WO2002003943A1 - Verfahren zum schutz der haut gegen die alterung - Google Patents

Verfahren zum schutz der haut gegen die alterung Download PDF

Info

Publication number
WO2002003943A1
WO2002003943A1 PCT/EP2001/007429 EP0107429W WO0203943A1 WO 2002003943 A1 WO2002003943 A1 WO 2002003943A1 EP 0107429 W EP0107429 W EP 0107429W WO 0203943 A1 WO0203943 A1 WO 0203943A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
skin
oil
saccharomyces cerevisiae
extract
Prior art date
Application number
PCT/EP2001/007429
Other languages
English (en)
French (fr)
Inventor
Gilles Pauly
Louis Danoux
Jean-Luc Contet-Audonneau
Original Assignee
Cognis France S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis France S.A. filed Critical Cognis France S.A.
Priority to US10/332,283 priority Critical patent/US20040028697A1/en
Priority to JP2002508398A priority patent/JP2004502712A/ja
Priority to AU2001279701A priority patent/AU2001279701A1/en
Priority to EP01957903A priority patent/EP1343468A1/de
Publication of WO2002003943A1 publication Critical patent/WO2002003943A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9728Fungi, e.g. yeasts

Definitions

  • the invention is in the field of cosmetic and dermatological care products and relates to a method for protecting human skin against aging by topical application of an agent which stimulates the synthesis of dermal macromolecules. Furthermore, the invention relates to the use of extracts from the yeast Saccharomyces cerevisiae for applications in cosmetic and dermatological care products.
  • the dermis is made up of cells (fibroblasts and mast cells), tissue components (collagen and elastin) and so-called basic substances. These basic substances include macromolecules such as glycosaminoglycans (GAG) (hyaluronic acid, chondroitin sulfate, dermatan sulfate) and glycoproteins.
  • GAG glycosaminoglycans
  • the aging of the skin reduces the intermolecular strengthening and elasticity of the dermis and thus the tightness of the skin.
  • the number of existing skin cells, especially fibroblasts is also reduced as the skin ages.
  • the collagen fibers become fragmented over time and the proportion of insoluble to soluble collagen increases.
  • the fine dermal elastic fibers coarsen and are destroyed.
  • the synthesis of GAG glycosaminoglycan
  • yeast Saccharomyces cerevisea contains numerous compounds, especially in its cytoplasm, such as carbohydrates, proteins, lipids, nucleic acids, vitamins and minerals such as zinc, copper and silicon.
  • yeast was recommended for the local treatment of hemorrhoidal complaints and was later used to treat pustules, burns and itchy rashes.
  • the yeast has been shown to have an antibacterial effect.
  • yeast is still administered to the skin for inflammatory and allergic reactions. In this context, reference is made to the following writings.
  • the object of the present patent application was to provide a method in which the human skin can be protected from aging by topical application of an agent which contains extracts from renewable raw materials.
  • Another object of the present patent application was to find new effects from already known extracts and to enable the use of these extracts in cosmetic and / or dermatological care products by using measurement methods which make it possible to demonstrate these effects.
  • the invention relates to a method for protecting human skin against aging, characterized in that an agent containing an extract from Saccharomyces cerevisiae, which stimulates the synthesis of dermal macromolecules, is applied topically.
  • the stimulating effects on the synthesis of dermal macromolecules of the extract from the renewable raw material Saccharomyces cerevisiae make it very attractive for the market.
  • the complex object of the invention could thus be achieved.
  • the extracts to be used according to the invention are obtained from the yeast Saccharomyces cerevisiae.
  • This yeast is popularly known as brewer's yeast. It is generally used for the production of food and beverages. It is a yeast from the genus of the family Saccharomycetaceae (real yeast). The cells are round, ellipsoidal or cylindrical and multiply vegetatively through multilateral budding. Saccharomyces cerevisiae live mainly on fruits and in plant juices and are not pathogenic. Availability is very high and independent of the seasons.
  • the extracts to be used according to the invention are prepared by customary extraction methods.
  • suitable conventional extraction methods such as maceration, remaceration, digestion, movement maceration, vortex extraction, ultrasound extraction, countercurrent extraction, percolation, repercolation, evacolation (extraction under reduced pressure), diacolation and solid-liquid extraction under continuous reflux , which is carried out in a Soxhiet extractor, which is familiar to a person skilled in the art and in principle all can be used, is exemplary of Hager's Handbook of Pharmaceutical Practice, (5th edition, vol. 2, pp. 1026-1030, Springer Verlag, Berlin- Heidelberg-New-York 1991).
  • Fresh or dried mushrooms or mushroom components can be used as the starting material, the use of dried mushrooms or mushroom components is preferred, but usually mushrooms or mushroom components are used which are mechanically comminuted before extraction. All grinding methods known to the person skilled in the art are suitable here, for example crushing with a mortar.
  • Extraction with water, methanol, ethanol, hexane, cyclohexane, pentane, acetone, propylene glycols, polyethylene glycols, ethyl acetate, dichloromethane, trichloromethane and mixtures thereof is particularly preferred.
  • the extraction is usually carried out at 50 to 100 ° C, preferably at 80 ° C, especially at the boiling point of the solvent used.
  • the extraction takes place under an inert gas atmosphere to avoid oxidation of the ingredients of the extract.
  • the extraction times are set by the person skilled in the art depending on the starting material, the extraction process, the extraction temperature, the ratio of solvent to raw material, etc.
  • the crude extracts obtained can optionally be subjected to further customary steps, such as purification, concentration and / or decolorization. If desired, the extracts produced in this way can, for example, be subjected to a selective separation of individual undesirable ingredients.
  • the extraction can be carried out to any desired degree of extraction, but is usually carried out until exhaustion.
  • the present invention includes the knowledge that the extraction conditions and the yields of the final extracts can be selected depending on the desired field of use. If desired, the extracts can then be subjected to spray drying or freeze drying, for example.
  • the extract from Saccharomyces cerevisiae is the dried product of the aqueous extract.
  • the amount of yeast extracts used in the preparations mentioned depends on the type of application of the extracts and on the concentration of the individual ingredients.
  • the total amount of the extract, preferably as a dry product, in particular from the aqueous extract which is contained in the preparations according to the invention, is generally 0.001 to 25% by weight, preferably 0.005 to 5% by weight, in particular 0.01 to 0.5 % By weight based on the final preparation, with the proviso that the amounts given with water and, if appropriate, further auxiliaries and additives add up to 100% by weight.
  • the agents of the process according to the invention also contain mannitol, and / or cyclodextrin and / or salts of succinic acid, in particular the disodium salt of succinic acid, as additives.
  • succinic acid in particular the disodium salt of succinic acid
  • other auxiliaries and additives may also be present.
  • the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40% by weight, based on the final preparation of the cosmetic and / or pharmaceutical preparations.
  • the preparations can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used.
  • preparations for the purposes of the invention, the terms preparations, final preparations and agents are to be equated with the term care agent.
  • Active substance in the sense of the invention relates to the proportion of substances and auxiliaries and additives which are contained in the preparations, with the exception of the additionally added water.
  • the agents for the method according to the invention show an excellent skin-care effect with high skin tolerance. In addition, they show good stability, in particular against oxidative decomposition of the products.
  • the dermal macromolecules are those which are selected from the group formed from glycosaminoglycans, in particular chondroitin sulfate, keratan sulfate, dermatan sulfate and hyaluronic acid, collagen, in particular collagen type III, elastin, fibronectin, proteoglycans and their salts.
  • Another object of the invention is the use of extracts of the yeast Saccharomyces cerevisiae in cosmetic and / or dermatological agents to stimulate the synthesis of dermal macromolecules selected from the group consisting of glycosaminoglycans, in particular chondroitin sulfate, keratin sulfate and hyaluronic acid, collagen, elastin, fibronectin, proteoglycans and their salts.
  • the method according to the invention leads to the protection of human skin from aging. Furthermore, the method according to the invention can stimulate the synthesis of dermal macromolecules for preventive or curative treatment of signs of aging in the skin. Another name for this type of care product is anti aging. These signs of aging include any type of wrinkles and wrinkles. Treatments include slowing skin aging. The signs of aging can have a variety of causes.
  • dermal macromolecules are in principle to be understood as all macromolecules which are found as components of the skin either in the basement membrane between the dermis and epidermis or in the dermis and epidermis.
  • they are compounds which are selected from the group formed by glycosaminoglycans, collagen, elastin, proteoglycans, fibronectins and their salts.
  • Glycosaminoglycans are also known as mucopolysaccharides and are negatively charged polysaccharides (glycans), which consist of 1, 4-linked units of disaccharides in which 1 mol.
  • a so-called uronic acid e.g. D-glucuronic acid, L-iduronic acid
  • an N-acetylated amino sugar glycosamine
  • D-glucosamino u. D-Galactosaminoglykane Often, sulfuric acid is also bound to oxygen or nitrogen atoms, so that the glycosaminoglycans usually react strongly acidic.
  • glycosaminoglycans in the tissue are linked to a core protein in several chains and thus form proteoglycans. They are found in the skin as framework substances.
  • the synthesis of the glycosaminoglycans which are selected from the group formed by chondroitin sulfates, keratin sulfate, dermatan sulfate and hyaluronic acid is preferably stimulated
  • Collagen consists of protein fibers and occurs in human skin in three different types (types I, III and IV).
  • the individual polypeptide chains each containing a large amount of the amino acid proline and glycine as every third residue, are wound around each other to form a triple helix.
  • the collagen fibers are synthesized as tropocollagen in the fibroblasts and discharged into the extracellular matrix.
  • the stimulation of the synthesis of collagen according to the invention leads to an increase in the production of collagen and thus to an increased intermolecular consolidation of the dermis and thereby to a skin which appears firmer.
  • the elastin is also a fibrous protein. These are unstructured covalently cross-linked polypeptide chains, the one Form rubber-like elastic material.
  • the elastin After synthesis, the elastin is released into the extracellular matrix in the skin cells.
  • the stimulation of the synthesis of the elastin polypeptide chains according to the invention leads to an increase in the production of elastin and thus to an increase in the elasticity of the skin.
  • proteoglycans consist of carbohydrates and proteins, but the proportion of polysaccharides predominates in proteoglycans.
  • the skin's proteoglycans contain dermatan sulfate.
  • Approx. 140 such proteoglycans with the help of smaller proteins (link proteins) attach noncovalently to a hyaluronic acid chain to form molecular aggregates with an average molecular weight of approx. 2 million.
  • the polyanionic aggregates which are characterized by their water-binding capacity, can form solid gels that give the supporting tissue (extracellular matrix) elasticity and tensile strength. They protect the epithelia in mucus.
  • the stimulation of the synthesis of proteoglycans and hyaluronic acid according to the invention leads to a larger amount of extracellular matrix and thus to an increased elasticity and tensile strength.
  • Fibronectin is a group of high molecular weight glycoproteins (MR of the dimer approx. 440 000-550 000), which are found in the extracellular matrix and in extracellular fluids.
  • the fibronectin dimer connected by two disulfide bridges, an elongated molecule with the dimensions 600x25 ⁇ , binds by linear combination of three different repeating domains and the like.
  • a Collagens, glycosaminoglycans, proteoglycans, fibrin (above), deoxyribonucleic acids, immunoglobulins, plasminogen, plasminogen activator, thrombospondin, cells and microorganisms. Through these properties, it conveys z.
  • Hyaluronic acid is an acidic glycosaminoglycan
  • the basic building block of hyaluronic acid is an aminodisaccharide composed of D-glucuronic acid and N-acetyl-D-glucosamine in a (beta 1-3) glycosidic bond, which is (beta 1-4) glycosidic with the next unit connected is.
  • Another object of the invention is the use of extracts from Saccharomyces cerevisiae in agents for stimulating the synthesis of dermal macromolecules
  • the extract from Saccharomyces cerevisiae is the dried product of the aqueous extract and contain the agents between 0.001 and 25% by weight extract from Saccharomyces cerevisiae, preferably 0.005 to 5% by weight, in particular 0.01 to 0.5% by weight, based on the final preparation, with the proviso that the amounts given with water and possibly other auxiliaries and additives add up to 100% by weight.
  • the agents used for the use according to the invention also contain mannitol and / or cyclodextrin and / or salts of succinic acid, in particular the disodium salt of succinic acid.
  • the dermal macromolecules are substances which are selected from the group formed by glycosaminoglycans, in particular chondroitin sulfate, keratan sulfate, dermatan sulfate and hyaluronic acid, elastin, collagen, in particular collagen type III, fibronectin and Proteoglycans and their salts.
  • the extracts according to the invention can be used in all cosmetic products.
  • Examples of cosmetic products are described in their formulations in Tables 2 to 4.
  • the method according to the invention includes the topical application of agents which stimulate the synthesis of dermal macromolecules.
  • agents can be used for the production of cosmetic and / or dermatological preparations, such as, for example, bubble baths, shower baths, creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat compositions, stick preparations, powders or ointments.
  • agents can also be used as further auxiliaries and additives, mild surfactants, oil bodies, emulsifiers, pearlescent waxes, consistency agents, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic agents, UV light protection factors, antioxidants, Contain deodorants, antiperspirants, film formers, swelling agents, insect repellents, hydrotropes, solubilizers, preservatives, perfume oils, dyes and the like.
  • mild surfactants oil bodies, emulsifiers, pearlescent waxes, consistency agents, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic agents, UV light protection factors, antioxidants, Contain deodorants, antiperspirants, film formers, swelling agents, insect repellents, hydrotropes, solubilizers, preservatives, perfume oils, dye
  • Anionic, nonionic, cationic and / or amphoteric or amphoteric surfactants may be present as surface-active substances, the proportion of which in the compositions is usually about 1 to 70, preferably 5 to 50 and in particular 10 to 30% by weight.
  • anionic surfactants are soaps, alkylbenzene sulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, fatty acid ether sulfates, hydroxymethersulfate sulfates, hydroxymether ether sulfates, hydroxymethersulfate sulfates, hydroxymether ether sulfate, hydroxymether ether sulfate, hydroxymether ether sulfate, , Mono- and dialkyl sulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters,
  • Fatty acid amide polyglycol ethers Fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosides or glucoronic acid derivatives, fatty acid N-alkyl glucamides, protein hydrolyzates (in particular vegetable products based on wheat), polyol fatty acid esters and sugar oxides, sorbates, sorbates, sorbates. Unless the non-ionic If surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • cationic surfactants are quaternary ammonium compounds, such as, for example, dimethyldistearylammonium chloride, and esterquats, in particular quaternized fatty acid trialkanolamine ester salts.
  • Typical examples of amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amido betaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. The surfactants mentioned are exclusively known compounds. With regard to the structure and manufacture of these substances, reference is made to relevant reviews, for example, J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, pp.
  • Typical examples of particularly suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether, Monogly- ceridsulfate, mono- and / or dialkyl sulfosuccinates, fatty acid taurides, fatty acid glutamates, ⁇ -olefin sulfonates, ethercarboxylic acids, alkyl oligoglucosides, fatty acid glucamides, alkylamidobetaines, amphoacetals and / or protein fatty acid condensates , the latter preferably based on wheat proteins.
  • esters of linear C6-C22 fatty acids with branched alcohols in particular 2-ethylhexanol
  • esters of C ⁇ s-C38-alkyl hydroxy carboxylic acids with linear or branched C6-C 22 fatty alcohols cf.
  • esters of linear and / or branched fatty acids with polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
  • polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
  • Guerbet alcohols triglycerides based on C ⁇ -cio fatty acids, liquid mono- / di- / triglyceride mixtures based on C ⁇ -Cis- Fatty acids, esters of C ⁇ -C22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, in particular benzoic acid, esters of C2-Ci2-dicarboxylic acids with linear or branched alcohols with 1 to 22 carbon atoms or polyols with 2 to 10 carbon atoms and 2 to 6 hydroxyl groups, vegetable oils, branched primary alcohols, substituted cyclohexanes, linear and branched C6-C22 fatty alcohol carbonates, such as dicaprylyl carbonates (
  • Non-ionic surfactants come from at least one of the following as emulsifiers
  • Partial esters of polyglycerol (average degree of self-condensation 2 to 8), polyethylene glycol (molecular weight 400 to 5000), trimethylolpropane, pentaerythritol, sugar alcohols (e.g. sorbitol), alkyl glucosides (e.g. methyl glucoside, butyl glucoside, lauryl glucoside) and polyglucosides (e.g. cellulose) / or unsaturated, linear or branched fatty acids with 12 to 22 carbon atoms and / or hydroxycarboxylic acids with 3 to 18 carbon atoms and their adducts with 1 to 30 moles of ethylene oxide;
  • Block copolymers e.g. Polyethylene glycol 30 dipolyhydroxystearate;
  • the adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols or with castor oil are known, commercially available products. These are homolog mixtures whose average degree of alkoxylation is the ratio of the amounts of ethylene oxide and / or propylene oxide and Substrate with which the addition reaction is carried out corresponds.
  • Ci2 / i8 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE 2024051 PS as refatting agents for cosmetic preparations.
  • Alkyl and / or alkenyl oligoglycosides their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • the glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
  • Suitable partial glycerides are hydroxystearic acid monoglyceride, stearic acid diglyceride hydroxy, isostearic acid, Isostearinklarediglycerid, ⁇ lklaremonogiycerid, oleic acid diglyceride, Ricinolklaremoglycerid, Ricinolklarediglycerid, Linolklaremonoglycerid, linoleic acid diglyceride, LinolenTalkremonoglycerid, Linolenchurediglycerid, Erucaklaklamonoglycerid, erucic acid diglyceride, rid Weinchuremonoglycerid, Weinklarediglycerid, Citronenklamonoglycerid, Citronendiglyce-, Malic acid monoglyceride, malic acid diglyceride and their technical mixtures, which may still contain minor amounts of triglyceride from the manufacturing process. Addition products of 1 to 30, preferably
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearates (Dehymuls® PGPH), polyglycerol-3-diisostearates (Lameform® TGI), polyglyceryl-4 isostearates (Isolan® Gl 34), polyglyceryl-3 oleates, diisostearoyl polyglyearylate-3 (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), PolygIyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010 / 90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL) , Polyglyceryl-3 Distearate (Cremophor® GS 32) and Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate I
  • polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid, taig fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like which are optionally reacted with 1 to 30 mol of ethylene oxide.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the cocoalkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example the cocoacylaminopropyldimethylammonium alkylglycinate, and 2-carboxylate -3-hydroxyethylimidazoiine each with 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the cocoalkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C ⁇ / i ⁇ alkyl or acyl group, contain at least one free amino group and at least one -COOH or -S ⁇ 3H group in the molecule and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each with about 8 to 18 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and Ci2 / i8-acylsarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the esterquat type, preferably methylquaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Typical examples of fats are glycerides, i.e. Solid or liquid vegetable or animal products, which consist essentially of mixed glycerol esters of higher fatty acids, come as waxes, among others.
  • natural waxes e.g. Candelilla wax, carnauba wax, Japanese wax, espartogras wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walnut, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum, paraffin wax; chemically modified waxes (hard waxes), e.g.
  • Montanester waxes Montanester waxes, Sasol waxes, hydrogenated jojoba waxes and synthetic waxes, such as Polyalkylene waxes and polyethylene glycol waxes in question.
  • fat-like substances such as lecithins and phospholipids can also be used as additives.
  • lecithins is understood by those skilled in the art to mean those glycerophospholipids which are composed of fatty acids, glycerol,
  • n Form phosphoric acid and choline by esterification.
  • Lecithins are therefore often used in the professional world as phosphatidylcholines (PC).
  • PC phosphatidylcholines
  • Examples of natural lecithins are the cephalins, which are also referred to as phosphatidic acids and are derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats.
  • sphingosines or sphingolipids are also suitable.
  • Pearlescent waxes are: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon atoms
  • Suitable consistency agents are primarily fatty alcohols or hydroxyfatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and also partial glycerides, fatty acids or hydroxyfatty acids.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, furthermore higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates , (e.g.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecitol derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers, stabilizers
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or
  • Zinc stearate or ricinoleate can be used.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, e.g. a quaternized hydroxyethyl cellulose available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers such as e.g.
  • Luviquat® condensation products of polyglycols and amines, quaternized collagen polypeptides, such as, for example, lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers such as, for example, amodimethicones, copolymers of dimethylaminophenyl amine (copolymers of adipohydrin amine) Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyl-diallylammonium chloride (Merquat® 550 / Chemviron), polyaminopolyamides, e.g.
  • cationic chitin derivatives such as, for example, quaternized chitosan, optionally microcrystalline, condensation products from dihaloalkylene, such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1, 3-propane, cationic guar gum, such as e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese, quaternized ammonium salt polymers such as e.g. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 from Miranol.
  • dihaloalkylene such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1, 3-propane
  • cationic guar gum such as e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese
  • quaternized ammonium salt polymers such
  • Anionic, zwitterionic, amphoteric and nonionic polymers include, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and their esters, non-reacted acrylamide and polyethylenethacrylate acrylate and with polyesters, uncured amide acrylate and with polyesters, uncured amide acrylamide and with polyesters, uncommonized acrylamide and Copolymers, octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers, polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymers,
  • Vinyl pyrrolidone / dimethylaminoethyl methacrylate / vinyl caprolactam terpolymers as well as optionally derivatized cellulose ethers and silicones in question.
  • Other suitable polymers and thickeners are in Cosm.Toil. 108, 95 (1993).
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine-, glycoside- and / or alkyl-modified silicone compounds, which can be both liquid and resinous at room temperature.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • a detailed overview of suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 91, 27 (1976). UV protection factors
  • Sunscreens or UV light protection factors in the sense of the invention are light protection agents which are useful for protecting human skin against the damaging effects of direct and indirect radiation from the sun.
  • the sun's ultraviolet radiation which is responsible for tanning the skin, is divided into the sections UV-C (wavelengths 200-280 nm), UV-B (280-315 nm) and UV-A (315-400 nm).
  • UV-B The pigmentation of normal skin under the influence of solar radiation, i.e. H. the formation of melanins is UV-B u.
  • UV-A causes different. Irradiation with UV-A rays ("long-wave UV") results in the darkening of the melanin bodies already present in the epidermis, without any damaging influences being recognizable. This is different with the so-called “short-wave UV” (UV-B) , This causes the development of so-called late pigment through the formation of new melanin grains.
  • UV-B short-wave UV
  • the skin is exposed to unfiltered radiation, which - depending on the duration of exposure - can lead to reddening of the skin (erythema), skin inflammation (sunburn) and even burn blisters,
  • the extracts of the fungus Grifola frondosa according to the invention are used as UV absorbers or light filters, which thus convert the UV radiation into harmless heat; these can additionally be present in combination with other sunscreens or UV light protection factors.
  • UV light protection factors are, for example, liquid or crystalline organic substances (light protection filters) at room temperature, which are able to absorb ultraviolet rays and absorb the energy in the form of longer-wave radiation, e.g. To give off heat again.
  • UVB filters can be oil-soluble or water-soluble. Examples of oil-soluble substances are:
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • esters of cinnamic acid preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid propyl ester, 4-methoxycinnamic acid isoamyl ester 2-cyano-3,3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene);
  • esters of salicylic acid preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-isopropylbenzyl ester, salicylic acid homomethyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • Esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate; Triazine derivatives, e.g. 2,4,6-trianilino- (p-carbo-2'-ethyl-1'-hexyloxy) -1, 3,5-triazine and octyl triazone, as described in EP 0818450 A1 or dioctyl butamido triazone (Uvasorb ® HEB);
  • Triazine derivatives e.g. 2,4,6-trianilino- (p-carbo-2'-ethyl-1'-hexyloxy) -1, 3,5-triazine and octyl triazone, as described in EP 0818450 A1 or dioctyl butamido triazone (Uvasorb ® HEB);
  • Propane-1,3-diones such as 1- (4-tert-butylphenyl) -3- (4'methoxyphenyl) propane-1,3-dione; > Ketotricyclo (5.2.1.0) decane derivatives, as described in EP 0694521 B1.
  • benzoylmethane such as 1- (4'-tert, butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert-butyl-4, are particularly suitable as typical UVA filters '-methoxydibenzoyl-methane (Parsol 1789), 1-phenyl-3- (4'-isopropylphenyl) propane-1, 3-dione and enamine compounds, as described for example in DE 19712033 A1 (BASF), Die UV-A and UV-B filters can of course also be used in mixtures.
  • insoluble light protection pigments namely finely dispersed metal oxides or salts, are also suitable for this purpose.
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • Silicates (talc), barium sulfate or zinc stearate can be used as salts.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm. They can have a spherical shape, but it is also possible to use particles which have an ellipsoidal shape or a shape which differs from the spherical shape in some other way.
  • the pigments can also be surface treated, i.e. are hydrophilized or hydrophobized.
  • Typical examples are coated titanium dioxides, e.g. Titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or dimethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used. Further suitable UV light protection filters can be found in the overview by P.Finkel in S ⁇ F Journal 122, 543 (1996) and Perfumery and Cosmetics 3 (1999), page 11ff.
  • the extracts according to the invention can also be used in cosmetic and / or dermatological care products as tyrosinase inhibitors and / or as skin whitening agents.
  • the skin whitening agents also known as skin whiteners, lead to a lighter appearance of the skin.
  • One way to lighten or whiten the skin is by inhibiting tyrosinase, because tyrosinase is involved in the formation of the skin pigment melanin (depigmentation). Due to the inhibition of tyrosinase, the use of extracts from Grifola frondosa according to the invention leads to reduced formation of melanin and thus to skin whitening.
  • the extracts from Grifola frondosa can additionally be used in combination with other tyrosinase inhibitors as depigmenting agents such as arbutin, ferulic acid, kojic acid, coumaric acid and ascorbic acid (vitamin C),
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • Typical examples are amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-carnosine, D-carnosine, L-carnosine and their derivatives (e.g. anserine) , Carotenoids, carotenes (e.g.
  • ⁇ -carotene, ß-carotene, lycopene) and their derivatives chlorogenic acid and their derivatives, lipoic acid and their derivatives (e.g. dihydroliponic acid), aurothioglucose, propylthiouracil and other thiols (e.g.
  • thioredoxin glutathione, cysteine, cystine, Cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters) and their salts, dilauryl thiodipropionate , Distearyl thiodipropionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) as well as sulfoximine compounds (eg buthioninsulfoximines, homocysteine sulfoximine, butioninsulfones, penta-, hexa-, heptathioninsulfoximine) in very low amounts tolerable dosages (e.g.
  • (metal) chelators e.g. ⁇ -hydroxy fatty acids, palmitic acid, phytic acid, lactoferrin), ⁇ -hydroxy acids (e.g. citric acid, lactic acid, malic acid), humic acid, bile acid, bile extracts, Bilirubin, biliverdin, EDTA, EGTA and their derivatives, unsaturated fatty acids and their derivatives (e.g. ⁇ -linolenic acid, linoleic acid, oleic acid), folic acid and their derivatives, ubiquinone and ubiquinol and their derivatives, vitamin C and derivatives (e.g.
  • Biogenic active substances include, for example, tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, (deoxy) ribonucleic acid and its fragmentation products, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils and essential oils, plant extracts and essential oils , Deodorants and germ inhibitors
  • deodorants counteract, mask or eliminate body odors.
  • Body odors arise from the action of skin bacteria on apocrine sweat, whereby unpleasant smelling breakdown products are formed.
  • deodorants contain active ingredients which act as germ-inhibiting agents, enzyme inhibitors, odor absorbers or odor maskers.
  • germ-inhibiting agents such as. B.
  • Esterase inhibitors are suitable as enzyme inhibitors. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT).
  • the substances inhibit enzyme activity and thereby reduce odor.
  • esterase inhibitors include sterol sulfates or phosphates, such as, for example, lanosterol, cholesterol, campesteric, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid, Monoethyl adipate, diethyl adipate, malonic acid and diethyl malonate, hydroxycarboxylic acids and their esters such as citric acid, malic acid, tartaric acid or tartaric acid diethyl ester, and zinc glycinate,
  • sterol sulfates or phosphates such as, for example, lanosterol, cholesterol, campesteric, stigmasterol and sitosterol sulfate or phosphate
  • dicarboxylic acids and their esters such as, for example, glutaric acid
  • Suitable odor absorbers are substances that absorb odor-forming compounds and can retain them to a large extent. They lower the partial pressure of the individual components and thus also reduce their speed of propagation. It is important that perfumes must remain unaffected. Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixators", such as, for example, the main component. B. extracts of Labdanum or Styrax or certain abietic acid derivatives. Fragrance agents or perfume oils act as odor maskers and, in addition to their function as odor maskers, give the deodorants their respective fragrance.
  • Perfume oils are, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and branches as well as resins and balms. Animal raw materials, such as civet and castoreum, are also suitable. Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are, for example, cyanoacetate, p-tert-butylcyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the jonones and methylcedryl ketone
  • the alcohols are anethole, citronellellone Eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol
  • the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labdanum oil and lavandin oil.
  • Antiperspirants reduce sweat formation by influencing the activity of the eccrine sweat glands and thus counteract armpit wetness and body odor.
  • Aqueous or anhydrous formulations of antiperspirants typically contain the following ingredients:
  • non-aqueous solvents such as As ethanol, propylene glycol and / or glycerin.
  • Salts of aluminum, zirconium or zinc are particularly suitable as astringent antiperspirant active ingredients.
  • suitable antiperspirant active ingredients are e.g. Aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds e.g. B. with propylene glycol-1, 2nd Aluminum hydroxyallantoinate, aluminum chloride tartrate, aluminum zirconium trichlorohydrate, aluminum zirconium tetrachlorohydrate, aluminum zirconium pentachlorohydrate and their complex compounds z. B, with amino acids such as glycine.
  • customary oil-soluble and water-soluble auxiliaries can be present in smaller amounts in antiperspirants.
  • oil soluble aids can e.g. his:
  • water-soluble additives are e.g. Preservatives, water-soluble fragrances, pH adjusters, e.g. Buffer mixtures, water soluble thickeners, e.g. water-soluble natural or synthetic polymers such as e.g. Xanthan gum, hydroxyethyl cellulose, polyvinyl pyrrolidone or high molecular weight polyethylene oxides.
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Montmorillonites, clay minerals, pemules and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • Hydrotropes such as ethanol, isopropyl alcohol, or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Dialcohol amines such as diethanolamine or 2-amino-1, 3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Regulation.
  • Perfume oils are mixtures of natural and synthetic fragrances
  • natural fragrances are extracts of flowers (lily, lavender, rose, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, Caraway seeds, juniper), fruit peel (bergamot, lemon, oranges), roots (macis, angelica, celery, cardamom, costus, iris, calmus), woods (pine, sandal, guaiac, cedar, rosewood), herbs and Grasses (tarragon, lemongrass, sage, thyme), needles and twigs (spruce, fir, pine, mountain pine), resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allyl cyclohexyl benzylatepylpropionate, and
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde,
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, for example sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • Example 1 Extraction of the mushrooms with aqueous ethanol
  • 150 g of the yeast Saccharomyces cerevisia were added to 225 l of distilled water at a temperature of 80 ° C. and the mixture was first homogenized. The infusion was heated to 120 ° C with stirring and for 30 min. extracted. The extract was then centrifuged for 15 minutes at a rate of 5000 g. The supernatant liquid was concentrated by evaporation. The extract was then at 115 ° C for 20 min. sterilized, centrifuged and heated again to 110 ° C before it was filtered. The residue was spray dried. The yield of dry product was between 5 and 20% by weight based on the dry weight of the mushrooms used.
  • Example 2 Evidence of stimulation of the synthesis of dermal macromolecules
  • the dermis is made up of cells (fibroblasts and mast cells), tissue components (collagen and elastin) and so-called basic substances.
  • These basic substances include, for example, glycosaminoglycans (GAG) such as, hyaluronic acid, chondroitin sulfate, dermatan sulfate and glycoproteins.
  • GAG glycosaminoglycans
  • the aging of the skin reduces the intermolecular strengthening and elasticity of the dermis and thus the tightness of the skin.
  • the number of existing skin cells, especially fibroblasts is also reduced as the skin ages.
  • the collagen fibers become fragmented over time and the proportion of insoluble to soluble collagen increases.
  • the fine dermal elastic fibers coarsen and are destroyed.
  • the synthesis of GAG glycosaminoglycan
  • All of these processes contribute to skin aging and its manifestations such as wrinkles and lack of firmness of the skin.
  • the following models can be used to demonstrate the stimulation of the synthesis of the dermal macromolecules and thus to identify an active substance that can act against skin aging, that is to say act as an anti-aging agent.
  • the first measurement method is based on the staining of macromolecules in a culture of human fibroblasts, which builds a collagen gel or collagen lattice fibers or a matrix with type I collagen. Certain regions of these fibers were quantified with the aid of staining reagents for the proportion of the macromolecules mentioned.
  • the second method reactive structures and a specific characterization of the matrix of fibroblasts and collagen gel were investigated by reactions of the macromolecules with antibodies. The following antibodies were used:
  • DMEM Dulbecco Minimum Essentiai Medium, company Life Technologie Sari
  • FCS fetal calf serum
  • composition to be examined contained the following composition:
  • Extract from Saccharomyces cerevisiae 1 to 5%
  • Disodium salt of succinic acid 0.1 to 1% and is commercially available under the brand and name Cytovitin® from Laboratoires Serob ⁇ Liste.
  • a quantification of the "perifibroblast” secretion was carried out by an image analyzer using a microscope. Reactive structures in the "perifibroblast area” were detected and the different gray levels were determined by comparison.
  • the immunohistochemical reactions with the different antibodies were examined with a convocal laser scanning microscope from Zeiss. The images obtained from the convocal laser scanning microscopy were converted using standard software (Quantimet Q500 from Leica). The percentage of labeled macromolecules based on the total area of the examined sample was determined.
  • a significant increase can be obtained from the results of the determination of the glycosaminoglycan content in tissue samples of collagen gel with fibroblasts especially in the “perifibroblastic area” and after the evaluation of the characteristic antibody reactions with anti-chondroitin, anti-elastin and anti-collagen type III the proportion of macromolecules after a seven-day incubation period with different concentrations of Cytovitin® compared to incubation with pure fetal calf serum (FCS) in a concentration of 2% by weight.
  • FCS pure fetal calf serum
  • Glyceryl Stearate (and) Ceteareth-12/20 8.0 8.0 8.0 8.0 8.0 (and) Cetearyi Alcohoi (and) Cetyl
  • Glycerin (86% by weight) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
  • Glycerin (86% by weight) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
  • Glycerin (86% by weight) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
  • Deoxyribonucleic acid molecular weight approx. 70000, purity (determined by spectrophotometric measurement of the absorption at 260 nm and 280 nm): at least 1.7.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Botany (AREA)
  • Engineering & Computer Science (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

Vorgeschlagen wird ein Verfahren zum Schutz der menschlichen Haut gegen die Alterung, dadurch gekennzeichnet, dass ein Mittel, enthaltend einen Extrakt aus Saccharomyces cerevisiae, welches die Synthese von dermalen Makromolekülen stimuliert topisch angewendet wird. Weiterhin wird die Verwendung von Extrakten aus Saccharomyces cerevisiae in Mitteln zur Stimulierung der Synthese von dermalen Makromolekülen vorgeschlagen.

Description

Verfahren zum Schutz der Haut gegen die Alterung
Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der kosmetischen und dermatologischen Pflegemittel und betrifft ein Verfahren zum Schutz der menschlichen Haut gegen die Alterung durch topische Anwendung eines Mittels welches die Synthese von dermalen Makromolekülen stimuliert. Des weiteren betrifft die Erfindung die Verwendung von Extrakten aus der Hefe Saccharomyces cerevisiae für Anwendungen in kosmetischen und dermatologischen Pflegemitteln.
Stand der Technik
Die Dermis ist aufgebaut aus Zellen (Fibroblasten und Mastzellen), Gewebebestandteilen (Collagen und Elastin) und aus sogenannten Grundsubstanzen. Zu diesen Grundsubstanzen zählen Makromoleküle wie beispielsweise Glykosaminoglykane (GAG) (Hyaluronsäure, Chondroitinsulfat, Dermatansulfat) und Glycoproteine. Durch die Hautalterung vermindert sich die intermolekulare Verfestigung und Elastizität der Dermis und dadurch die Straffheit der Haut. Ebenso wird die Zahl der vorhandenen Hautzellen, insbesondere der Fibroblasten im Laufe der Hautalterung reduziert. Die Collagenfasern werden im Laufe der Zeit fragmentiert und es erhöht sich der Anteil von unlöslichen zu löslichen Collagen. Die feinen dermalen elastischen Fasern vergröbern sich und werden zerstört. Die Synthese von GAG (Glykosaminoglykan) ist vermindert. All diese Prozesse tragen zur Hautalterung und deren Erscheinungsformen wie Falten und mangelnde Straffheit der Haut bei.
Die Weiterentwicklungen auf dem Gebiet der Messverfahren führen dazu, dass neue Wirkungsweisen bereits bekannter Wirkstoffe getestet werden können und gefunden werden. Der Nachteil vieler bekannter Verfahren zur Bestimmung kosmetischer Effekte liegt in der Notwendigkeit direkt auf der Haut des Probanden zu testen wie zum Beispiel die Bestimmung von Oberflächeneigenschaften auf der Haut. Auch die Bestimmung der Wirksamkeit von Lichtschutzmitteln erfolgt durch direkte UV- Bestrahlung bestimmter Hautpartien der Probanden. Eine in vitro Bestimmung von Effekten bestimmter Wirkstoffe ist in vieler Hinsicht wünschenswert und vorteilhaft.
Es ist bekannt, dass Extrakte aus Hefen in der Medizin wichtige Therapiemöglichkeiten bieten und auch in der Kosmetik eingesetz werden. Die Hefe Saccharomyces cerevisea enthält vor allem in ihrem Zytoplasma zahlreiche Verbindungen wie Kohlenhydrate, Proteine, Lipide, Nucleinsäuren, Vitamine und Mineralstoffe wie Zink, Kupfer und Silicium. Die Hefe wurde schon im alten Ägypten zur lokalen Behandlung von Hämorrhoidalbeschwerden empfohlen und später dann zur Behandlung von Pusteln, Brandwunden und juckenden Ausschlägen angewandt. Eine antibakterielle Wirkung konnte der Hefe nachgewiesen werden. Heute noch wird die Hefe bei entzündlichen und allergischen Reaktionen der Haut verabreicht. In diesem Zusammenhang sei auf die folgenden Schriften verwiesen. Aus dem Abstract der japanischen Schrift JP 09124438 ist bekannt, dass Extrakte aus Saccharomyces cerevisiae als Feuchthaltemittel, als Anti-Akne Mittel oder auch als Melanin-Inhibitor eingesetzt werden können. In der EP 297457 wird beschrieben, dass eine bestimmte Fraktion aus der Gel-Filtration eines Extraktes aus Saccharomyces cerevisiae als revitalisierendes Mittel verwendet wird.
Kosmetische Zubereitungen stehen dem Verbraucher heute in einer Vielzahl von Kombinationen zur Verfügung. Dennoch besteht im Markt das Bedürfnis nach Produkten mit einem verbesserten Leistungsspektrum. Hierbei sind Hautverträglichkeit sowie der Einsatz natürlicher' Produkte beim Kunden gefragt. Für die Herstellung von Produkten, die gleichzeitig eine Vielzahl von Anwendungen erlauben, besteht bisher das Problem, dass ihren Zubereitungen eine große Zahl an Wirkstoffen zugesetzt werden müssen, die gemeinsam das gewünschte Anforderungsprofil ergeben, ohne sich dabei gegenseitig zu stören oder gar unerwünschte Nebeneffekte zu erzeugen. Dem entsprechend besteht ein besonderes Interesse an Pflegemitteln, die die gewünschten Eigenschaften in sich vereinigen. Daneben ist es wünschenswert durch das Auffinden neuer Einsatzgebiete bereits bekannter Substanzklassen deutlich bessere Produkte zu erhalten. Besonders Extrakte von nachwachsenden Rohstoffen und deren Inhaltstoffe finden immer häufiger Einsatz in der Kosmetik.
Beschreibung der Erfindung
Die Aufgabe der vorliegenden Patentanmeldung hat darin bestanden, ein Verfahren zur Verfügung zu stellen, bei dem durch topische Anwendung eines Mittels, welches Extrakte aus nachwachsenden Rohstoffen enthält, die menschliche Haut vor der Alterung geschützt werden kann.
Eine weitere Aufgabe der vorliegenden Patentanmeldung hat darin bestanden, neue Wirkungen von bereits bekannten Extrakten zu finden und die Verwendung dieser Extrakte in kosmetischen und/oder dermatologischen Pflegemitteln zu ermöglichen, indem Messmethoden angewendet werden, die es möglich machen, diese Wirkungen nachzuweisen.
Gegenstand der Erfindung ist ein Verfahren zum Schutz der menschlichen Haut gegen die Alterung, dadurch gekennzeichnet, dass ein Mittel, enthaltend einen Extrakt aus Saccharomyces cerevisiae, welches die Synthese von dermalen Makromolekülen stimuliert topisch angewendet wird.
Überraschenderweise wurde gefunden, dass durch ein Verfahren, bei dem ein Mittel topisch angewendet wird, welches die Synthese dermaler Makromoleküle stimulieren kann, die menschliche Haut vor der Alterung geschützt werden kann.
Die stimulierenden Effekte auf die Synthese dermaler Makromoleküle des Extraktes aus dem nachwachsendem Rohstoff Saccharomyces cerevisiae machen ihn für den Markt sehr attraktiv. Die komplexe Aufgabe der Erfindung konnte somit gelöst werden.
Saccharomyces cerevisiae
Die erfindungsgemäß einzusetzenden Extrakte werden aus der Hefe Saccharomyces cerevisiae gewonnen. Diese Hefe wird im Volksmund auch als Bierhefe bezeichnet. Sie wird im allgemeinen zur Produktion von Nahrungs- und Genussmitteln verwendet. Es handelt sich um eine Hefe aus der Gattung der Familie Saccharomycetaceae (echte Hefen). Die Zellen sind rund, ellipsoid oder zylindrisch und vermehren sich vegetativ durch multilaterale Knospung. Saccharomyces cerevisiae leben vorwiegend auf Früchten und in Pflanzensäften und sind nicht pathogen. Die Verfügbarkeit ist sehr hoch und von den Jahreszeiten unabhängig.
Extraktion
Die Herstellung der erfindungsgemäß einzusetzenden Extrakte erfolgt durch übliche Methoden der Extraktion. Bezüglich der geeigneten herkömmlichen Extraktionsverfahren wie der Mazeration, der Remazeration, der Digestion, der Bewegungsmazeration, der Wirbelextraktion, Ultraschallextraktion, der Gegenstromextraktion, der Perkolation, der Reperkolation, der Evakolation (Extraktion unter vermindertem Druck), der Diakolation und Festflüssig-Extraktion unter kontinuierlichem Rückfluß, die in einem Soxhiet-Extraktor durchgeführt wird, die dem Fachmann geläufig und im Prinzip alle anwendbar sind, sei beispielhaft auf Hagers Handbuch der Pharmazeutischen Praxis, (5. Auflage, Bd. 2, S. 1026-1030, Springer Verlag, Berlin-Heidelberg-New-York 1991) verwiesen. Als Ausgangsmaterial können frische oder getrocknete Pilze oder Pilzbestandteile eingesetzt werden, bevorzugt ist der Einsatz von getrockneten Pilzen oder Pilzbestandteilen, üblicherweise wird jedoch von Pilzen oder Pilzbestandteilen ausgegangen, die vor der Extraktion mechanisch zerkleinert werden. Hierbei eignen sich alle dem Fachmann bekannten Zerkleinerungsmethoden, als Beispiel sei die Zerstoßung mit einem Mörser genannt.
Als Lösungsmittel für die Durchführung der Extraktionen können vorzugsweise Wasser, organische Lösungsmittel oder Gemische aus organischen Lösungsmitteln und Wasser, insbesondere niedermolekulare Alkohole, Kohlenwasserstoffe, Ketone, Ester oder halogenhaltige Kohlenwasserstoffe mit mehr oder weniger hohen Wassergehalten (destilliert oder nicht destilliert) vorzugsweise destilliertes Wasser einer Temperatur von größer oder gleich 80 °C verwendet werden. Besonders bevorzugt ist die Extraktion mit Wasser, Methanol, Ethanol, Hexan, Cyclohexan, Pentan, Aceton, Propylenglycolen, Polyethylenglycolen, Ethylacetat, Dichlormethan, Trichlormethan sowie Mischungen hieraus. Die Extraktion erfolgt in der Regel bei 50 bis 100 °C, bevorzugt bei 80°C, insbesondere bei Siedetemperatur des verwendeten Lösungsmittels. In einer möglichen Ausführungsform erfolgt die Extraktion unter Inertgasatmosphäre zur Vermeidung der Oxidation der Inhaltsstoffe des Extraktes. Die Extraktionszeiten werden vom Fachmann in Abhängigkeit vom Ausgangsmaterial, dem Extraktionsverfahren, der Extraktionstemperatur, vom Verhältnis Lösungsmittel zu Rohstoff u.a. eingestellt. Nach der Extraktion können die erhaltenen Rohextrakte gegebenenfalls weiteren üblichen Schritten, wie beispielsweise Aufreinigung, Konzentration und/oder Entfärbung unterzogen werden. Falls wünschenswert, können die so hergestellten Extrakte beispielsweise einer selektiven Abtrennung einzelner unerwünschter Inhaltsstoffe, unterzogen werden. Die Extraktion kann bis zu jedem gewünschten Extraktionsgrad erfolgen, wird aber gewöhnlich bis zur Erschöpfung durchgeführt. Typische Ausbeuten (= Trockensubstanzmenge des Extraktes bezogen auf eingesetzte Rohstoffmenge) bei der Extraktion getrockneter Pilze oder getrockneter Pilzbestandteile gegebenenfalls entfettet, liegen im Bereich von 2 bis 25, insbesondere 5 bis 20 Gew.-%. Die vorliegende Erfindung umfasst die Erkenntnis, dass die Extraktionsbedingungen sowie die Ausbeuten der Endextrakte je nach gewünschtem Einsatzgebiet gewählt werden können. Falls gewünscht, können die Extrakte anschließend beispielsweise einer Sprüh- oder Gefriertrocknung unterworfen werden.
In einer besonderen Ausführungsform der Erfindung handelt es sich bei dem Extrakt aus Saccharomyces cerevisiae um das getrocknete Produkt des wässrigen Extraktes.
Die Einsatzmenge der Hefeextrakte in den genannten Zubereitungen richtet sich nach der Art der Anwendungen der Extrakte und nach der Konzentration der einzelnen Inhaltstoffe. Die Gesamtmenge des Extraktes bevorzugt als Trockenprodukt insbesondere aus dem wässrigen Extrakt, der in den erfindungsgemäßen Zubereitungen enthalten ist, beträgt in der Regel 0,001 bis 25 Gew.-%, vorzugsweise 0,005 bis 5 Gew.-%, insbesondere 0,01 bis 0,5 Gew.-% bezogen auf die Endzubereitung, mit der Maßgabe, dass sich die Mengenangaben mit Wasser und gegebenenfalls weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% addieren.
In einer weiteren besonderen Ausführungsform der Erfindung enthalten die Mittel des erfindungsgemäßen Verfahrens weiterhin als Zusatzstoffe Mannitol, und/oder Cyclodextrin und/oder Salze der Bernsteinsäure, insbesondere das Dinatriumsalz der Bernsteinsäure. Neben den genannten Zusatzstoffen können noch weitere Hilfs- und Zusatzstoffe enthalten sein.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Endzubereitung der kosmetischen und/oder pharmazeutischen Zubereitungen - betragen. Die Herstellung der Zubereitungen kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.
Die Begriffe Zubereitungen, Endzubereitungen und Mittel sind im Sinne der Erfindung mit dem Begriff Pflegemittel gleichzusetzen.
Aktivsubstanz im Sinne der Erfindung bezieht sich auf den Anteil an Substanzen sowie Hilfs- und Zusatzstoffen, die in den Zubereitungen enthaltend sind, mit Ausnahme des zusätzlich hinzugefügten Wassers.
Die Mittel für das erfindungsgemäße Verfahren zeigen eine hervorragende hautpflegende Wirkung bei gleichzeitig hoher Hautverträglichkeit. Außerdem zeigen sie eine gute Stabilität, insbesondere gegenüber oxidativer Zersetzung der Produkte.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens handelt es sich bei den dermalen Makromolekülen um solche, die ausgewählt sind aus der Gruppe, die gebildet wird aus Glykosaminoglykane insbesondere Chondroitinsulfat, Keratansulfat, Dermatansulfat und Hyaluronsäure, Collagen insbesondere Collagen Typ III, Elastin, Fibronectin, Proteoglycanen und deren Salze.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von Extrakten der Hefe Saccharomyces cerevisiae in kosmetischen und/oder dermatologischen Mitteln zur Stimulierung der Synthese von dermalen Makromolekülen ausgewählt aus der Gruppe, die gebildet wird aus Glykosaminoglykane insbesondere Chondroitinsulfat, Keratansulfat und Hyaluronsäure, Collagen, Elastin, Fibronectin, Proteoglycanen und deren Salze.
Das erfindungsgemäße Verfahren führt durch die Stimulierung der Synthese dermaler Makromoleküle zum Schutz der menschlichen Haut vor der Alterung. Des weiteren kann durch das erfindungsgemäße Verfahren durch die Stimulierung der Synthese dermaler Makromoleküle zur vorbeugenden oder heilenden Behandlung von Alterserscheinungen der Haut kommen. Eine andere Bezeichnung für diese Art der Pflegemittel ist auch anti-aging Mittel. Zu diesen Alterserscheinungen zählen beispielsweise jede Art der Fältchen- und Faltenbildung. Die Behandlungen schließen eine Verlangsamung von Altersprozessen der Haut mit ein. Die Alterserscheinungen können die unterschiedlichsten Ursachen aufweisen.
Dermale Makromoleküle
Als dermale Makromoleküle sind im Sinne der Erfindung prinzipiell alle Makromoleküle zu verstehen, die als Bestandteile der Haut entweder in der Basalmembran zwischen Dermis und Epidermis oder in der Dermis und Epidermis direkt zu finden sind. Es handelt sich im Besonderen um Verbindungen die ausgewählt sind aus der Gruppe, die gebildet wird von Glycosaminoglycanen, Collagen, Elastin, Proteoglycanen, Fibronectinen und deren Salze.
Glykosaminoglykane werden auch als Mucopolysaccharide bezeichnet und sind negativ geladene Polysaccharide (Glykane), welche aus 1 ,4-verknüpften Einheiten von Disacchariden bestehen, in denen 1 Mol. einer sogenannten Uronsäure (z. B. D-Glucuronsäure, L-Iduronsäure) mit der 3-Stellung eines N-acetylierten Aminozuckers (Glykosamins) glykosidisch verbunden ist. Nach der Natur dieses Aminozuckers unterscheidet man D-Glucosamino- u. D-Galactosaminoglykane. Häufig ist auch noch Schwefelsäure an Sauerstoff- oder Stickstoff-Atome gebunden, so daß die Glykosaminoglykane meist stark sauer reagieren. Mit Ausnahme der Hyaluronsäure sind die Glykosaminoglykane im Gewebe zu mehreren Ketten an ein Kern-Protein (core protein) gebunden und bilden somit Proteoglykane. Als Gerüstsubstanzen kommen sie in der Haut vor. Erfindungsgemäß wird bevorzugt die Synthese der Glykosaminoglykanen stimuliert, die ausgewählt sind aus der Gruppe, die gebildet wird von Chondroitinsulfate, Keratansulfat, Dermatansulfat und Hyaluronsäure
Collagen besteht aus Proteinfasern und kommt in menschlicher Haut in drei verschiedenen Typen (Typ I, III und IV) vor. Im Collagen sind die einzelnen Polypeptidketten, die jeweils viel von der Aminosäure Prolin und als jeden dritten Rest Glycin enthalten, umeinander zu einer Tripelhelix gewunden. Die Collagenfasern werden als Tropokollagen in den Fibroblasten synthetisiert und in die extrazelluläre Matrix ausgeschleust. Die erfindungsgemäße Stimulierung der Synthese des Collagens führt zu einer Erhöhung der Produktion an Collagen und damit zu einer erhöhten intermolekularen Verfestigung der Dermis und dadurch zu einer straffer erscheinenden Haut. Das Elastin ist ebenfalls ein faserartiges Protein. Hierbei handelt es sich um unstrukturierte kovalent quervernetzte Polypeptidketten, die ein gummiähnliches elastisches Material bilden. Das Elastin wird nach der Synthese in den Hautzellen in die extrazelluläre Matrix ausgeschleust. Die erfindungsgemäße Stimulierung der Synthese der Elastin- Polypeptidketten führt zu einer Erhöhung der Produktion an Elastin und damit zu einer Erhöhung der Elastizität der Haut.
Die Proteoglycane bestehen wie die Glycoproteine aus Kohlenhydraten und aus Proteinen, bei den Proteoglycanen überwiegt jedoch der Anteil an Polysacchariden. Die Proteoglycane der Haut enthalten Dermatansulfat. Es lagern sich ca. 140 solcher Proteoglycane mit Hilfe kleinerer Proteine (Link- Proteine) nichtkovalent an eine Hyaluronsäure-Kette zu Molekül-Aggregaten mit einer mittleren Molmasse von ca. 2 Mio. an. Die durch ihr Wasserbindevermögen ausgezeichneten polyanionischen Aggregate können feste Gele bilden, die dem Stützgewebe (extrazelluläre Matrix) Elastizität und Zugfestigkeit verleihen. In Schleimen schützen sie die Epithelien. Die erfindungsgemäße Stimulierung der Synthese von Proteoglycanen und Hyaluronsäure führt zu einer größeren Menge an extrazellulärer Matrix und damit zu einer erhöhten Elastizität und Zugfestigkeit.
Fibronectin stellt eine Gruppe hochmolekularer Glykoproteine (MR des Dimers ca. 440 000-550 000) dar, die sich in der extrazellulären Matrix und in extrazellulären Flüssigkeiten finden. Das durch zwei Disulfid-Brücken verbundene Fibronectin-Dimer, ein langgestrecktes Molekül mit den Abmessungen 600x25 Ä, bindet durch lineare Kombination dreier verschiedener sich wiederholender Domänen u. a. Collagene, Glykosaminoglykane, Proteoglykane, Fibrin(ogen), Desoxyribonucleinsäuren, Immunglobuline, Plasminogen, Plasminogen-Aktivator, Thrombospondin, Zellen und Mikroorganismen. Durch diese Eigenschaften vermittelt es z. B. die Anhaftung von Bindegewebszellen an Collagen- Fibrillen oder von Thrombocyten und Fibroblasten an Fibrin (Beitrag zur Wundheilung).
Die Hyaluronsäure ist ein saures Glykosaminoglykan, Grundbaustein der Hyaluronsäure ist ein aus D- Glucuronsäure und N-Acetyl-D-glucosamin in (beta 1-3)-glykosidischer Bindung aufgebautes Aminodisaccharid, das mit der nächsten Einheit (beta 1-4)-glykosidisch verbunden ist.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von Extrakten aus Saccharomyces cerevisiae in Mitteln zur Stimulierung der Synthese von dermalen Makromolekülen
In weiteren besonderen Ausführungsformen der erfindungsgemäßen Verwendung handelt es sich bei dem Extrakt aus Saccharomyces cerevisiae um das getrocknete Produkt des wässrigen Extraktes und enthalten die Mittel zwischen 0,001 und 25 Gew.-% Extrakt aus Saccharomyces cerevisiae, vorzugsweise 0,005 bis 5 Gew.-%, insbesondere 0,01 bis 0,5 Gew.-% bezogen auf die Endzubereitung, mit der Maßgabe, dass sich die Mengenangaben mit Wasser und gegebenenfalls weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% addieren.
Weiterhin enthalten die Mittel die für die Erfindungsgemäßen Verwendung verwendet werden in einer besonderen Ausführungsform weiterhin Mannitol, und/oder Cyclodextrin und/oder Salze der Bernsteinsäure, insbesondere das Dinatriumsalz der Bernsteinsäure. In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Verwendung handelt es sich bei den dermalen Makromolekülen um Substanzen, die ausgewählt sind aus der Gruppe, die gebildet wird von Glykosaminoglykanen insbesondere Chondroitinsulfat, Keratansulfat, Dermatansulfat und Hyaluronsäure, Elastin, Collagen, insbesondere Collagen Typ III, Fibronectin und Proteoglycanen und deren Salze.
Prinzipiell kann man die erfindungsgemäßen Extrakte in allen kosmetischen Produkten einsetzen. Beispiele für kosmetische Produkte sind in ihren Formulierungen in den Tabelle 2 bis 4 beschrieben.
Kosmetische und/oder dermatologische Zubereitungen
Das erfindungsgemäße Verfahren beinhaltet die topische Anwendung von Mitteln die die Synthese von dermalen Makromolekülen stimuliert. Diese Mittel können zur Herstellung von kosmetischen und/oder dermatologischen Zubereitungen, wie beispielsweise Schaumbäder, Duschbäder, Cremes, Gele, Lotionen, alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/ Fett-Massen, Stiftpräparaten, Pudern oder Salben dienen. Diese Mittel können ferner als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Perlglanzwachse, Konsistenzgeber, Verdik- kungsmittel, Überfettungsmittel, Stabilisatoren, Polymere, Siliconverbindύngen, Fette, Wachse, Lecithine, Phospholipide, biogene Wirkstoffe, UV-Lichtschutzfaktoren, Antioxidantien, Deodorantien, Antitranspirantien, Filmbildner, Quellmittel, Insektenrepellentien, Hydrotrope, Solubilisatoren, Konservierungsmittel, Parfümöle, Farbstoffe und dergleichen enthalten.
Tenside
Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder amphotere bzw. amphotere Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-MethylestersuIfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, MonogIycerid(ether)suIfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester,
Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte AIk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen. Typische Beispiele für besonders geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monogly- ceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine, Amphoacetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Ölkörper
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22- Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Cιs-C38-Alkylhy- droxycarbonsäuren mit linearen oder verzweigten C6-C22-Fθttalkoholen (vgl. DE 19756377 A1), insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis Cδ-Cio-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von Cδ-Cis- Fettsäuren, Ester von Cδ-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, wie z.B. Dicaprylyl Carbonate (Cetiol® CC), Guer- betcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-AlkohoIen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z.B. Dicaprylyl Ether (Cetiol® OE), Ringöffnungsprodukte von epoxidierten Fettsäu- reestem mit Polyolen, Siliconöle (Cyclomethicone, Siliciummethicontypen u.a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.
Emulgatoren
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden
Gruppen in Frage:
> Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest;
> Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga;
> Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethylengly- col (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
> Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
> Wollwachsalkohole;
> Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
> Block-Copolymere z.B. Polyethylenglycol-30 Dipolyhydroxystearate;
> Polymeremulgatoren, z.B. Pemulen-Typen (TR-1.TR-2) von Goodrich;
> Polyalkylenglycole sowie
> Glycerincarbonat. Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Al- kylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Ci2/i8-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosac- chariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxy- stearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Ölsäuremonogiycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäurediglycerid, Linolsäuremonoglycerid, Linolsäure- diglycerid, Linolensäuremonoglycerid, Linolensäurediglycerid, Erucasäuremonoglycerid, Erucasäure- diglycerid, Weinsäuremonoglycerid, Weinsäurediglycerid, Citronensäuremonoglycerid, Citronendiglyce- rid, Äpfelsäuremonoglycerid, Äpfelsäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitandiisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitandioleat, Sorbitantrioleat, Sorbi- tanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sor- bitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitan- sesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sor- bitansesquitartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbi- tandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitandimaleat, Sorbitantri- maleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (Dehy- muls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostearate (Isolan® Gl 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), PolygIyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Taigfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethyIam- moniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N- dimethylammoniumglycinate, beispiels-weise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoiine mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer Cβ/iβ-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -Sθ3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hy- droxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropio- nat und das Ci2/i8-Acylsarcosin. Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester- Salze, besonders bevorzugt sind.
Fette und Wachse
Typische Beispiele für Fette sind Glyceride, d.h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestem höherer Fettsäuren bestehen, als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Carnaubawachs, Japanwachs, Espartograswac s, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine versteht der Fachmann diejenigen Glycero-Phospholipide, die sich aus Fettsäuren, Glycerin,
n Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC). Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1 ,2-Diacyl-sn-glycerin-3- phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphingolipide in Frage.
Perlglanzwachse
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldi- stearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stea- rinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Konsistenzgeber und Verdickungsmittel
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfett- säuren in Betracht, Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccha- ride, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethyl- cellulose und Hydroxyethylcellulose, femer höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® und Pemulen-Typen von Goodrich; Synthalene® von Sigma; Keltrol-Typen von Kelco; Sepigel-Typen von Seppic; Salcare-Typen von Allied Colloids), Polyacrylamide, Polymere, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Überfettunqsmittel
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxy- lierte oder acylierte Lanolin- und Lecit inderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen, Stabilisatoren
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder
Zinkstearat bzw. -ricinoleat eingesetzt werden.
Polymere
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Poly- glycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium Hydroxypropyl Hydrolyzed Collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B, Amodimethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl-diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quatemiertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis- Dimethylamino-1 ,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1 , Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, unvemetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmeth-acrylat/tertButylaminoethylmethacrylat/2-Hydroxypro- pylmethacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere,
Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage. Weitere geeignete Polymere und Verdickungsmittel sind in Cosm.Toil. 108, 95 (1993) aufgeführt.
Siliconverbindunqen
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder al- kylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethico- nen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 91, 27 (1976). UV-Lichtschutzfaktoren
Als Sonnenschutzmittel bzw, UV-Lichtschutzfaktoren im Sinne der Erfindung werden Lichtschutzmittel bezeichnet, die für den Schutz der menschlichen Haut gegenüber schädigenden Einflüssen der direkten und indirekten Strahlung der Sonne nützlich sind. Die für die Hautbräunung verantwortliche Ultraviolettstrahlung der Sonne unterteilt man in die Abschnitte UV-C (Wellenlängen 200-280 nm), UV- B (280-315 nm) und UV-A (315-400 nm).
Die Pigmentierung normaler Haut unter dem Einfluss der Sonnenstrahlung, d. h. die Bildung von Melaninen, wird durch UV-B u. UV-A unterschiedlich bewirkt. Bestrahlung mit UV-A-Strahlen („langwelligem UV") hat die Dunkelung der in der Epidermis bereits vorhandenen Melanin-Körper zur Folge, ohne dass schädigende Einflüsse zu erkennen sind. Anders bei dem sog. „kurzwelligen UV" (UV-B). Dieses bewirkt die Entstehung von sog. Spätpigment durch Neubildung von Melanin-Körnern. Ehe jedoch das (schützende) Pigment gebildet ist, unterliegt die Haut der Einwirkung der ungefilterten Strahlung, die - je nach Expositionsdauer - zur Bildung von Hautrötungen (Erythemen), Hautentzündungen (Sonnenbrand) und gar Brandblasen führen kann,
Als UV-Absorber oder Lichtfilter, die also die UV-Strahlung in unschädliche Wärme umwandeln, werden die erfindungsgemäßen Extrakte des Pilzes Grifola frondosa eingesetzt, diese können zusätzlich in Kombination mit weiteren Sonnenschutzmitteln bzw. UV-Lichtschutzfaktoren vorliegen.
Diese weiteren UV- Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter), die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B, zu nennen:
> 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzy- liden)campher wie in der EP 0693471 B1 beschrieben;
> 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4- (Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester;
> Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepro- pylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octo- crylene);
> Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylben- zylester, Salicylsäurehomomenthylester;
> Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-me- thoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
> Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester; Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1 ,3,5-triazin und Octyl Tria- zon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB);
> Propan-1 ,3-dione, wie z.B, 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1 ,3-dion; > Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.
Als wasserlösliche Substanzen kommen in Frage:
> 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze;
> Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5- sulfonsäure und ihre Salze;
> Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B, 4-(2-Oxo-3-bornylidenmethyl)benzol- sulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Als typische UVA-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert,Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion, 4-tert.-Butyl-4'-methoxydibenzoyl- methan (Parsol 1789), 1-Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion sowie Enaminverbindungen, wie beispielsweise beschrieben in der DE 19712033 A1 (BASF), Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trial- koxyoctylsilane oder Dimethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P.Finkel in SÖF -Journal 122, 543 (1996) sowie Parfümerie und Kosmetik 3 (1999), Seite 11ff zu entnehmen.
Die erfindungsgemäßen Extrakte können weiterhin in kosmetischen und/oder dermatologischen Pflegemitteln als Tyrosinaseinhibitoren und/oder als Hautweißungsmittel verwendet werden. Die auch als Skin-whitener bezeichneten Hautweißungsmittel führen zu einem helleren Aussehen der Haut. Eine Möglichkeit zur Hautaufhellung oder Hautweissung führt über die Inhibierung der Tyrosinase, denn die Tyrosinase ist an der Bildung des Hautpigments Melanin beteiligt (Depigmentierung). Der erfindunsgemäße Einsatz von Extrakten aus Grifola frondosa führt auf Grund der Inhibierung der Tyrosinase zu einer verminderten Bildung von Melanin und damit zu einer Hautweißung. Die Extrakte aus Grifola frondosa können zusätzlich in Kombination mit weiteren Tyrosinaseinhibitoren als Depigmetierungsmittell wie beispielsweise Arbutin, Ferulasäure, Kojisäure, Cumarinsäure und Ascorbinsäure (Vitamin C) eingesetzt werden,
Antioxidantien
Neben primären Lichtschutzstoffen können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butionin- sulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lac- toferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A- palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Camosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajak- harzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Man- nose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnS04) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stil- benoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Biogene Wirkstoffe
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, (Desoxy)Ribonucleinsäure und deren Fragmentierungsprodukte, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-S uren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen. Deodorantien und keimhemmende Mittel
Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker fungieren. Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4- Chlorphenyl)-N'-(3,4 dichlorphenyl)hamstoff, 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclosan), 4- Chlor-3,5-dimethyl-phenol, 2,2'-Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(1-methylethyl)-phenol, 2-Benzyl-4-chlorphenol, 3-(4-Chlorphenoxy)-1 ,2-propandiol, 3-lod-2-propinylbutylcarbamat,
Chlorhexidin, 3,4,4'-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Famesol, Phenoxyethanol, Glycerinmonocaprinat, Glycerinmonocaprylat, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid.
Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipin- säuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäure- diethylester, sowie Zinkglycinat,
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfüms unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Ben- zylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzyl- aceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citro- nenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß- Damascone, Geraniumöl Bourbon, Cyclohexyisalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe:
> adstringierende Wirkstoffe,
> Ölkomponenten,
> nichtionische Emulgatoren,
> Coemulgatoren,
> Konsistenzgeber,
> Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
> nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.
Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z.B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquichlorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1 ,2. Aluminiumhydroxyallantoinat, Aluminiumchloridtartrat, Aluminium- Zirkonium-Trichlorohydrat, Aluminium-Zirko-nium-tetrachlorohydrat, Aluminium-Zirkonium-pentachlo- rohydrat und deren Komplexverbindungen z. B, mit Aminosäuren wie Glycin. Daneben können in Antitranspirantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z.B. sein:
> entzündungshemmende, hautschützende oder wohlriechende ätherische Öle, synthetische hautschützende Wirkstoffe und/oder
> öllösliche Parfümöle.
Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duftstoffe, pH-Wert- Stellmittel, z.B. Puffergemische, wasserlösliche Verdickungsmittel, z.B. wasserlösliche natürliche oder synthetische Polymere wie z.B. Xanthan-Gum, Hydroxyethylcellulose, Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide.
Filmbildner
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaternierf.es Chito- san, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Quellmittel
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkyl- modifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden.
Insekten-Repellentien
Als Insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1 ,2-PentandioI oder Ethyl
Butylacetylaminopropionate in Frage
Hvdrotrope
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopro- pylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohienstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktioneile Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
> Glycerin;
> Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
> technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
> Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
> Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
> Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit, > Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
> Aminozucker, wie beispielsweise Glucamin;
> Dialkoholamine, wie Diethanolamin oder 2-Amino-1 ,3-propandiol.
Konservierungsmittel
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydiösung, Parabene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen.
Parfümöle
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen, Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Bu- tylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-lsomethylionon und Me- thylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanu- möl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evemyl, Iraldein gamma, Phenylessig- säure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt. Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Beispiele
1. Beispiel: Extraktion der Pilze mit wässrigem Ethanol
Zu 225 1 destilliertem Wasser mit einer Temperatur von 80 °C wurden 150 g der Hefe Saccharomyces cerevisia gegeben und zunächst homogenisiert. Der Aufguss wurde unter Rühren auf 120 °C erhitzt und für 30 min. extrahiert. Der Extrakt wurde anschließend 15 min bei einer Geschwindigkeit von 5000 g zentrifugiert. Die überstehende Flüssigkeit wurde durch Eindampfen aufkonzentriert. Anschließend wurde der Extrakt bei 115 °C für 20 min. sterilisiert, zentrigugiert und nochmals auf 110 °C erhitzt bevor er filtriert wurde. Der Rückstand wurde spraygetrocknet. Die Ausbeute an Trockenprodukt betrug zwischen 5 und 20 Gew.-% bezogen auf das Trockengewicht an eingesetzten Pilzen.
2. Beispiel: Nachweis der Stimulierung der Synthese von dermalen Makromolekülen
Hintergrund: Das Ziel dieser Untersuchungen ist der Nachweis einer stimulierenden Aktivität von Extrakten aus Saccharomyces cerevisiae auf die Synthese von dermalen Makromolekülen an humanen Fibroblastenkulturen in vitro.
Die Dermis ist aufgebaut aus Zellen (Fibroblasten und Mastzellen), Gewebebestandteilen (Collagen und Elastin) und aus sogenannten Grundsubstanzen. Zu diesen Grundsubstanzen zählen beispielsweise Glykosaminoglykane (GAG) wie, Hyaluronsäure, Chondroitinsulfat, Dermatansulfat und Glycoproteine. Durch die Hautalterung vermindert sich die intermolekulare Verfestigung und Elastizität der Dermis und dadurch die Straffheit der Haut. Ebenso wird die Zahl der vorhandenen Hautzellen, insbesondere der Fibroblasten im Laufe der Hautalterung reduziert. Die Collagenfasern werden im Laufe der Zeit fragmentiert und es erhöht sich der Anteil von unlöslichen zu löslichen Collagen. Die feinen dermalen elastischen Fasern vergröbern sich und werden zerstört. Die Synthese von GAG (Glycosaminoglycan) ist vermindert. All diese Prozesse tragen zur Hautalterung und deren Erscheinungsformen wie Falten und mangelnde Straffheit der Haut bei.
Mit folgenden Modellen kann die Stimulierung der Synthese der dermalen Makromoleküle nachgewiesen werden und damit eine Aktivsubstanz identifiziert werden, die gegen Hautalterung wirken kann, also als anti-aging Mittel wirken kann.
Methode: Die Stimulierung der Synthese von dermalen Makromolekülen wurde durch ein Verfahren mit zwei unterschiedlichen Messmethoden nachgewiesen.
Die erste Messmethode basiert auf eine Anfärbung von Makromolekülen in einer Kultur humaner Fibroblasten, die mit Collagen Typ l ein Collagen-Gel oder Collagen Gitterfasern bzw. eine Matrix aufbaut. Bestimmte Regionen dieser Fasern wurden mit Hilfe von Anfärbereagenzien auf den Anteil an den genannten Makromolekülen quantifiziert. Bei der zweiten Methode wurde durch Reaktionen der Makromoleküle mit Antikörpern reaktive Strukturen und eine spezifische Charakterisierung der Matrix aus Fibroblasten und Collagen -Gel untersucht. Verwendet wurden folgende Antikörper:
• Anti-Chondroitinsulfat
• Anti-Keratinsulfat
• Anti-Elastin
• Anti-Collagen Typ III
Für beide Messmethoden vermischte man eine Suspension humaner Fibroblasten mit einer Lösung von Collagen Typ I (1-2 mg/ml), Diese Mischung wurde in einem definiertem Nährmedium (DMEM = Dulbecco Minimum Essentiai Medium, Firma Life Technologie Sari) mit 0,5- oder 2 Gew.-% fötalem Kälberserum (FCS) bei 37 °C in einer 5 %igen CO∑-Atmosphäre in Petri-Schalen (5 ml pro Schale) unter Zusatz verschiedener Konzentrationen des zu untersuchenden Mittels über 7 Tage inkubiert.
Das zu untersuchende Mittel enthielt folgende Zusammensetzung:
• Extrakt aus Saccharomyces cerevisiae: 1 bis 5 %
• Mannitol: > 50 %
• Cyclodextrin: 5 bis 10 %
• Dinatriumsalz der Bernsteinsäure: 0,1 bis 1 % und ist unter der Marke und dem Namen Cytovitin® von Laboratoires Serobϊologique im Handel erhältlich.
Nach sieben Tagen Inkubationszeit wurden Biopsien (Gewebeproben) genommen und histologische Schnitte des Collagen-Gels mit humanen Fibroblasten erhalten, Nach der ersten Messmethode wurde die Synthese von Makromolekülen quantifiziert durch die Anfärbung von Glycosaminoglycan mit PAS- Alcian blau z.B. von der Firma SIGMA nach der Periodic-Acid-Schiff-Methode (PAS), beschrieben in: Mowry RW, Anal. NY Adad. Sei, 106 Art 2, 402, 1963. Die Beurteilung der Stimulierung der Synthese wn Makromolekülen wurde direkt in der Umgebung von Fibroblasten durchgeführt, Diese Zone wird auch als „Perifibroblasten Fläche" bezeichnet.
Die Kinetik der Collagen-Gel Konzentration in der Messmethode 1 wurde durch Messung von drei perpendicularen Durchmessern an jedem Collagen-Gel mit einem Mikroskop mit Bildanalysesystem bestimmt. Nach 7-tägiger Inkubation wurde die Dichte des Collagen-Gels durch eine Bildanalyse mit einer Lichtquelle aus sichtbarem Licht bestimmt indem unterschiedliche Graustufen vergleichend untersucht wurden. Es handelt sich um eine relative Bestimmung der Dichte (0=klar oder weiss und 1=schwarz), die mit keiner Einheit versehen werden kann.
Eine Quantifizierung der „Perifibroblasten" Sekretion wurde durch ein Image-Analysator mittels eines Mikroskops durchgeführt. Detektiert wurden reaktive Strukturen in der „Perifibroblasten-Fläche" und die unterschiedlichen Graustufen vergleichend bestimmt. Die immunohistochemischen Reaktionen mit den unterschiedlichen Antikörpern wurden mit einem konvokalem Laser-scanning-Mikroskop der Firma Zeiss untersucht. Die aus der konvokalen Laser- scanning Mikroskopie erhaltenen Bilder wurden mit Hilfe einer Standard-software (Quantimet Q500 der Firma Leica) konvertiert. Der prozentuale Anteil an markierten Makromolekülen bezogen auf die gesamte Fläche der untersuchten Probe wurde bestimmt.
Diese beiden Parameter sind direkt proportional zur Intensität der Synthese von Makromolekülen und damit zum GAG-Anteil (speziell zum Anteil an Chondroitinsulfat), zum Anteil an Collagen Typ III und zum Anteil an Elastin der Fibroblasten. In der folgenden Tabelle sind die Ergebnisse der Werte dieser Parameter dargestellt und direkt als repräsentative Werte für die Syntheseaktivität der Fibroblasten zu sehen. In der Tabelle sind die Werte aus der Summe dieser beiden Parameter als „Synthese-Faktor von Fibroblasten" wiedergegeben und verglichen.
Figure imgf000025_0001
Tabelle 1 : „Synthese-Faktor von Fibroblasten": direkt proportional zum Gehalt an Makromolekülen in Gewebeproben humaner Fibroblasten mit Collagen nach der Behandlung mit Cytovotin®
Aus den Ergebnissen der Bestimmung des Glykosaminoglykan-Anteils in Gewebeproben von Collagen- Gel mit Fibroblasten speziell in der „perifibroblasten Fläche" und nach der Auswertung der charakteristischen Antikörperreaktionen mit Anti-Chondroitin, Anti-Elastin und Anti-Collagen Typ III lässt sich eine signifikante Erhöhung des Anteils an Makromolekülen nach sieben-tägiger Inkubationszeit mit unterschiedlichen Konzentrationen an Cytovitin® im Vergleich zur Inkubation mit reinem Fötalem Kälber Serum (FCS) in einer Konzentration von 2 Gew.-% erkennen, Diese Werte belegen, dass eine Zusammensetzung enthaltend Extrakte aus Saccharomyces cerevisiae die Synthese von Glycosaminoglycan (GAG) in Fibroblasten stimuliert.
Diese Ergebnisse belegen weiterhin, dass die Extrakte aus Saccharomyces cerevisiae eine hohe Kapazität zeigen um den Metabolismus von Fibroblasten anzuregen.
3. Beispielrezepturen kosmetischer Mittel mit Cytovitin®
Die Zubereitung enthaltend Extrakt aus Saccharomyces cerevisiae die unter dem Namen Cytovitin® im Handel erhältlich ist, wurden in den folgenden erfindungsgemäßen Rezepturen K1 bis K21 sowie 1 bis 13 eingesetzt. Die so hergestellten kosmetischen Mittel zeigten gegenüber den Vergleichsrezepturen V1 , V2 und V3 sehr gute hautpflegende Eigenschaften bei gleichzeitig guter Hautverträglichkeit, Darüber hinaus sind die erfindungsgemäßen Mittel stabil gegen oxidative Zersetzung. Tabelle 2: Softcreme Rezepturen K1 bis K7
(Alle Angaben in Gew.-% bez. auf das kosmetische Mitteln)
INCI Bezeichnung K1 K2 K3 K4 K5 K6 K7 V1
Glyceryl Stearate (and) Ceteareth-12/20 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0 (and) Cetearyi Alcohoi (and) Cetyl
Palmitate Cetearyi Alcohoi 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Dicaprylyl Ether 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Cocoglycerides 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Cetearyi Isononanoate 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Glycerin (86 Gew.-%ig) 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Cytovitin ® 0,5 0,5 0,5 0,5 0,5 0,5 0,5
Tocopherol 0,5
Allantoin 0,2
Bisabolol 0,5
Chitosan (Hydagen CMF) 10,0
Desoxyribonucleinsäure 1) 0,5
Panthenol 0,5
Wasser Ad 100
Tabelle 3: Nachtcremerezepturen Kδ bis K14
(Alle Angaben in Gew.-% bez. auf das kosmetische Mitteln)
INCI Bezeichnung K8 K9 K10 K11 K12 K13 K14 V2
Polyglyceryl-2 Dipolyhydroxystearate 4,0 4,0 4,0 4,0 4,0 4,0 4,0 5,0
Polyglyceryl-3 Diisostearate 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Cera Alba 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Zinc Stearate 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Cocoglycerides 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Cetaeryl Isononanoate 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0
Dicaprylyl Ether 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0
Magnesiumsulfate 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
Glycerin (86 Gew.-%ig) 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0
Cytovitin ® 0,5 0,5 0,5 0,5 0,5 0,5 0,5 -
Tocopherol 0,5
Allantoin 0,2
Bisabolol 0,5
Chitosan (Hydagen CMF) 10,0
Desoxyribonucleinsäure 1> 0,5
Panthenol 0,5
Wasser Ad 100
Tabelle 4: W/O Bodviotion Rezepturen K15 bis K21
(Alle Angaben in Gew.-% bez. auf das kosmetische Mitteln)
INCI-Bezeichnung K15 K16 K17 K18 K19 K20 K21 V3
PEG-7 Hydrogenated Castor Oil 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0
Decyl Oleate 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0
Cetearyi Isononanoate 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0
Glycerin (86 Gew.-%ig) 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0
MgSθ4 *7 H2θ 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
Cytovitin ® 1,5 1,5 1,5 1,5 1,5 1,5 1,5
Tocopherol 0,5
Allantoin 0,2
Bisabolol 0,5
Chitosan (Hydagen CMF) 10,0
Desoxyribonucleinsäure 1> 0,5
Panthenol 0,5
Wasser Ad 100
1) Desoxyribonucleinsäure: Molekuargewicht ca. 70000, Reinheit (bestimmt durch spektro-photometrische Messung der Absorption bei 260 nm sowie 280 nm): mindestens 1,7.

Claims

Patentansprüche
1. Verfahren zum Schutz der menschlichen Haut gegen die Alterung, dadurch gekennzeichnet, dass ein Mittel, enthaltend einen Extrakt aus Saccharomyces cerevisiae, welches die Synthese von dermalen Makromolekülen stimuliert topisch angewendet wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei dem Extrakt aus Saccharomyces cerevisiae um das getrocknete Produkt des wässrigen Extraktes handelt.
3. Verfahren nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, dass das Mittel zwischen 0,001 und 25 Gew.-% Extrakt aus Saccharomyces cerevisiae enthält.
4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Mittel weiterhin Mannitol, und/oder Cyclodextrin und/oder Salze der Bemsteinsäure, insbesondere das Dinatriumsalz der Bernsteinsäure enthält.
5. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass es sich bei den dermalen Makromolekülen um Substanzen handelt, die ausgewählt sind aus der Gruppe, die gebildet wird von Glykosaminoglykanen, Elastin, Collagen, insbesondere Collagen Typ III, Fibronectin und Proteoglycanen und deren Salze.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Glykosaminoglykane ausgewählt sind aus der Gruppe, die gebildet wird von Chondroitinsulfat, Keratansulfat, Dermatansulfat und Hyaluronsäure.
7. Verwendung von Extrakten aus Saccharomyces cerevisiae in Mitteln zur Stimulierung der Synthese von dermalen Makromolekülen.
8. Verwendung nach Anspruch 7, dadurch gekennzeichnet, dass es sich bei dem Extrakt aus Saccharomyces cerevisiae um das getrocknete Produkt des wässrigen Extraktes handelt.
9. Verwendung nach einem der Ansprüche 7 und/oder 8, dadurch gekennzeichnet, dass das Mittel zwischen 0,001 und 25 Gew.-% Extrakt aus Saccharomyces cerevisiae enthält.
10. Verwendung nach Anspruch 7 bis 9, dadurch gekennzeichnet, dass das Mittel weiterhin Mannitol, und/oder Cyclodextrin und/oder Salze der Bernsteinsäure, insbesondere das Dinatriumsalz der Bernsteinsäure enthält.
11. Verwendung nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass es sich bei den dermalen Makromolekülen um Substanzen handelt, die ausgewählt sind aus der Gruppe, die gebildet wird von Glykosaminoglykanen, Elastin, Collagen, insbesondere Collagen Typ III, Fibronectin und Proteoglycanen und deren Salze .
12. Verwendung nach Anspruch 11 , dadurch gekennzeichnet, dass die Glykosaminoglykane ausgewählt sind aus der Gruppe, die gebildet wird von Chondroitinsulfat, Keratansulfat, Dermatansulfat und Hyaluronsäure.
PCT/EP2001/007429 2000-07-07 2001-06-29 Verfahren zum schutz der haut gegen die alterung WO2002003943A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/332,283 US20040028697A1 (en) 2000-07-08 2001-06-29 Method for protecting the skin from aging
JP2002508398A JP2004502712A (ja) 2000-07-08 2001-06-29 皮膚を老化から保護する方法
AU2001279701A AU2001279701A1 (en) 2000-07-08 2001-06-29 Method for protecting the skin from aging
EP01957903A EP1343468A1 (de) 2000-07-07 2001-06-29 Verfahren zum schutz der haut gegen die alterung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00114566.3 2000-07-08
EP00114566 2000-07-08

Publications (1)

Publication Number Publication Date
WO2002003943A1 true WO2002003943A1 (de) 2002-01-17

Family

ID=8169186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/007429 WO2002003943A1 (de) 2000-07-07 2001-06-29 Verfahren zum schutz der haut gegen die alterung

Country Status (5)

Country Link
US (1) US20040028697A1 (de)
EP (1) EP1343468A1 (de)
JP (1) JP2004502712A (de)
AU (1) AU2001279701A1 (de)
WO (1) WO2002003943A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1407760A1 (de) * 2002-10-08 2004-04-14 Cognis France S.A. Verfahren zum Schutz der Haut gegen Alterung
EP1514537A2 (de) * 2004-03-11 2005-03-16 Shiseido Company Limited Wirkstoff gegen den alterungsprozess und promoter der collagenproduktion
DE102004002607A1 (de) * 2004-01-15 2005-08-04 Beiersdorf Ag Visualisierung von Sonnenschutzmitteln auf der Haut
JP2006507257A (ja) * 2002-09-13 2006-03-02 コグニス・フランス・ソシエテ・アノニム 真皮−表皮接合部の保護および調節方法
FR2887775A1 (fr) * 2005-07-01 2007-01-05 Soc Extraction Principes Actif Utilisation d'un extrait de levure en tant qu'agent actif inducteur de la synthese des proteines sirt dans les cellules de la peau.
FR2887772A1 (fr) * 2005-07-01 2007-01-05 Soc Extraction Principes Actif Utilisation d'un extrait de levure en tant qu'agent actif inducteur de la synthese des proteines sirt dans les cellules de la peau.
FR2904552A1 (fr) * 2006-08-03 2008-02-08 Soc Extraction Principes Actif Utilisation d'un extrait de levure en tant qu'agent actif pour augmenter la synthese de melanine dans les melanocytes
FR2912055A1 (fr) * 2007-02-06 2008-08-08 Idenov Lab Composition cosmetique comprenant des actifs anti-inflammatoires, reparateurs, apaisants et hydratants pour calmer l'irritation de la peau
FR2927254A1 (fr) * 2008-02-12 2009-08-14 Lesaffre Et Cie Sa Utilisation de substances actives naturelles dans des compositions cosmetiques ou therapeutiques
WO2012072951A1 (fr) * 2010-12-02 2012-06-07 L'oreal Utilisation d'extrait de levure du genre saccharomycespour améliorer l'éclat du teint et composition comprenant au moins cet extrait et un agent dépigmentant
FR2998177A1 (fr) * 2012-11-19 2014-05-23 Isp Investments Inc Utilisation d'un extrait de levure pour apaiser la muqueuse buccale

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070016A (ja) * 2004-08-02 2006-03-16 Kaneka Corp 還元型補酵素qを含有する美白用組成物
JP2008526963A (ja) * 2005-01-14 2008-07-24 リポ ケミカルズ インコーポレイテッド 過度に色素沈着した皮膚を処置するための組成物および方法
CN101528194B (zh) 2006-09-26 2013-06-12 巴斯夫美容护理公司 用于化妆品中的海洋提取物和生物发酵物
JPWO2009025372A1 (ja) * 2007-08-23 2010-11-25 株式会社カネカ 還元型補酵素q10含有組成物及びその安定化方法
US20090202581A1 (en) * 2008-02-12 2009-08-13 Nathalie Schlemer Cosmetic formulation
FR2930446B1 (fr) * 2008-04-29 2012-06-08 Am Phyto Conseil Utilisation d'une composition contenant de l'ergosterol ou un extrait naturel de micro-organisme ou vegetal ou animal.
EA019746B1 (ru) 2009-09-24 2014-05-30 Юнилевер Нв Противомикробная композиция, содержащая эвгенол, терпинеол и тимол, и способ дезинфицирования поверхности
US20120128755A1 (en) * 2010-09-30 2012-05-24 James Vincent Gruber Personal Care Composition Containing Yeast Extract And Hexapeptide
EA022986B1 (ru) 2010-12-07 2016-04-29 Юнилевер Нв Композиция для ухода за полостью рта
CN103998011B (zh) 2011-11-03 2016-11-23 荷兰联合利华有限公司 个人清洁组合物
US20210228465A1 (en) * 2018-05-29 2021-07-29 Kdc Us Holdings Inc. Personal care product formulations with adjustable product deposition
JP7406782B2 (ja) 2018-12-08 2023-12-28 共栄化学工業株式会社 皮膚外用剤
KR20220091409A (ko) * 2020-12-23 2022-06-30 주식회사 엘지생활건강 신규한 사카로미세스 세레비시에 균주 및 이의 용도
FR3125718A1 (fr) * 2021-08-02 2023-02-03 Societe Industrielle Limousine D'application Biologique Principe actif comprenant des oligo-glucanes issus de la fraction cytosolique de Saccharomyces cerevisiae et ses utilisations cosmétiques

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2324293A1 (fr) * 1975-04-29 1977-04-15 Orlane Produit cosmetique stimulant le metabolisme de la peau et procede de preparation dudit produit cosmetique
US5019391A (en) * 1987-06-26 1991-05-28 Heyl Chemisch-Parmazeutische Fabrik Gmbh & Co Kg Skin treating composition, method of producing the same and treatment of skin therewith
FR2696932A1 (fr) * 1992-10-19 1994-04-22 Sederma Sa Nouvelles compositions à usage cosmétique consistant de l'association d'un filtrat de fermentation et d'extraits de plantes.
JPH06256155A (ja) * 1993-03-01 1994-09-13 Kanebo Ltd 皮膚老化防止化粧料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172887A (en) * 1973-11-30 1979-10-30 L'oreal Hair conditioning compositions containing crosslinked polyaminopolyamides
DE4426216A1 (de) * 1994-07-23 1996-01-25 Merck Patent Gmbh Benzyliden-Norcampher-Derivate
DE4426215A1 (de) * 1994-07-23 1996-01-25 Merck Patent Gmbh Ketotricyclo [5.2.1.0] decan-Derivate
FR2742440B1 (fr) * 1995-12-14 1999-02-05 Serobiologiques Lab Sa Procede de production de glycogene ou d'un extrait riche en glycogene a partir de cellules de levure et composition cosmetique les contenant
EP1293504A3 (de) * 1996-07-08 2003-11-05 Ciba SC Holding AG Triazinderivate als UV-Filter in kosmetischen Mitteln
EP0852137B1 (de) * 1996-11-29 2005-08-10 Basf Aktiengesellschaft Photostabile UV-A-Filter enthaltende kosmetische Zubereitungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2324293A1 (fr) * 1975-04-29 1977-04-15 Orlane Produit cosmetique stimulant le metabolisme de la peau et procede de preparation dudit produit cosmetique
US5019391A (en) * 1987-06-26 1991-05-28 Heyl Chemisch-Parmazeutische Fabrik Gmbh & Co Kg Skin treating composition, method of producing the same and treatment of skin therewith
FR2696932A1 (fr) * 1992-10-19 1994-04-22 Sederma Sa Nouvelles compositions à usage cosmétique consistant de l'association d'un filtrat de fermentation et d'extraits de plantes.
JPH06256155A (ja) * 1993-03-01 1994-09-13 Kanebo Ltd 皮膚老化防止化粧料

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
D. IHLBROCK: "Zur kosmetischen Wirkung eines Extraktes aus der Hefe Saccharomyces cerevisiae", SÖFW-JOURNAL, vol. 123, no. 5, 1997, pages 318 - 325, XP000979043 *
DATABASE CHEMICAL ABSTRACTS STN; XP002160451 *
F. ZÜLLI ET AL.: "CM-Glucan: a biological response modifier from Baker's yeast for skin care", SÖFW-JOURNAL, vol. 123, no. 8, 1997, pages 535 - 541, XP000979044 *
H. EGGENSPERGER ET AL.: "Multiaktiv wirksame Polysaccharide Teil 1- Pilzextrakte", SÖFW-JOURNAL, vol. 123, no. 8, 1997, pages 542 - 546, XP000979045 *
J-M SEIGNEURET ET AL.: "Biopolisaccaride stimolante e protettivo per la cute. Valutazione della sua efficacia", COSMETIC TECHNOLOGY, vol. 2, no. 4, 1999, (Milano), pages 33 - 40, XP000981843 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507257A (ja) * 2002-09-13 2006-03-02 コグニス・フランス・ソシエテ・アノニム 真皮−表皮接合部の保護および調節方法
EP1407760A1 (de) * 2002-10-08 2004-04-14 Cognis France S.A. Verfahren zum Schutz der Haut gegen Alterung
WO2004054532A1 (de) * 2002-10-08 2004-07-01 Cognis France S.A. Verfahren zum schutz der haut gegen alterung
DE102004002607A1 (de) * 2004-01-15 2005-08-04 Beiersdorf Ag Visualisierung von Sonnenschutzmitteln auf der Haut
EP1514537A2 (de) * 2004-03-11 2005-03-16 Shiseido Company Limited Wirkstoff gegen den alterungsprozess und promoter der collagenproduktion
EP1514537A4 (de) * 2004-03-11 2012-10-31 Shiseido Co Ltd Wirkstoff gegen den alterungsprozess und promoter der collagenproduktion
WO2007003771A3 (fr) * 2005-07-01 2007-04-19 Soc Extraction Principes Actif Utilisation d'un extrait de levure en tant qu'agent actif inducteur de la synthese des proteines sirt dans les cellules de la peau
WO2007003771A2 (fr) * 2005-07-01 2007-01-11 Societe D'extraction Des Principes Actifs Sa (Vincience) Utilisation d'un extrait de levure en tant qu'agent actif inducteur de la synthese des proteines sirt dans les cellules de la peau
FR2887772A1 (fr) * 2005-07-01 2007-01-05 Soc Extraction Principes Actif Utilisation d'un extrait de levure en tant qu'agent actif inducteur de la synthese des proteines sirt dans les cellules de la peau.
FR2887775A1 (fr) * 2005-07-01 2007-01-05 Soc Extraction Principes Actif Utilisation d'un extrait de levure en tant qu'agent actif inducteur de la synthese des proteines sirt dans les cellules de la peau.
FR2904552A1 (fr) * 2006-08-03 2008-02-08 Soc Extraction Principes Actif Utilisation d'un extrait de levure en tant qu'agent actif pour augmenter la synthese de melanine dans les melanocytes
FR2912055A1 (fr) * 2007-02-06 2008-08-08 Idenov Lab Composition cosmetique comprenant des actifs anti-inflammatoires, reparateurs, apaisants et hydratants pour calmer l'irritation de la peau
FR2927254A1 (fr) * 2008-02-12 2009-08-14 Lesaffre Et Cie Sa Utilisation de substances actives naturelles dans des compositions cosmetiques ou therapeutiques
WO2009101503A2 (fr) * 2008-02-12 2009-08-20 Lesaffre Et Compagnie Utilisation de substances actives naturelles dans des compositions cosmétiques ou thérapeutiques
WO2009101503A3 (fr) * 2008-02-12 2009-10-15 Lesaffre Et Compagnie Utilisation de substances actives naturelles dans des compositions cosmétiques ou thérapeutiques
WO2012072951A1 (fr) * 2010-12-02 2012-06-07 L'oreal Utilisation d'extrait de levure du genre saccharomycespour améliorer l'éclat du teint et composition comprenant au moins cet extrait et un agent dépigmentant
FR2968211A1 (fr) * 2010-12-02 2012-06-08 Oreal Utilisation d'extrait de levure du genre saccharomyces pour ameliorer l'eclat du teint et composition comprenant au moins cet extrait et un agent depigmentant
FR2998177A1 (fr) * 2012-11-19 2014-05-23 Isp Investments Inc Utilisation d'un extrait de levure pour apaiser la muqueuse buccale

Also Published As

Publication number Publication date
US20040028697A1 (en) 2004-02-12
EP1343468A1 (de) 2003-09-17
AU2001279701A1 (en) 2002-01-21
JP2004502712A (ja) 2004-01-29

Similar Documents

Publication Publication Date Title
EP1253904B1 (de) Verwendung von extrakten von rückständen aus der weinherstellung als kosmetische pflegemittel für haut und haare
EP1296701B1 (de) Verwendung von extrakten des pilzes grifola frondosa
EP1313497B1 (de) Verwendung von extrakten der pflanze cassia alata
EP1343468A1 (de) Verfahren zum schutz der haut gegen die alterung
EP1339421B1 (de) Kosmetische und/oder dermopharmazeutische zubereitungen enthaltend native proteine aus der pflanze argania spinosa
WO2001045661A2 (de) Kosmetische und/oder pharmazeutische zubereitungen
EP1372685B1 (de) Verwendung von extrakten der pflanze litchi chinensis sonn.
EP1347768A1 (de) Kosmetische und/oder dermopharmazeutische zubereitungen enthaltend extrakte aus den blättern der pflanze argania spinosa
EP1281392A1 (de) Kosmetische und/oder pharmaceutische Zubereitungen enthaltend Pflanzenextrakte
WO2001062223A2 (de) Kosmetische zubereitungen enthaltend pflanzenextrakte
WO2001078675A1 (de) Verwendung von naturstoffen zur herstellung kosmetischen zubereitungen
EP1253906B1 (de) Kosmetische zubereitungen mit waltheria indica extrakten und ferulasäure
EP1276460B1 (de) Verwendung von zubereitungen enthaltend einen extrakt der pflanze argania spinosa in kosmetischen pflegemitteln für haare und haut
WO2001045650A2 (de) Kosmetische verwendung von rückständen aus der weinherstellung
EP1440683A1 (de) Verwendung von Oligoglucosaminen in kosmetischen oder dermatologischen Zubereitungen
WO2001039738A2 (de) Verwendung von flavonen und/oder isoflavonen aus pflanzenextrakten
WO2001052809A1 (de) Kosmetische und/oder pharmazeutische zubereitungen enthaltend eine wirksame menge eines extraktes von arrabidaea chica
EP1292278B1 (de) Zubereitungen enthaltend einen extrakt der pflanze pistia stratiotes
WO2001006995A1 (de) Kosmetische mittel enthaltend hydroxychavicol
WO2001006996A1 (de) Kosmetische mittel mit pflanzenextrakten aus der familie der piperaceae
WO2003053374A1 (de) Verwendung eines extraktes der pflanze baptisia tinctoria in einer kosmetischen zusammensetzung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CN ID IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001957903

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001279701

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10332283

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001957903

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001957903

Country of ref document: EP