WO2001062223A2 - Kosmetische zubereitungen enthaltend pflanzenextrakte - Google Patents

Kosmetische zubereitungen enthaltend pflanzenextrakte Download PDF

Info

Publication number
WO2001062223A2
WO2001062223A2 PCT/EP2001/001725 EP0101725W WO0162223A2 WO 2001062223 A2 WO2001062223 A2 WO 2001062223A2 EP 0101725 W EP0101725 W EP 0101725W WO 0162223 A2 WO0162223 A2 WO 0162223A2
Authority
WO
WIPO (PCT)
Prior art keywords
plant
acid
extracts
extract
mourera fluviatilis
Prior art date
Application number
PCT/EP2001/001725
Other languages
English (en)
French (fr)
Other versions
WO2001062223A3 (de
Inventor
Gilles Pauly
Philippe Moser
Olga Freis
Original Assignee
Cognis France, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis France, S.A. filed Critical Cognis France, S.A.
Priority to AU2001235480A priority Critical patent/AU2001235480A1/en
Priority to JP2001561290A priority patent/JP2003524650A/ja
Priority to BR0108564-6A priority patent/BR0108564A/pt
Priority to EP01907540A priority patent/EP1257253A2/de
Publication of WO2001062223A2 publication Critical patent/WO2001062223A2/de
Publication of WO2001062223A3 publication Critical patent/WO2001062223A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • A61K2800/522Antioxidants; Radical scavengers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners

Definitions

  • the invention is in the field of cosmetics and relates to preparations containing special plant extracts and the use of these plant extracts in cosmetic and / or pharmaceutical preparations, for example for skin treatment.
  • Plant extracts have been used in many different cultures for medical as well as for cosmetic purposes for many years. New plants are extracted again and again and the extracts are examined for their cosmetic effects in order to find other plants with a new or changed spectrum of activity. Many plants, the benefits of which were not yet known, and which were considered to be exotic and insignificant, are widely used today, among others, in cosmetics.
  • Cosmetic preparations are available to the consumer in a variety of combinations today. Not only is it expected that these cosmetics have a certain nourishing effect or remedy a certain deficiency, but more and more often products are required that have several properties at the same time and thus show an improved range of services.
  • substances that both positively influence the technical properties of the cosmetic product such as storage stability, light stability and formulability, and at the same time represent active ingredients that have nourishing, moisturizing, anti-irritant, anti-inflammatory and / or light-protective properties for the skin and / or hair convey. Good skin tolerance and the use of natural products by the customer are particularly important.
  • the object of the present invention was to provide cosmetic and / or pharmaceutical preparations which meet the requirements for cosmetic formulations, such as storage stability and skin tolerance, and additionally improved moisture-regulating, nourishing and protective properties for human skin and / or hair have.
  • Another task has been to obtain plant extracts from plants that were previously unknown for cosmetic use and to make their ingredients usable as active ingredients in cosmetic and / or pharmaceutical preparations.
  • the invention relates to extracts of the Mourera fluviatilis plant.
  • plant means both whole plants and parts of plants (leaves, flowers, roots) and mixtures thereof.
  • the extracts to be used according to the invention are obtained from plants of the Podostemaceae family and are extracts of the Mourera fluviatilis plant.
  • This plant is a filament family, which mainly occur in tropical, fast-flowing watercourses and waterfalls.
  • the plant is native to North-South America and French Guyana where it is also called "Coumarou salad”.
  • the plant has racemous inflorescences, the so-called inflorescences with double-coated bracts. These inflorescences contain 14 - 40 dust bags.
  • the extracts to be used according to the invention are produced by customary methods of extracting plants or parts of plants.
  • suitable conventional extraction methods such as maceration, remaceration, digestion, movement maceration, vortex extraction, ultrasound extraction, countercurrent extraction, percolation, repercolation, evacolation (extraction under reduced pressure), diacolation and solid-liquid extraction under continuous reflux , which is carried out in a Soxhlet extractor, which is familiar to a person skilled in the art and in principle all can be used, is exemplary of Hager's Handbook of Pharmaceutical Practice, (5th Edition, Vol. 2, pp. 1026-1030, Springer Verlag, Berlin- Heidelberg-New York 1991).
  • Fresh plants or parts of plants can be used as the starting material, but usually dried plants and / or parts of plants are used, which can be mechanically comminuted before extraction. All grinding methods known to the person skilled in the art are suitable here, for example crushing with a mortar.
  • Organic solvents water (distilled or non-distilled, preferably hot water at a temperature above 80 ° C.) or mixtures of organic solvents and water, in particular low molecular weight alcohols, esters, hydrocarbons, ketones or halogen-containing hydrocarbons, can preferably be used as solvents for carrying out the extractions with more or less high water contents. Extraction with water, methanol, ethanol, pentane, hexane, heptane, acetone, propylene glycols, polyethylene glycols, ethyl acetate, dichloromethane, trichloromethane and mixtures thereof is particularly preferred.
  • the extraction is usually carried out at 20 to 100 ° C, preferably at 30 to 90 ° C, in particular at 60 to 85 ° C.
  • the extraction takes place under an inert gas atmosphere to avoid oxidation of the ingredients of the extract.
  • the extraction times are set by the person skilled in the art depending on the starting material, the extraction process, the extraction temperature, the ratio of solvent to raw material, etc.
  • the crude extracts obtained can be subjected to further customary steps, such as purification, concentration and / or decolorization. If desired, the extracts produced in this way can, for example, be subjected to a selective separation of individual undesirable ingredients.
  • the extraction can be carried out to any desired degree of extraction, but is usually carried out until exhaustion.
  • the present invention includes the knowledge that the extraction conditions and the yields of the final extracts can be selected depending on the desired field of use. If desired, the extracts can then be subjected to spray drying or freeze drying, for example.
  • the invention furthermore relates to cosmetic and / or pharmaceutical preparations which contain an extract of the Mourera fluviatilis plant.
  • Cosmetic and / or pharmaceutical preparations based on the Mourera fluviatilis plant show surprisingly good nourishing and protective properties for skin and hair, against stress and environmental influences, and at the same time good skin tolerance. Furthermore, the preparations obtained in this way are good moisture-regulating moisturizers for the skin. The preparations obtained in this way are furthermore distinguished by a high antioxidative capacity, which on the one hand protects the skin from inflammatory reactions and against oxidative skin aging processes, and on the other hand the cosmetic ones Protected against oxidative degradation (spoilage). In addition, the products obtained in this way are suitable for counteracting the damage to human fibroblasts and keratinocytes by UV radiation and can therefore be used as a sunscreen in cosmetics.
  • the amount of plant extracts used in the preparations mentioned depends on the concentration of the individual ingredients and on the manner in which the extracts are used. In general, 0.01 to 25 parts by weight 0 / ", in particular 0.03 to 10, and especially 0.1 to 5 wt .-% of the plant extract - réelle on the final cosmetic and / or pharmaceutical compositions employed, with the proviso that the amounts stated add up to 100% by weight with further auxiliaries and additives and with water.
  • the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40% by weight, based on the final preparation of the cosmetic and / or pharmaceutical preparations.
  • the preparations can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used.
  • the extracts of the Mourera fluviatilis plant according to the invention generally contain ingredients from the group consisting of, saponins, flavone derivatives, sterols, triterpenes, xanthone derivatives and / or carotenoids. These are composed differently depending on the selected starting material and the selected extraction method.
  • saponins are understood to be those saponins which can be isolated from the Mourera fluviatilis plant. In particular, it is a group of glycosides that form colloidal, soap-like solutions in water.
  • the saponins are divided into steroid saponins and triterpene saponins according to the type of their aglycones, the sapogenins.
  • flavone derivatives are to be understood as those which can be isolated from the Mourera fluviatilis plant.
  • they are substances which are hydrogenation, oxidation or substitution products of 2-phenyl-4H-1-benzopyran, where hydrogenation may already be present in the 2,3-position of the carbon skeleton, oxidation in the 4- Position may already exist, and substitution products are understood to mean the replacement of one or more hydrogen atoms by hydroxyl or methoxy groups.
  • This definition therefore includes flavans, flavan-3-oles (catechins), flavan-3,4-diols (leucoanthocyanidins), flavones, flavonols and flavanones in the conventional sense.
  • sterols are to be understood as steroids which can be isolated from the Mourera fluviatilis plant.
  • they are steroids that only have a hydroxyl group at C-3, but otherwise no functional group, that is to say formally alcohols.
  • triterpenes are understood to mean those triterpenes which can be isolated from the Mourera fluviatilis plant.
  • the triterpenes according to the invention can be formally understood as polymerization products of the hydrocarbon isoprene.
  • the triterpenes (C30) are formed from three isoprene residues. Different polycyclic ring systems for the possible triterpenes can be derived from different folding options of the three isoprene residues.
  • the cyclization preferably gives 6 rings, in addition to most tetra- (e.g. cucurbitacins) and some pentacyclic (e.g. Lupane) triterpenes 5-rings. Since the 6-rings are in the form of armchairs and tubs, the 5-rings can be flat or angled, many different scaffolds are possible.
  • xanthone derivatives are to be understood as those which can be isolated from the Mourera fluviatilis plant. These are derivatives of dibenzo-gamma-pyrone.
  • the xanthone derivatives are referred to synonymously as 9-xanthenone derivatives.
  • the xanthone derivatives according to the invention are preferably 6-deoxyjacareubin and / or trapezium xanthone.
  • the 9-xanthenones can furthermore preferably be present as hydroxy- and / or methoxy-substituted xanthenones, such as, for example, gentian acid.
  • the majority of the derivatives of the xanthones are light yellow in color and have a light blue fluorescence.
  • carotenoids are to be understood as those which can be isolated from the Mourera fluviatilis plant.
  • they are substances that are chemically considered 11 to 12 times unsaturated tetraterpenes with a basic structure with 9 conjugated Double bonds, 8 methyl branches (including the possible ring structures) and a ß-ionon ring structure at one end of the molecule, while they differ in the structure of the other end of the molecule.
  • Typical carotenoids are, for example, ⁇ -carotene or provitamin A, ⁇ -carotene, lutein, cryptoxanthin, zeaxanthin and lycopene.
  • the extracts of the Mourera fluviatilis plant contain minerals in the form of salts of the alkali or alkaline earth metals.
  • the predominant metals are sodium, potassium or calcium.
  • the alkali or alkaline earth metals occur in the form of their salts, but predominantly in the form of their halides, oxides or hydroxides, phosphates, carbonates, sulfates or nitrates.
  • the present invention includes the finding that particularly effective cosmetic agents are obtained by the interaction of the ingredients of the plant extracts, in particular the abovementioned.
  • Care products for the purposes of the invention are care products for skin and hair. These care products include, among other things, cleaning and building effects as well as moisture-regulating and UV light protection properties.
  • the extracts according to the invention can be used in all cosmetic products. Examples of cosmetic products are described in their formulations in Table 7 to Table 15.
  • the aim of hair care is to maintain the natural state of freshly regrown hair for as long as possible or to restore it if it is damaged.
  • Characteristics of natural healthy hair are silky shine, low porosity, resilient yet soft fullness and a pleasantly smooth feeling (good "grip").
  • the care products according to the invention have a smoothing effect on the hair, they improve combability, reduce the electrostatic charge and improve the feel and shine.
  • the preparations according to the invention show an excellent skin-care effect with high skin tolerance at the same time. In addition, they show good stability, in particular against oxidative decomposition of the products.
  • moisture-regulating humectants are to be understood as skin care products which serve to regulate the moisture of the skin. This corresponds in the sense of the invention the definition of a moisturizer. It is substances or mixtures of substances that give cosmetic and / or pharmaceutical preparations the property of reducing the moisture release of the stratum corneum (horny layer) after application and distribution on the skin surface.
  • the humectants according to the invention contain extracts of the Mourera fluviatilis plant. Additional humectants, for example, may be present as further humectants in combination with the plant extract, such as:
  • Polyglycerol fatty acid esters based on fatty acids with 12-18 C atoms e.g. Tetraglyceryl monooleate, triglyceryl diisostearate;
  • Another object of the invention is the use of the extracts of the Mourera fluviatilis plant in sunscreens.
  • Sunscreens or UV light protection factors in the sense of the invention are light protection agents which are useful for protecting human skin against the damaging effects of direct and indirect radiation from the sun.
  • the sun's ultraviolet radiation responsible for tanning the skin is divided into the sections UV-C (wavelengths 200-280 nm), UV-B (280-315 nm) and the like.
  • UV-A (315 ⁇ 100 nm).
  • UV-B The pigmentation of normal skin under the influence of solar radiation, i.e. H. the formation of melanins is UV-B u.
  • UV-A causes different. Irradiation with UV-A rays ("long-wave UV") results in the darkening of the melanin bodies already present in the epidermis, without any harmful effects being recognizable. This is different with the so-called “short-wave UV” (UV-B) , This causes the development of so-called late pigment through the formation of new melanin grains.
  • UV-B short-wave UV
  • the skin is exposed to unfiltered radiation, which - depending on the duration of exposure - leads to the formation of reddened skin (erythema), skin inflammation (sunburn) and the like. can even cause blisters.
  • Extracts of the Mourera fluviatilis plant are used as UV absorbers or light filters, which convert the UV radiation into harmless heat. These can also be present in combination with other sunscreens or UV light protection factors.
  • UV light protection factors are, for example, liquid or crystalline organic substances (light protection filters) present at room temperature which are capable of blocking ultraviolet rays absorb and release the absorbed energy in the form of longer-wave radiation, eg heat.
  • UVB filters can be oil-soluble or water-soluble. Examples of oil-soluble substances are:
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • esters of cinnamic acid preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid propyl ester, 4-methoxycinnamic acid isoamyl ester 2-cyano-3,3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene);
  • esters of salicylic acid preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-isopropylbenzyl ester, salicylic acid homomethyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate
  • Triazine derivatives e.g. 2,4,6-trianilino- (p-carbo-2'-ethyl-1 '-hexyloxy) -1, 3,5-triazine and octyl triazone as described in EP 0818450 A1 or dioctyl butamido triazone (Uvasorb ® HEB);
  • Propane-1,3-dione e.g. 1 - (4-tert-butylphenyl) -3- (4'methoxyphenyl) propane-1,3-dione;
  • UVA filters '-methoxydibenzoyl-methane
  • 1-phenyl-3- (4'-isopropylphenyl) propane-1, 3-dione and enamine compounds as described for example in DE 19712033 A1 (BASF).
  • the UV-A and UV-B filters can of course also be used in mixtures.
  • insoluble light protection pigments namely finely dispersed metal oxides or salts, are also suitable for this purpose.
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • Silicates (talc), barium sulfate or zinc stearate can be used as salts.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions.
  • the particles should have an average diameter of less than 100 nm, preferred have between 5 and 50 nm and in particular between 15 and 30 nm. They can have a spherical shape, but it is also possible to use particles which have an ellipsoidal shape or a shape which differs from the spherical shape in some other way.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobicized.
  • Typical examples are coated titanium dioxides such as titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or dimethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used. Further suitable UV light protection filters can be found in the overview by P.Finkel in S ⁇ FW Journal 122, 543 (1996) and Perfumery and Cosmetics 3 (1999), page 11ff.
  • Another object of the invention is the use of extracts of the Mourera fluviatilis plant in agents against damage to fibroblasts and / or keratinocytes by UVA radiation and / or UVB radiation and as anti-inflammatory additives.
  • MDA malonic aldehyde
  • the extracts of the plant Mourera fluviatilis according to the invention significantly reduce the level of MDA in human fibroblasts which is induced by UVA rays and thus show a high capacity to reduce the harmful effects of oxidative stress on the skin.
  • UVB rays trigger inflammation by activating an enzyme, namely phospholipase A2 or PLA2.
  • This inflammation is triggered by the removal of arachidonic acid from the phospholipids of the plasma membrane by the phospholipase.
  • the level of release of the cytoplasmic enzyme LDH (lactate dehydrogenase) in human keratinocytes serves as a marker for cell damage.
  • the extracts of the Mourera fluviatilis plant according to the invention reduce the effect of UVB radiation on the number of keratinocytes and on the content of released LDH.
  • the extracts therefore show the ability to reduce the damage to cell membranes caused by UVB radiation.
  • extracts according to the invention as anti-inflammatory additives is in principle possible for all cosmetic and / or pharmaceutical preparations which are used for inflammation of the skin and thus in skin care.
  • the inflammation of the skin can have a variety of causes.
  • Another object of the invention is the use of extracts of the Mourera fluviatilis plant as antioxidants or radical scavengers.
  • Antioxidants for the purposes of the invention are oxidation inhibitors which can be isolated from the Mourera fluviatilis plant. Antioxidants are able to inhibit or prevent the undesirable changes in the substances to be protected caused by the effects of oxygen and other oxidative processes. The effect of the antioxidants is mostly that they act as a radical scavenger for the free radicals that occur during autoxidation.
  • antioxidants In addition to using extracts of the Mourera fluviatilis plant as antioxidants, other known antioxidants can also be used.
  • further typical examples are amino acids (e.g. glycine, alanine, arginine, serine, threonine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-carnosine, D.
  • -Camosin L-carnosine and their derivatives (e.g. anserine), carotenoids, carotenes (e.g. ⁇ -carotene, ⁇ -carotene, lycopene, lutein) or their derivatives, chlorogenic acid and its derivatives, lipoic acid and its derivatives (e.g. dihydroliponic acid), aurothioglucose , Propylthiouracil and other thiols (e.g.
  • thioredoxin glutathione, cysteine, cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters) and their salts, dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) as well as sulfoximine compounds (e.g.
  • buthioninsulfoximines homo cysteine sulfoximine, butioninsulfones, penta-, hexa-, heptathioninsulfoximine) in very low tolerable doses (e.g. pmol to ⁇ mol / kg), also (metal) chelators (e.g. ⁇ -hydroxy fatty acids, palmitic acid, phytic acid, lactoferrin), ⁇ -hydroxy acids (e.g.
  • Citric acid lactic acid, malic acid
  • humic acid bile acid, bile extracts, bilirubin, biliverdin, boldin, boldo extract, EDTA, EGTA and their derivatives
  • unsaturated fatty acids and their derivatives e.g. ⁇ -linolenic acid, linoleic acid, oleic acid
  • folic acid and their derivatives Ubiquinone and ubiquinol and their derivatives
  • vitamin C and derivatives e.g. ascorbyl palmitate, Mg ascorbyl phosphate, ascorbyl acetate
  • tocopherols and derivatives e.g.
  • vitamin E acetate
  • vitamin A and derivatives vitamin A palmitate
  • coniferyl benzoate of benzoin Rutinic acid and its derivatives, ⁇ -glycosylrutin, ferulic acid, furfurylidene glucitol, camosin, butylated hydroxytoluene, butylated hydroxyanisole, nordihydroguajak resin acid, nordihydroguajaretic acid, Trihydroxybutyrophenone, uric acid and its derivatives, mannose and its derivatives, superoxide dismutase, zinc and its derivatives (e.g. ZnO, ZnS0 4 ) selenium and its derivatives (e.g.
  • the UV light protection factors or antioxidants can be added in amounts of 0.01 to 25, preferably 0.03 to 10 and in particular 0.1 to 5% by weight, based on the total amount in the preparations.
  • the extracts according to the invention can be used in cosmetic and / or pharmaceutical preparations, such as hair shampoos, hair lotions, foam baths, shower baths, creams, gels, lotions, sunscreens, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat masses, stick preparations, powders or ointments can be used.
  • cosmetic and / or pharmaceutical preparations such as hair shampoos, hair lotions, foam baths, shower baths, creams, gels, lotions, sunscreens, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat masses, stick preparations, powders or ointments can be used.
  • These preparations can furthermore contain, as further auxiliaries and additives, mild surfactants, oil bodies, emulsifiers, pearlescent waxes, consistency agents, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic active substances, UV light protection factors, antioxidants, deodorants, Antiperspirants, antidandruff agents, film formers, swelling agents, insect repellents, self-tanners, tyrosine inhibitors (depigmentation agents), hydrotropes, solubilizers, preservatives, perfume oils, dyes and the like.
  • mild surfactants oil bodies, emulsifiers, pearlescent waxes, consistency agents, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic active substances, UV light protection factors, antioxidants, deodorants, Antiperspirants, antidandruff
  • Auxiliaries and additives with surface activity may contain anionic, nonionic, cationic and / or amphoteric or amphoteric surfactants, the proportion of which is usually about 1 to 70, preferably 5 to 50 and in particular 10 to 30% by weight .
  • anionic surfactants are soaps, alkyl benzene sulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, fatty acid ether sulfates, hydroxymischog sulfate sulfate, hydroxymischogether sulfate sulfate, hydroxymischogether sulfate sul
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosides or especially glucoramide acid vegetable derivatives, fatty acid glucoronic acid protein derivatives, and fatty acid glucoramides Wheat base), polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • cationic surfactants are quaternary ammonium compounds, such as, for example, dimethyldistearylammonium chloride, and esterquats, in particular quaternized fatty acid trialkanolamine ester salts.
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amidobetaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. Both The surfactants mentioned are exclusively known compounds.
  • Typical examples of particularly suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, ⁇ -olefin sulfonates, ethercarboxylic acids, alkyl oligoglucosides, fatty acid glucamides, alkylamidobetaines, amphoacetals and / or protein fatty acid condensates, preferably based on wheat proteins.
  • Guerbet alcohols based on fatty alcohols having 6 to 18, preferably 8 to 10 carbon atoms, esters of linear C ⁇ -C ⁇ fatty acids with linear C6-C22 fatty alcohols, esters of branched C6-Ci3 carboxylic acids with linear come, for example, as oil bodies C6-C22 fatty alcohols, such as Myristyl myristate, myristyl palmitate, myristyl stearate, Myristylisostearat, myristyl, Myristylbehenat, Myristylerucat, cetyl myristate, cetyl palmitate, cetyl stearate, Cetylisostearat, cetyl oleate, cetyl behenate, Cetylerucat, Stearylmyristat, tribehenate stearyl palmitate, stearyl stearate, Stearylisostearat, stearyl oleate, Stearylbe-, Stearyleruc
  • esters of linear C6-C22 fatty acids with branched alcohols in particular 2-ethylhexanol
  • esters of Ci8-C38 alkylhydroxycarboxylic acids with linear or branched C6-C22 fatty alcohols cf.
  • dioctyl malates esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimer diol or trimer triol) and / or Guerbet alcohols, triglycerides based on C ⁇ -CiQ fatty acids, liquid mono- / di- / triglyceride mixtures based on C ⁇ -Ci ⁇ fatty acids, esters of C6-C22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, in particular benzoic acid, esters of C2-C12 dicarboxylic acids with linear or branched alcohols with 1 to 22 carbon atoms or polyols with 2 to 10 carbon atoms and 2 to 6 hydroxyl groups, vegetable oils, branched primary alcohols, substituted cyclohexanes, linear and branched C6-C22 fatty alcohol carbonates, Guerbet carbonates, esters of Be nzo acid
  • Finsolv® TN linear or branched, symmetrical or asymmetrical dialkyl ethers with 6 to 22 carbon atoms per alkyl group, ring opening products of epoxidized fatty acid esters with polyols, silicone oils (cyclomethicones, silicon methicone types etc.) and / or aliphatic or naphthenic hydrocarbons, e.g. such as squalane, squalene or dialkylcyclohexanes.
  • silicone oils cyclomethicones, silicon methicone types etc.
  • aliphatic or naphthenic hydrocarbons e.g. such as squalane, squalene or dialkylcyclohexanes.
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups: > Adducts of 2 to 30 moles of ethylene oxide and / or 0 to 5 moles of propylene oxide with linear fatty alcohols with 8 to 22 carbon atoms, with fatty acids with 12 to 22 carbon atoms, with alkylphenols with 8 to 15 carbon atoms in the alkyl group and Alkylamines with 8 to 22 carbon atoms in the alkyl radical;
  • Partial esters of polyglycerol (average degree of self-condensation 2 to 8), polyethylene glycol (molecular weight 400 to 5000), trimethylolpropane, pentaerythritol, sugar alcohols (e.g. sorbitol), alkyl glucosides (e.g. methyl glucoside, butyl glucoside, lauryl glucoside) and polyglucosides (e.g. cellulose) / or unsaturated, linear or branched fatty acids with 12 to 22 carbon atoms and / or hydroxycarboxylic acids with 3 to 18 carbon atoms and their adducts with 1 to 30 moles of ethylene oxide;
  • Block copolymers e.g. Polyethylene glycol 30 dipolyhydroxystearate;
  • Polymer emulsifiers e.g. Pemulen types (TR-1, TR-2) from Goodrich;
  • adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols or with castor oil are known, commercially available products. These are mixtures of homologs whose average degree of alkoxylation is the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate, with which the addition reaction is carried out.
  • Ci2 / i8 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE 2024051 PS as refatting agents for cosmetic preparations.
  • Alkyl and / or alkenyl oligoglycosides their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to preferably about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
  • Suitable partial glycerides are hydroxystearic acid monoglyceride, stearic acid diglyceride hydroxy, isostearic acid, Isostearinklarediglycerid, oleic acid monoglyceride, oleic acid diglyceride, Ricinolklaremoglycerid, Ricinolklarediglycerid, Linolklaremonoglycerid, linoleic acid diglyceride, LinolenTalkremonoglycerid, Linolenchurediglycerid, Erucaklaklamonoglycerid, erucic acid diglyceride, rid Weinchuremonoglycerid, Weinklarediglycerid, Citronenklamonoglycerid, Citronendiglyce-, Malic acid monoglyceride, malic acid diglyceride and their technical mixtures, which may still contain minor amounts of triglyceride from the manufacturing process. Addition products of 1 to 30, preferably 5 to
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearates (Dehymuls® PGPH), polyglycerol-3-diisostearates (Lameform® TGI), polyglyceryl-4 isostearates (Isolan® Gl 34), polyglyceryl-3 oleates, diisostearoyl polyglyearylate-3 (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010 / 90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL) , Polyglyceryl-3 Distearate (Cremophor® GS 32) and Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Is
  • polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid, taig fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like which are optionally reacted with 1 to 30 mol of ethylene oxide.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines, such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example coconut acylaminopropyldimethylammonium glycinate, and 2-alkyl-3-carboxylm -hydroxyethylimidazolines each with 8 to 18 carbon atoms in the alkyl or Acyl group and the coconut acylaminoethyl hydroxyethyl carboxymethyl glycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C ⁇ / i ⁇ alkyl or acyl group, contain at least one free amino group and at least one -COOH or -S ⁇ 3H group in the molecule and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each with about 8 to 18 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and Ci2 / i8-acylsarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the ester quat type, preferably methyl-quaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Typical examples of fats are glycerides, i.e. Solid or liquid vegetable or animal products, which consist essentially of mixed glycerol esters of higher fatty acids, come as waxes, among others. natural waxes, e.g. Candelilla wax, carnauba wax, Japanese wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walnut, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum, paraffin waxes, microfax waxes chemically modified waxes (hard waxes), e.g.
  • natural waxes e.g. Candelilla wax, carnauba wax, Japanese wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax,
  • Montanester waxes Montanester waxes, Sasol waxes, hydrogenated jojoba waxes and synthetic waxes, such as Polyalkylene waxes and polyethylene glycol waxes in question.
  • fat-like substances such as lecithins and phospholipids can also be used as additives.
  • lecithins as those glycerophospholipids which are formed from fatty acids, glycerol, phosphoric acid and choline by esterification. Lecithins are therefore often referred to in the art as phosphatidylcholines (PC) and follow the general formula II.
  • R typically represents linear aliphatic hydrocarbon radicals with 15 to 17 carbon atoms and up to 4 cis double bonds.
  • lecithins include the cephalins, which are also referred to as phosphatidic acids, and derivatives of 1,2-diacyl-sn-glycerol-3- represent phosphoric acids.
  • phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats.
  • sphingosines or sphingolipids are also suitable.
  • Pearlescent waxes are: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon atoms
  • Suitable consistency agents are primarily fatty alcohols or hydroxyfatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and also partial glycerides, fatty acids or hydroxyfatty acids. A combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates , (e.g.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate are used.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, such as, for example, a quaternized hydroxyethyl cellulose, which is available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers, such as, for example, Luviquat® (BASF) Condensation products of polyglycols and amines, quaternized collagen polypeptides, such as, for example, lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, such as, for example, amodimethicones, copolymers of adipic acid and dimethylaaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz
  • Anionic, zwitterionic, amphoteric and nonionic polymers include, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobomylacrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and their esters, non-crosslinked acrylamide acrylamide and polyethylenethacrylate acrylamide and non-crosslinked acrylamide / polyacrylamide acrylamide and non-crosslinked acrylamide and with polyesters, non-crosslinked acrylamide and polyammonyl acrylate, with non-crosslinked acrylamide acrylamide and polyamides Copolymers, octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers, polyvinyl pyrrolidone, vinyl pyr
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine-, glycoside- and / or alkyl-modified silicone compounds, which can be both liquid and resinous at room temperature.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • a detailed overview of suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 91, 27 (1976).
  • Biogenic active substances are, for example, tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamin complexes.
  • Cosmetic deodorants counteract, mask or eliminate body odors.
  • Body odors arise from the action of skin bacteria on apocrine sweat, whereby unpleasant smelling breakdown products are formed. Accordingly, deodorants contain active ingredients which act as germ-inhibiting agents, enzyme inhibitors, odor absorbers or odor maskers.
  • germ-inhibiting agents such as.
  • Esterase inhibitors are suitable as enzyme inhibitors. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Düsseldorf / FRG). The substances inhibit enzyme activity and thereby reduce odor.
  • trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Düsseldorf / FRG).
  • the substances inhibit enzyme activity and thereby reduce odor.
  • esterase inhibitors are sterol sulfates or phosphates, such as, for example, lanosterol, cholesterol, campesteric, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid, Monoethyl adipate, diethyl adipate, malonic acid and diethyl malonate, hydroxycarboxylic acids and their esters such as citric acid, malic acid, tartaric acid or tartaric acid diethyl ester and zinc glycinate.
  • dicarboxylic acids and their esters such as, for example, glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid, Monoethyl adipate, diethyl adipate, malonic
  • Suitable odor absorbers are substances that absorb odor-forming compounds and can retain them to a large extent. They lower the partial pressure of the individual components and thus also reduce their speed of propagation. It is important that perfumes must remain unaffected. Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixators", such as, for example, the main component. B. extracts of Labdanum or Styrax or certain abietic acid derivatives. Fragrance agents or perfume oils act as odor maskers, which, in addition to their function as odor maskers, give the deodorants their respective fragrance.
  • Perfume oils are, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and branches as well as resins and balms. Animal raw materials, such as civet and castoreum, are also suitable. Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, p-tert-butylcyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the jonones and methylcedryl ketone
  • the alcohols are anethole, citronellellone Eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol
  • the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils also low Volatility, which are mostly used as aroma components, are suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labdanum oil and lavender oil.
  • Antiperspirants reduce sweat formation by influencing the activity of the eccrine sweat glands and thus counteract armpit wetness and body odor.
  • Aqueous or anhydrous formulations of antiperspirants typically contain the following ingredients: astringent active ingredients,
  • non-aqueous solvents such as As ethanol, propylene glycol and / or glycerin.
  • Salts of aluminum, zirconium or zinc are particularly suitable as astringent antiperspirant active ingredients.
  • suitable antiperspirant active ingredients are e.g. Aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds e.g. B. with propylene glycol-1, 2nd Aluminum hydroxyallantoinate, aluminum chloride tartrate, aluminum zirconium trichlorohydrate, aluminum zirconium tetrachlorohydrate, aluminum zirconium pentachlorohydrate and their complex compounds, for. B. with amino acids such as glycine.
  • customary oil-soluble and water-soluble auxiliaries can be present in smaller amounts in antiperspirants.
  • Such oil soluble aids can e.g. his:
  • Usual water-soluble additives are, for example, preservatives, water-soluble fragrances, pH adjusters, for example buffer mixtures, water-soluble thickeners, for example water-soluble natural or synthetic polymers such as, for example, xanthan gum, hydroxyethyl cellulose, polyvinylpyrrolidone or high molecular weight polyethylene oxides.
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Piroctone olamine (1-hydroxy-4-methyl-6- (2,4,4-trimythylpentyl) -2- (IH) -pyridinone monoethanolamine salt), Baypival® (Climbazole), Ketoconazol®, (4-acetyl-1 - ⁇ - 4- [2- (2.4- dichlorophenyl) r-2- (1H-imidazol-1-ylmethyl) -1, 3-dioxylan-c-4-ylmethoxyphenyl ⁇ piperazine, selenium disulfide, sulfur colloidal, sulfur polyethyleneglycol sorbitan monooleate, sulfur ricinole polyhexoxate Sulfur tar distillates, salicylic acid (or in combination with hexachlorophene), undexylene acid monoethanolamide sulfosuccinate sodium salt, Lamepon® UD (protein undecylenic acid condensate), zinc pyrithione, aluminum pyrithione and magnesium pyri
  • Montmorillonites, clay minerals, pemules and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • Possible insect repellents are N, N-diethyl-m-toluamide, 1,2-pentanediol or ethyl butylacetylaminopropionate
  • Dihydroxyacetone is suitable as a self-tanner.
  • Arbutin, kojic acid, coumaric acid and ascorbic acid (vitamin C) can be used as tyrosine inhibitors, which prevent the formation of melanin and are used in depigmenting agents.
  • Hydrotropes such as ethanol, isopropyl alcohol, or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Sugar alcohols with 5 to 12 carbon atoms such as sorbitol or mannitol,
  • Aminosugars such as glucamine; > Dialcohol amines, such as diethanolamine or 2-amino-1, 3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Ordinance.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are e.g.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes e.g.
  • the linear alkanals with 8 to 18 carbon atoms citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones e.g. the Jonone, ⁇ -isomethyl ionone and methyl cedryl ketone, the alcohols anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balsams. However, preference is given to using mixtures of different fragrances which together produce an appealing fragrance.
  • Essential oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. Sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • perfume oils e.g. Sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • bergamot oil dihydromyrcenol, lilial, lyral, citronellol, phenylethyl alcohol, ⁇ -hexylcinnamaldehyde, geraniol, benzyl acetone, cyclamen aldehyde, linalool, Boisambrene Forte, Ambroxan, indole, hedione, Sandelice, lemon oil, mandarin oil, orange oil, allyl amyl glycolate, Cyclovertal, lavandin oil, muscatel Sage oil, ß-damascone, geranium oil bourbon, cyclohexyl salicylate, Vertofix Coeur, Iso-E-Super, Fixolide NP, evernyl, iraldein gamma, phenylacetic acid, geranyl acetate, benzyl acetate, rose oxide, romilllate, irot
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the overall preparation.
  • Another object of the invention is a method for producing an extract of the plant Mourera fluviatilis in which solvents or mixtures of these solvents are used to extract the plant, which are selected from the group formed by distilled or undistilled water, low molecular weight alcohols, Esters or hydrocarbons.
  • Example 1 300 g of dried Mourera fluviatilis plants were roughly crushed in a mortar, then transferred to a glass reactor and poured with 3 liters of distilled water. The infusion was heated between 80 and 85 ° C and extracted with stirring over a period of 1 h at this temperature. The mixture was then cooled to 20 ° C. and centrifuged for 15 minutes at a speed of 5000 g.
  • the supernatant colloidal liquid was separated from the residue by filtration on depth filters with an average porosity of 0.450 ⁇ m (from the company Seitz, Bordeaux France), 1.7 1 extract being obtained, which had a dry residue of 2.4% by weight ,
  • the brown colored extract was spray-dried at a starting temperature of 185 ° C and a final temperature of 80 C C.
  • the yield of dry product was 13.5% by weight, based on the dry weight of plants used.
  • Example 3 Example 1 was repeated, but the extraction was carried out with 3 1 80% by weight aqueous methanol. The extraction was carried out with stirring for 1 h at boiling temperature under reflux and the extract was further processed as described. The filtration was carried out as described in Example 1. The alcohol was then first removed at 45 ° C. under reduced pressure and then the green-brown residue was spray-dried as described. The yield of dry product was 15.9% by weight, based on the dry weight of plants used.
  • Example 4 Example 1 was repeated, but the extraction was carried out with 3 l 96% by weight aqueous ethanol. The extraction was carried out with stirring for 1 h at boiling temperature under reflux and the extract was further processed as described. The filtration was carried out as described in Example 1. Then the alcohol was first removed at 45 ° C. under reduced pressure and then the green residue was dried at 50 ° C. The yield of dry product was 4.9% by weight, based on the dry weight of plants used.
  • Example 5 260 g of the dried residue from Example 4 were transferred to a glass reactor and 2.6 l of distilled water were added. The infusion was further treated as described in Example 1. The brown colored extract was spray dried at an initial temperature of 185 ° C and a final temperature of 80 ° C. The yield of dry product was 12.5% by weight, based on the dry weight of the dried residue used.
  • the suitability of the extracts against oxidative stress was examined in a first series of tests.
  • the extracts according to Examples 1 to 5 were each used in concentrations of 0% w / v (weight per volume); 0.03% w / v and 0.1% w / v.
  • the hydroxylation of salicylic acid by hydroxyl radicals was examined as a reference system. This reaction can be examined photometrically since the hydroxylation product of salicylic acid is reddish in color.
  • the influence of the extracts on the formation of the hydoxysal icylic acid at an optical density of 490 nm was measured. The measurement results are summarized in Table 1; the degree of hydroxysalicylic acid formation is given in% absolute.
  • xanthine oxidase was chosen as the test system.
  • the enzyme causes the conversion of purine bases, such as, for example, adenine or guanine into uronic acid, the oxygen radicals formed as an intermediate being able to be detected by luminescence and reacted quantitatively by reaction with luminol.
  • the luminescence yield is reduced in the presence of substances with radical-trapping properties.
  • Example 7 Cell protection action against UVA on human fibroblasts grown in vitro
  • UVA rays penetrate into the dermis, where they lead to oxidation stress, which is demonstrated by lipoperoxidation of the cytoplasmic membranes.
  • the lipoperoxides are broken down to malonaldehyde, which will crosslink many biological molecules such as proteins and nucleic bases (enzyme inhibition or mutagenesis).
  • the culture medium was replaced by saline solution (physiological NaCl solution) and the fibroblasts were irradiated with a UVA dose (365 nm, 15 J / cm 2 ; Tubes: MAZDA FLUOR TFWN40).
  • the MDA level (malonaldialdehyde level) in the supernatant sodium chloride solution was determined quantitatively by reaction with thiobarbituric acid.
  • Example 8 Cell protection action against UVB on human keratinocytes grown in vitro
  • UVB rays trigger inflammation (erythema, edema) by activating an enzyme, namely phospholipase A2 or PLA2, which removes arachidonic acid from the phospholipids of the plasma membrane.
  • PGE2 the prostaglandins E2
  • LDH lactate dehydrogenase
  • a defined medium which contains fetal calf serum, was inoculated with the keratinocytes and the plant extract (diluted with saline solution) was added 72 hours after the inoculation.
  • the keratinocytes were then irradiated with a UVB dose (30 mJ / cm 2 - tubes: DUKE FL40E).
  • LDH content in the supernatant was determined.
  • the content of LDH- (lactate dehydrogenase) was determined by means of an enzyme reaction (kit used to investigate the LDH content by the company Röche).
  • the number of adherent keratinocytes is determined (after trypsin treatment) with a particle counter.
  • the strands of hair thus prepared were held in the solution with the respective test substance for 3 minutes and then rinsed out for 1 minute. After rinsing, the strands of hair were combed and their wet combability was tested. The tresses were dried at room temperature. The sensory tests were carried out on dry hair 24 hours after treatment with the extracts.
  • the table shows the results of sensory tests on wet and dry hair.
  • the sensory properties can be read in comparison to standardized strands of hair. The higher the number given, the better the assessment of the respective sensory property.
  • the horny layer (the stratum corneum) is found in the epidermis of human skin.
  • the stratum corneum is a dielectric medium with little electrical conduction.
  • the water content leads to increased dielectric conductivity and the determination of the dielectric conductivity of the stratum corneum can thus serve as a measure of the degree of moisture in human skin.
  • the increase in the dielectric conductivity of the stratum corneum reflects an increased level of moisture in the human skin.
  • hydrogel (Hydrogel LS from Laboratoire Serobi Liste LS) served as a placebo without the preparation described, that is to say without a plant extract.
  • the moisture-regulating activity of the preparation described above was determined as a percentage increase in the conductivity compared to the placebo treatment.
  • a dose-dependent moisture-regulating activity can be seen from the results.
  • Example 11 Example formulations of cosmetic compositions with extracts of the plants Mourera fluviatilis
  • the extracts of the Mourera fluviatilis plant obtained according to Examples 1 to 5 were used in the following formulations K1 to K21 and 1 to 40 according to the invention. Unless explicitly stated otherwise, each extract according to Examples 1 to 5 can be used.
  • the cosmetic compositions produced in this way showed very good skin-care properties and, at the same time, good skin tolerance compared to the comparison formulations V1, V2 and V3.
  • the agents according to the invention prove to be stable against oxidative decomposition.
  • Glycerin (86% by weight) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
  • Extracts from Mourera fluviatilis (Example 1-4) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 •
  • Glycerin (86% by weight) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
  • Mourera fluviatilis extract 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 -
  • Glycerin (86% by weight) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
  • Deoxyribonucleic acid molecular weight approx. 70000, purity (determined by spectrophotometric measurement of the absorption at 260 nm and 280 nm): at least 1, 7.
  • Cosmetic preparations conditioner water, preservative ad 100% by weight
  • Cosmetic preparations conditioner (water, preservative ad 100 wt .-%)
  • Table 12 Cosmetic preparations shampoo (water, preservative ad 100 wt .-%)
  • Table 14 Cosmetic preparations bubble bath (water, preservative ad 100 wt .-%)
  • Table 15 Cosmetic preparations (water, preservative ad 100% by weight)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Birds (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Biochemistry (AREA)
  • Cosmetics (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

Vorgeschlagen werden Extrakte der Pflanze Mourera fluviatilis sowie kosmetische und/oder pharmazeutische Zubereitungen, enthaltend einen Extrakt der Pflanze Mourera fluviatilis.

Description

Kosmetische Zubereitungen enthaltend Pflanzenextrakte
Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der Kosmetik und betrifft Zubereitungen enthaltend spezielle Pflanzenextrakte sowie die Verwendung dieser Pflanzenextrakte in kosmetischen und/oder pharmazeutischen Zubereitungen beispielsweise für die Hautbehandlung.
Stand der Technik
Pflanzenextrakte werden seit vielen Jahren in den unterschiedlichsten Kulturen für medizinische aber auch für kosmetische Zwecke genutzt. Es werden immer wieder neue Pflanzen extrahiert und die Extrakte auf ihre kosmetischen Wirkungen hin untersucht um weitere Pflanzen mit neuem oder verändertem Wirkspektrum zu finden. Viele Pflanzen, deren Nutzen man noch nicht kannte, und die als exotisch und unbedeutend galten, finden heute breite Anwendung unter anderem in der Kosmetik.
Kosmetische Zubereitungen stehen dem Verbraucher heute in einer Vielzahl von Kombinationen zur Verfügung. Dabei wird nicht nur erwartet, dass diese Kosmetika einen bestimmten pflegenden Effekt zeigen oder einen bestimmten Mangel beheben, sondern immer häufiger wird nach Produkten verlangt, die mehrere Eigenschaften gleichzeitig aufweisen und somit ein verbessertes Leistungsspektrum zeigen. Von besonderem Interesse sind Stoffe, die sowohl die technischen Eigenschaften des kosmetischen Produktes, wie Lagerstabilität, Lichtstabilität und Formulierbarkeit positiv beeinflussen, als auch gleichzeitig Wirkstoffe darstellen, die für Haut und/oder Haare beispielsweise pflegende, feuchtigkeitsspendende, irrtitationshemmende, entzündungshemmende und/oder lichtschutzwirkende Eigenschaften vermitteln. Hierbei sind zusätzlich eine gute Hautverträglichkeit und besonders der Einsatz natürlicher Produkte beim Kunden gefragt.
Darüber hinaus besteht ein generelles Bedürfnis, kosmetische und pharmazeutische Zubereitungen bereitzustellen, die auf Grund ihrer speziellen Zusammensetzung qualitativ gute technische Eigenschaften aufweisen und die sich außerdem durch zusätzliche Eigenschaften für Haut und Haar auszeichnen.
Beschreibung der Erfindung
Die Aufgabe der vorliegenden Erfindung hat darin bestanden, kosmetische und/oder pharmazeutische Zubereitungen zur Verfügung zu stellen, welche den Anforderungen für kosmetische Formulierungen wie Lagerstabilität und Hautverträglichkeit gerecht werden und zusätzlich verbesserte feuchtigkeits- regulierende, pflegende und schützende Eigenschaften für menschliche Haut und/oder Haare besitzen. Eine weitere Aufgabe hat darin bestanden, Pflanzenextrakte aus Pflanzen zu gewinnen, die bisher für eine kosmetische Anwendung nicht bekannt waren und deren Inhaltsstoffe als Wirkstoffe in kosmetischen und/oder pharmazeutischen Zubereitungen nutzbar zu machen. Gegenstand der Erfindung sind Extrakte der Pflanze Mourera fluviatilis.
Unter dem Begriff Pflanze sind im Sinne der vorliegenden Anmeldung sowohl ganze Pflanzen als auch Pflanzenteile (Blätter, Blüten, Wurzel) sowie deren Gemische zu verstehen.
Mourera fluviatilis
Die erfindungsgemäß einzusetzenden Extrakte werden aus Pflanzen der Familie Podostemaceae gewonnen und zwar handelt es sich um Extrakte der Pflanze Mourera fluviatilis. Bei dieser Pflanze handelt sich um Stiehlfadengewächse, die v.a. in tropischen, rasch fließenden Wasserläufen und Wasserfällen vorkommen. Die Pflanze ist in Nord-Süd-Amerika und Französisch Guyana heimisch wo sie auch „Coumarou salad" genannt wird. Die Pflanze besitzt racemöse Blütenstände, den sogenannten Infloreszenzen mit doppelt überzogenen Brakteen. Diese Blütenstände enthalten 14 - 40 Staubbeutel.
Extraktion
Die Herstellung der erfindungsgemäß einzusetzenden Extrakte erfolgt durch übliche Methoden der Extraktion von Pflanzen bzw. Pflanzenteilen. Bezüglich der geeigneten herkömmlichen Extraktionsverfahren wie der Mazeration, der Remazeration, der Digestion, der Bewegungsmazeration, der Wirbelextraktion, Ultraschallextraktion, der Gegenstromextraktion, der Perkolation, der Reperkolation, der Evakolation (Extraktion unter vermindertem Druck), der Diakolation und Festflüssig-Extraktion unter kontinuierlichem Rückfluß, die in einem Soxhlet-Extraktor durchgeführt wird, die dem Fachmann geläufig und im Prinzip alle anwendbar sind, sei beispielhaft auf Hagers Handbuch der Pharmazeutischen Praxis, (5. Auflage, Bd. 2, S. 1026-1030, Springer Verlag, Berlin-Heidelberg-New- York 1991) verwiesen. Als Ausgangsmaterial können frische Pflanzen oder Pflanzenteile eingesetzt werden, üblicherweise wird jedoch von getrockneten Pflanzen und/oder Pflanzenteilen ausgegangen, die vor der Extraktion mechanisch zerkleinert werden können. Hierbei eignen sich alle dem Fachmann bekannten Zerkleinerungsmethoden, als Beispiel sei die Zerstoßung mit einem Mörser genannt.
Als Lösungsmittel für die Durchführung der Extraktionen können vorzugsweise organische Lösungsmittel, Wasser (destilliert oder nicht destilliert, vorzugsweise heißes Wasser einer Temperatur von über 80 °C) oder Gemische aus organischen Lösungsmitteln und Wasser, insbesondere niedermolekulare Alkohole, Ester, Kohlenwasserstoffe, Ketone oder halogenhaltige Kohlenwasserstoffe mit mehr oder weniger hohen Wassergehalten, verwendet werden. Besonders bevorzugt ist die Extraktion mit Wasser, Methanol, Ethanol, Pentan, Hexan, Heptan, Aceton, Propylenglycolen, Polyethylenglycolen Ethylacetat, Dichlormethan, Trichlormethan sowie Mischungen hieraus. Die Extraktion erfolgt in der Regel bei 20 bis 100 °C, bevorzugt bei 30 bis 90 °C, insbesondere bei 60 bis 85 °C. In einer möglichen Ausführungsform erfolgt die Extraktion unter Inertgasatmosphäre zur Vermeidung der Oxidation der Inhaltsstoffe des Extraktes. Die Extraktionszeiten werden vom Fachmann in Abhängigkeit vom Ausgangsmaterial, dem Extraktionsverfahren, der Extraktionstemperatur, vom Verhältnis Lösungsmittel zu Rohstoff u.a. eingestellt. Nach der Extraktion können die erhaltenen Rohextrakte gegebenenfalls weiteren üblichen Schritten, wie beispielsweise Aufreinigung, Konzentration und/oder Entfärbung unterzogen werden. Falls wünschenswert, können die so hergestellten Extrakte beispielsweise einer selektiven Abtrennung einzelner unerwünschter Inhaltsstoffe, unterzogen werden. Die Extraktion kann bis zu jedem gewünschten Extraktionsgrad erfolgen, wird aber gewöhnlich bis zur Erschöpfung durchgeführt. Typische Ausbeuten (= Trockensubstanzmenge des Extraktes bezogen auf eingesetzte Rohstoffmenge) bei der Extraktion getrockneter Pflanzen liegen im Bereich von 3 bis 20, insbesondere 4 bis 16 Gew.-%. Die vorliegende Erfindung umfasst die Erkenntnis, dass die Extraktionsbedingungen sowie die Ausbeuten der Endextrakte je nach gewünschtem Einsatzgebiet gewählt werden können. Falls gewünscht, können die Extrakte anschließend beispielsweise einer Sprüh- oder Gefriertrocknung unterworfen werden.
Ein weiterer Gegenstand der Erfindung sind kosmetische und/oder pharmazeutische Zubereitungen, die einen Extrakt der Pflanze Mourera fluviatilis enthalten.
Kosmetische und/oder pharmazeutische Zubereitungen auf Basis der Pflanze Mourera fluviatilis zeigen überraschend gute pflegende und schützende Eigenschaften für Haut und Haar, gegen Stress und gegen Umwelteinflüsse sowie gleichzeitig gute Hautverträglichkeit. Des weiteren stellen die so erhaltenen Zubereitungen gute feuchtigkeitsregulierende Feuchthaltemittel für die Haut dar. Die so erhaltenen Zubereitungen zeichnen sich weiterhin durch eine hohe antioxidative Kapazität aus, die zum einen die Haut vor entzündlichen Reaktionen sowie vor oxidativ bedingten Hautalterungsvorgängen schützt, zum anderen werden gleichzeitig die kosmetischen Mittel vor oxidativem Abbau (Verderb) geschützt. Darüber hinaus sind die so erhaltenen Produkte geeignet, der Schädigung von menschlichen Fibroblasten und Keratinocyten durch UV-Strahlung entgegen zu wirken und können demnach als Sonneschutzmittel in der Kosmetik eingesetzt werden.
Die Einsatzmenge der Pflanzenextrakte in den genannten Zubereitungen richtet sich nach der Konzentration der einzelnen Inhaltsstoffe und nach der Art der Anwendung der Extrakte. In der Regel werden 0,01 bis 25 Gew.-0/», insbesondere 0,03 bis 10, und insbesondere 0,1 bis 5 Gew.-% des Pflanzenextraktes -bezogen auf die Endzubereitung der kosmetischen und/oder pharmazeutischen Zubereitungen eingesetzt, mit der Maßgabe, dass sich die Mengenangaben mit weiteren Hilfs- und Zusatzstoffen und mit Wasser zu 100 Gew.-% addieren.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Endzubereitung der kosmetischen und/oder pharmazeutischen Zubereitungen - betragen. Die Herstellung der Zubereitungen kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.
Extrakte:
Die erfindungsgemäßen Extrakte der Pflanze Mourera fluviatilis enthalten in der Regel Inhaltsstoffe aus der Gruppe bestehend aus, Saponinen, Flavonderivaten, Sterolen, Triterpenen, Xanthon-Derivate und/oder Carotinoiden. Diese sind je nach gewähltem Ausgangsmaterial und nach gewählter Extraktionsmethode unterschiedlich zusammengesetzt.
Unter Saponinen sind im Sinne der Erfindung solche Saponine zu verstehen, die sich aus der Pflanze Mourera fluviatilis isolieren lassen. Im Besonderen handelt es sich um eine Gruppe von Glykosiden, die in Wasser kolloidale, seifenartige Lösungen bilden. Die Saponine werden nach der Art ihrer Aglykone, der Sapogenine, in Steroidsaponine und Triterpen-Saponine unterteilt.
Im Sinne der vorliegenden Erfindung sind unter Flavonderivaten solche zu verstehen, die sich aus der Pflanze Mourera fluviatilis isolieren lassen. Im Besonderen handelt es sich um Stoffe, die Hydrierungs-, Oxidations- oder Substitutionsprodukte des 2-Phenyl-4H-1-benzopyrans darstellen, wobei eine Hydrierung in der 2,3-Stellung des Kohlenstoffgerüsts bereits vorliegen kann, eine Oxidation in der 4- Stellung bereits vorliegen kann, und unter Substitutionsprodukte der Ersatz eines oder mehrerer Wasserstoffatome durch Hydroxy- oder Methoxy-Gruppen zu verstehen ist. Bei dieser Definition sind also Flavane, Flavan-3-ole (Catechine), Flavan-3,4-diole (Leukoanthocyanidine), Flavone, Flavonole und Flavanone im herkömmlichen Sinn eingeschlossen.
Unter Sterolen sind im Sinne der Erfindung Steroide zu verstehen, die sich aus der Pflanze Mourera fluviatilis isolieren lassen. Im Besonderen handelt es sich um Steroide, die nur an C-3 eine Hydroxy- Gruppe, sonst aber keine funktioneile Gruppe tragen, also formal Alkohole darstellen. Zusätzlich besitzen die 27 bis 30 C-Atome enthaltenden Sterole im allgemeinen eine C=C-Doppelbindung in 5/6- Stellung, seltener auch/oder in 7/8, 8/9 und anderen Positionen (z. B. 22/23). Unter Triterpenen sind im Sinne der Erfindung solche Triterpene zu verstehen, die sich aus der Pflanze Mourera fluviatilis isolieren lassen. Die erfindungsgemäßen Triterpene lassen sich formal als Polymerisationsprodukte des Kohlenwasserstoffs Isopren auffassen. Aus drei Isopren-Resten bilden sich die Triterpene (C30). Aus unterschiedlichen Faltungsmöglichkeiten der drei Isopren-Reste lassen sich verschiedene polycyclische Ring-Systeme für die möglichen Triterpene ableiten. Die Cyclisierung liefert bevorzugt 6-Ringe, daneben bei den meisten tetra- (z. B. Cucurbitacine) und einigen pentacyclischen (z. B. Lupane) Triterpenen noch 5-Ringe. Da die 6-Ringe in der Sessel- und Wannen- Form vorliegen, die 5-Ringe eben oder gewinkelt sein können, sind viele verschiedene Gerüste möglich.
Unter Xanthon-Derivate sind im Sinne der Erfindung solche zu verstehen, die sich aus der Pflanze Mourera fluviatilis isolieren lassen. Es handelt sich um Derivate der Dibenzo-gamma-pyrone. Die Xanthon-Derivate werden synonym als 9-Xanthenon-Derivate bezeichnet. Bei den erfindungsgemäßen Xanthon-Derivaten handelt es sich vorzugsweise um 6-Desoxyjacareubin und/oder um Trapezifoliaxanthon. Die 9-Xanthenone können weiterhin bevorzugt als Hydroxy- und/oder Methoxy- substituierte Xanthenone vorliegen, wie beispielsweise Gentiansäure. Die Derivate der Xanthone sind in der überwiegenden Anzahl leicht gelb gefärbt und besitzen eine hellblaue Fluoreszenz. Im Sinne der vorliegenden Erfindung sind unter Carotinoiden solche zu verstehen, die sich aus der Pflanze Mourera fluviatilis isolieren lassen. Im Besonderen handelt es sich um Stoffe, die chemisch betrachtet 11- bis 12-fach ungesättigte Tetraterpene mit einem Grundgerüst mit 9 konjugierten Doppelbindungen, 8 Methylverzweigungen (einschließlich der möglichen Ringstrukturen) und einer ß- lonon-Ringstruktur an einem Molekülende darstellen, während sie sich in der Struktur des anderen Endes des Moleküls unterscheiden. Typische Carotinoide sind beispielsweise ß-Carotin bzw. Provitamin A, α-Carotin, Lutein, Cryptoxanthin, Zeaxanthin und Lycopin. Über den Einsatz von Carotinoiden im systemischen Lichtschutz wird von Heinrich et al. in Parf.Kosm. 78, 10 (1997) berichtet.
In einer besonderen Ausführungsform der Erfindung enthalten die Extrakte der Pflanze Mourera fluviatilis Mineralien in Form von Salzen der Alkali oder Erdalkalimetalle. Die vorwiegend auftretenden Metalle sind Natrium, Kalium oder Calcium. Die Alkali- oder Erdalkalimetalle treten in Form ihrer Salze, vorwiegend jedoch in Form ihrer Halogenide, Oxide bzw. Hydroxide, Phosphate, Carbonate, Sulfate oder Nitrate auf.
Die vorliegenden Erfindung schließt die Erkenntnis ein, dass durch das Zusammenwirken der Inhaltsstoffe der Pflanzenextrakte, insbesondere der oben genannten, besonders wirkungsvolle kosmetische Mittel erhalten werden.
Weitere Gegenstände der Erfindung betreffen die vielfältige Verwendung der Pflanzenextrakte von Mourera fluviatilis beispielsweise
• in Pflegemittel für Haut und Haare, insbesondere gegen Stress;
• in feuchtigkeitsregulierenden Feuchthaltemittel;
Pflegemittel:
Als Pflegemittel im Sinne der Erfindung sind Pflegemittel für Haut und Haar zu verstehen. Diese Pflegemittel schließen unter anderem reinigende und aufbauende Wirkung sowie feuchtigkeits- regulierende und UV-Lichtschutz Eigenschaften ein. Prinzipiell kann man die erfindungsgemäßen Extrakte in allen kosmetischen Produkten einsetzen. Beispiele für kosmetische Produkte sind in ihren Formulierungen in den Tabelle 7 bis Tabelle 15 beschrieben.
Die Haarpflege hat zum Ziel, den Naturzustand des frisch nachgewachsenen Haares möglichst lange zu erhalten bzw. bei Schädigung wiederherzustellen. Merkmale natürlichen gesunden Haares sind seidiger Glanz, geringe Porosität, spannkräftige und dabei weiche Fülle und angenehm glattes Gefühl (guter „Griff'). Die erfindungsgemäßen Pflegemittel wirken glättend auf das Haar, sie verbessern die Kämmbarkeit, vermindern die elektrostatatische Aufladung und verbessern Griff und Glanz.
Die erfindungsgemäßen Zubereitungen zeigen eine hervorragende hautpflegende Wirkung bei gleichzeitig hoher Hautverträglichkeit. Darüber hinaus zeigen sie eine gute Stabilität, insbesondere gegenüber oxidativer Zersetzung der Produkte.
Feuchthaltemittel:
Als feuchtigkeitsregulierende Feuchthaltemittel im Sinne der Erfindung sind Hautpflegemittel zu verstehen, die der Feuchtigkeitsregulierung der Haut dienen. Dieses entspricht im Sinne der Erfindung der Definition eines Moisturizer. Es sind Stoffe oder Stoffgemische, die kosmetischen und/oder pharmazeutischen Zubereitungen die Eigenschaft verleihen, nach dem Auftragen und Verteilen auf der Hautoberfläche, die Feuchtigkeitsabgabe des Stratum corneum (Hornschicht) zu reduzieren.
Die erfindungsgemäßen Feuchthaltemittel enthalten Extrakte der Pflanze Mourera fluviatilis. Als weitere Feuchthaltemittel können in Kombination mit dem Pflanzenextrakt beispielhaft weitere Feuchthaltemittel enthalten sein, wie:
• Polyglycerinfettsäureester auf Basis von Fettsäuren mit 12-18 C-Atomen, z.B. Tetraglyceryl- monooleat, Triglyceryldiisostearat;
Pyroglutaminsäure oder L-Argininpyroglutamat, L-Lysinpyroglutamat; Mischungen von Aminosäuren wie z.B. L-Alanin, L-Arginin, L-Serin, L-Threonin; Propylen Glycol Acetamid
Polysaccharide oder Hyaloronsäure Ricinusölether und Sorbitanester wie in der JP60149511 (Lion Corp) beschrieben
Sonnenschutzmittel bzw. UV-Lichtschutzfaktoren
Ein weiterer Gegenstand der Erfindung ist die Verwendung der Extrakte der Pflanze Mourera fluviatilis in Sonnenschutzmittel.
Als Sonnenschutzmittel bzw. UV-Lichtschutzfaktoren im Sinne der Erfindung werden Lichtschutzmittel bezeichnet, die für den Schutz der menschlichen Haut gegenüber schädigenden Einflüssen der direkten und indirekten Strahlung der Sonne nützlich sind. Die für die Hautbräunung verantwortliche Ultraviolettstrahlung der Sonne unterteilt man in die Abschnitte UV-C (Wellenlängen 200-280 nm), UV- B (280-315 nm) u. UV-A (315^100 nm).
Die Pigmentierung normaler Haut unter dem Einfluss der Sonnenstrahlung, d. h. die Bildung von Melaninen, wird durch UV-B u. UV-A unterschiedlich bewirkt. Bestrahlung mit UV-A-Strahlen („langwelligem UV") hat die Dunkelung der in der Epidermis bereits vorhandenen Melanin-Körper zur Folge, ohne dass schädigende Einflüsse zu erkennen sind. Anders bei dem sog. „kurzwelligen UV" (UV-B). Dieses bewirkt die Entstehung von sog. Spätpigment durch Neubildung von Melanin-Körnern. Ehe jedoch das (schützende) Pigment gebildet ist, unterliegt die Haut der Einwirkung der ungefilterten Strahlung, die - je nach Expositionsdauer - zur Bildung von Hautrötungen (Erythemen), Hautentzündungen (Sonnenbrand) u. gar Brandblasen führen kann.
Als UV-Absorber oder Lichtfilter, die also die UV-Strahlung in unschädliche Wärme umwandeln, werden Extrakte der Pflanze Mourera fluviatilis eingesetzt, diese können zusätzlich in Kombination mit weiteren Sonnenschutzmitteln bzw. UV-Lichtschutzfaktoren vorliegen.
Diese weiteren UV- Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter), die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
> 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzy- liden)campher wie in der EP 0693471 B1 beschrieben;
> 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4- (Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester;
> Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepro- pylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octo- crylene);
> Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylben- zylester, Salicylsäurehomomenthylester;
> Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-me- thoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
> Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;
> Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1 '-hexyloxy)-1 ,3,5-triazin und Octyl Tria- zon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB);
> Propan-1 ,3-dione, wie z.B. 1 -(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1 ,3-dion;
> Ketotricyclo(5.2.1 ,0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.
Als wasserlösliche Substanzen kommen in Frage:
> 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze;
> Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5- sulfonsäure und ihre Salze;
> Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bomylidenmethyl)benzol- sulfonsäure und 2-Methyl-5-(2-oxo-3-bomyliden)sulfonsäure und deren Salze.
Als typische UVA-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3-dion, 4-tert.-Butyl-4'-methoxydibenzoyl- methan (Parsol 1789), 1 -Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion sowie Enaminverbindungen, wie beispielsweise beschrieben in der DE 19712033 A1 (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, Vorzugs- weise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trial- koxyoctylsilane oder Dimethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P.Finkel in SÖFW-Journal 122, 543 (1996) sowie Parfümerie und Kosmetik 3 (1999), Seite 11ff zu entnehmen.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von Extrakten der Pflanze Mourera fluviatilis in Mittel gegen die Schädigung von Fibroblasten und/oder Keratinocyten durch UVA-Strahlung und/oder UVB-Strahlung und als anti-inflammatorische Additive.
UVA-Strahlen dringen bis in die Dennis ein, wo sie zu Oxidationsstreß führen, was durch eine Lipoperoxidation der Zytoplasmamembranen nachgewiesen wird. Die Lipoperoxide werden zu Malonaldialdehyd (MDA) abgebaut, der viele biologische Moleküle wie Proteine und Nukleinbasen vernetzen wird (Enzymhemmung bzw. Mutagenese). Die erfindungsgemäßen Extrakte der Pflanze Mourera fluviatilis reduzieren signifikant den Grad an MDA in humanen Fibroblasten, welcher durch UVA-Strahlen induziert wird und zeigen damit eine hohe Kapazität schädliche Effekte eines oxidativen Stresses auf der Haut zu reduzieren.
UVB-Strahlen lösen durch Aktivierung eines Enzyms, nämlich Phospholipase A2 oder PLA2 eine Entzündung aus. Diese Entzündung (Erythem, Ödem) wird durch die Entfernung von Arachidonsäure aus den Phospholipiden der Plasmamembran durch die Phospholipase ausgelöst. Arachidonsäure ist die Vorstufe der Prostaglandine, die eine Entzündung und eine Zellmembranschädigung verursachen; die Prostaglandine E2 (= PGE2) werden durch die Cyclooxygenase gebildet. Der Grad der Freisetzung des Cytoplasaenzyms LDH (Lactat Dehydrogenase) in humanen Keratinocyten dient als Marker für eine Zellschädigung.
Die erfindungsgemäßen Extrakte der Pflanze Mourera fluviatilis reduzieren den Effekt von UVB- Strahlung auf die Anzahl an Keratinocyten und auf den Gehalt an freigesetzte LDH. Die Extrakte zeigen demnach die Fähigkeit, die durch UVB-Strahlung hervorgerufene Schädigung an Zellmembranen zu reduzieren.
Die Verwendung der erfindungsgemäßen Extrakte als anti-inflammatorische Additive ist prinzipiell für alle kosmetischen und/oder pharmazeutischen Zubereitungen möglich, die bei Entzündungen der Haut und damit in der Hautpflege eingesetzt werden. Die Entzündung der Haut kann dabei unterschiedlichste Ursachen haben. Ein weiterer Gegenstand der Erfindung ist die Verwendung von Extrakten der Pflanze Mourera fluviatilis als Antioxidantien bzw Radikalfänger.
Als Antioxidantien im Sinne der Erfindung sind Oxidationsinhibitoren zu verstehen, die sich aus der Pflanze Mourera fluviatilis isolieren lassen. Antioxidantien sind in der Lage, die unerwünschten, durch Sauerstoff-Einwirkungen und andere oxidative Prozesse bedingten Veränderungen in den zu schützenden Stoffen zu hemmen oder zu verhindern. Die Wirkung der Antioxidantien besteht meist darin, dass sie als Radikalfänger für die bei der Autoxidation auftretenden freien Radikale wirken.
Neben der Verwendung von Extrakten der Pflanze Mourera fluviatilis als Antioxidantien können auch weitere, bereits bekannte Antioxidantien eingesetzt werden. Eine mögliche Anwendung der Antioxidantien zum Beispiel in kosmetischen und/oder pharmazeutischen Zubereitungen, ist die Anwendung als sekundäre Lichtschutzmittel, weil Antioxidantien in der Lage sind, die photochemische Reaktionskette zu unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Neben dem erfindungsgemäßen Pflanzenextrakt sind weitere typische Beispiele hierfür Aminosäuren (z.B. Glycin, Alanin, Arginin, Serin, Threonin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Camosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, ß-Carotin, Lycopin, Lutein) oder deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α- Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, Boldin, Boldo- Extrakt, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ- Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Camosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnS04) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe. Die UV-Lichtschutzfaktoren bzw. Antioxidantien können in Mengen von 0,01 bis 25, vorzugsweise 0,03 bis 10 und insbesondere 0,1 bis 5 Gew.-% bezogen auf die Gesamtmenge in den Zubereitungen, zugegeben werden.
Die erfindungsgemäßen Extrakte können in kosmetischen und/oder pharmazeutischen Zubereitungen, wie beispielsweise Haarshampoos, Haarlotionen, Schaum-bäder, Duschbäder, Cremes, Gele, Lotionen, Sonnenschutzmittel, alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/ Fett-Massen, Stiftpräparaten, Pudern oder Salben eingesetzt werden. Diese Zubereitungen können ferner als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Überfettungsmittel, Stabilisatoren, Polymere, Siliconverbindungen, Fette, Wachse, Lecithine, Phospholipide, biogene Wirkstoffe, UV-Lichtschutzfaktoren, Antioxidantien, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, Insektenrepellentien, Selbstbräuner, Tyrosininhibitoren (Depigmentierungsmittel), Hydrotrope, Solubilisatoren, Konservierungsmittel, Parfümöle, Farbstoffe und dergleichen enthalten.
Als Hilfs- und Zusatzstoffe mit Oberflächenaktivität können anionische, nichtionische, kationische und/oder amphotere bzw. amphotere Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepoly- glycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanol- aminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkyl- amidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen. Typische Beispiele für besonders geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisothionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine, Amphoacetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen Cε-C∑∑-Fettsäuren mit linearen C6-C22-Fet- talkoholen, Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen C6-C22-Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbe- henat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oley- lisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat in Betracht. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2- Ethylhexanol, Ester von Ci8-C38-Alkylhydroxycarbonsäuren mit linearen oder verzweigten C6-C22- Fettalkoholen (vgl. DE 19756377 A1), insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis Cβ-CiQ-Fettsäuren, flüssige Mono-/Di- /Triglyceridmischungen auf Basis von Cδ-Ciδ-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-C12- Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, Guer- betcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Siliciummethicontypen u.a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane.
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage: > Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest;
> Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga;
> Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethylengly- col (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
> Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze; Wollwachsalkohole;
> Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
> Block-Copolymere z.B. Polyethylenglycol-30 Dipolyhydroxystearate;
> Polymeremulgatoren, z.B. Pemulen-Typen (TR-1 ,TR-2) von Goodrich;
> Polyalkylenglycole sowie
> Glycerincarbonat.
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Ci2/i8-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligo- sacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosidrestes gilt, dass sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxy- stearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Ölsäuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäurediglycerid, Linolsäuremonoglycerid, Linolsäure- diglycerid, Linolensäuremonoglycerid, Linolensäurediglycerid, Erucasäuremonoglycerid, Erucasäure- diglycerid, Weinsäuremonoglycerid, Weinsäurediglycerid, Citronensäuremonoglycerid, Citronendiglyce- rid, Äpfelsäuremonoglycerid, Äpfelsäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitandiisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitandioleat, Sorbitantrioleat, Sorbi- tanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sor- bitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitan- sesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sor- bitansesquitartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbi- tandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitandimaleat, Sorbitantri- maleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (Dehy- muls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostearate (Isolan® Gl 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Taigfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylam- moniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N- dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer Cβ/iβ-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -Sθ3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hy- droxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropio- nat und das Ci2/i8-Acylsarcosin.
Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquatemierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind.
Typische Beispiele für Fette sind Glyceride, d.h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestern höherer Fettsäuren bestehen, als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine versteht der Fachmann diejenigen Glycero-Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC) bezeichnet und folgen der allgemeinen Formel II.
Figure imgf000015_0001
Formel II
wobei R typischerweise für lineare aliphatische Kohlenwasserstoffreste mit 15 bis 17 Kohlenstoffatomen und bis zu 4 cis-Doppelbindungen steht. Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1 ,2-Diacyl-sn-glycerin-3- phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphingolipide in Frage.
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldi- stearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stea- rinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfett- säuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten.
Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysac- charide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethyl- cellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® und Pemulen-Typen von Goodrich; Synthalene® von Sigma; Keltrol-Typen von Kelco; Sepigel-Typen von Seppic; Salcare-Typen von Allied Colloids), Polyacrylamide, Polymere, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxy- lierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quatemierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quatemierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Poly- glycolen und Aminen, quatemierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium Hydroxy- propyl Hydrolyzed Collagen (Lamequat®L/Grünau), quatemierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Dimethyla- minohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl- diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quatemiertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1 ,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quatemierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1 , Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/ Isobomylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmethacrylat/tert.Butylaminoethylmethacrylat/2-Hydroxyproyl- methacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage. Weitere geeignete Polymere und Verdickungsmittel sind in Cosmetics & Toiletries Vol. 108, Mai 1993, Seite 95ff aufgeführt.
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder al- kylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethico- nen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 91, 27 (1976).
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säu- ren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker fungieren.
Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N'-(3,4 dichlor- phenyl)hamstoff, 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclosan), 4-Chlor-3,5-dimethylphenol, 2,2'- Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(1-methylethyl)phenol, 2-Benzyl-4-chlorphenol, 3-(4- Chlorphenoxy)-1 ,2-propandiol, 3-lod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4 '-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonocaprinat, Glycerinmonocaprylat, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid.
Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düsseldorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipin- säuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarb- nonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäure- diethylester, sowie Zinkglycinat.
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfüms unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Ben- zylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringe- rer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzyl- aceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citro- nenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß- Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wassrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe: adstringierende Wirkstoffe,
> Ölkomponenten,
> nichtionische Emulgatoren,
> Coemulgatoren,
> Konsistenzgeber,
> Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
> nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.
Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z.B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquichlorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1 ,2. Aluminiumhydroxyallantoinat, Aluminiumchloridtartrat, Aluminium- Zirkonium-Trichlorohydrat, Aluminium-Zirkonium-tetrachlorohydrat, Aluminium-Zirkonium-pentachlo- rohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Glycin. Daneben können in Antitranspirantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z.B. sein:
> entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,
> synthetische hautschützende Wirkstoffe und/oder
> öllösliche Parfümöle.
Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duftstoffe, pH-Wert- Stellmittel, z.B. Puffergemische, wasserlösliche Verdickungsmittel, z.B. wasserlösliche natürliche oder synthetische Polymere wie z.B. Xanthan-Gum, Hydroxyethylcellulose, Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide. Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäure- reihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Als Antischuppenwirkstoffe kommen Pirocton Olamin (1-Hydroxy-4-methyl-6-(2,4,4-trimythylpentyl)-2- (IH)-pyridinonmonoethanolaminsalz), Baypival® (Climbazole), Ketoconazol®, (4-Acetyl-1-{-4-[2-(2.4- dichlorphenyl) r-2-(1H-imidazol-1-ylmethyl)-1 ,3-dioxylan-c-4-ylmethoxyphenyl}piperazin, Selendisulfid, Schwefel kolloidal, Schwefelpolyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwfel- teer Destillate, Salicylsäure (bzw. in Kombination mit Hexachlorophen), Undexylensäure Monoethanolamid Sulfosuccinat Na-Salz, Lamepon® UD (Protein-Undecylensäurekondensat), Zinkpyrithion, Aluminiumpyrithion und Magnesiumpyrithion / Dipyrithion-Magnesiumsulfat in Frage.
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkyl- modifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden.
Als Insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1,2-Pentandiol oder Ethyl Butylacetylaminopropionate in Frage
Als Selbstbräuner eignet sich Dihydroxyaceton. Als Tyrosinhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmentierungsmitteln finden, kommen beispielsweise Arbutin, Kojisäure, Cumarinsäure und Ascorbinsäure (Vitamin C) in Frage.
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopro- pylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoff atome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
> Glycerin;
> Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
> technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1 ,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
> Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
> Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
> Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
> Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
> Aminozucker, wie beispielsweise Glucamin; > Dialkoholamine, wie Diethanolamin oder 2-Amino-1 ,3-propandiol.
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Para- bene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen.
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Bu- ty Icyclohexy I acetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa- licylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-lsomethylionon und Me- thylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Pheny- lethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanu- möl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessig- säure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Zubereitung, eingesetzt. Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines Extraktes der Pflanze Mourera fluviatilis bei dem zur Extraktion der Pflanze Lösungsmittel oder Mischungen dieser Lösungsmittel verwendet werden, welche ausgewählt sind aus der Gruppe, die gebildet wird von destilliertem oder nicht destilliertem Wasser, niedermolekularen Alkoholen, Estern oder Kohlenwasserstoffen.
Beispiele
Beispiel 1 : 300 g getrocknete Mourera fluviatilis Planzen wurden in einem Mörser grob zerstoßen, dann in einen Glasreaktor überführt und mit 3 1 destilliertem Wasser aufgegossen. Der Aufguß wurde zwischen 80 und 85 °C erhitzt und unter Rühren über einen Zeitraum von 1 h bei dieser Temperatur extrahiert. Anschließend wurde die Mischung auf 20 °C abgekühlt und 15 min bei einer Geschwindigkeit von 5000 g zentrifugiert. Die überstehende kolloide Flüssigkeit wurde durch Filtration an Tiefenfilter mit einer mittleren Porosität von 0,450 μm (von der Firma Seitz, Bordeaux Frankreich) vom Rückstand getrennt, wobei 1 ,7 1 Extrakt erhalten wurden, welcher einen Trockenrückstand von 2,4 Gew.-% aufwies. Der braun gefärbte Extrakt wurde bei einer Anfangstemperatur von 185 °C und einer Endtemperatur von 80 CC sprühgetrocknet. Die Ausbeute an Trockenprodukt betrug 13,5 Gew.-% bezogen auf das Trockengewicht an eingesetzten Pflanzen.
Beispiel 2: Beispiel 1 wurde wiederholt, der wassrige Extrakt wurde jedoch nach dem Zentrifugieren auf einen pH-Wert = 7,2 +- 0,2 eingestellt und durch Filtration an Tiefenfilter mit einer mittleren Porosität von 0,200 μm filtriert.
Beispiel 3: Beispiel 1 wurde wiederholt, die Extraktion jedoch mit 3 1 80 Gew.-%-igem wässrigen Methanol durchgeführt. Die Extraktion wurde unter Rühren 1 h bei Siedetemperatur unter reflux durchgeführt und der Extrakt wie beschrieben weiter verarbeitet. Die Filtration wurde wie im Beispiel 1 beschrieben durchgeführt. Anschließend wurde zunächst der Alkohol bei 45 °C unter vermindertem Druck entfernt und dann der grün-braune Rückstand wie beschrieben sprühgetrocknet. Die Ausbeute an Trockenprodukt betrug 15,9 Gew.-% bezogen auf das Trockengewicht an eingesetzten Pflanzen.
Beispiel 4: Beispiel 1 wurde wiederholt, die Extraktion jedoch mit 3 1 96 Gew.-%-igem wässrigen Ethanol durchgeführt. Die Extraktion wurde unter Rühren 1 h bei Siedetemperatur unter reflux durchgeführt und der Extrakt wie beschrieben weiter verarbeitet. Die Filtration wurde wie im Beispiel 1 beschrieben durchgeführt. Anschließend wurde zunächst der Alkohol bei 45 °C unter vermindertem Druck entfernt und dann der grüne Rückstand bei 50 °C getrocknet. Die Ausbeute an Trockenprodukt betrug 4,9 Gew.-% bezogen auf das Trockengewicht an eingesetzten Pflanzen.
Beispiel 5: 260 g des getrockneten Rückstandes aus Beispiel 4 wurden in einen Glasreaktor überführt und mit 2,6 1 destilliertes Wasser versetzt. Der Aufguss wurde wie in Beispiel 1 beschrieben weiter behandelt. Der braun gefärbte Extrakt wurde bei einer Anfangstemperatur von 185 °C und einer Endtemperatur von 80 °C sprühgetrocknet. Die Ausbeute an Trockenprodukt betrug 12,5 Gew.-% bezogen auf das Trockengewicht an eingesetztem getrockneten Rückstand.
Beispiel 6: Aktivität gegenüber freien Radikalen.
In einer ersten Testreihe wurde die Eignung der Extrakte gegen oxidativen Stress untersucht. Eingesetzt wurden die Extrakte gemäß der Beispiele 1 bis 5 jeweils in Konzentrationen von 0 % w/v (weight per volume); 0,03 % w/v und von 0,1 % w/v. In einem ersten Test wurde als Referenzsystem die Hydroxylierung von Salicylsäure durch Hydroxylradikale (aus der Reaktion von Wasserstoffperoxid mit Eisen(lll)ionen und EDTA) untersucht. Diese Reaktion kann photometrisch untersucht werden, da das Hydroxylierungsprodukt der Salicylsäure rötlich gefärbt ist. Gemessen wurde der Einfluss der Extrakte auf die Bildung der Hyd roxysal icylsäu re bei einer optischen Dichte von 490 nm. Die Meßergebnisse sind in Tabelle 1 zusammengefaßt, angegeben ist der Grad der Hydroxysalicylsäurebildung in %-absolut.
Figure imgf000024_0001
Tabelle 1 : Grad der Hydroxylierung der Salicylsäure in % absolut (Ergebnisse sind Mittelwerte aus zwei Messungen)
Aus den Werten der Tabelle 1 lässt sich erkennen, dass die verwendeten Extrakte der Pflanze Maureria fluviatilis eine Wirkung gegen Radikale zeigen. Je nach Extraktionsverfahren erhält man unterschiedlich wirksame Extrakte. Nach einem Extraktionsverfahren beschrieben in Beispiel 1 ist z.B. eine Konzentration von 0,072 % w/v ausreichend um eine 50 %-ige Inhibierung der Radikalreaktion zu erzielen. Die Bildung von Hydroxysalicylsäure durch Hydroxyradikale ist bei dieser Konzentration in diesem Fall um 50 % reduziert.
In einem dritten Test wurde Xanthin Oxidase als Testsystem gewählt. Das Enzym bewirkt bei oxidativem Stress die Umwandlung von Purinbasen, wie z.B. Adenin oder Guanin in Uronsäure, wobei die intermediär gebildeten Sauerstoffradikale durch Reaktion mit Luminol über die Lumineszenz nachgewiesen und quantitativ bestimmt werden können. In Gegenwart von Substanzen mit radikalfangenden Eigenschaften vermindert sich die Lumineszenzausbeute.
Figure imgf000024_0002
Tabelle 2: Grad der Lumineszenzhemmung in % absolut
Aus der Tabelle 2 lässt sich entnehmen, dass die Extrakte der Pflanze Mourera fluviatilis die radikalische Bildung von Lumineszens inhibieren. Je nach Konzentration und Art des Extraktionsverfahrens erhält man unterschiedliche Inhibierungsgrade. Eine Konzentration von 0,058 % w/v eines Extraktes hergestellt nach Beispiel 3 liefert bereits eine 50 %-ige Inhibierung der Lumineszenzbildung und zeigt damit deutlich radikalfangende Eigenschaften.
Beispiel 7: Zellschutzwirkung gegen UVA an in vitro gezüchteten menschlichen Fibroblasten
Hintergrund: UVA-Strahlen dringen bis in die Dermis ein, wo sie zu Oxidationsstreß führen, was durch eine Lipoperoxidation der Zytoplasmamembranen nachgewiesen wird.
Die Lipoperoxide werden zu Malonaldialdehyd abgebaut, der viele biologische Moleküle wie Proteine und Nukleinbasen vernetzen wird (Enzymhemmung bzw. Mutagenese).
Methode: Zur Durchführung dieser Tests wurde ein definiertes Kulturmedium mit den Fibroblasten mit fötalem Kälberserum beimpft und der Pflanzenextrakt (in dem definierten Medium mit 10 % Fötalem Kälberserum) 72 Stunden nach dem Beimpfen zugegeben.
Nach 48 stündiger Inkubation bei 37 °C und einem Cθ2-Gehalt von 5 % wurde das Kulturmedium durch Saline-Lösung (physiologische NaCI-Lösung) ersetzt und die Fibroblasten wurden mit einer UVA-Dosis bestrahlt (365 nm, 15 J/cm2; Röhren: MAZDA FLUOR TFWN40).
Nach der Beendigung der Bestrahlung wurde der MDA-Spiegel (Malonaldialdehyd-Spiegel) in der überstehenden Natriumchlorid-Lösung quantitativ durch Reaktion mit Thiobarbitursäure bestimmt.
Figure imgf000025_0001
Tabelle 3: Quantifizierung von Malonaldialdehyd in Fibroblasten (Ergebnisse in % bezogen auf die Kontrolle, Mittelwert aus 2 Versuchen, jeder mit drei Wiederholungen
Die Ergebnisse aus der Tabelle 3 zeigen, dass die erfindungsgemäßen Extrakte der Pflanze Mourera fluviatilis signifikant den Grad an MDA in humanen Fibroblasten, welcher durch UVA-Strahlen induziert wird, reduzieren. Diese Ergebnisse zeigen eine hohe Kapazität von Mourera fluviatilis Extrakten schädliche Effekte eines oxidativen Stresses auf der Haut zu reduzieren.
Beispiel 8: Zellschutzwirkung gegen UVB an in vitro gezüchteten menschlichen Keratinozyten
Hintergrund: UVB-Strahlen lösen durch Aktivierung eines Enzyms, nämlich Phospholipase A2 oder PLA2, welche Arachidonsäure aus den Phospholipiden der Plasmamembran entfernt, eine Entzündung (Erythem, Ödem) aus. Arachidonsäure ist die Vorstufe der Prostaglandine, die eine Entzündung und eine Zellmembranschädigung verursachen; die Prostaglandine E2 (= PGE2) werden durch die Cyclooxygenase gebildet. Methode: Der Effekt von UVB-Strahlung wurde an Keratinocyten in vitro untersucht indem die Freisetzung des Cytoplasaenzyms LDH (Lactat Dehydrogenase) bestimmt wurde. Dieses Enzym dient als Marker für eine Zellschädigung.
Zur Durchführung der Tests wurde ein definiertes Medium, das fötales Kälberserum enthält, mit den Keratinozyten beimpft und der Pflanzenextrakt (mit Saline-Lösung verdünnt) 72 Stunden nach dem Beimpfen zugegeben.
Die Keratinozyten wurden sodann mit einer UVB-Dosis bestrahlt (30 mJ/cm2 - Röhren: DUKE FL40E).
Nach weiterer 1 tägiger Inkubation bei 37 °C und bei 5 % C02 wurde der LDH-Gehalt im Überstand bestimmt. Der Gehalt von LDH- (Lactatdehydrogenase) wurde mittels einer Enzymreaktion bestimmt (verwendetes kit zur Untersuchung des LDH Gehaltes von der Firma Röche). Die Anzahl adharenter Keratinozyten wird (nach Trypsinbehandlung) mit einem Partikelzählgerät bestimmt.
Figure imgf000026_0001
Tabelle 4: Zellschutzwirkung eines Extraktes von Mourera fluviatilis gegen UVB-Strahlen; Ergebnisse in % bezogen auf die Kontrolle, Mittelwert aus 2 Versuchen, jeder mit zwei Wiederholungen
Die Ergebnisse dieser Tests belegen, dass ein erfindungsgemäßer Extrakt der Pflanze Mourera fluviatilis den Effekt von UVB-Strahlung auf die Anzahl an Keratinocyten und auf den Gehalt an freigesetzte LDH reduziert. Die beschriebenen Extrakte zeigen demnach die Fähigkeit, die durch UVB- Strahlung hervorgerufene Schädigung an Zellmembranen zu reduzieren.
Beispiel 9: Sensorische Aktivität auf menschlicher Haaren
Die Bewertung der Modifikation sensorischer Eigenschaften an menschlichen Haaren nach der Behandlung mit Extrakten der Pflanze Mourera fluviatilis wurde an standardisierten Haarsträhnen (15 cm Länge und 3 g Gewicht) durchgeführt. Als Standard und Placebo diente eine wassrige Natrium- Lauryl-Sulfat Lösung (15 % w/v), Die Proben der Pflanzenextrakte wurden in einer Konzentration von 1 ,5 % w/v in die Natrium-Lauryl-Sulfat Lösung eingearbeitet und getestet. Die Behandlungseffekte wurden an drei unterschiedlichen Haartypen untersucht: a) Kontroll-Haar: die Strähnen wurden mit einer wässrigen Natrium-Lauryl-Sulfat Lösung (15 % w/v), gewaschen. b) Gebleichtes Haar: die Strähnen wurden mit einem Bleich-Schampoo, welches 6 % H2O2 und Ammoniak enthält (Eclair clair der Firma L'Oreal), 30 min. behandelt und anschließend mit der wässrigen Natrium-Lauryl-Sulfat Lösung (15 % w/v) gewaschen. Dieser Bleichvorgang wurde zweimal wiederholt. c) Dauergewelltes Haar: die Strähnen wurden mit einer Natrium-mercaptoacetat Lösung (6 % w/v, pH = 6) 20 min. behandelt, ausgespült und anschließend 10 min mit einer Lösung H2O2 (pH = 3) versetzt. Nach dem erneuten ausspülen dieser Lösung wurde mit wässriger Natrium-Lauryl- Sulfat Lösung (15 % w/v) gewaschen. Dieser Zyklus der permanenten Welle wurde zweimal wiederholt.
Die so präparierten Haarsträhnen wurden 3 min in die Lösung mit der jeweiligen Testsubstanz gehalten und anschließend 1 min ausgespült. Nach dem Spülen wurde die Haarsträhnen gekämmt und ihre Nasskämmbarkeit getestet. Die Strähnen wurden bei Raumtemperatur getrocknet. Die sensorischen Tests wurden am trockenem Haar 24 h nach der Behandlung mit den Extrakten durchgeführt.
Am trockenem Haar wurden folgende Eigenschaften bestimmt: Kämmbarkeit, Geschmeidigkeit und Weichheit, elektrostatische Aufladung, Volumen und Glanz.
In der Tabelle finden sich die Ergebnisse der sensorischen Tests an nassem und an trockenem Haar. Die sensorischen Eigenschaften sind im Vergleich zu standardisierten Haarsträhnen zu lesen. Je höher die angegebene Zahl, desto besser ist die Bewertung der jeweiligen sensorischen Eigenschaft.
Figure imgf000027_0001
Tabelle 5 Sensorische Eigenschaften menschlicher Haarsträhnen nach der Behandlung mit Extrakten der Pflanze Mourera fluviatilis im Vergleich zu unbehandelten Haarsträhnen
Die Ergebnisse der Test zeigen, dass ein Extrakt der Pflanze Mourera fluviatilis die sensorischen Eigenschaften an menschlichem Haar verbessert. Eine signifikante Verbesserung der Kämmbarkeit an nassem Haar, der Weichheit, des Volumens und des Glanzes konnten für das Kontroll-Haar nach Behandlung belegt werden. Die elektrostatische Aufladung nahm nach Behandlung mit dem Pflanzenextrakt ab.
An gebleichtem Haar konnte eine Verbesserung der Kämmbarkeit an nassem Haar und des Volumens und eine Verringerung der statischen Aufladung verzeichnet werden. Für dauergewelltes Haar erhöhte sich die Kämmbarkeit an trockenen Haaren und die Weichheit. Beispiel 10: Test zur Feuchtigkeitsregulierung der Haut
Hintergrund: In der Epidermis menschlicher Haut findet sich die Hornschicht (das Stratum corneum). Das Stratum corneum ist ein dielektrisches Medium von geringer elektrischer Leitung. Der Wassergehalt führt zur erhöhten dielektrischen Leitfähigkeit und die Bestimmung der dielektrischen Leitfähigkeit des Stratum corneum kann somit als Maß für den Grad der Feuchtigkeit menschlicher Haut dienen. Die Erhöhung der dielektrischen Leitfähigkeit des Stratum corneum reflektiert einen erhöhten Feuchtigkeitsgrad der menschlichen Haut.
Methode: Beispielhaft sei folgende Formulierung für kosmetische Zubereitungen genannt, die zum Test der feuchtigkeitsregulierenden Eigenschaften der Formulierung verwendet wurde.
Pyroglutaminsäure: 11 ,2 %
L-Alanine: 7,2 %
L-Arginin: 17,0 %
L-Serin: 20,5 %
L-Threonine: 3,1 %
Trockener Extrakt nach Beispiel 2: 1 ,0 %
Saccharose: 40,0 %
Proben von normaler Haut, erhalten aus der plastischen Chirurgie, wurden für diesen Test verwendet. Das Stratum corneum aus diesen Hautproben wurde in Kammern mit definierter relativer Feuchtigkeit (44 %, gesättigte Lösung von Kaliumcarbonat) gelagert und standardisiert. Jede Probe des Stratum corneums wurde unter vier Bedingungen vergleichend getestet.
1) ohne Behandlung;
2) Behandlung mit Placebo;
3) Behandlung mit einer Zubereitung die aus einem Hydrogel besteht (Hydrogel LS von der Firma Laboratoire Serobiologique LS), enthaltend 2 % w/v der oben beschriebenen feuchtigkeitsregulierenden Zubereitungen;
4) Behandlung mit einer Zubereitung die aus einem Hydrogel besteht (Hydrogel LS von der Firma Laboratoire Serobiologique LS), enthaltend 4 % w/v der oben beschriebenen feuchtigkeitsregulierenden Zubereitungen.
Als Placebo diente das Hydrogel (Hydrogel LS der Firma Laboratoire Serobiologique LS) ohne die beschriebene Zubereitung, also ohne Pflanzenextrakt.
Die feuchtigkeitsregulierende Aktivität der oben beschriebenen Zubereitung wurde bestimmt in prozentualer Erhöhung der Leitfähigkeit im Vergleich zur Placebo Behandlung.
Aus den Ergebnissen lässt sich eine Dosis-abhängige feuchtigkeitsregulierende Aktivität erkennen.
Figure imgf000029_0001
Tabelle 6 Feuchtigkeitsregulierender Effekt, bestimmt durch Messung der dielektrischen Leitfähigkeit (in μS); Mittelwert aus 18 Untersuchungen (in Klammern findet sich die Standardabweichung)
Aus den obigen Ergebnissen geht hervor, dass die untersuchten und geprüften Extrakte der Pflanze Mourera fluviatilis folgende Fähigkeiten aufweisen:
- Einfangen und Neutralisieren von Radikalen und reaktionsfähigen Formen des Sauerstoffs;
- Verringerung des durch die UVA-Strahlen an menschlichen Fibroblasten induzierten Lipoperoxida- tionsgrads;
- Verringerung der durch UVB an menschlichen Keratinozyten induzierten Zellschadens;
- Hinsichtlich der Kosmetik wurde aufgrund sensorischer Untersuchungen an menschlichen Haaren eine deutliche aufbauende, zartmachende und glänzende Wirkung und eine verbesserte Kämmbarkeit festgestellt;
- eine Zubereitung, enthaltend Extrakte der Pflanze Mourera fluviatilis zeigte deutliche feuchtigkeitsregulierende Fähigkeiten.
Als praktische Ausführungsbeispiele der Erfindung, sollen im folgenden unterschiedliche Kosmetikprodukte oder Kosmetikpräparate beschrieben werden, die einen Extrakt der Pflanze Mourera fluviatilis enthalten.
In den nachfolgenden Tabellen sind eine Reihe von Formulierungsbeispielen angegeben.
Beispiel 11 : Beispielrezepturen kosmetischer Mittel mit Extrakten der Pflanzen Mourera fluviatilis
Die gemäß Beispiel 1 bis 5 gewonnenen Extrakte der Pflanze Mourera fluviatilis wurden in den folgenden erfindungsgemäßen Rezepturen K1 bis K21 sowie 1 bis 40 eingesetzt. Sofern nicht explizit anders angegeben ist, kann jeder Extrakt gemäß der Beispiele 1 bis 5 eingesetzt werden. Die so hergestellten kosmetischen Mittel zeigten gegenüber den Vergleichsrezepturen V1 , V2 und V3 sehr gute hautpflegende Eigenschaften bei gleichzeitig guter Hautverträglichkeit. Darüber hinaus erweisen sich die erfindungsgemäßen Mittel als stabil gegen oxidative Zersetzung. Tabelle 7 Softcreme Rezepturen K1 bis K7
(Alle Angaben in Gew.-% bez. auf das kosmetische Mitteln)
INCI Bezeichnung K1 K2 K3 K4 K5 K6 K7 V1
Glyceryl Stearate (and) Ceteareth-12/20 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0
(and) Cetearyl Alcohol (and) Cetyl Palmitate
Cetearyl Alcohol 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Dicaprylyl Ether 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Cocoglycerides 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Cetearyl Isononanoate 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Glycerin (86 Gew.-%ig) 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Extrakte aus Mourera fluviatilis (Beispiel 1-4) 0,5 0,5 0,5 0,5 0,5 0,5 0,5 •
Tocopherol 0,5
Allantoin 0,2
Bisabolol 0,5
Chitosan (Hydagen CMF) 10,0
Desoxyribonucleinsäure 1> 0,5
Panthenol 0,5
Wasser Ad 100
Tabelle 8: Nachtcremerezepturen K8 bis K14
(Alle Angaben in Ge .-% bez. auf das kosmetische Mitteln)
INCI Bezeichnung K8 K9 K10 K11 K12 K13 K14 V2
Polyglyceryl-2 Dipolyhydroxystearate 4,0 4,0 4,0 4,0 4,0 4,0 4,0 5,0
Polyglyceryl-3 Diisostearate 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Cera Alba 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Zinc Stearate 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Cocoglycerides 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Cetaeryl Isononanoate 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0
Dicaprylyl Ether 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0
Magnesiumsulfate 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
Glycerin (86 Gew.-%ig) 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0
Extrakt aus Mourera fluviatilis 0,5 0,5 0,5 0,5 0,5 0,5 0,5 -
Tocopherol 0,5
Allantoin 0,2
Bisabolol 0,5
Chitosan (Hydagen CMF) 10,0
Desoxyribonucleinsäure 1> 0,5
Panthenol 0,5
Wasser Ad 100
Tabelle 9: W/O Bodylotion Rezepturen K15 bis K21
(Alle Angaben in Gew.-% bez. auf das kosmetische Mitteln)
INCI-Bezeichnung K15 K16 K17 K18 K19 K20 K21 V3
PEG-7 Hydrogenated Castor Oil 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0
Decyl Oleate 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0
Cetearyl Isononanoate 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0
Glycerin (86 Gew.-%ig) 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0
MgSC 7 H20 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
Extrakt aus Mourera fluviatilis 1,5 1,5 1,5 1,5 1,5 1,5 1,5 -
Tocopherol 0,5
Allantoin 0,2
Bisabolol 0,5
Chitosan (Hydagen CMF) 10,0
Desoxyribonucleinsäure 1) 0,5
Panthenol 0,5
Wasser Ad 100
1> Desoxyribonucleinsäure: Molekuargewicht ca. 70000, Reinheit (bestimmt durch spektro-photometrische Messung der Absorption bei 260 nm sowie 280 nm): mindestens 1 ,7.
Tabelle 10: Rezepturen für Conditioner I
Kosmetische Zubereitungen Conditioner (Wasser, Konservierungsmittel ad 100 Gew. %)
Figure imgf000031_0001
(1-4) Haarspülung, (5-6) Haarkur Tabelle 11 Rezepturen für Conditioner II
Kosmetische Zubereitungen Conditioner (Wasser, Konservierungsmittel ad 100 Gew.-%)
Figure imgf000032_0001
(7-8) Duschbad, (9) Duschgel, (10) Waschlotion
Tabelle 12: Kosmetische Zubereitungen Shampoo (Wasser, Konservierungsmittel ad 100 Gew.-%)
Figure imgf000033_0001
Tabelle 13: Kosmetische Zubereitungen Duschbad „Two in One" (Wasser, Konservierungsmittel ad 100 Gew.-%)
Figure imgf000034_0001
Tabelle 14: Kosmetische Zubereitungen Schaumbad (Wasser, Konservierungsmittel ad 100 Gew.-%)
Figure imgf000035_0001
Tabelle 15: Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%)
Figure imgf000036_0001
(31) W/O-Sonnenschutzcreme, (32-34) W/O-Sonnenschutzlotion, (35, 38, 40) O/W-Sonnenschutzlotion (36, 37, 39) O/W-Sonnenschutzcreme

Claims

Patentansprüche
1. Extrakte der Pflanze Mourera fluviatilis.
2. Extrakt nach Anspruch 1 , dadurch gekennzeichnet, dass als Extraktionsmedium Lösungsmittel oder Mischungen dieser Lösungsmittel verwendet werden, welche ausgewählt sind aus der Gruppe, die gebildet wird von destilliertem oder nicht destilliertem Wasser, niedermolekularen Alkoholen, Estern, Kohlenwasserstoffe, Ketone oder halogenhaltige Kohlenwasserstoffe.
3. Kosmetische und/oder pharmazeutische Zubereitungen, dadurch gekennzeichnet, dass sie einen Extrakt der Pflanze Mourera fluviatilis enthalten.
4. Zubereitungen nach Anspruch 3, dadurch gekennzeichnet, dass sie den Pflanzenextrakt in Mengen von 0,01 bis 25 Gew.-% bezogen auf die Endzubereitungen enthalten, mit der Maßgabe, dass sich die Mengenangaben mit Wasser und gegebenenfalls weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% addieren.
5. Zubereitungen nach mindestens einem der Ansprüche 3 und/oder 4, dadurch gekennzeichnet, dass der Extrakt Substanzen enthält, die ausgewählt sind aus der Gruppe, bestehend aus, Saponinen, Flavonderivate, Sterole, Triterpene, Xanthon-Derivate und Carotinoide.
6. Zubereitungen nach mindestens einem der Ansprüche 3 und/oder 4, dadurch gekennzeichnet, dass der Extrakt Salze enthält, die ausgewählt sind aus der Gruppe, bestehend aus Salzen der Alkali- und Erdalkalimetalle, besonders bevorzugt sind Salze von Natrium, Kalium und/oder Calcium.
7. Verwendung von Extrakten der Pflanze Mourera fluviatilis in Pflegemitteln für Haut und/oder Haare.
8. Verwendung von Extrakten der Pflanze Mourera fluviatilis in feuchtigkeitsregulierenden Feuchthaltemitteln.
9. Verwendung von Extrakten der Pflanze Mourera fluviatilis in Sonnenschutzmitteln.
10. Verwendung von Extrakten der Pflanze Mourera fluviatilis in Mittel gegen die Schädigung von Fibroblasten und/oder Keratinocyten durch UVA-Strahlung und/oder UVB-Strahlung.
11. Verwendung von Extrakten der Pflanze Mourera fluviatilis als anti-inflammatorische Mittel.
12. Verwendung von Extrakten der Pflanze Mourera fluviatilis als Antioxidantien.
13. Verfahren zur Herstellung eines Extraktes der Pflanze Mourera fluviatilis, dadurch gekennzeichnet, dass zur Extraktion Lösungsmittel oder Mischungen dieser Lösungsmittel verwendet werden, welche ausgewählt sind aus der Gruppe, die gebildet wird von destilliertem oder nicht destilliertem Wasser, niedermolekularen Alkoholen, Estern Kohlenwasserstoffe, Ketone oder halogenhaltige Kohlenwasserstoffe.
PCT/EP2001/001725 2000-02-25 2001-02-16 Kosmetische zubereitungen enthaltend pflanzenextrakte WO2001062223A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2001235480A AU2001235480A1 (en) 2000-02-25 2001-02-16 Cosmetic preparations containing plant extracts
JP2001561290A JP2003524650A (ja) 2000-02-25 2001-02-16 植物抽出物を含有する化粧品製剤
BR0108564-6A BR0108564A (pt) 2000-02-25 2001-02-16 Preparações cosméticas contendo extratos vegetais
EP01907540A EP1257253A2 (de) 2000-02-25 2001-02-16 Kosmetische zubereitungen enthaltend pflanzenextrakte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0002425A FR2805464B1 (fr) 2000-02-25 2000-02-25 Preparations cosmetiques contenant des extraits de la plante mourera fluviatilis
FR00/02425 2000-02-25

Publications (2)

Publication Number Publication Date
WO2001062223A2 true WO2001062223A2 (de) 2001-08-30
WO2001062223A3 WO2001062223A3 (de) 2001-12-27

Family

ID=8847431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/001725 WO2001062223A2 (de) 2000-02-25 2001-02-16 Kosmetische zubereitungen enthaltend pflanzenextrakte

Country Status (9)

Country Link
US (1) US20030129150A1 (de)
EP (1) EP1257253A2 (de)
JP (1) JP2003524650A (de)
KR (1) KR20030005206A (de)
CN (1) CN1404387A (de)
AU (1) AU2001235480A1 (de)
BR (1) BR0108564A (de)
FR (1) FR2805464B1 (de)
WO (1) WO2001062223A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829388A1 (fr) * 2001-09-11 2003-03-14 Oreal Utilisation d'au moins un carotenoide dans une composition cosmetique
KR20040020092A (ko) * 2002-08-29 2004-03-09 주식회사 엘지생활건강 피부 보습용 조성물 및 이를 포함하는 화장료

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834210B1 (fr) * 2002-01-03 2004-02-27 Clarins Lab Composition cosmetique pour lutter contre le vieillissement cutane
FR2834211B1 (fr) * 2002-01-03 2004-06-04 Clarins Lab Composition cosmetique pour lutter contre le vieillissement cutane
EP1663142A2 (de) * 2003-06-23 2006-06-07 MacroChem Corporation Zusammensetzungen und verfahren für die topische verabreichung
CN102258503B (zh) 2004-01-22 2019-08-16 迈阿密大学 局部辅酶q10制剂及其使用方法
US7311896B2 (en) * 2004-02-05 2007-12-25 Mmi Corporation Natural sunscreen compositions and processes for producing the same
US20060115556A1 (en) * 2004-12-01 2006-06-01 Foulger Sidney W Nutritional supplement drink containing xanthone extracts
US20060115555A1 (en) * 2004-12-01 2006-06-01 Foulger Sidney W Nutritional supplements containing xanthone extracts
EP3607937A1 (de) 2007-03-22 2020-02-12 Berg LLC Topische formulierungen mit erhöhter bioverfügbarkeit
JP2008273874A (ja) * 2007-04-27 2008-11-13 Fuji Chem Ind Co Ltd 頭皮外用剤
CN101156830B (zh) * 2007-10-10 2010-05-19 叶芳 防晒霜
JP6058263B2 (ja) 2008-04-11 2017-01-11 バーグ リミテッド ライアビリティ カンパニー 癌細胞においてアポトーシスを誘導する方法および使用
IT1391451B1 (it) * 2008-09-24 2011-12-23 Canalini Preparato per il trattamento della disfunzione erettile
US20110020312A1 (en) 2009-05-11 2011-01-27 Niven Rajin Narain Methods for treatment of metabolic disorders using epimetabolic shifters, multidimensional intracellular molecules, or environmental influencers
EA019746B1 (ru) 2009-09-24 2014-05-30 Юнилевер Нв Противомикробная композиция, содержащая эвгенол, терпинеол и тимол, и способ дезинфицирования поверхности
SG10202010355PA (en) 2010-03-12 2020-11-27 Berg Llc Intravenous formulations of coenzyme q10 (coq10) and methods of use thereof
EA022986B1 (ru) 2010-12-07 2016-04-29 Юнилевер Нв Композиция для ухода за полостью рта
CN103608323B (zh) 2011-04-04 2016-08-17 博格有限责任公司 治疗中枢神经系统肿瘤的方法
MX351781B (es) 2011-06-17 2017-10-30 Berg Llc Composiciones farmaceuticas inhalables.
CN103998011B (zh) 2011-11-03 2016-11-23 荷兰联合利华有限公司 个人清洁组合物
AU2014251045B2 (en) 2013-04-08 2019-06-13 Berg Llc Treatment of cancer using coenzyme Q10 combination therapies
SG11201601583TA (en) 2013-09-04 2016-04-28 Berg Llc Methods of treatment of cancer by continuous infusion of coenzyme q10
CN107929146A (zh) * 2017-12-19 2018-04-20 武汉北度生物科技有限公司 一种含花椰菜提取成分的抗氧化护肤霜及其制备方法
WO2020092237A1 (en) * 2018-10-29 2020-05-07 Lonza Ltd Hair cleansing and conditioning composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE CAPLUS [Online] retrieved from STN Database accession no. 1992:423259 XP002149756 & BURKHARDT ET AL.: "biphenyls and xanthones from the podostemaceae" PHYTOCHEMISTRY, Bd. 31, Nr. 2, 1992, Seiten 543-548, *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829388A1 (fr) * 2001-09-11 2003-03-14 Oreal Utilisation d'au moins un carotenoide dans une composition cosmetique
KR20040020092A (ko) * 2002-08-29 2004-03-09 주식회사 엘지생활건강 피부 보습용 조성물 및 이를 포함하는 화장료

Also Published As

Publication number Publication date
EP1257253A2 (de) 2002-11-20
AU2001235480A1 (en) 2001-09-03
KR20030005206A (ko) 2003-01-17
US20030129150A1 (en) 2003-07-10
CN1404387A (zh) 2003-03-19
FR2805464B1 (fr) 2003-02-14
BR0108564A (pt) 2002-12-03
WO2001062223A3 (de) 2001-12-27
FR2805464A1 (fr) 2001-08-31
JP2003524650A (ja) 2003-08-19

Similar Documents

Publication Publication Date Title
EP1347768B1 (de) Kosmetische und/oder dermopharmazeutische zubereitungen enthaltend extrakte aus den blättern der pflanze argania spinosa
EP1296701B1 (de) Verwendung von extrakten des pilzes grifola frondosa
EP1411890A1 (de) Kosmetische und/oder pharmazeutische zubereitungen enthaltend pflanzenextrakte
WO2001062223A2 (de) Kosmetische zubereitungen enthaltend pflanzenextrakte
EP1339421B1 (de) Kosmetische und/oder dermopharmazeutische zubereitungen enthaltend native proteine aus der pflanze argania spinosa
WO2001045661A2 (de) Kosmetische und/oder pharmazeutische zubereitungen
WO2001058412A2 (de) Extrakte von rückständen aus der weinherstellung
EP1441747B1 (de) Verwendung eines extraktes der vigna aconitifolia-pflanze in einer kosmetischen und/oder dermopharmazeutischen zusammensetzung
EP1313497A1 (de) Verwendung von extrakten der pflanze cassia alata
EP1343468A1 (de) Verfahren zum schutz der haut gegen die alterung
EP1372685A1 (de) Verwendung von extrakten der pflanze litchi chinensis sonn.
WO2001078675A1 (de) Verwendung von naturstoffen zur herstellung kosmetischen zubereitungen
EP1253906B1 (de) Kosmetische zubereitungen mit waltheria indica extrakten und ferulasäure
EP1276460B1 (de) Verwendung von zubereitungen enthaltend einen extrakt der pflanze argania spinosa in kosmetischen pflegemitteln für haare und haut
WO2002098384A1 (de) Kosmetische und/oder pharmazeutische zubereitungen enthaltend einen extrakt aus pterocarpus marsupium
EP1239814A2 (de) Kosmetische verwendung von ruckstanden aus der weinherstellung
EP1233747B1 (de) Verwendung von flavonen und/oder isoflavonen aus pflanzenextrakten
WO2001052809A1 (de) Kosmetische und/oder pharmazeutische zubereitungen enthaltend eine wirksame menge eines extraktes von arrabidaea chica
EP1292278B1 (de) Zubereitungen enthaltend einen extrakt der pflanze pistia stratiotes
WO2003053374A1 (de) Verwendung eines extraktes der pflanze baptisia tinctoria in einer kosmetischen zusammensetzung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AU AZ BA BB BG BR BY BZ CA CN CR CU CZ DM DZ EE GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MA MD MG MK MN MW MX MZ NO NZ PL RO RU SD SG SI SK SL TJ TM TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AU AZ BA BB BG BR BY BZ CA CN CR CU CZ DM DZ EE GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MA MD MG MK MN MW MX MZ NO NZ PL RO RU SD SG SI SK SL TJ TM TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001907540

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018053165

Country of ref document: CN

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 561290

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027011040

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10204941

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001907540

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027011040

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2001907540

Country of ref document: EP