WO2002003539A2 - Oszillator-schaltkreis - Google Patents

Oszillator-schaltkreis Download PDF

Info

Publication number
WO2002003539A2
WO2002003539A2 PCT/DE2001/002439 DE0102439W WO0203539A2 WO 2002003539 A2 WO2002003539 A2 WO 2002003539A2 DE 0102439 W DE0102439 W DE 0102439W WO 0203539 A2 WO0203539 A2 WO 0203539A2
Authority
WO
WIPO (PCT)
Prior art keywords
oscillator circuit
comparator
circuit according
resistor
voltage
Prior art date
Application number
PCT/DE2001/002439
Other languages
English (en)
French (fr)
Other versions
WO2002003539A3 (de
Inventor
Mario Motz
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2002003539A2 publication Critical patent/WO2002003539A2/de
Publication of WO2002003539A3 publication Critical patent/WO2002003539A3/de
Priority to US10/337,195 priority Critical patent/US6870433B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/354Astable circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0231Astable circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/012Modifications of generator to improve response time or to decrease power consumption

Definitions

  • the present invention relates to an oscillator circuit with a charge accumulator, an up-integration current source and a down-integration current source, which are respectively connected to the charge storage device for charging and discharging and a comparator which is connected to the charge storage device for controlling charging and charging Abintegrations current source depending on a lower comparator threshold and an upper comparator threshold is connected.
  • CMOS Current-Controlled Oscillator Such integrated oscillator circuits, which work according to the relaxation principle, are described, for example, in the article "A 1.2- ⁇ m CMOS Current-Controlled Oscillator", Michael P. Flynn, IEEE Journal of Solid-State Circuits, VOL. 27, No. 7, July 1992, p. 982 ff.
  • a capacitor is provided as a charge store, through which a triangular voltage is established by charging and discharging the same.
  • the oscillators described have the disadvantage that their chip area requirement is high, since high-resistance resistors are required to implement the oscillator circuits. Furthermore, the oscillators described have a relatively high current requirement, which results from the limitation the chip area of the required resistors and the current required for the generation of reference voltages, reference currents and comparator currents. The relatively high current requirement of the oscillator circuits described is due to the fact that there are many other current branches in addition to the current branch required to charge the integration capacity.
  • an oscillator In order to implement a standby mode for an integrated circuit, in which the circuit switches back to a normal mode after a predefinable time, it is necessary to maintain constant operation of an internal oscillator. These will make demands for low power consumption and low operating voltage, as well as the independence of operating voltage fluctuations, temperature fluctuations and technology variations. In addition, an oscillator should consume little chip area and be inexpensive to manufacture.
  • the object of the present invention is to develop a generic oscillator circuit such that it has a small chip area requirement and a low current consumption, is suitable for small operating voltages and is designed independently of fluctuations in the operating voltage.
  • the invention is achieved in an oscillator circuit specified at the outset, in which the comparator and the lower and upper comparator thresholds are formed in a common current path.
  • the implementation of the comparator function and the upper and lower comparator threshold in a common current path has the particular advantage that the oscillator circuit has a low current requirement.
  • the charge accumulator is designed as a gate oxide capacitance.
  • a gate oxide capacitance has a particularly small chip area requirement.
  • the pretension required for the charge arrester can be generated in the common current path. This leads to a further reduction in the current consumption of the oscillator circuit.
  • the common current path has a MOS transistor, the gate connection of which is connected to the charge storage device, the drain connection of which is connected to a supply potential, and the source connection of which is connected to a first resistor, which is connected to a reference potential, above which first resistance, a differential voltage drops, which is formed from the difference between the lower and upper comparator threshold. Since only a threshold voltage of a MOS transistor is connected in series in the common current branch between supply potential and reference potential, the circuit arrangement described is suitable for particularly low operating voltages. If, instead of the MOS transistor, a bipolar transistor is used as a comparator, only a base-emitter voltage is connected in series between the supply potential and the reference potential. If a gate oxide capacitance is used as a charge store, the MOS transistor used as a comparator can at the same time be used to generate exactly the required bias voltage for the gate oxide capacitance.
  • a band gap reference circuit for generating a reference voltage.
  • Band gap reference circles are characterized by the fact that a particularly low tolerance and stable reference voltage can be generated.
  • a current mirror is provided which is connected on the one hand to the bandgap reference circuit and on the other hand to the first resistor. By means of the current mirror, the reference voltage that can be generated by the bandgap reference circuit can be mirrored via the first resistor, so that the threshold difference voltage dropping across the first resistor is proportional to the reference voltage. This makes it possible to set particularly precise comparator thresholds.
  • the mirror ratio can be set with the area ratio of the transistors. If bipolar transistors are used to implement the current mirror, the mirror ratio can be set with the area ratio of the transistors. If MOS transistors are used instead of the bipolar transistors, the transistor mirror ratio can be set by means of the channel width to channel length ratio of the transistors. The differential voltage across the first resistor that can be generated by means of the bandgap circuit is independent of both technology and operating voltage.
  • a first switch for switching between the lower and upper comparator threshold is provided.
  • the first switch can be designed as a transistor switch, the load path of which is arranged parallel to the first resistor, across which the differential voltage drops.
  • the input of the first switch can be connected to an output of the comparator.
  • a second switch for switching the up-integration current source on and off and a third switch for switching the down-integration current source on and off are provided.
  • Second and third switches can be designed as MOS transistor switches. Second and third Switches can be omitted if the currents are asymmetrically dimensioned due to the up and down integration source.
  • At least one amplifier is connected on the output side to the comparator.
  • the amplifier can be an inverting amplifier.
  • the output of the inverting amplifier can be connected to the input of the first switch.
  • the output of the first amplifier can be connected to the control inputs of the second and third switches.
  • the gate oxide capacitance can have the same vertical structure as the MOS transistor used as a comparator.
  • the oscillator frequency of the oscillator circuit described is calculated from the double product of the resistance value of the first resistor and the capacitance value of the charge storage device.
  • an additional switch can be provided, the control connection of which is connected to the control connection of the first switch.
  • the figure shows an exemplary embodiment of the invention using a circuit diagram.
  • the figure shows a charge storage device C, which is connected on the one hand to a reference potential GND and on the other hand to a node K.
  • the control input, in this case the gate connection, of a comparator TC is connected to the node K, and on the other hand an integration current source T2 designed as a MOS transistor and an integration current source T7 designed as a bipolar transistor.
  • the current sources are each connected to the node K or the capacitor C via switching transistors TS2, TS3.
  • the switches TS2, TS3 provided for switching the current sources are designed as MOS transistors, one load connection of a current source being connected to a load connection of the second and third switch.
  • the load connections of the MOS transistor TC forming the comparator are connected on the one hand via a first resistor R1 to the reference potential GND and on the other hand to a first inverter IV1.
  • a bandgap reference circuit T3, T4, T5, IS, R2 is provided to generate a reference voltage.
  • This has two MOS transistors T3, T4 and two bipolar transistors T5, T ⁇ .
  • the control connections of the MOS and the bipolar transistors are each connected to one another.
  • a load connection of a bipolar transistor is connected to a load connection of a MOS transistor T3, T4.
  • One of the two MOS transistors and the two bipolar transistors of the bandgap reference circuit each have a control connection connected to one of its load connections.
  • the bandgap reference circuit generates a reference voltage UR via the second resistor R2, which is a PTAT (Proportional To Absolute Temperature) voltage and is a few tens of millivolts.
  • a PTAT Proportional To Absolute Temperature
  • this PTAT reference voltage UR is mirrored in such a way that a differential voltage proportional to the reference voltage UR is applied across the first resistor R1, which
  • CD PJ H CQ i ⁇ CD CQ 0 ⁇ rr ii P ⁇ ⁇ LO ⁇ ⁇ 0 ⁇ 0 PJ 0 LQ
  • CD (-3 CD CD CD CQ CD PJ ⁇ - ⁇ - P ) 21 P ⁇ 3 P ⁇ - 1 ⁇ ⁇ 0 CQ ⁇ ! > d CQ ⁇ CQ Q
  • the bipolar transistors T5, T6 of the bandgap reference circuit and the de-integration current source T7 can be replaced by MOS transistors which are operated in weak inversion.
  • the transistor switches TS1, TS2, TS3, TS4 can also be formed by other switches.
  • second and third switches TS2, TS3 can be arranged in the source or emitter branch of the current sources T2, T7.
  • the first switch TS1 briefly switches the threshold differential voltage dropping across the first resistor R1 in every second half-cycle phase.
  • the bias voltage required to operate the gate oxide capacitance C is equal to the sum of the threshold voltage and the effective gate voltage of the MOS transistor TC. As a result, this is independent of technology and temperature parameters and can be easily adapted to the required bias of the gate oxide capacitance used as the integration capacitance.
  • the common current branch formed from current mirror transistor TI, MOS transistor TC and first resistor R1 also serves to implement the formation of the comparator threshold, to implement the comparator function itself, and to generate supply of a bias voltage required for the gate oxide capacitance C.
  • the transistor TC simultaneously forms the comparator input and the bias voltage generation. Since the comparator threshold voltage difference, which drops across the first resistor R1, is derived by reflection from the reference voltage UR, which drops across the second resistor R2 and is formed in the bandgap reference circuit, the comparator threshold differential voltage, which drops across the first resistor R1, is independent of technology parameter fluctuations. independent of fluctuations in the operating voltage or the supply potential VS and can be generated with a determined temperature profile. Apart from the dependence of the oscillator frequency on the first resistance and capacitance C, no other technology parameters are included in the oscillator frequency.
  • the temperature coefficient of the oscillator frequency can be set for the first resistor R1 and the second resistor R2 by connecting series and parallel resistors with different temperature coefficients.
  • the relatively small temperature coefficient of the gate oxide capacitance C can be neglected or included.
  • the circuit according to the figure has no current branch between supply and reference potentials VS, GND more than a threshold voltage of a MOS transistor or base-emitter voltage of a bipolar transistor in series.
  • the circuit described is suitable for very low supply voltages.
  • the described common current branch for comparator, comparator thresholds and bias voltage leads to a very low current consumption of the described oscillator, so that it is suitable for standby operation.
  • the oscillator circuit described has a small chip area requirement.
  • the arrangement described with two bandgap reference circles enables the generation of small, very precise currents with a small chip area requirement.
  • a voltage is generated across the second resistor R2, which is only a few tens of millivolts, but is very precise.
  • the voltage drop across R2 is largely independent of manufacturing and technology parameters and precisely determined with regard to its temperature behavior.

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Amplifiers (AREA)
  • Electronic Switches (AREA)
  • Logic Circuits (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

Es ist ein Oszillator-Schaltkreis mit einem Ladungsspeicher (C) sowie mit je einer Aufintegrations- und Abintegrations-Stromquelle (T2,T7) angegeben. An den Ladungsspeicher (C) ist weiterhin ein Komparator (TC) zur Ansteuerung der Stromquellen (T2, T7) in Abhängigkeit von einer unteren (US1) und einer oberen (US2) Komparatorschwelle angeschlossen. Hierdurch ist über dem Ladungsspeicher (C) eine Dreiecksspannung nach dem Relaxationsprinzip gebildet. Über einem ersten Widerstand (R1) fällt die Differenzspannung aus beiden Komparatorschwellen ab. Da der Komparator (TC) selbst sowie die untere und obere Komparatorschwelle (US1, US2) in einem gemeinsamen Strompfad (TC, R1) gebildet sind, weist die vorliegende Oszillator-Schaltung eine besonders geringe Stromaufnahme auf.

Description

Beschreibung
Oszillator-Schaltkreis
Die vorliegende Erfindung betrifft einen Oszillator-Schaltkreis mit einem Ladungsspeieher, einer Aufintegrations-Stromquelle und einer Abintegrations-Stromquelle, welche jeweils zum Auf- beziehungsweise Entladen an den LadungsSpeicher angeschlossen sind und einem Komparator, der an den Ladungs- Speicher zur Ansteuerung von Auf- und Abintegrations-Stromquelle in Abhängigkeit von einer unteren Komparatorschwelle und einer oberen Komparatorschwelle angeschlossen ist.
Derartige integrierte Oszillator-Schaltkreise, welche nach dem Relaxationsprinzip arbeiten, sind beispielsweise in dem Aufsatz "A 1.2-μm CMOS Current-Controlled Oscillator", Michael P. Flynn, IEEE Journal of Solid-State Circuits, VOL. 27, No. 7, July 1992, S. 982 ff. angegeben. Dabei ist als Ladungsspeicher ein Kondensator vorgesehen, über dem sich durch Auf- und Entladen desselben eine Dreiecksspannung einstellt.
Ein dem Oberbegriff entsprechender Oszillator-Schaltkreis ist auch in dem Aufsatz "A novel low voltage low power oscillator as a capacitive sensor Interface for portable applications" , Guiseppe Ferri, Sensors and Actuators 76 (1999) S. 437 - 441, beschrieben.
Das diesen Oszillatoren zugrundeliegende Prinzip eines Univibrators ist in Tietze, Schenk: Halbleiterschaltungstechnik, 10. Auflage, Springer-Verlag, Seite 189, Abbildung 8.54 angegeben.
Die beschriebenen Oszillatoren haben den Nachteil, daß ihr Chipflächenbedarf hoch ist, da hochohmige Widerstände zur Realisierung der Oszillator-Schaltungen benötigt werden. Weiterhin weisen die beschriebenen Oszillatoren einen verhältnismäßig hohen Strombedarf auf, der sich aus der Begrenzung der Chipfläche der erforderlichen Widerstände sowie aus dem Strombedarf für die Erzeugung von Referenzspannungen, Referenzströmen sowie Komparatorströmen ergibt. Der verhältnismäßig hohe Strombedarf der beschriebenen Oszillator-Schaltungen ist dadurch bedingt, daß neben dem zum Aufladen der Integrationskapazität erforderlichen Stromzweig viele weitere Stromzweige bestehen.
Um einen Standby-Modus für einen integrierten Schaltkreis zu realisieren, bei dem der Schaltkreis nach einer vorgebbaren Zeit in einem Normal-Modus zurückschaltet, ist es erforderlich, einen ständigen Betrieb eines internen Oszillators aufrecht zu erhalten. An diesen werden Forderungen nach niedriger Stromaufnahme und geringer Betriebsspannung sowie der Un- abhängigkeit von Betriebsspannungsschwankungen, Temperatur- Schwankungen sowie Technologie-Streuungen gestellt werden. Zudem soll ein Oszillator wenig Chipfläche verbrauchen sowie kostengünstig herstellbar sein.
Aufgabe der vorliegenden Erfindung ist es, einen gattungsgemäßen Oszillator-Schaltkreis derart weiterzubilden, daß dieser einen geringen Chipflächenbedarf sowie eine geringe Stromaufnahme aufweist, für kleine Betriebsspannungen geeignet und unabhängig von Schwankungen der Betriebsspannung aus- gelegt ist.
Die Erfindung wird bei einem eingangs angegebenen Oszillator- Schaltkreis gelöst, bei dem der Komparator und die untere und obere Komparatorschwelle in einem gemeinsamen Strompfad ge- bildet sind.
Die Realisierung der Komparatorfunktion sowie der oberen und unteren Komparatorschwelle in einem gemeinsamen Strompfad hat insbesondere den Vorteil, daß der Oszillator-Schaltkreis ei- nen geringen Strombedarf hat. In einer vorteilhaften Weiterbildung der vorliegenden Erfindung ist der Ladungsspeieher als Gateoxid-Kapazität ausgebildet. Eine Gateoxid-Kapazität weist einen besonders geringen Chipflächenbedarf auf .
In einer weiteren, vorteilhaften Ausführungsform der vorliegenden Erfindung ist die für den Ladungsspeieher erforderliche Vorspannung in dem gemeinsamen Strompfad erzeugbar. Dies führt zu einer weiteren Reduzierung der Stromaufnahme des Oszillator-Schaltkreises .
In einer weiteren, vorteilhaften Ausführungsform der vorliegenden Erfindung weist der gemeinsame Strompfad einen MOS- Transistor auf, dessen Gateanschluß mit dem Ladungsspeicher, dessen Drainanschluß mit einem Versorgungspotential und dessen Sourceanschluß mit einem ersten Widerstand verbunden ist, welcher an ein Bezugspotential angeschlossen ist, wobei über dem ersten Widerstand eine Differenzspannung abfällt, welche aus der Differenz von unterer und oberer Komparatorschwelle gebildet ist. Da im gemeinsamen Stromzweig zwischen Versorgungspotential und Bezugspotential lediglich eine Schwellspannung eines MOS-Transistors in Reihe geschaltet ist, ist die beschriebene Schaltungsanordnung für besonders geringe Betriebsspannungen geeignet. Wenn anstelle des MOS- Transistors ein Bipolartransistor als Komparator Verwendung findet, so ist lediglich eine Basis-Emitterspannung zwischen Versorgungspotential und Bezugspotential in Reihe geschaltet . Wenn eine Gateoxid-Kapazität als Ladungsspeicher Verwendung findet, so kann der als Komparator verwendete MOS-Transistor zugleich zur Erzeugung genau der erforderlichen Vorspannung für die Gateoxid-Kapazität eingesetzt sein.
In einer weiteren, vorteilhaften Ausführungsform der vorliegenden Erfindung ist zur Erzeugung einer Referenzspannung ein Bandgap-Referenzkreis vorgesehen. Bandgap-Referenzkreise zeichnen sich dadurch aus, daß eine besonders toleranzarme und stabile Referenzspannung erzeugbar ist. In einer weiteren, vorteilhaften Ausführungsform der vorliegenden Erfindung ist ein Stromspiegel vorgesehen, welcher einerseits mit dem Bandgap-Referenzkreis und andererseits mit dem ersten Widerstand verbunden ist . Mittels des Stromspiegels kann die vom Bandgap-Referenzkreis erzeugbare Referenzspannung über den ersten Widerstand gespiegelt werden, so daß die über dem ersten Widerstand abfallende Schwellendifferenz- Spannung proportional zur Referenzspannung ist. Hierdurch ist es möglich, besonders präzise Komparatorschwellen einzustellen.
Wenn zur Realisierung des Stromspiegels Bipolar-Transistoren verwendet werden, so kann das Spiegelverhältnis mit dem Flä- chenverhältnis der Transistoren eingestellt sein. Wenn anstelle der Bipolar-Transistoren MOS-Transistoren verwendet werden, so kann das Transistorspiegelverhältnis mittels des Kanalweiten- zu Kanallängen-Verhältnisses der Transistoren eingestellt werden. Die mittels des Bandgap-Kreises erzeugba- re Differenzspannung über den ersten Widerstand ist sowohl technologie- als auch betriebsspannungsunabhängig.
In einer weiteren, vorteilhaften Ausführungsform der vorliegenden Erfindung ist ein erster Schalter zum Umschalten zwi- sehen unterer und oberer Komparatorschwelle vorgesehen. Der erste Schalter kann als Transistorschalter ausgeführt sein, dessen Laststrecke parallel zum ersten Widerstand, über dem die DifferenzSpannung abfällt, angeordnet ist. Der Eingang des ersten Schalters kann mit einem Ausgang des Komparators verbunden sein.
In einer weiteren, vorteilhaften Ausführungsform der vorliegenden Erfindung ist ein zweiter Schalter zum Ein- und Ausschalten der Aufintegrations-Stromquelle und ein dritter Schalter zum Ein- und Ausschalten der Abintegrations-Strom- quelle vorgesehen. Zweiter und dritter Schalter können als MOS-Transistorschalter ausgebildet sein. Zweiter und dritter Schalter können bei unsymmetrischer Dimensionierung der Ströme durch Auf- und Abintegrationsquelle entfallen.
In einer weiteren, vorteilhaften Ausführungsform der vorlie- genden Erfindung ist zumindest ein Verstärker ausgangsseitig an den Komparator angeschlossen. Der Verstärker kann ein invertierender Verstärker sein. Der Ausgang des invertierenden Verstärkers kann an den Eingang des ersten Schalters angeschlossen sein. Der Ausgang des ersten Verstärkers kann an die Steuereingänge von zweitem und drittem Schalter angeschlossen sein.
Die Gateoxid-Kapazität kann den gleichen, vertikalen Aufbau wie der als Komparator eingesetzte MOS-Transistor aufweisen.
Die Oszillatorfrequenz des beschriebenen Oszillator-Schaltkreises berechnet sich aus dem doppelten Produkt von Widerstandswert des ersten Widerstands und Kapazitätswert des Ladungsspeichers .
Über dem Ladungsspeieher bildet sich durch das integrierende Verhalten eine Dreieckspannung.
Zur weiteren Stromreduzierung kann ein zusätzlicher Schalter vorgesehen sein, dessen Steueranschluß mit dem Steueranschluß des ersten Schalters verbunden ist.
Weitere Einzelheiten der Erfindung sind in den Unteransprüchen angegeben.
Die Erfindung wird nachfolgend an einem Ausführungsbeispiel anhand der Zeichnung näher erläutert.
Es zeigt :
Die Figur eine beispielhafte Ausführungsform der Erfindung anhand eines Schaltbilds. Die Figur zeigt einen Ladungsspeicher C, welcher zum einen mit einem Bezugspotential GND und zum anderen mit einem Knoten K verbunden ist. An den Knoten K ist einerseits der Steu- ereingang, in diesem Fall der Gateanschluß, eines Komparators TC angeschlossen, zum anderen eine als MOS-Transistor ausgebildete Aufintegrations-Stromquelle T2 sowie eine als Bipo- lar-Transistor ausgebildete Abintegrations-Stromquelle T7. Die Stromquellen sind dabei jeweils über Schalttransistoren TS2, TS3 mit dem Knoten K beziehungsweise der Kapazität C verbunden. Die zum Schalten der Stromquellen vorgesehenen Schalter TS2, TS3 sind als MOS-Transistoren ausgebildet, wobei je ein Lastanschluß einer Stromquelle mit einem Lastanschluß des zweiten und dritten Schalters verbunden ist. Die Lastanschlüsse des den Komparator bildenden MOS-Transistors TC sind einerseits über einen ersten Widerstand Rl mit dem Bezugspotential GND und zum anderen an einem ersten Inverter IV1 angeschlossen. Zur Erzeugung einer Referenzspannung ist ein Bandgap-Refe-renzkreis T3 , T4 , T5 , IS , R2 vorgesehen. Dieser weist zwei MOS-Transistoren T3 , T4 sowie zwei Bipolar- Transistoren T5 , Tβ auf. Die Steueranschlüsse der MOS- sowie der Bipolar-Transistoren sind jeweils miteinander verbunden. Je ein Last-anschluß eines Bipolar-Transistors ist mit je einem Lastanschluß eines MOS-Transistors T3 , T4 verbunden. Je einer der beiden MOS- sowie der beiden Bipolar-Transistoren des Bandgap-Referenzkreises weist einen mit einem seiner Lastanschlüsse verbundenen Steueranschluß auf. Aus Gründen der Eignung für geringe Versorgungsspannungen ist dabei zwischen Bezugs- und Versorgungspotential nur maximal eine SchwellSpannung beziehungsweise eine Basis-Emitterspannung in Serie geschaltet. Der Bandgap-Referenzkreis erzeugt über dem zweiten Widerstand R2 eine Referenzspannung UR, welche eine PTAT (Proportional To Absolute Temperature) -Spannung ist und einige zehn Millivolt beträgt. Mittels eines Stromspiegels Tl, T3 wird diese PTAT-Referenzspannung UR derart gespiegelt, daß eine zur Referenzspannung UR proportionale Differenzspannung über dem ersten Widerstand Rl, welche an den MOS-
Figure imgf000008_0001
<! fo - PJ <i H CQ P* O CQ N α rr IQ rr II P^ rr •d CQ « rr rr H3 CQ H > CQ XT ^3 3 er ra CQ t-3
Φ CD CD μ- p CD CD er P) C μ- Φ P)= μ- Φ PJ Ω J 0 Φ ι Ω < 0 *d Φ ii ii Φ Ω *d ii ti l-h >i CQ CD μ- li CD *Ü CD O P rt sl φ 0 q ET •d ii 0 0J μ1 P> ii PJ P) ii ö* PJ PJ rr CD CQ ü CD 0 CQ H 1 Φ X CQ CD μ- D X μ- « J CQ X Φ P) Pi 0 Φ 0 0 Φ 3 0 0
Φ T CD rr μ, CD rr CD rϋ μ. cn μ- CQ $ P. Φ μ- rr Φ ISI Ω μ- μ- H Φ 0 Ω CQ CQ Ω Φ CQ ii CD φ er CD rr 3 PJ H CD tr rr & r Φ φ H P. P>= μ» μ- p & P rt H 0 0 T μ- μ- ^ > 0 μ- ra 0 μ- μ- P CD P Hi J μ. 1 Φ H ü 1 rr μj rr ^ 1 I Φ 0 0 CQ CQ 0 " 0 m
N Pi j li CQ p. CD 0 « P, rr CQ O « Φ PJ= Φ « H NJ CQ Φ rr et Φ φ LQ rt i* CD P- CQ CQ rt 0 H rr 3 ) μ- rr CQ Ä Ω rr μ> J Γ - 0 rr 0 0 rt 0 0
< li P CD Ω CD ?d P. CD CD Λ »d 3 ^ PJ N *d j *d P H3 CQ a ii ii 1 μ- ii ω CD rr PJ H 0 μ1 P ö J CQ Φ P μ- J 3 CQ Ω φ J ^ CG H LQ CQ CQ cn CQ CQ CQ ω
H- ω CD P> < CD C- ISI • CD N rr H P. N μ- μ> ISI to < J μ» μ- μ- *d r t-3 μ- CQ μ- j LO μ> •d P W μ- Φ CD 1 μ- rr . Φ μ- P) - LO 0 Ω ι-3 H Ω ) Ω m TJ < rt PJ P) rr ii 3 μ> rr H Ω s; PJ rr ii CQ rt C LQ 0 ET Ω Ω ET 0 Pi rr N 0 μ- CD 0 P ü CD CD μ- CD P)= P) Φ rr P)= W ü Hi t p)= CQ H P. 0 • μ- P>
0 CD H P CQ PJ H μ- rr i-l er H rr Ü 0 rr o μ- O rt CQ CQ μ- Pi Pi P> 0 Pi 0 Φ 0
CD PJ H CQ i Ω CD CQ 0 Φ rr ii P φ Ω LO φ φ 0 α 0 PJ 0 LQ
H- <! i rr i-f μ< f μ- ι-3 n μj O 1 Ω CQ IQ P. Ω tr CQ CQ μ- i er LQ α Φ
0 CD I CD ι-3 ISI CD PJ tr NJ φ α rr CQ rr μ- PJ J CQ Φ φ Φ μ- CQ
H ι-3 CQ 0 ^ P ii - ii μ- Φ H Φ PJ er φ Φ μ1 0 rt s ü Pi Φ μ- c! Hi Ω ü >i Q > 3 tΛ O IQ CD CD PJ CQ Φ μ- 0 ii i-J ii rr LQ Φ o φ o Hi CQ Hi ET
H- H- P> Ω CQ 3 CD P H3 H P 1 μ- P et O J Hi Φ Φ 0 CQ CQ ii er Hi J φ fD 3 P P* P> PJ N CD ti CQ -J rr N « Φ Φ Φ Φ 3 Ω ς: 0 P CQ Φ 1 •d Φ Φ 0 - μ. 0 ii IQ CQ P> P P 0 CQ P) O CQ μ- Φ ) H Ω 3 tQ p- Hl Ω ü m PJ CQ ii W CQ Φ CQ rr CD μ- μ- CQ P- 3 Ω Ii tr t CQ Λ* P •d m *" ö 0 ^ LQ ET φ Ü 0 0 Φ et 0 CQ
Φ Ii CQ rr CD CD PJ P> CD μ- P) PJ rt CQ ii CQ Φ t PJ= rt α μ- ) 0 3 μ- Pi CQ N Φ ii 0 rr CD CQ ü CD PJ rr 0 c 0 CQ ISI Φ CQ Φ rr μj ii ii μ- o 0 0 0 3 « < φ t 0
0 H Ω CD μ- 1 0 CQ CD P. 0 μ- P •d μ- . 1 ü rr 3 φ CQ LQ CQ 0 φ o φ H • PJ
H ti ET P P rr H CQ li 5» $, rr PJ Φ 0 φ Φ CQ PJ CQ PJ= μ- LQ 3 μ 0 μ-
0 μ1
5 CD (-3 CD CD CQ CD PJ μ- μ- P)= 21 P Ω 3 P μ- 1 Ω Φ 0 CQ <! >d CQ α CQ Q
< P CQ 0 P> 0 rr Ω P P c: Φ Φ rr μ- P ^r Ω H ET XT P LQ r 0= O PJ Ω 0 μ- rt
Φ d^ CQ 0 CD i-T ω 3 P. 0 CQ PJ ] i-r 3 $ Φ O er 0 ii PJ 3 φ 0 •<• ii P. H CQ ) ^ Ω ι-3 ι-3 O Φ P CQ 0 t φ rt M PJ= ii Φ PJ rt 3 0 rr CD LΠ P, CD Pi 0 CD CD ü σ CD ii Φ • μ. IQ >d Hi - P Φ ü ü £ <! CQ n 0 rt Φ φ 0 r J
Φ 0 •» μ- 0 CD ii 1 CD μ- PJ 3 CQ PJ *• LQ H rt Φ O 0 O 1 0 Φ er ü CD 0 P. CQ H C= P P • N rr XT P ι-3 ii Φ CQ > 0 Hl p. t ii CQ <J et ii Hi μ. 0 CD rr D CQ CD CQ Φ 0 J Φ P CQ -J Φ P) μ- 1 Ω Ω Φ φ w 0 O Φ Φ PJ=
H 0 CΛ rr α CQ 0 CD N CQ P μ- H i 0 t 0 0 μ. rr Ω H ET IS! 3 ii Ω 0 0 H ii μj
< CQ CD rr c CD m J P. ii P 1 μ- t 3 Φ 5> CQ Φ ff H Φ js. IQ μ- P. ii CD CQ CQ 3 P H t rr W CQ SD: LQ P, P) 0 0 φ r Φ μ- Φ ü $ Ω CQ 0 rr
PJ 3 P) Ω J CD 0 0 0 LQ P) P- P P P Φ Pi μ- 0 H Φ φ Ω 0
PJ 0 N PJ Φ CQ ET - r-h i 3 Pö rr er CΛ> Φ rr LQ μ- ct α CQ « H I ET 0 P.
13 LQ cd μ" H LQ P) 3 CD CD Φ •d μ» μ- P Φ J p. ii φ φ rt O " CQ $ 3 ö Q PJ CQ CD P) CQ ^ μ. H Hl φ J CQ H 0 Φ PJ 3 0= φ 3 φ >d Φ •d 0 μ-
CD Pi 0 μ- 0 rr CQ Ω CD CD π Hi P 0 P. μ- Φ Hl ü rr Q er 0 »d 0 PJ PJ er Φ ω CD P- P. 3 0 CQ CD H {3* μ- 3 Φ CQ P • Φ Ω μ- P μ- rr 0 φ PJ 0 H φ CQ
Ω CQ iQ CD o CQ ii PJ ISI P> ;v P> P- rr Ϊ Φ P. 0 0 ii 0 ü S! ii CQ CQ J ii φ
Er" PJ P CQ PJ P. P- H CQ μ- rr rr • « φ XT 0 O Pi μ- P> •d 0 •d rr φ
H" P- TJ 1 0 CD j CD rr CD Hl Φ μ- n μ> 0= Ω O K φ 3 Pi P. rt PJ 0 P) O ii α
0 H 1 ü μ_ IQ CQ CQ 3 CD P) ii IQ 0 ö T PJ 3 ii PJ Λ Pi ii Φ 0 0 LQ i μ- m μ- ) H μ1 P 3 rr Φ μ- P II • μ- φ rr •d o Φ 0 0 ü φ H ii 0 0 CQ « Hi
CQ rr CQ p) CD P CD CD er Q φ ii φ PJ P) P Hi Φ μ- μ- CQ CQ 0 P. 0 Ω D Hi D rt μ- 0 μ- ü μ- fi N P. P PJ rr Hi ^ Ω O H rr rt rt Ω Φ 0 ET 3 φ
CD CQ CQ 0 μ- CQ CQ ^ CD Φ P) - ^ P. X PJ Φ « Pi μ> rt PJ ET LQ CQ CQ £ Ό μ.
0 CQ μ- CD rr rr rt μ- P CQ t P^ H *d ii Φ μ- rr 0 0 Φ Φ Φ 0 0 5» Φ P) φ rr CQ CQ rr CD CQ rr μ- r J 3 Φ ti & 0 X 3 H 0 3 <! Pi Φ S Pi ii 0
PJ H ii rt CD 3 P Ω cd φ μ- N μ- Λ 1 ii μ- >d Φ ω O Φ PJ N
3 0 O 0 P μ- Ϊ PJ 0 1 μ- rr C Ω « I P. J Ω ι-3 ii P t CQ CQ φ rt
1 3 μ. rr CD P 3 Ω 1 φ PJ PJ 1 PJ to rt μ> Φ 1 0 μ- P P. J Pd P 1 1 J 1 Φ 0 μ.
1 1 1 μ> ISI 1 H 1 1
dessen Ausgang A ein verstärktes Signal mit der Oszillatorfrequenz abgreifbar ist.
In einer alternativen Ausführungsform der vorliegenden Erfin- düng können die Bipolar-Transistoren T5, T6 des Bandgap- Referenzkreises sowie die Abintegrations-Stromquelle T7 durch MOS-Transistoren, welche in Weak-Inversion betrieben sind, ersetzt werden.
Die Transistor-Schalter TS1, TS2, TS3 , TS4 können auch durch andere Schalter gebildet sein.
Neben dem beschriebenen Ein- und Ausschalten der Stromquellen T2 , T7 im Drain- beziehungsweise Kollektor-Zweig der Stro - quellen können zweiter und dritter Schalter TS2, TS3 im Sou- ce- beziehungsweise im Emitter-Zweig der Stromquellen T2 , T7 angeordnet sein.
Der erste Schalter TS1 schaltet die über erstem Widerstand Rl abfallende Schwellendifferenzspannung in jeder zweiten Halbtaktphase kurz .
Anstelle der Verstärkerstufen IV1 bis IV4 können digitale Gatter vorgesehen sein.
Die für den Betrieb der Gateoxid-Kapazität C erforderliche Vorspannung ist gleich der Summe aus SchwellSpannung und effektiver Gatespannung des MOS-Transistors TC. Hierdurch ist diese von Technologie- und Temperaturparametern unabhängig und kann in einfacher Weise an die jeweils erforderliche Vorspannung der als Integrationskapazität eingesetzten Gateoxid- Kapazität angepaßt werden.
Der aus Stromspiegel-Transistor TI, MOS-Transistor TC und er- stem Widerstand Rl gebildete, gemeinsame Stromzweig dient zugleich zur Realisierung der Komparatorschwellen-Bildung, zur Realisierung der Komparatorfunktion selbst sowie zur Erzeu- gung einer für die Gateoxid-Kapazität C erforderlichen Vorspannung. Der Transistor TC bildet zugleich den Kompara- toreingang und die Vorspannungserzeugung. Da die Komparator- schwellspannungsdifferenz, welche über dem ersten Widerstand Rl abfällt, durch Spiegelung aus der über dem zweiten Widerstand R2 abfallenden, im Bandgap-Referenzkreis gebildeten Referenzspannung UR abgeleitet ist, ist die über dem ersten Widerstand Rl abfallende Komparatorschwellendifferenzspannung unabhängig von Technologie-Parameterschwankungen, unabhängig von Schwankungen der Betriebsspannung beziehungsweise des Versorgungspotentials VS und kann mit einem determinierten Temperaturverlauf erzeugt werden. Abgesehen von der Abhängigkeit der Oszillatorfrequenz von erstem Widerstand und Kapazität C gehen keine weiteren Technologieparameter in die Oszil- latorfrequenz ein.
Der Temperaturkoeffizient der Oszillatorfrequenz kann durch entsprechende Reihen- und Parallelschaltung von Widerständen mit unterschiedlichen Temperaturkoeffizienten jeweils für er- sten Widerstand Rl und zweiten Widerstand R2 eingestellt werden. Dabei kann der verhältnismäßig kleine Temperaturkoeffizient der Gateoxid-Kapazität C vernachlässigt oder miteinbe- zogen werden.
Die Schaltung gemäß der Figur weist in keinem Stromzweig zwischen Versorgungs- und Bezugspotentialen VS, GND mehr als eine SchwellSpannung eines MOS-Transistors oder Basis-Emitter- Spannung eines Bipolartransistors in Serie auf. Hierdurch ist die beschriebene Schaltung für sehr geringe Versorgungsspan- nungen geeignet. Der beschriebene, gemeinsame Stromzweig für Komparator, Komparatorschwellen und Vorspannung führt zu einer sehr geringen Stromaufnahme des beschriebenen Oszillators, so daß dieser für einen Standby-Betrieb geeignet ist. Zudem weist die beschriebene Oszillator-Schaltung einen ge- ringen Chipflächenbedarf auf. Die beschriebene Anordnung mit zwei Bandgap-Referenzkreisen ermöglicht die Erzeugung kleiner, sehr genauer Ströme mit geringem Chipflächenbedarf. Über dem zweiten Widerstand R2 wird eine Spannung erzeugt, die lediglich einige zehn Millivolt beträgt, dabei aber sehr genau ist. Die über R2 abfallende Spannung ist weitgehend unabhängig von Fertigungs- und Technologieparametern sowie bezüglich ihres Temperaturverhaltens exakt determiniert.

Claims

Pat ent ansprüche
1. Oszillator-Schaltkreis mit
- einem Ladungsspeieher (C) , - einer Aufintegrations-Stromquelle (T2) und einer Abintegra- tions-Stromquelle (T7) , welche jeweils zum Auf- beziehungsweise Entladen an den Ladungsspeicher (C) angeschlossen sind,
- einem Komparator (TC) , der an den Ladungsspeicher (C) zur Ansteuerung von Auf- und Abintegrations-Stromquelle (T2, T7) in Abhängigkeit von einer unteren Komparatorschwelle (USl) und einer oberen Komparatorschwelle (US2) angeschlossen ist, d a d u r c h g e k e n n z e i c h n e t, daß der Komparator (TC) und die untere und obere Komparatorschwelle (USl, US2) in einem gemeinsamen Strompfad (TC, Rl) gebildet sind.
2. Oszillator-Schaltkreis nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß der Ladungsspeieher (C) als Gateoxid-Kapazität ausgebildet ist.
3. Oszillator-Schaltkreis nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß eine für den Ladungsspeicher erforderliche Vorspannung in dem gemeinsamen Strompfad (TC, Rl) erzeugbar ist.
4. Oszillator-Schaltkreis nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, daß der gemeinsame Strompfad (TC, Rl) einen MOS-Transistor (TC) aufweist, dessen Gateanschluß mit dem Ladungsspeicher (C) , dessen Drainanschluß mit einem Versorgungspotential (VS) und dessen Sourceanschluß mit einem ersten Widerstand (Rl) verbunden ist, welcher an ein Bezugspotential (GND) angeschlossen ist, wobei über dem ersten Widerstand (Rl) eine Diffe- renzspannung (US2-US1) abfällt, welche aus der Differenz von unterer und oberer Komparatorschwelle (USl, US2) gebildet ist.
5. Oszillator-Schaltkreis nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, daß zur Erzeugung einer Referenzspannung (UR) ein Bandgap-Refe- renzkreis (T3, T4, T5, T6 , R2) vorgesehen ist.
6. Oszillator-Schaltkreis nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß ein Stromspiegel (T3, TI) vorgesehen ist, der einerseits mit dem Bandgap-Referenzkreis (T3, T4, T5 , T6, R2) und andererseits mit dem ersten Widerstand (Rl) verbunden ist.
7. Oszillator-Schaltkreis nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, daß ein erster Schalter (TSl) zum Umschalten zwischen unterer und oberer Komparatorschwelle (USl, US2) vorgesehen ist.
8. Oszillator-Schaltkreis nach einem der Ansprüche 1 bis 7, d a du r c h g e k e n n z e i c h n e t, daß ein zweiter Schalter (TS2) zum Ein- und Ausschalten der Aufintegrations-Stromquelle (T2) und ein dritter Schalter (TS3) zum Ein- und Ausschalten der Abintegrations-Stromquelle (T7) vorgesehen ist .
9. Oszillator-Schaltkreis nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t, daß zumindest ein Verstärker (IV1) an den Komparator (TC) angeschlossen ist.
PCT/DE2001/002439 2000-07-05 2001-06-29 Oszillator-schaltkreis WO2002003539A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/337,195 US6870433B2 (en) 2000-07-05 2003-01-06 Oscillator circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10032526A DE10032526C1 (de) 2000-07-05 2000-07-05 Oszillator-Schaltkreis
DE10032526.2 2000-07-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/337,195 Continuation US6870433B2 (en) 2000-07-05 2003-01-06 Oscillator circuit

Publications (2)

Publication Number Publication Date
WO2002003539A2 true WO2002003539A2 (de) 2002-01-10
WO2002003539A3 WO2002003539A3 (de) 2002-05-16

Family

ID=7647775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002439 WO2002003539A2 (de) 2000-07-05 2001-06-29 Oszillator-schaltkreis

Country Status (3)

Country Link
US (1) US6870433B2 (de)
DE (1) DE10032526C1 (de)
WO (1) WO2002003539A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10157292A1 (de) * 2001-11-22 2003-06-05 Infineon Technologies Ag Temperaturstabilisierter Oszillator-Schaltkreis
DE602005027436D1 (de) * 2005-02-18 2011-05-26 St Microelectronics Srl Elektronische Schaltung und Oszillator mit dieser elektronischen Schaltung
DE102005012760A1 (de) 2005-03-19 2006-09-21 GM Global Technology Operations, Inc., Detroit Kraftfahrzeugkarosserie
US7733191B2 (en) * 2007-02-28 2010-06-08 Freescale Semiconductor, Inc. Oscillator devices and methods thereof
US8089195B2 (en) 2007-12-17 2012-01-03 Resonance Semiconductor Corporation Integrated acoustic bandgap devices for energy confinement and methods of fabricating same
DE102014111900B4 (de) 2014-08-20 2016-03-03 Infineon Technologies Austria Ag Oszillatorschaltung
US11437955B1 (en) * 2021-08-05 2022-09-06 Texas Instruments Incorporated Switchover schemes for transition of oscillator from internal-resistor to external-resistor mode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459437A (en) * 1994-05-10 1995-10-17 Integrated Device Technology Logic gate with controllable hysteresis and high frequency voltage controlled oscillator
US5886556A (en) * 1997-01-27 1999-03-23 Motorola, Inc. Low power schmitt trigger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205279A (en) 1977-09-12 1980-05-27 Motorola, Inc. CMOS Low current RC oscillator
US4316155A (en) * 1979-09-05 1982-02-16 The Bendix Corporation Voltage controlled oscillator having ratiometric and temperature compensation
JPS58145221A (ja) * 1982-02-23 1983-08-30 Oki Electric Ind Co Ltd タイミング信号発生回路
US4734656A (en) * 1987-01-02 1988-03-29 Motorola, Inc. Merged integrated oscillator circuit
US5570067A (en) 1995-06-06 1996-10-29 National Semiconductor Corporation Micropower RC oscillator having hysteresis produced by switching current sources to a transistor
US6157270A (en) * 1998-12-28 2000-12-05 Exar Corporation Programmable highly temperature and supply independent oscillator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459437A (en) * 1994-05-10 1995-10-17 Integrated Device Technology Logic gate with controllable hysteresis and high frequency voltage controlled oscillator
US5886556A (en) * 1997-01-27 1999-03-23 Motorola, Inc. Low power schmitt trigger

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FERRI G ET AL: "A novel low voltage low power oscillator as a capacitive sensor interface for portable applications" SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, Bd. 76, Nr. 1-3, 30. August 1999 (1999-08-30), Seiten 437-441, XP004184474 ISSN: 0924-4247 in der Anmeldung erw{hnt *
FLYNN M P ET AL: "A 1.2-UM CMOS CURRENT-CONTROLLED OSCILLATOR" IEEE JOURNAL OF SOLID-STATE CIRCUITS, IEEE INC. NEW YORK, US, Bd. 27, Nr. 7, 1. Juli 1992 (1992-07-01), Seiten 982-987, XP000304435 ISSN: 0018-9200 in der Anmeldung erw{hnt *
PATENT ABSTRACTS OF JAPAN vol. 007, no. 264 (E-212), 24. November 1983 (1983-11-24) -& JP 58 145221 A (OKI DENKI KOGYO KK), 30. August 1983 (1983-08-30) *

Also Published As

Publication number Publication date
WO2002003539A3 (de) 2002-05-16
DE10032526C1 (de) 2002-02-21
US20030155986A1 (en) 2003-08-21
US6870433B2 (en) 2005-03-22

Similar Documents

Publication Publication Date Title
DE69823289T2 (de) Temperaturunabhängiger Oszillator
EP1704452B1 (de) Transistoranordnung mit temperaturkompensation und verfahren zur temperaturkompensation
EP1446884B1 (de) Temperaturstabilisierter oszillator-schaltkreis
DE69319294T2 (de) Temperatur- und versorgungsspannungsunabhängiger Oszillator mit niedrigem Verbrauch
DE69802065T2 (de) Hybrider regler
DE69023817T2 (de) Verzögerungsschaltung mit stabiler Verzögerungszeit.
DE68907451T2 (de) Ausgangstreiberschaltung für Halbleiter-IC.
WO2002003539A2 (de) Oszillator-schaltkreis
DE4017617A1 (de) Spannungserzeugungsschaltkreis fuer halbleitereinrichtungen
DE69530885T2 (de) Oszillatorschaltung und Verfahren zur Herstellung hoher Spannungen
DE102017126060B4 (de) Ansteuerschaltung für ein transistorbauelement
DE102004062205B4 (de) Schaltungsanordnung zum Schutz einer Schaltung vor elektrostatischen Entladungen
DE4038319A1 (de) Bezugsspannungserzeugungsschaltung
EP1026569B1 (de) Spannungsregler
EP1741016B1 (de) Stromspiegelanordnung
DE69518826T2 (de) Spannungserhöhungsschaltung zur Erzeugung eines annähernd konstanten Spannungspegels
DE102004004305B4 (de) Bandabstands-Referenzstromquelle
WO2004017153A1 (de) Bandabstands-referenzschaltung
DE10047620B4 (de) Schaltung zum Erzeugen einer Referenzspannung auf einem Halbleiterchip
DE10042586A1 (de) Referenzstromquelle mit MOS-Transistoren
DE4037722C1 (en) Current supply circuitry with no mains transformer - has controlled transistor acting as limiting stage across output of rectifier stage
DE102005038895B4 (de) Schaltung mit kapazitiven Elementen
EP0774705B1 (de) Hysteresebehaftete Komparatorschaltung zur Verwendung bei einer Spannungsregelungsschaltung
DE60314595T2 (de) Nichtlineare widerstandsschaltung mit floating-gate-mosfets
DE102008044760A1 (de) Halbleiterelement mit Kompensationsstrom

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 10337195

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP