WO2002001197A1 - Verfahren und vorrichtung zur optisch-spektroskopischen messung von stoffkonzentrationen in stoffen oder stoffgemischen - Google Patents

Verfahren und vorrichtung zur optisch-spektroskopischen messung von stoffkonzentrationen in stoffen oder stoffgemischen Download PDF

Info

Publication number
WO2002001197A1
WO2002001197A1 PCT/EP2001/007099 EP0107099W WO0201197A1 WO 2002001197 A1 WO2002001197 A1 WO 2002001197A1 EP 0107099 W EP0107099 W EP 0107099W WO 0201197 A1 WO0201197 A1 WO 0201197A1
Authority
WO
WIPO (PCT)
Prior art keywords
light sources
substances
radiation
mixtures
measurement
Prior art date
Application number
PCT/EP2001/007099
Other languages
English (en)
French (fr)
Inventor
Claudia Emmrich
Roland Emmrich
Original Assignee
Claudia Emmrich
Roland Emmrich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10044827A external-priority patent/DE10044827C2/de
Application filed by Claudia Emmrich, Roland Emmrich filed Critical Claudia Emmrich
Publication of WO2002001197A1 publication Critical patent/WO2002001197A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3129Determining multicomponents by multiwavelength light
    • G01N2021/3133Determining multicomponents by multiwavelength light with selection of wavelengths before the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3159Special features of multiplexing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3185Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry typically monochromatic or band-limited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Definitions

  • the invention relates to a method and a device for the optical-spectroscopic measurement of substance concentrations in substances or substance mixtures using monochromatic light sources and radiation detectors, which are part of a measuring and reference channel, according to the preamble of patent claim 1 or 3.
  • Spectroscopic concentration measurements using electromagnetic radiation in the UV, in the visual range, in the near or middle infrared based on the evaluation of the Lambert-Beer law have been known for a long time. With such measurements, a broad spectral range of the radiation is used, which leads to a high expenditure on equipment.
  • Another known, but simpler method is to use optical filters, so that only individual spectral ranges, in which the significant wavelength information is contained, are to be used for the measurement and subsequent calculation.
  • the disadvantage here is that the filters used have relatively large optical transmission ranges, so that inaccuracies and incorrect measurements are the result, since the desired spectral band is not exactly met or overlaps occur. There is also the problem that the filters to be used have noticeable transmission and reflection losses. Ultimately, filters with extremely narrow passband areas are extremely expensive, so that the total cost of such measuring devices increases.
  • Continuous wave or quasi-continuous wave lasers with very narrow-band emission are ideal as an ideal, powerful light source for spectroscopic measurements, if they have a range of several hundred nanometers can be tuned.
  • laser systems have so far only been feasible for a few wavelength ranges and with the help of expensive setups in the laboratory.
  • a practical application for example in the chemical industry under the conditions given there, but also for reasons of cost, has not hitherto taken place.
  • the entire spectral range of a classic spectrometer or interferometer does not have to be available for later concrete use, since after an evaluation or method development in accordance with the respective measurement task, sequential measurement in certain spectral ranges is usually sufficient to solve the monitoring task.
  • Powerful diode lasers have been known for measurements in gases for some time, which emit very narrow-band radiation and also offer favorable conditions for the best possible signal-to-noise ratio.
  • the problem of long-term stability is solved by a second parallel detector in the reference channel.
  • Some of the known diode lasers can be controlled via temperature and current, i.e. their wavelengths can be detuned or changed in their wavelengths.
  • spectral multi-range measurements are not possible because the range of variation is significantly smaller than 1 nm or a fraction thereof.
  • the basic idea of the invention accordingly consists in using several discrete laser or comparable narrow-band light sources to provide spectral information from different spectral ranges in the case of optical spectroscopic ones
  • the lasers or narrow-band light sources to be used emit radiation of different wavelengths, specifically where the spectral substance information is represented.
  • the radiation energy is preferably coupled into the measuring channel or the measuring cuvette or the like device via a fiber optic.
  • a switching device is provided which only releases one laser and thus one discrete wavelength. After determining the energy of the detectors known per se, the measurement results are compared and stored or evaluated. In the next step, the currently active laser or the relevant light source is switched off and the next laser with the next discrete wavelength is activated. The above process is repeated until the required spectral range has been scanned in steps.
  • Spectrometer or discrete diode laser arrangements can be used.
  • At least two, preferably a large number of monochromatic light sources, each with a different emission wavelength, are used, which are individually switched by means of a switching device, e.g. can be controlled by a microcomputer.
  • the radiation energy from the light sources is guided to a preferably fiber-optic intensity divider, with radiation energy being able to be coupled out both for the measurement channel and for the reference channel at the common output of the intensity divider.
  • the preferably serial switching activates and deactivates the light sources, in particular laser diodes, whereby a predetermined wavelength range can be swept in steps or quasi continuously.
  • the serial switching generates radiation of a discrete wavelength, which is present at the common output of the intensity divider.
  • the intensity divider can consist of both fiber optics and a dichroic mirror arrangement. It is also possible to provide at least one of the light sources with an additional narrow-band filter in order to improve the selection properties.
  • the fiber optic can also be designed in the form of so-called fiber-optic taper.
  • the microcomputer can be used both for the controlled switching of the individual monochromatic light or radiation sources and for evaluating, comparing and storing the signals applied to the detectors.
  • the figure shows a basic structure of the device according to the invention for the optical-spectroscopic measurement of substance concentrations in substances or substance mixtures using monochromatic light sources.
  • a microcomputer 1 has a switchable output 2 which, by means of suitable drivers (not shown), is able to selectively control a large number of monochromatic light sources 3, each light source emitting radiation of different wavelength ⁇ ⁇ - ⁇ n .
  • the output energy of the light sources 3 is brought together via a preferably fiber-optic intensity divider 4, where radiation for the reference channel or the reference detector 5 can be coupled out. Radiation reaches the measuring channel via a further fiber optic, which can be implemented, for example, as a cuvette 6. Like the reference detector 5, the measurement detector 7 is connected to analog / digital converters 8, which lead to a corresponding output port of the microcomputer 1.
  • light sources for example in the form of laser diodes, can be activated in succession via the switchable output 2, so that radiation of very different wavelengths reaches the measuring cuvette in order to then have radiation energy in the relevant spectral bands available for determining the substance concentrations , ⁇ co [ ⁇ 3 ) F 1 ⁇ ⁇ C ⁇ o C ⁇ O C ⁇
  • N N ⁇ rr P. F- ⁇ ; 0 0 0 ⁇ CQ ⁇ - F, t F, P- 0 H CQ?

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur optisch-spektroskopischen Messung von Stoffkonzentrationen in Stoffen oder Stoffgemischen unter Verwendung monochromatisch strahlender Lichtquellen sowie von Strahlungsdetektoren, die Bestandteil eines Mess- und Referenzkanals sind. Erfindungsgemäß werden mindestens zwei, bevorzugt eine Vielzahl monochromatischer Lichtquellen jeweils unterschiedlicher Emissionswellenlänge einzeln mittels einer Schalteinrichtung angesteuert, wobei die Strahlungsenergie der Lichtquellen auf einen, vorzugsweise faseroptischen, Intensitätsteiler geführt ist. Am gemeinsamen Ausgang des Intensitätsteilers wird Strahlungsenergie sowohl für den Mess- als auch den Referenzkanal ausgekoppelt.

Description

Verfahren und Vorrichtung zur optisch-spektroskopischen Messung von Stoffkonzentrationen in Stoffen oder
Stoffgemischen
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur optisch-spektroskopischen Messung von Stoffkonzentrationen in Stoffen oder Stoffgemischen unter Verwendung monochromatischer Lichtquellen sowie von Strahlungsdetektoren, die Bestandteil eines Mess- und Referenzkanals sind, gemäß Oberbegriff des Patentanspruchs 1 oder 3.
Spektroskopische Konzentrationsmessungen mittels elektromagnetischer Strahlung im UV-, im visuellen Bereich, im nahen oder mittleren Infrarot auf der Grundlage der Auswertung des Lambert-Beerschen Gesetzes sind seit längerer Zeit bekannt. Bei derartigen Messungen wird ein breiter Spektralbereich der Strahlung genutzt, was zu einem hohen apparativen Aufwand führt .
Eine ebenfalls bekannte, jedoch einfachere Methode besteht im Verwenden optischer Filter, so dass nur einzelne Spektralbereiche, in denen die signifikante Wellenlängeninformation enthalten ist, für die Messung und anschließende Berechnung heranzuziehen sind.
Von Nachteil ist hierbei, dass die eingesetzten Filter relativ große optische Durchlassbereiche besitzen, so dass Ungenauigkeiten und Fehlmessungen die Folge sind, da nicht exakt die gewünschte Spektralbande getroffen wird oder Überlagerungen entstehen. Weiterhin besteht das Problem, dass einzusetzende Filter merkliche Transmissions- und Reflexionsverluste aufweisen. Letztendlich sind Filter mit extrem schmalen Durchlassbereichen außerordentlich teuer, so dass sich die Gesamtkosten derartiger Messvorrichtungen erhöhen.
Als ideale leistungsfähige Lichtquelle für spektroskopische Messungen sind Continuous Wave- oder quasi Continuous Wave- Laser mit sehr schmalbandiger Emission ideal, wenn diese über einen Bereich von mehreren hundert Nanometern durchstimmbar sind. Derartige Lasersysteme sind jedoch bisher nur für wenige Wellenlängenbereiche und mit Hilfe teurer Aufbauten im Labor realisierbar. Aus den vorgenannten Gründen ist eine praktische Anwendung z.B. in der chemischen Industrie unter den dort gegebenen Bedingungen, aber auch aus Kostengründen bisher nicht erfolgt . Weiterhin muss nicht der gesamte Spektralbereich eines klassischen Spektrometers oder Inter- ferometers für die spätere konkrete Anwendung vorhanden sein, da nach einer Evaluierung oder Methodenentwicklung entsprechend der jeweiligen Messaufgabe im Regelfall des sequentielle Messen in bestimmten Spektralbereichen zur Lösung der Überwachungsaufgabe ausreichend ist .
Für Messungen in Gasen sind seit einiger Zeit leistungsfähige Diodenlaser bekannt, die eine sehr schmalbandige Strahlung emittieren und zudem günstige Voraussetzungen für ein bestmögliches Signal-Rausch-Verhältnis bieten. Das Problem der Langzeitstabilität wird durch einen zweiten parallelen Detektor im Referenzkanal gelöst. Ein Teil der bekannten Diodenlaser können über die Temperatur und den Strom, d.h. über die Verlustleistung in geringen Grenzen in ihrer Wellenlänge verstimmt oder verändert werden. Spektrale Mehrbereichsmessungen sind jedoch nicht möglich, da der Variationsbereich deutlich kleiner als 1 nm ist oder Bruchteil hiervon beträgt.
Für universelle spektrale Messungen in Flüssigkeitsgemischen oder Gasgemischen sind aber Spektralbereiche von mehreren hundert Nanometern zu überstreichen.
Aus dem Vorgenannten ist es daher Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung zur optisch-spektroskopischen Messung von Stoffkonzentrationen in Stoffen oder Stoffge- mischen unter Verwendung monochromatisch strahlender Lichtquellen sowie von Strahlungsdetektoren anzugeben, welche es gestattet, eine spektrale Information aus verschiedenen Spektralbereichen in einfacher Weise zu erhalten und gleichzeitig ein Driften der Signale und damit eine Verschlechterung der Messergebnisse zu vermeiden.
Aus Kostengründen, aber auch aus Gründen der Zuverlässigkeit einer derartig realisierten Messvorrichtung soll nicht auf quasi durchstitnmbare Farbstofflaser oder optisch parametrische Oszillatoren zurückgegriffen, sondern nach neuen Möglichkeiten gesucht werden.
Die Lösung der Aufgabe der Erfindung erfolgt mit einem Verfahren in seiner Definition gemäß Patentanspruch 1 sowie mit einer Vorrichtung gemäß den Merkmalen des Patentanspruchs .3.,
Die Unteransprüche stellen mindestens zweckmäßige Ausgestal- tungen und Weiterbildungen der Erfindung dar.
Der Grundgedanke der Erfindung besteht demgemäß darin, mittels mehrerer diskreter Laser- oder vergleichbarer schmal- bandiger Lichtquellen spektrale Informationen aus verschie- denen Spektralbereichen bei optisch-spektroskopischen
Messungen zu gewinnen. Die einzusetzenden Laser bzw. schmal- bandigen Lichtquellen emittieren Strahlung verschiedener Wellenlänge, und zwar dort, wo die spektrale StoffInformation repräsentiert ist. Die Strahlungsenergie wird vorzugsweise über eine Faseroptik in den Messkanal bzw. die Messküvette oder dergleichen Einrichtung eingekoppelt .
Um zu verhindern, dass die Detektoren des Mess- und des Referenzkanals ein Wellenlängengemisch aus allen Laserwellen- längen erhalten, ist eine Schalteinrichtung vorgesehen, die jeweils nur einen Laser und damit eine diskrete Wellenlänge freigibt. Nach Bestimmung der Energie der an sich bekannten Detektoren folgt ein Vergleichen und Speichern bzw. Bewerten der Messergebnisse. Im nächsten Schritt wird der momentan wirksame Laser bzw. die relevante Lichtquelle ausgeschaltet und der nächste Laser mit nächster diskreter Wellenlänge aktiviert . Vorstehender Vorgang wird so lange wiederholt, bis der benötigte Spektralbereich quasi stufenweise überstrichen ist .
Für die Berechnung der Energie und der darin enthaltenen Spektralinformation kann auf übliche Algorithmen bekannter
Spektrometer oder diskreter Diodenlaser-Anordnungen zurückgegriffen werden.
Es wird also erfindungsgemäß von mindestens zwei, bevorzugt einer Vielzahl monochromatischer Lichtquellen jeweils unterschiedlicher Emissionswellenlänge ausgegangen, die einzeln mittels einer Schalteinrichtung, z.B. einem Mikrocomputer ansteuerbar sind.
Die Strahlungsenergie der Lichtquellen wird auf einen vor- zugsweise faseroptischen Intensitätsteiler geführt, wobei am gemeinsamen Ausgang des Intensitätsteilers Strahlungsenergie sowohl für den Mess- als auch für den Referenzkanal auskoppelbar ist .
Durch das vorzugsweise serielle Schalten wird ein Aktivieren und Deaktivieren der Lichtquellen, insbesondere Laserdioden vorgenommen, wobei hierdurch ein vorgegebener Wellenlängenbereich stufenweise oder quasi kontinuierlich überstrichen werden kann.
Durch das serielle Schalten wird jeweils Strahlung einer diskreten Wellenlänge erzeugt, die am gemeinsamen Ausgang des Intensitätsteilers anliegt.
Der Intensitätsteiler kann sowohl aus einer Faseroptik als auch einer dichroitischen Spiegelanordnung bestehen. Weiterhin besteht die Möglichkeit, mindestens eine der Lichtquellen mit einem zusätzlichen schmalbandigen Filter zu versehen, um die Selektionseigenschaften zu verbessern.
Die Faseroptik kann auch in Form sogenannter faseroptischer Taper ausgebildet sein. Der Mikrocomputer kann erfindungsgemäß sowohl zum gesteuerten Schalten der einzelnen monochromatischen Licht- bzw. Strahlungsquellen als auch zum Auswerten, Vergleichen und Speichern der an den Detektoren anliegenden Signale Verwendung finden.
Die Erfindung soll nachstehend anhand eines Ausführungsbei- spiels und einer Figur näher erläutert werden.
Die Figur zeigt hierbei einen prinzipiellen Aufbau der erfindungsgemäßen Vorrichtung zur optisch-spektroskopischen Messung von Stoffkonzentrationen in Stoffen oder Stoffgemischen unter Verwendung monochromatisch strahlender Lichtquellen.
Ein Mikrocomputer 1 weist einen schaltbaren Ausgang 2 auf, der über geeignete, nicht dargestellte Treiber in der Lage ist, eine Vielzahl monochromatischer Lichtquellen 3 selektiv anzusteuern, wobei jede Lichtquelle Strahlung unterschied- licher Wellenlänge λ^-λn emittiert.
Die Ausgangsenergie der Lichtquellen 3 ist über einen vorzugsweise faseroptischen Intensitätsteiler 4 zusammengeführt, wobei dort Strahlung für den Referenzkanal respektive den Referenzdetektor 5 auskoppelbar ist. Über eine weitere Faseroptik gelangt Strahlung zum Messkanal, der beispielsweise als Küvette 6 ausführbar ist. Der Messdetektor 7 steht wie der Referenzdetektor 5 mit Analog/Digital-Wandlern 8 in Verbindung, die auf einen entsprechenden Ausgangsport des Mikro- Computers 1 führen.
Mit Hilfe des Mikrocomputers 1 können also Lichtquellen 3, z.B. in Form von Laserdioden über den schaltbaren Ausgang 2 nacheinander aktiviert werden, so dass Strahlung ganz unterschiedlicher Wellenlänge auf die Messküvette gelangt, um dann Strahlungsenergie in den relevanten Spektralbanden zur Bestimmung der Stoffkonzentrationen zur Verfügung zu haben. ω co [\3 ) F1 π σ Cπ o Cπ O Cπ
SU 3 to s 3 α et SU CQ £ td H- φ 3 ^ 0 a P- Hi Hl Hl 0 Ω P. s! tr Fl CQ Pb t→ σ
0 φ •ö Φ 0 F- 0 F- Φ 1-" 0 0 Φ U 0 Φ 0= PJ 0= 0 Φ F- Φ 0 Φ Φ μ- 0
N CQ F 01 CQ F 0 CQ Φ F Φ d rt CQ SU Ω rt 0 t J tr P. SU F Φ F rt Hl 0 Ω F
£ CQ Φ rr CQ Ω 0 rr F p. 3 H- CQ CQ CQ ^ Φ ? F φ H CQ Φ φ 0= tr Ω
TS 1 Ω Φ PJ tr S S" 0 Φ φ < •Ö SU CQ F, tr 0 F 0 fö Hi < N Ω 0 tr ö rt tr
P> CD 0" P H 0 0 0 0 H- ii 0 F- & J 0 0 φ SU Φ Φ tr CQ F Φ (P
00 rt Φ Φ Hl Φ F- CQ CQ rt α. Φ Hl CQ Φ 3 F, CQ < CQ Hl CQ F F- 0 F- rt rt 0 p.
LQ 0 0 ii IQ F- rt Ω CQ Φ 0 Ω tr Ω 3 0 φ φ Φ CQ Ω Φ rt • Φ Φ SU
Φ Hl £b P SU 0 SU: " Φ CQ φ 0J SU tr rt 0 F w H F Ω tr 0 SU= F1 CQ
0 H- CQ tr Φ rr tr Hl 0 0- Φ 0 Φ t?d N 0 s: 0= Φ 0 tr 0 rt M rt
CQ ?? Φ s Hl Φ I-1 0 H, 0 & φ 0 0 μ- φ tr CQ CQ O φ CQ
Λ1 0 P "-d P. F Φ P- h Φ tr fu 0 0 0 ESI N φ F N I F Φ
(D 0 φ Φ F Φ t J 0 Φ N CQ 1 CQ 1 P. Φ * 0 P. F- 33 > F- Φ ω ii
H- W F F- 0 F SU rt CQ < f f, TS 0 fu 0 SU 0 φ CQ 0 CQ 0 F- rt- H 0 C 0 CQ 0 s Φ F- P 0 0 0 SU= 0 Ω CQ rt ≤ Φ
Φ tr1 Φ F < CQ φ F M W Φ Φ Hi CQ CQ SU Ω φ tr N CQ in μ-
0 rt H- SU 0 Φ F CQ H o 3 Φ rt F F rt φ F1 0 0 SU C F F1
0 Φ Ω CQ 3 F 0 CQ F- H- >i H- F- F, Φ Φ Hi 3 CQ 3 CQ φ 0 P. Φ
£ F tT •Ö 3 F F F- Ω Ω P^ CQ 0 O 0 Φ μ- μ- SU= SU r 0i F rt Φ 3 0 rr Φ F- F- P. tr 0" 0' 0 CQ Φ 3 F, F" 0 tΛ 0 μ- F- F 0 P. 0 td
Cb CO .Q N Φ Ω 0 rt rt 0 H- Φ Φ Hl 0 P. Hl N Ω 0 Φ Hi Su 0 F- J rt 0 F- F T Φ • Φ 0 0 0 W rt μ- μ- 0 φ φ CQ 0 tr N Hl 0= Ω -j F 0
3 O Φ Φ 0 rr rr F- 0 CQ 0 O Φ 0 0 CQ 0 F- Φ CQ rt μ- Hl F tr I
H- Hl M (- 0 0 - « 0 CQ CQ 0 H Φ & 0 rt SU & O Φ F P. rr Hl H I-1 CQ 0 0 ^ ^ ?r F 0 P. Φ Φ 3 0 F- 0 (_ι. 3 Φ μ- 0 a> Φ Φ CQ CQ 0 tr ^ 0 Φ ü 0 0 Φ K F, μ- 3 Φ Φ Φ 0= CQ φ 0
P* 0 p 0 CQ φ o= 3 P-1 Φ C tr CQ F tr φ F1 F1 t rt P. CQ •Ö P.
H- 0 CQ φ CQ r CQ 0 tr Φ Φ CQ φ > rt 0 Φ F* Φ CJ.
(D Cb < Ω CQ Φ P. F 0 0 H- Φ Φ F, CQ CQ M 0 0 CQ Φ F- t φ φ O tr CQ SU 0 0 Φ 0 0 rt φ F- CQ CQ S Φ 0 p. CQ Ω rt ^ 0
H F F 3 Φ CQ ^ Cb 0 H- h-1 H F- 3 0 o Hi Φ Hi su Φ tr μ- φ CQ
IQ F- F- tr CQ rt φ Φ SU= P 0 3 SU: CQ 0= F. 0= ω F, CQ <i μ- CQ
Hl to Φ rt fV Φ H- F * ü 0 CQ rt 3 PJ μ- P. t CQ Φ Φ H Ω f-1 rr CQ F 0 P. <! CQ $u rt CQ ≤ Φ rt φ rt CQ F, φ F 0= Φ tr 0 μ- tr
0= O Φ 1 0 F- tr Φ SU H Φ 0 N rt 0 0 rt tr CQ Φ * N CQ su Q Hl tr Ω F- Φ CQ <! Φ ^ 0" Hl 0 0 φ rt 0 0 φ F"
Hl Φ 0 0 CQ H- 0 H- Φ CQ F1 Φ <J P. N CQ 0 F Φ Φ Φ 3 rt
0 p. ^ et CQ 0 H. ii Φ F 3 0 μ- 0 CQ IS1 0 H CQ φ tθ 0 Φ *Ö • Φ & rt 0 C rt <J 0 Φ F, O F Hl 0 P. Φ 2! ^ 3 •ü 0 u s H £ Φ Φ ii 0 3 CQ F, tr 0 F μ- rt φ μ- φ φ
N N Φ rr = P. F- <; 0 0 0 Φ CQ μ- F, t F, P- 0 H CQ ?
£ Φ F tu Φ 0 H- Φ • Hi rt S Ω 0 0 3 M SU Φ F1 rt CQ rt φ
0 P- φ F CQ Φ 0' H Hl tr1 Φ 0 tr F- φ 0 0 0 ? Φ φ 1 F ϊ>
<! rt Φ F- CQ Ω U ö φ F- H Hi rt rt F SU Φ 0 SU 0 F SU φ
Φ F 0 T tr Hl Hl 0 H- 0 Ω CQ 0 F- CQ 0 F, ι-3 0 F> 0 F-
F SU Φ H rt H- rt fl Φ 0J Φ U 0 CQ μ- Ω CQ Hi Φ 0 U Φ 0 μ- H
Jl): rt 0 Φ Ω Φ Φ 0 rt F- tr CQ Ω Φ tr μ- 0= μ- 0 F- & 0 CQ
0 F- Hl t J H H 0= 0 iQ 0 φ tr N Φ h-1 p. CQ 0 Hl
& 0 3 0 ) 3 rt rt tr 0 W Φ 0 Hl N Φ μ- Φ Φ fO 0 0
CD 0 F1 0 0 • j Cß H Φ ^ 3 PJ F CQ U 0 F Φ Φ F 0
F Φ φ IQ 0 0 rt 0= H- H- F1 O μ- 0 SU CQ CQ Φ N CQ Hl 3 F
0 0 0 Φ r Φ SU tr CQ 0 0 rr 0 CQ 3 Φ SU 0 su td 0 Tj φ SU rr F- F1 0 Φ φ Φ W •ö 3 F, 3 0 0 φ F rt Φ tr Cb 1 P. Φ Hi H P. ii 0 Φ 0 H K ?ι F- Φ O 3 3 CQ Φ
N H- Φ 0 Φ SU w Φ F- μ-
0 H- Φ μ- F1 φ 0 *Ö φ Φ F r 0 0 0
S Φ CQ 0 0 0 F 0 0 rt F1 CQ 1 rt 0 F N 0 φ
£b Φ Φ Hi 0 φ μ- SU F 1 F- H. F, φ F> Q H su N tr 1 1 Φ Ω Φ 0 0
0J su φ H
Bezugszeichenliste
1 Mikrocomputer
2 schaltbarer Ausgang 3 Lichtquellen
4 Intensitätsteiler
5 Referenzdetektor
6 Küvette
7 Messdetektor 8 Analog/Digital-Wandler

Claims

cυ cυ r f cπ o π o Cπ O cπ
Cb H CQ < JO Co < ω ω H 3 & Cb DO < tfl 0 CQ φ Cb P. SU Cb Fl tr1 F FJ < fö CQ < to
PJ 0 0 Ω μ- Φ r φ rt • 0 Φ 0 fu • 0 Φ 0 φ μ- 0 ) H φ 0 F- μ- F- F- Φ rt Φ rt •
Pi CQ rt φ Hi ti F 0 rt H F P< F $ μ- tr 0 F S3. CQ CQ rt Ω Ω Ω Φ Hi H F 0
0 CQ Φ F- H Φ SU s3 Hi < Φ H Ω 0 < CQ Φ Φ Φ N Ω 0 Φ 0- 0" tr H Φ SU s3 Hi ii SU 0 Φ N F tr Φ Hl 0 Φ tr F Φ Φ F F 0 Φ tr F SU H 0 rt 0 Φ N t tr Φ Hi <
Ω 0 CQ P. SU Φ F1 0 ? F CQ 0 Ω F 0 rt Φ Ω 0 0 CQ £> 0 tl SU Φ 0 X Φ tr CQ μ- tr 0 0 Pi Ω F F- F" Pi tr Hl 0 Φ F- 0 0 CQ tr Ω rt μ- 0 0 tr 0 0 Pi 0 F rt F- F-1 N 0 0 μ- r SU= SU J 3 0 Ω Φ Φ tr Φ rt Φ CQ td F1 N 0 0 0 Hl Q Hi SU: Ω Pf CQ 0 N Ω SU: 0 CQ Q t 3 tr 2! 0 F CQ 0 PJ-- 3 pr CQ 0 N SU φ 0= rt tr < SU CQ CQ Φ tr rt CQ Φ F Φ Pi φ F- Φ C CQ rt H SU F- 3 u CQ CQ Φ tr pr CQ Φ 0 0 Pi 0 rt CQ Φ CQ pf φ 0 Φ N H tr1 Φ φ F- CQ Φ 0 CQ 0 Cb 0 F
Φ rt F SU φ 3 rr 0 r φ Φ 0 CQ 0 μ- H Φ 0 rt rt 0 CQ CQ 0 u φ 3 rt φ
0 Cb Φ H rt Ω F 0 Φ Φ F , Φ Ω F1 0 SU= Φ Φ μ- o F1 rt 0 F 0
0 φ μ- 2! ι_r. CQ Φ 0 ) CQ F- F μ- 0 0 F- <_I- 0= 0 tr Φ 0 ΪÖ rt μ- SU CQ 0 Ω CQ Φ 0 SU
N 0 F1 Φ Φ Ω rt N φ N PJ F Φ tr H rt CQ N φ CQ H 0 rt 0 tr W 0 rt N
Φ φ F" CQ rt Ω μ- N Φ Φ Φ Ω Cb , Φ SU: tQ Φ Hi rt φ Hi Φ CQ F CQ rt Ω μ- 0
F- 3 F F-1 Φ F- O tr 0 0 F 0 F" μ- tr Φ F 0 0 CQ F- φ Φ F 0 53 o μ- 0 tr O F
Ω Φ Φ μ- 0 F F 0 F CQ CQ Φ Ω F- CQ CQ φ Ω Ω F F- Φ Φ φ 3 0 F F 0 tr CQ < 0 P Φ 0 Φ rt tr rt φ F1 tr tr φ F" CQ F- F F1 SU b Φ Ω Φ 0
0 CQ φ FJ CQ 0 3 0 Ω u CQ 0 & F- F 0 F1 PJ 0 Φ Φ 0 rt rt 0 3 0 tf
Φ 1 F SU: ** su TJ 0 Z Ω Φ CQ iQ Φ tr Φ F" Φ N F Hi Φ Φ F- SU rt rt tr 0 3 3 rt μ- rt μ- tr rt *Ö Φ μ- Φ 0 rt rt X CQ 0= 0 S 0 CQ 53 rt μ- F-
0 0 CQ 0 0 Cb F- 0 F- μ- F fu - F 0 Ω F φ - 9) Φ Ω 0 b μ- 0 CQ
0 φ tr F- CQ CQ φ P. F1 0 tr φ φ 0 0 CQ F F SU: tr tr F- CQ Ω Tj
P. P. & 0 Φ Φ Ω CQ Ω CQ rt P. Ω F- Φ F- F Pi SU rt rt <! Cb 0 φ φ φ Ω CQ t SU
SU Φ CQ Ω μ- tr rt tr rt 0 Φ SU tr 3 0 Ω Hi φ fu H F 0 Φ CQ F μ- tr rt I rt
CQ tϋ rt 0" öd Ω 1 • 0 0 CQ « tr Ω μ- CQ SU F- i 0 Φ rxl 0 CQ Φ
CQ Φ F F 3 Φ CQ Hl CQ P. CQ H 3 0 CQ SU tr CQ N r1 3 Φ CQ Hl J 0
Hi CQ SU 0 μ- CQ rt Hl Tj (_1. Φ $ CQ CQ 0 H rt 0 0 Φ μ- μ- CQ rt Hi φ rt
Φ F- tr 3 0 rt F φ Φ Su Φ tΛ 0 rr rt > CQ 0 - CQ 0 F- Ω 0 rt F Φ X Su
F 0 F1 SU P SU PJ f 3 3 ?r tr 0 ?r CQ 0 CQ Cb 0 tr Cb Su fu 0 rt 0
Φ Cb 0 rt φ 0 tr rt Φ su Φ Hi rt Φ CQ £, 53 LSI rt Φ 0 tr F CQ
0 0 F- CQ P. F1 0 F CQ μ- 0 μ- Φ 0 μ- X CQ 0 Φ Cb Φ |Q CQ P. Ω Ω »d
N 0 CQ Q rt rt φ Pi O Φ U 0 3 < O Φ tr F- F- 0 rt rt φ Cb CQ F ? 0 CQ Ω Φ Φ 0 Φ CQ 3 CQ F1 φ s; μ- •Ö 0 Φ CQ φ 0 Φ φ Φ 0 Φ 0=
SU P. SU tr 0 F- Pi F p? Φ F- Φ tr φ W Φ F- Φ 0 F- Cb F 0 Ω
0 0 Φ CQ φ 0 μ- CQ SU 0 F- μ- F Φ F CQ 3 F1 CQ H φ Ti tr fu P. CQ 0 F CQ TJ 0 rt 0 CQ ro φ CQ SU Fi rt F- Φ F CQ F- φ
FJ F- CQ N φ rt μ- CQ F s! Φ F 0 rt μ- 3 SU F rt 0 N φ rt CQ
Φ SU tr1 ä3 F- tr1 Ω CQ J Su μ- φ P φ CQ J rt 5> F- 01 0 Ω
SU CQ 0 F- Φ 0 μ- Hi Ω 3 tr Φ F- Ω 0 Ω ϊ3 CQ Φ tr Φ CJ. Φ 0 F- Hi tr
0 Φ CQ Ω μ- Φ Ω Hi tr φ CQ rt Cb F Pi μ- CQ Φ F F1 Φ μ- φ Ω Hi φ
Hi F CQ - CQ tr CQ Φ 0 0 φ φ Φ Ω Φ F 0 3 o 0 CQ $, ^ CQ tr CQ 0
3 CQ rt rt φ 0 0 F F tr F Pi s; Φ Ό 0 Φ rt φ
Φ φ Φ iQ tr 3 iP 3 CQ i CQ o F- rt CQ Φ μ- tr 3 Λ 3 3 μ- μ. F- 0 Φ Φ 0 F- 3 0 Φ Ω Λ Φ α tr 0 μ- CQ F- H Φ φ 0 μ- φ
CQ 0 rt Φ < CQ Φ CQ φ CQ φ 0 tr 0 F- Φ H CQ CQ φ 0 CQ < CQ Φ CQ CQ rt Φ F- H 0 CQ Ω CQ CQ μ- su SU J SU Ω 0 Φ 0 CQ H Ω CQ
> 0 CQ F1 F 1 F1 tr CQ SU 0 CQ CQ Φ Hi 3 tr φ H 0 F 1 tr 0 φ N Φ φ 0 0 Φ μ- rt F- rt 0= φ Φ F 0 N φ Φ 0
CQ 3 0 0 0 0 0 0 CQ F CQ Φ F- F 0 0 CQ CQ rt 0 0 0 CQ
Φ F- CQ 0 CQ 0 0 ? < < μ- Ω Φ CQ 0
3 rt 0 rt P. 0 Pi SU 0 0 F- Cb > Φ tr H rt P CQ 0 <
Φ 0 0 0 < Φ μ- H 0 0 H Φ φ 0 su CQ 0 0
F- Φ rt Φ =3 rt 0 CQ CQ CQ SU rt CQ F 0 CQ Cb H Ω Φ s3 rt 0
0 μ- Φ F- F- φ 0 Pf Ω μ- Φ Φ CQ φ rt tr μ- μ- Φ
CQ F 0 Φ F F tr 1 1 0 3 SU F Φ F- 0 φ F
SU Φ 1 Φ Φ φ 0 F- Φ φ
3 3 < rt P. CQ CQ 0 Cb <
Φ 0 ro Φ CQ 1 1 0
0 0 0 F 1 0
eine Schalteinrichtung zum seriellen, selektiven Aktivieren der Lichtquellen vorgesehen ist, die mit einem Mikrocomputer in Verbindung steht .
. Vorrichtung nach Anspruch 3 , dadurch gekennzeichnet, dass die Lichtquellen Strahlungsemittierende Halbleiterdioden sind.
5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Intensitätsteiler aus einer Faseroptik oder einer dichroitischen Spiegelanordnung besteht.
6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass mindestens eine der Lichtquellen ein zusätzliches schmalban- diges Filter aufweist.
7. Vorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass am gemeinsamen Ausgang ein Strahlteiler jeweils für den Mess- und Referenzkanal vorgesehen ist .
8. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Faseroptik aus einer Taperfolge besteht.
9. Vorrichtung nach einem der Ansprüche 3 bis 8 , dadurch gekennzeichnet, dass eine Einheit zum Auswerten, Vergleichen und Speichern der an den Detektoren anliegenden Signale vorgesehen ist .
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der Mikrocomputer programmierbare Signale für die Schalteinrichtung bereitstellt und gleichzeitig die Auswerte-, Vergleichs- und Speichereinheit umfasst.
PCT/EP2001/007099 2000-06-26 2001-06-22 Verfahren und vorrichtung zur optisch-spektroskopischen messung von stoffkonzentrationen in stoffen oder stoffgemischen WO2002001197A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10031022.2 2000-06-26
DE10031022 2000-06-26
DE10044827A DE10044827C2 (de) 2000-06-26 2000-09-11 Verfahren und Vorrichtung zur optisch-spektroskopischen Messung von Stoffkonzentrationen in Stoffen oder Stoffgemischen
DE10044827.5 2000-09-11

Publications (1)

Publication Number Publication Date
WO2002001197A1 true WO2002001197A1 (de) 2002-01-03

Family

ID=26006197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/007099 WO2002001197A1 (de) 2000-06-26 2001-06-22 Verfahren und vorrichtung zur optisch-spektroskopischen messung von stoffkonzentrationen in stoffen oder stoffgemischen

Country Status (1)

Country Link
WO (1) WO2002001197A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3511253A1 (de) * 1985-03-28 1986-10-02 Grün Optik Wetzlar GmbH, 6330 Wetzlar Absorptionsspektrometer mit mehreren, nacheinander aktivierbaren spektrallichtquellen
DE3630068C1 (en) * 1986-09-04 1987-11-19 Ges Foerderung Spektrochemie Method, in particular for determining extremely low concentrations of elements and molecules in sample matrices by using laser beams
DE4215165A1 (de) * 1991-11-08 1993-06-03 Tiltscher Helmut Prof Dr Raster-scanning-lichtquelle und deren anwendung
DE4216508A1 (de) * 1992-05-19 1993-11-25 Ortwin Dr Brandt Feststoffanalysengerät (Vorrichtung und Verfahren)
US5784162A (en) * 1993-08-18 1998-07-21 Applied Spectral Imaging Ltd. Spectral bio-imaging methods for biological research, medical diagnostics and therapy
US5832155A (en) * 1995-02-07 1998-11-03 Ldt Gmbh & Co. Laser-Display-Technologie Kg Combination splitting device composed of strip waveguides and uses thereof
US5891656A (en) * 1992-09-14 1999-04-06 Sri International Up-converting reporters for biological and other assays using laser excitation techniques

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3511253A1 (de) * 1985-03-28 1986-10-02 Grün Optik Wetzlar GmbH, 6330 Wetzlar Absorptionsspektrometer mit mehreren, nacheinander aktivierbaren spektrallichtquellen
DE3630068C1 (en) * 1986-09-04 1987-11-19 Ges Foerderung Spektrochemie Method, in particular for determining extremely low concentrations of elements and molecules in sample matrices by using laser beams
DE4215165A1 (de) * 1991-11-08 1993-06-03 Tiltscher Helmut Prof Dr Raster-scanning-lichtquelle und deren anwendung
DE4216508A1 (de) * 1992-05-19 1993-11-25 Ortwin Dr Brandt Feststoffanalysengerät (Vorrichtung und Verfahren)
US5891656A (en) * 1992-09-14 1999-04-06 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
US5784162A (en) * 1993-08-18 1998-07-21 Applied Spectral Imaging Ltd. Spectral bio-imaging methods for biological research, medical diagnostics and therapy
US5832155A (en) * 1995-02-07 1998-11-03 Ldt Gmbh & Co. Laser-Display-Technologie Kg Combination splitting device composed of strip waveguides and uses thereof

Similar Documents

Publication Publication Date Title
DE3688349T2 (de) System zur chemischen Fernanalyse.
AT403745B (de) Messanordnung mit einem für anregungs- und messstrahlung transparentem trägerelement
DE60304027T2 (de) System und verfahren zur steuerung einer lichtquelle für cavity-ringdown-spektroskopie
DE69222425T2 (de) Methode und apparat zur multivariablen charakterisation der antwort eines optischen instruments
DE102013209751B3 (de) Laserspektrometer und Verfahren zum Betreiben eines Laserspektrometers
WO2003002991A2 (de) Vorrichtung zur fotometrischen messung mehrerer proben
DE19601873A1 (de) Gasanalysator
EP0966657B1 (de) Hadamard-spektrometer
DE3207377A1 (de) Vorrichtung zur durchfuehrung einer spektralanalyse
DE69633890T2 (de) Vorrichtung zur Messung interner Information in streuenden Medien
DE3938142C2 (de)
WO2002001197A1 (de) Verfahren und vorrichtung zur optisch-spektroskopischen messung von stoffkonzentrationen in stoffen oder stoffgemischen
DE4312915A1 (de) Verfahren und Anordnung zur IR-spektroskopischen Trennung von Kunststoffen
DE19509822A1 (de) Ölkonzentrations-Meßgerät
AT410033B (de) Verfahren und messeinrichtung zur bestimmung zumindest eines lumineszenz-, floureszenz- oder absorptionsparameters einer probe
DE102013112750B4 (de) Einrichtung und Verfahren zum Beleuchten einer Probe
EP3130912B1 (de) Verfahren zur bestimmung der konzentration einer gaskomponente und spektrometer dafür
DE4216189C2 (de) Verfahren zur Materialerkennung mittels Spektroskopie und Vorrichtung zur Durchführung des Verfahrens
DE10044827C2 (de) Verfahren und Vorrichtung zur optisch-spektroskopischen Messung von Stoffkonzentrationen in Stoffen oder Stoffgemischen
DE102010030549B4 (de) Nichtdispersiver Gasanalysator
DE60126600T2 (de) Analyseverfahren für stoffmischungen
DE102015207192A1 (de) Verfahren und Gasanalysator zur Messung der Konzentration einer Gaskomponente in einem Messgas
DE4209672C1 (en) Wavelength measuring device for spectrometry - has sandwich structure of optical waveguides with diffraction gratings of differing constant giving spatial separation of components
DE2939735A1 (de) Fotoelektrisches gasanalysegeraet
DE10202918C1 (de) Gassensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP