进行离心。 7)将水相转移至新管。 8) 用 等体积氯仿: 异戊醇 (24: 1) 抽提, 离心 10分钟。 9) 将含 DNA的水相转移至新 管。 然后进行 DNA的纯化和乙醇沉淀。
3, DNA的纯化和乙醇沉淀
步骤: 1 )将 1/10体积 2raol/L醋酸钠和 2倍体积冷 100%乙醇加到 DNA溶液 中, 混匀。 在 -20°C放置 1小时或至过夜。 2) 离心 10分钟。 3) 小心吸出或倒出 乙醇。 4)用 70%冷乙醇 500ul洗涤沉淀, 离心 5分钟。 5)小心吸出或倒出乙醇。 用 500ul冷乙醇洗涤沉淀, 离心 5分钟。 6)小心吸出或倒出乙醇, 然后在吸水纸 上倒置使残余乙醇流尽。 空气干燥 10-15 分钟, 以使表面乙醇挥发。 注意不要使 沉淀完全干燥, 否则较难重新溶解。 7) 以小体积 TE或水重悬 DNA沉淀。 低速涡 旋振荡或用滴管吹吸, 同时逐渐增加 TE, 混合至 DNA充分溶解, 每 1- 5xl06细胞 所提取的大约加 lul。
以下第 8-13步骤仅用于必须除去污染时, 否则可直接进行第 14步骤。
8)将 RNA酶 A加到 DNA溶液中, 终浓度为 100ug/ml, 37°C保温 30分钟。 9)加 入 SDS和蛋白酶 K, 终浓度分别为 0.5½和 100ug/nil。 37°C保温 30分钟。 10) 用 等体积的苯酚: 氯仿: 异戊醇 ( 25: 24: 1)抽提反应液, 离心 10 分钟。 11 ) 小 心移出水相, 用等体积的氯仿: 异戊醇 (24: 1) 重新抽提, 离心 10 分钟。 12) 小心移出水相, 力 P 1/10 体积 2mol/L 醋酸钠和 2.5 体积冷乙醇, 混匀置- 20°C 1 小时。 13)用 70%乙醇及 100%乙醇洗涤沉淀, 空气干燥, 重悬核酸, 过程同第 3- 6步骤。 14) 测定 A26。和 A2S。以检测 DNA的纯度及产率。 15 )分装后存放于 -20°C。 样膜的制备:
1) 取 4x2 张适当大小的硝酸纤维素膜 (NC 膜), 用铅笔在其上轻轻标出点样 位置及样号, 每一探针需两张 NC膜, 以便在后面的实验步骤中分别用高强度条件 和强度条件洗膜 。·
2) 吸取及对照各 15微升, 点于样膜上, 在室温中晾干。
3 ) 置于浸润有 0. Imol/LNaOH, 1.5mol/LNaCl的滤纸上 5分钟 (两次), 晾干置 于浸润有 0.5mol/L Tris-HCl ( pH7.0 ), 3mol/LNaCl的滤纸上 5分钟 (两次), 晾 干。
4) 夹于干净滤纸中, 以铝箔包好, 60- 80°C真空干燥 2小时。
探针的标记
1 ) 3 μ lProbe ( 0.1OD/10 μ 1 ),加入 2 μ IKinase缓冲液, 8-10 uCi γ- 32P- dATP+2U Kinase, 以补加至终体积 20 μ1。
2) 37 °C 保温 2小时。
3) 加 1/5体积的溴酚蓝指示剂 ( BPB
4) itSephadex G- 50柱。
5 ) 至有 32P- Probe洗出前开始收集第一峰(可用 Monitor监测)。
6 ) 5滴 /管, 收集 10-15管。
7)用液体闪烁仪监测同位素量
8) 合并第一峰的收集液后即为所需制备的 32P- Probe (第二峰为游离 γ- 32P- dATP )。
预杂交
将样膜置于塑料袋中,加入3-10[^预杂交液(10> 061 &^1' 3 ; 6>^5( , 0. Img/ml CT DNA (小牛胸腺 DNA )。), 封好袋口后, 68°C水浴摇 2小时。
杂交
将塑料袋剪去一角, 加入制备好的探针, 封好袋口后, 42°C水洛摇过夜。 洗膜:
高强度洗膜:
1 )取出已杂交好的样膜。
2 ) 2xSSC, 0. 1 SDS中, 40。C洗 15分钟 (2次)。
3 ) 0. lxSSC, 0. 1%SDS中, 40。C洗 15分钟 ( 2次)。
4 ) 0. lxSSC, 0. 1°/»SDS中, 55°C洗 30分钟 ( 2次), 室温晾干。 低强度洗膜:
1 )取出已杂交好的样膜。
2 ) 2xSSC, 0. 1%SDS中, 37°C洗 15分钟 ( 2次)。
3 ) 0. lxSSC , 0. 1¾SDS中, 37。C洗 15分钟 ( 2次)。
4 ) 0. lxSSC, 0. 1%SDS中, 40°C洗 15分钟 ( 2次), 室温晾干。 X-光自显影:
-70°C, X-光自显影 (压片时间根据杂交斑放射性强弱而定)。
实验结果:
采用低强度洗膜条件所进行的杂交实验, 以上两个探针杂交斑放射性强弱没 有明显区别; 而采用高强度洗膜条件所进行的杂交实验, 探针 1 的杂交斑放射性 强度明显强于另一个探针杂交斑的放射性强度。 因而可用探针 1 定性和定量地分 析本发明的多核苷酸在不同组织中的存在和差异表达。 实施例 7 DNA Mi croarray
基因芯片或基因微矩阵 (DNA Microarray )是目前许多国家实验室和大制药 公司都在着手研制和开发的新技术, 它是指将大量的靶基因片段有序地、 高密度 地排列在坡璃、 硅等载体上, 然后用荧光检测和计算机软件进行数据的比较和分 析, 以达到快速、 高效、 高通量地分析生物信息的目的。 本发明的多核苷酸可作 为靶 DNA 用于基因芯片技术用于高通量研究新基因功能; 寻找和筛选组织特异性 新基因特别是肿瘤等疾病相关新基因; 疾病的诊断, 如遗传性疾病。 其具体方法 步骤在文献中巳有多种报道, 如可参阅文献 DeRisi, J. L. , Lyer, V. &Brown, P.0. (1997)Science278, 680- 686.及文献 Helle, R. A. , Schema, M. , Chai, A. , Shalom, D. , (1997) PNAS 94: 2150-2155.
(一) 点样
各种不同的全长 cDNA共计 4000条多核苷酸序列作为靶 DNA,其中包括本发明 的多核苷酸。 将它们分别通过 PCR 进行扩增, 纯化所得扩增产物后将其浓度调到 500ng/ul 左右, 用 Cartesian 7500 点样仪(购自美国 Cartesian公司)点于玻璃 介质上, 点与点之间的距离为 280 μηι。 将点样后的玻片进行水合、 干燥、 置于紫 外交联仪中交联, 洗脱后干燥使 DNA 固定在玻璃片上制备成芯片。 其具体方法步 骤在文献中已有多种报道, 本实施例的点样后处理步骤是:
1. 潮湿环境中水合 4小时;
2. (J.2%SDS洗涤 1分钟;
3. dd¾0洗涤两次, 每次 1分钟;
4. NaBH4封闭 5分钟;
5. 95°C水中 2分钟;
6. 0.2%SDS洗涤 1分钟;
7. dd¾0冲洗两次;
8. 凉干, 25°C储存于暗处备用。
(二) 探针标记
用一步法分别从人体混合组织与机体特定组织 (或经过刺激的细胞株) 中抽 提总 mRNA, 并用 Oligotex mRNA Midi Kit (购自 QiaGen公司)纯化 mRNA,通过反 转录分别将荧光试剂 Cy3dUTP(5- Amino- propargy 1-2'- deoxyuridine 5'_triphate coupled to Cy3 fluorescent dye, 购自 Amersham Phamacia Biotech公司)标记 人体混合组织的 mRNA,用荧光试剂 Cy5dUTP (5-Amino-propargy l-2'-deoxyur idine 5'- triphate coupled to Cy5 fluorescent dye, 购自 Amersham Phamacia Biotech 公司)标记机体特定组织 (或经过刺激的细胞株) mRNA, 经纯化后制备出探针。 具 体步骤参照及方法见:
Sc ena,
M. , Shalon, D. , Heller, R. (1996) Proc. Natl. Acad. Sci. USA. Vol.93: 10614- 10619. Schena, M. ,Shalon, Dari. , Davis, R. W. (1995) Science.270. (20) : 467-480. (三) 杂交
分别将来自 以上两种组织的探针与芯片一起在 UniHyb™ Hybr idizat ion Solut ion (购自 TeleCtiem公司)杂交液中进行杂交 16 小时, 室温用洗涤液 (l x SSC, 0. 2 SDS ) 洗涤后用 ScanArray 3000扫描仪(购自美国 General Scanning公 司)进行扫描, 扫描的图象用 Imagene软件 (美国 Biodi scovery公司) 进行数据 分析处理, 算出每个点的 Cy3/Cy5比值。
以上机体特定组织 (或经过刺激的细胞株) 分别为膀胱粘膜、 PMA+的 Ecv304 细胞株、 LPS+的 Ecv304细胞株胸腺、 正常成纤维细胞 1024NC、 Fibroblas t , 生长 因子刺激, 1024NT、 疤痕成 fc生长因子刺激, 1013HT、 疤痕成 fc未用生长因子刺 激, 1013HC、 膀胱癌建株细胞 EJ、 膀胱癌旁、 膀胱癌、 肝癌、 肝癌细胞株、 胎皮、 脾脏、 前列腺癌、 空肠腺癌、 贲门癌。 根据这 17个 Cy3/Cy5比值绘出折方图。 (图 1 ) 。 由图可见本发明所述的人钠钾泵 14. 85和人钠钾泵 β亚基表达谱很相似。 工业实用性
本发明的多肽以及该多肽的拮抗剂、 激动剂和抑制剂可直接用于疾病治疗, 例如, 可治疗恶性肿瘤、 肾上腺缺乏症、 皮肤病、 各类炎症、 HIV 感染和免疫 性疾病等。
在细胞中维持离子浓度的稳定对细胞的动态平衡和功能都是至关重要的。 在真核细胞中高浓度的钾离子和低浓度的钠离子浓度差是由钠 -钾 - ΑΤΡ 酶维 持的。 钠 -钾 - ΑΤΡ 酶又称概-钾泵, 其作用是在消耗代谢能的情况下逆浓度 差将细胞内的钠离子移出膜外, 同时把细胞外的钾离子移入膜内, 从而保持了 膜内高钾膜外高钠的不均衡离子分布。 钠钾泵由两个亚基构成。 对于钠离子和 钾离子的转运来说, 这两个亚基都是不可缺少的。 α亚基包含阳离子和 ΑΤΡ 结 合位点, 常被称为催化亚基。 Ρ亚基与泵的结构稳定有关。 并且影响对钾离子 的敏感程度。 人钠钾泵 β亚基在体内是钠 -钾 - ΑΤΡ 酶的重要组成成分, 其表 达异常可影响钠 -钾 - ΑΤΡ 酶的功能, 引起神经细胞兴奋性失调及所控制的对 其应组织 (骨骼肌、 平滑肌等) 的功能失调, 进而导致相关疾病的发生。
本发明的多肽的表达谱与人钠钾泵 β亚基蛋白的表达谱相一致, 两者具有 相似的生物学功能。 本发明的多肽在体内是钠 -钾 - ΑΤΡ 酶的重要组成成分, 其表达异常可影响钠 -钾 - ΑΤΡ 酶的功能, 引起神经细胞兴奋性失调及其所控 制的对应组织 (骨骼肌、 平滑肌等) 的功能失调, 进而导致神经系统功能紊乱 疾病的发生, 这些疾病包括但不限于: 周围神经系统包括: 脑神经 12 对、 脊神经 31 对、 植物神经 (交感和 副交感) , 其功能紊乱可导致相关疾病或 /和临床症状的发生, 这些疾病或 /和 临床症状包括但不限于:
—. 脑神经功能紊乱:
嗅觉味觉丧失 (嗅神经) , 视力障碍和 /或视野缺损 (视神经) , 眼肌 瘫痪, 复视, 瞳孔大小 /反射的改变 (动眼神经、 滑车神经、 展神经) , 面 部感觉障碍, 咀嚼肌瘫痪, 神经麻痹性角膜炎 (三叉神经) , 面瘫 (面神 经) , 耳聋, 耳鸣, 眩暈, 平衡障碍, 眼震 (听神经) , 发音嘶哑, 吞咽 困难, 咽反射消失 (舌咽神经、 迷走神经) , 肩下垂, 转颈 /耸肩乏力 (副 神经) , 舌肌瘫痪 (舌下神经) 等; 二. 脊神经功能紊乱:
1. 感觉障碍: 抑制性感觉障碍 (感觉缺失、 感觉减退) , 刺激性感觉障碍 (感觉过敏、 感觉异常、 疼痛) 等;
2. 运动障碍: 中枢性瘫痪 (单瘫、 偏瘫、 截瘫) , 周围性瘫痪等; 三. 植物神经 (交感和副交感) 功能紊乱:
1. 心脑血管系统:
各种心律失常, 如房早, 室早, 窦速, 室上速, 室速, 房朴, 房颤, 窦 缓, 窦性停搏,
病窦综合症, 室内传导阻滞等;
CAD , 心绞痛, 心肌梗塞, 心血管神经官能症, 急性心衰, 慢性心衰, HBP , 神经原
性直立性低血压, 暈厥, 脑血管意外, 低血压性休克等;
2. 呼吸系统:
肺水肿, 呼吸肌麻痹, 呼吸衰竭, 支气管哮喘等;
3. 腹腔脏器疾病:
恶心, 呕吐, 胃肠胀气, 胃肠绞痛, 胆绞痛, 肾绞痛, 胃肠梗阻, 尿路 梗阻, 急性梗阻性胆管炎, 急性胰腺炎, 慢性胰腺炎等;
尿储留, 遗尿症, 膀胱刺激症 (尿频, 尿急, 尿痛) , 便秘等;
反流性食管炎, 慢性胃炎, 消化性溃疡, 非溃疡性消化不良, 神经性腹泻 等,
胃肠神经官能症: 癔球症, 心因性呕吐, 神经性 气, 神经性厌食, 肠激 惹综合症等;
4. 内分泌系统:
糖尿病, 低血糖症, 脂血症, 高脂蛋白血症, 肥胖症, 嗜铬细胞瘤等;
5. 肌肉运动系统:
重症肌无力, 周期性瘫痪, 肌强直, 肌痉挛等;
6. 外周血管性疾病:
雷诺病, 红斑性肢痛等;
7. 其他: 痛经, 青光眼, 视力障碍及多脏器缺血性坏死, 如肾坏死 (肾衰) , 肝坏死, 肠坏死等;
钠 -钾 - ATP酶的功能障碍将导致大量细胞外钠离子进入膜内, 进而导致过 多水分子进入膜内, 将引起细胞肿胀而破坏细胞的结抅。 本发明的多肽在体内 是钠 -钾 - ATP 酶的重要组成成分, 其表达异常可影响钠 -钾 - ATP 酶的功能, 引起组织细胞的水肿, 这些疾病包括但不限于:
脑水肿 (头痛、 呕吐、 昏迷) , 肺水肿 (咳嗽、 咳痰、 呼吸困难) 等; 综合上述, 本发明的多肽以及该多肽的拮抗剂, 激动剂和抑制剂可直接用 于多种疾病的治疗, 例如神经系统功能紊乱疾病、 组织细胞的水肿性疾病等。 本发明也提供了筛选化合物以鉴定提高(激动剂)或阻遏(拮抗剂)人钠钾泵 1 4. 85 的药剂的方法。 激动剂提高人钠钾泵 14. 85 刺激细胞增殖等生物功能, 而拮抗剂阻止和治疗与细胞过度增殖有关的紊乱如各种癌症。 例如, 能在药物 的存在下, 将哺乳动物细胞或表达人钠钾泵 14. 85 的膜制剂与标记的人钠钾泵 14. 85—起培养。 然后测定药物提高或阻遏此相互作用的能力。
人钠钾泵 14. 85 的拮抗剂包括筛选出的抗体、 化合物、 受体缺失物和类似 物等。 人钠钾泵 14. 85 的拮抗剂可以与人钠钾泵 14. 85 结合并消除其功能, 或 是抑制该多肽的产生, 或是与该多肽的活性位点结合使该多肽不能发挥生物学 功能。 在筛选作为拮抗剂的化合物时, 可以将人钠钾泵 14.85 加入生物分析测定 中, 通过测定化合物对人钠钾泵 14.85 和其受体之间相互作用的影响来确定化 合物是否是拮抗剂。 用上述筛选化合物的同样方法, 可以筛选出起拮抗剂作用 的受体缺失物和类似物。 能与人钠钾泵 14.85 结合的多肽分子可通过筛选由各 种可能组合的氨基酸结合于固相物组成的随机多肽库而获得。 筛选时, 一般应 对人钠钾泵 14.85分子进行标记。
本发明提供了用多肽, 及其片段、 衍生物、 类似物或它们的细胞作为抗原 以生产抗体的方法。 这些抗体可以是多克隆抗体或单克隆抗体。 本发明还提供 了针对人钠钾泵 14.85 抗原决定簇的抗体。 这些抗体包括(但不限于): 多克隆 抗体、 单克隆抗体、 嵌合抗体、 单链抗体、 Fab 片段和 Fab 表达文库产生的片 段。
多克隆抗体的生产可用人钠钾泵 14.85直接注射免疫动物 (如家兔, 小鼠, 大鼠等) 的方法得到, 多种佐剂可用于增强免疫反应, 包括但不限于弗氏佐剂 等。 制备人钠钾泵 14.85 的单克隆抗体的技术包括但不限于杂交瘤技术(Kohler and Milstein. Nature, 1975, 256: 495-497) , 三瘤技术, 人 Β-细胞杂交瘤技 术, EBV-杂交瘤技术等。 将人恒定区和非人源的可变区结合的嵌合抗体可用已 有的技术生产(Morrison et al , PNAS, 1985, 81: 6851)。 而已有的生产单链抗体 的技术(U. S. Pat No.4946778)也可用于生产抗人钠钾泵 14.85的单链抗体。
抗人纳钾泵 14. S5 的抗体可用于免疫组织化学技术中, 检测活检标本中的 人钠钾泵 14.85。
与人钠钾泵 14.85 结合的单克隆抗体也可用放射性同位素标记, 注入体内 可跟踪其位置和分布。 这种放射性标记的抗体可作为一种非创伤性诊断方法用 于肿瘤细胞的定位和判断是否有转移。
抗体还可用于设计针对体内某一特殊部位的免疫毒素。 如人纳钾泵 14.85 高亲和性的单克隆抗体可与细菌或植物毒素(如白喉毒素, 蓖麻蛋白, 红豆碱等) 共价结合。 一种通常的方法是用巯基交联剂如 SPDP, 攻击抗体的氨基, 通过二 硫键的交换, 将毒素结合于抗体上, 这种杂交抗体可用于杀灭人钠钾泵 14.85 阳性的细胞。
本发明中的抗体可用于治疗或预防与人钠钾泵 14.85 相关的疾病。 给予适 当剂量的抗体可以刺激或阻断人钠钾泵 14.85的产生或活性。
本发明还涉及定量和定位检测人钠钾泵 .85 水平的诊断试验方法。 这些 试验是本领域所熟知的, 且包括 FISH测定和放射免疫测定。 试验中所检测的人 钠钾泵 14.85 水平, 可以用作解释人钠钾泵 14.85 在各种疾病中的重要性和用 于诊断人钠钾泵 14.85起作用的疾病。
本发明的多肽还可用作肽谱分析, 例如, 多肽可用物理的、 化学或酶进行 特异性切割, 并进行一维或二维或三维的凝胶电泳分析,更好的是进行质谱分 析。
编码人纳钾泵 14.85 的多核苷酸也可用于多种治疗目的。 基因治疗技术可 用于治疗由于人钠钾泵 14.85 的无表达或异常 /无活性表达所致的细胞增殖、 发 育或代谢异常。 重组的基因治疗载体(如病毒载体)可设计用于表达变异的人钠 钾泵 14.85, 以抑制内源性的人钠钾泵 14.85 活性。 例如, 一种变异的人钠钾 泵 14.85 可以是缩短的、 缺失了信号传导功能域的人钠钾泵 14.85, 虽可与下 游的底物结合, 但缺乏信号传导活性。 因此重组的基因治疗载体可用于治疗人 纳钾泵 14.85 表达或活性异常所致的疾病。 来源于病毒的表达载体如逆转录病 毒、 腺病毒、 腺病毒相关病毒、 单纯疱疹病毒、 细小病毒等可用于将编码人钠 钾泵 14.85 的多核苷酸转移至细胞内。 构建携带编码人钠钾泵 14.85 的多核苷 酸的重组病毒载体的方法可见于巳有文献(Sambrook, et al.)。 另外重组编码人 钠钾泵 14.85的多核苷酸可包装到脂质体中转移至细胞内。
多核苷酸导入组织或细胞内的方法包括: 将多核苷酸直接注入到体内组织 中; 或在体外通过载体(如病毒、 噬菌体或质粒等)先将多核苷酸导入细胞中, 再将细胞移植到体内等。
抑制人钠钾泵 14.85 mRNA的寡核苷酸(包括反义 RNA和 DNA)以及梭酶也在 本发明的范围之内。 核酶是一种能特异性分解特定 RNA 的酶样 RNA 分子, 其作 用机制是核酶分子与互补的靶 RNA特异性杂交后进行核酸内切作用。 反义的 RNA 和 DNA及核酶可用已有的任何 RNA或 DNA合成技术获得, 如固相磷酸酰胺化学 合成法合成寡核苷酸的技术巳广泛应用。 反义 RNA分子可通过编码该 RM的 DNA 序列在体外或体内转录获得。 这种 DNA序列巳整合到载体的 RNA聚合酶启动子 的下游。 为了增加核酸分子的稳定性, 可用多种方法对其进行修饰, 如增加两 侧的序列长度, 核糖核苷之间的连接应用磷酸硫酯键或肽键而非磷酸二酯键。
编码人钠钾泵 14.85 的多核苷酸可用于与人钠钾泵 14.85 的相关疾病的诊 断。 编码人钠钾泵 14.85 的多核苷酸可用于检测人纳钾泵 14.85 的表达与否或 '在疾病状态下人钠钾泵 14.85 的异常表达。 如编码人钠钾泵 14.85 的 DNA序列 可用于对活检标本进行杂交以判断人钠钾泵 14.85 的表达状况。 杂交技术包括 Southern印迹法, Northern 印迹法、 原位杂交等。 这些技术方法都是公开的成 熟技术, 相关的试剂盒都可从商业途径得到。 本发明的多核苷酸的一部分或全 部可作为探针固定在微阵列(Microarray)或 DNA芯片(又称为 "基因芯片" )上, 用于分析组织中基因的差异表达分析和基因诊断。 用人钠钾泵 14.85 特异的引 物进行 RNA-聚合酶链反应(RT- PCR)体外扩增也可检测人钠钾泵 14.85 的转录产 物。
检测人钠钾泵 14.85基因的突变也可用于诊断人钠钾泵 14.85相关的疾病。 人钠钾泵 14.85 突变的形式包括与正常野生型人钠钾泵 14.85 DNA序列相比的 点突变、 易位、 缺失、 重组和其它任何异常等。 可用巳有的技术如 Southern 印 迹法、 DNA序列分析、 PCR和原位杂交检测突变。 另外, 突变有可能影响蛋白的 表达, 因此用 Northern印迹法、 Western印迹法可间接判断基因有无突变。
本发明的序列对染色体鉴定也是有价值的。 该序列会特异性地针对某条人 染色体具体位置且并可以与其杂交。 目前, 需要鉴定染色体上的各基因的具体 位点。 现在, 只有很少的基于实际序列数据(重复多态性)的染色体标记物可用 于标记染色体位置。 根据本发明, 为了将这些序列与疾病相关基因相关联, 其 重要的第一步就是将这些 DNA序列定位于染色体上。
简而言之, 根据 cDNA制备 PCR引物(优选 15- 35bp), 可以将序列定位于染色 体上。 然后, 将这些引物用于 PCR筛选含各条人染色体的体细胞杂合细胞。 只 有那些含有相应于引物的人基因的杂合细胞会产生扩增的片段。
体细胞杂合细胞的 PCR定位法, 是将 DNA定位到具体染色体的快捷方法。 使 用本发明的寡核苷酸引物, 通过类似方法, 可利用一组来自特定染色体的片段 或大量基因组克隆而实现亚定位。 可用于染色体定位的其它类似策略包括原位 杂交、 用标记的流式分选的染色体预筛选和杂交预选, 从而构建染色体特异的 cDNA库。
将 cDNA克隆与中期染色体进行荧光原位杂交(FISH), 可以在一个步骤中精 确地进行染色体定位。 此技术的综述, 参见 Verma等, Human Chromosomes: a Manual of Basic Techniques, Pergamon Press, New York (1988)。
一旦序列被定位到准确的染色体位置, 此序列在染色体上的物理位置就可 以与基因图数据相关联。 这些数据可见于例如, V.Mckusick, Mendel ian Inheritance in Man (可通过与 Johns Hopkins University Welch Medical Library联机获得)。 然后可通过连锁分析, 确定基因与业巳定位到染色体区域 上的疾病之间的关系。
接着, 需要测定患病和未患病个体间的 cDNA或基因组序列差异。 如果在一 些或所有的患病个体中观察到某突变, 而该突变在任何正常个体中未观察到, 则该突变可能是疾病的病因。 比较患病和未患病个体, 通常涉及首先寻找染色 体中结构的变化, 如从染色体水平可见的或用基于 cDNA序列的 PCR可检测的缺 失或易位。 根据目前的物理作图和基因定位技术的分辨能力, 被精确定位至与 疾病有关的染色体区域的 cDM, 可以是 50至 500个潜在致病基因间之一种(假定 1兆碱基作图分辨能力和每 20kb对应于一个基因)。
可以将本发明的多肽、 多核苷酸及其模拟物、 激动剂、 拮抗剂和抑制剂与 合适的药物载体组合后使用。 这些载体可以是水、 葡萄糖、 乙醇、 盐类、 缓冲 液、 甘油以及它们的组合。 组合物包含安全有效量的多肽或拮抗剂以及不影响 药物效果的载体和赋形剂。 这些组合物可以作为药物用于疾病治疗。
本发明还提供含有一种或多种容器的药盒或试剂盒, 容器中装有一种或多 种本发明的药用组合物成分。 与这些容器一起, 可以有由制造、 使用或销售药 品或生物制品的政府管理机构所给出的指示性提示, 该提示反映出生产、 使用 或销售的政府管理机构许可其在人体上施用。 此外, 本发明的多肽可以与其它 的治疗化合物结合使用。
药物组合物可以以方便的方式给药, 如通过局部、 静脉内、 腹膜内、 肌内、 皮下、 鼻内或皮内的给药途径。 人钠钾泵 14. 85 以有效地治疗和 /或预防具体的 适应症的量来给药。 施用于患者的人钠钾泵 14. 85 的量和剂量范围将取决于许 多因素,. 如给药方式、 待治疗者的健康条件和诊断医生的判断。

Claims

杈 利 要 求 书
I、 一种分离的多肽-人钠钾泵 14. 85 , 其特征在于它包含有: SEQ ID NO: 2 所 示的氨基酸序列的多肽、 或其多肽的活性片段、 类似物或衍生物。
2、 如杈利要求 1 所述的多肽, 其特征在于所述多肽、 类似物或衍生物的氨基 酸序列具有与 SEQ ID NO: 2所示的氨基酸序列至少 95%的相同性。
3、 如杈利要求 1 所述的多肽, 其特征在于它包含具有 SEQ ID NO: 2 所示的氨 基酸序列的多肽。
4、 一种分离的多核苷酸, 其特征在于所述多核苷酸包含选自下组中的一种: (a) 编码具有 SEQ ID NO: 2所示氨基酸序列的多肽或其片段、 类似物、 衍生 物的多核苷酸;
(b) 与多核苷酸 ) 互补的多核苷酸; 或
(c) 与 ) 或 (b ) 有至少 70%相同性的多核苷酸。
5、 如权利要求 4 所述的多核苷酸, 其特征在于所述多核苷酸包含编码具有 SEQ ID NO: 2所示氨基酸序列的多核苷酸。
6、如权利要求 4所述的多核苷酸,其特征在于所述多核苷酸的序列包含有 SEQ ID NO: 1 中 242-649位的序列或 SEQ ID NO: 1中 1-757位的序列。
7、 一种含有外源多核苷酸的重组载体, 其特征在于它是由权利要求 4-6 中的 任一权利要求所述多核苷酸与质粒、 病毒或运载体表达载体构建而成的重组载 体。 '
8、 一种含有外源多核苷酸的遗传工程化宿主细胞, 其特征在于它是选自于下 列一种宿主细胞:
(a) 用权利要求 7所述的重组载体转化或转导的宿主细胞; 或
(b) 用杈利要求 4-6 中的任一权利要求所述多核苷酸转化或转导的宿主细 胞。
9、 一种具有人钠钾泵 14. 85 活性的多肽的制备方法, 其特征在于所述方法包 括:
(a) 在表达人钠钾泵 14. 85条件下, 培养权利要求 8所述的工程化宿主细胞;
(b) 从培养物中分离出具有人钠钾泵 14. 85活性的多肽。
10、 一种能与多肽结合的抗体,其特征在于所述抗体是能与人钠钾泵 14. 85 特 异性结合的抗体。
I I、 一类模拟或调节多肽活性或表达的化合物, 其特征在于它们是模拟、 促进、 拮抗或抑制人钠钾泵 14. 85的活性的化合物。
12、 如权利要求 11 所述的化合物, 其特征在于它是 SEQ ID NO: 1 所示的多核 苷酸序列或其片段的反义序列。
13、 一种杈利要求 11 所述化合物的应用, 其特征在于所述化合物用于调节人 钠钾泵 14. 85在体内、 体外活性的方法。
14、 一种检测与权利要求 1-3 中的任一权利要求所述多肽相关的疾病或疾病易 感性的方法, 其特征在于其包括检测所述多肽的表达量, 或者检测所述多肽的 活性, 或者检测多核苷酸中引起所述多肽表达量或活性异常的核苷酸变异。
15、 如权利要求 1-3 中的任一杈利 求所述多肽的应用, 其特征在于它应用于 筛选人钠钾泵 14. 85 的模拟物、 激动剂, 拮抗剂或抑制剂; 或者用于肽指紋图 谱鉴定。
16、 如权利要求 4-6 中的任一权利要求所述的核酸分子的应用, 其特征在于它 作为引物用于核酸扩增反应, 或者作为探针用于杂交反应, 或者用于制造基因 芯片或微阵列。
17、 如权利要求 1-6 及 11 中的任一杈利要求所述的多肽、 多核苷酸或化合物 的应用, 其特征在于用所述多肽、 多核苷酸或其模拟物、 激动剂、 拮抗剂或抑 制剂以安全有效剂量与药学上可接受的载体组成作为诊断或治疗与人钠钾泵 14. 85异常相关的疾病的药物组合物。
18、 杈利要求 1-6 及 11 中的任一权利要求所述的多肽、 多核苷酸或化合物的 应用, 其特征在于用所述多肽、 多核苷酸或化合物制备用于治疗如恶性肿瘤, 血液病, HIV感染和免疫性疾病和各类炎症的药物。
PCT/CN2001/000938 2000-06-12 2001-06-11 Nouveau polypeptide, pompe sodium-potassium humaine 14.85, et polynucleotide codant ce polypeptide WO2002012319A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU89530/01A AU8953001A (en) 2000-06-12 2001-06-11 A novel peptide---human na-k pump 14.85 and the polynucleotide coding this novelpeptide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN00116429.5 2000-06-12
CN 00116429 CN1328024A (zh) 2000-06-12 2000-06-12 一种新的多肽——人钠钾泵14.85和编码这种多肽的多核苷酸

Publications (1)

Publication Number Publication Date
WO2002012319A1 true WO2002012319A1 (fr) 2002-02-14

Family

ID=4585833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/000938 WO2002012319A1 (fr) 2000-06-12 2001-06-11 Nouveau polypeptide, pompe sodium-potassium humaine 14.85, et polynucleotide codant ce polypeptide

Country Status (3)

Country Link
CN (1) CN1328024A (zh)
AU (1) AU8953001A (zh)
WO (1) WO2002012319A1 (zh)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 1 May 1992 (1992-05-01), QUENTIN Y. ET AL., retrieved from GI:113667 accession no. NCBI Database accession no. P23960 *
DATABASE GENBANK [online] 21 January 2000 (2000-01-21), KAUL R.K. ET AL., retrieved from GI:6729063 accession no. NCBI Database accession no. AC018633.2 *

Also Published As

Publication number Publication date
CN1328024A (zh) 2001-12-26
AU8953001A (en) 2002-02-18

Similar Documents

Publication Publication Date Title
WO2001072786A1 (fr) Nouveau polypeptide, facteur d'inhibition tumorale 63, et polynucleotide codant pour ce polypeptide
WO2002012319A1 (fr) Nouveau polypeptide, pompe sodium-potassium humaine 14.85, et polynucleotide codant ce polypeptide
WO2001094406A1 (fr) Nouveau polypeptide, dihydropyridine-acide dicarboxylique deshydrogenase 21, et polynucleotide codant ce polypeptide
WO2002012297A1 (fr) Nouveau polypeptide, proteine humaine 9 de liaison a la tropomoduline, et polynucleotide codant ce polypeptide
WO2002012491A1 (fr) Nouveau polypeptide, proteine humaine notch 24.64, et polynucleotide codant ce polypeptide
WO2002040523A1 (fr) Nouveau polypeptide, glutaryl-coa deshydrogenase humaine 15.51, et polynucleotide codant ce polypeptide
WO2001092518A1 (fr) Nouveau polypeptide, proteine humaine 9.5 associee a la ccr4, et polynucleotide codant ce polypeptide
WO2002004501A1 (fr) Nouveau polypeptide, $g(b)-glucosaccharase humaine 11.88, et polynucleotide codant ce polypeptide
WO2001092315A1 (en) A novel polypeptide, a human splicing protein 10.56 and the polynucleotide encoding the polypeptide
WO2002012314A1 (en) A novel polypeptide - human dihydropyrimidinase-related protein-1(drp-1) 9.68 and a polynucleotide encoding the same
WO2002004633A1 (fr) Nouveau polypeptide, proteine humaine de fasciculation et d'extension 12.87, et polynucleotide codant ce polypeptide
WO2001092515A1 (fr) Nouveau polypeptide, facteur humain de transcription 29.26, et polynucleotide codant ce polypeptide
WO2001079432A2 (en) A novel polypeptide, a human cell differentiation transcription factor 58 and the polynucleotide encoding the polypeptide
WO2001094399A1 (fr) Nouveau polypeptide, proteine humaine 11.66 associee au synaptosome, et polynucleotide codant pour ce polypeptide
WO2001090177A1 (fr) Nouveau polypeptide, activateur humain de la mort naturelle des cellules b13.64, et polynucleotide codant ce polypeptide
WO2002006471A1 (fr) Nouveau polypeptide, nucleophosmine 9.68, et polynucleotide codant ce polypeptide
WO2002000833A2 (en) A novel polypeptide gamma carboxyl glutamic acid protein 113.31 with abundant proline and the polynucleotide coding this novel peptide
WO2002012311A1 (fr) Nouveau polypeptide, proteine humaine 16.61 de fasciculation et d'extension, et polynucleotide codant ce polypeptide
WO2001094534A2 (fr) Nouveau polypeptide, facteur humain de transcription 9.57, et polynucleotide codant ce polypeptide
WO2001092287A1 (fr) Nouveau polypeptide, phosphatase acide 14, et polynucleotide codant ce polypeptide
WO2002026970A1 (fr) Nouveau polypeptide, molecule d'adhesion neuronale humaine 11.44, et polynucleotide codant ce polypeptide
WO2002012303A1 (fr) Nouveau polypeptide, proteine humaine de regulation 10.23 d'une ribonucleoside-diphosphate reductase, et polynucleotide codant ce polypeptide
WO2002020785A1 (fr) Nouveau polypeptide, proteine humaine 11 associee au syndrome de parkinson, et polynucleotide codant ce polypeptide
WO2002020575A1 (fr) Nouveau polypeptide, proteine humaine 10 associee aux maladies auto-immunes, et polynucleotide codant ce polypeptide
WO2001092516A1 (fr) Nouveau polypeptide, proteine ribosomale s19e 13, et polynucleotide codant ce polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP