WO2002000921A1 - Mezcla nutritiva y procedimiento para la identificación y recuento temprano de organismos gram-negativos - Google Patents

Mezcla nutritiva y procedimiento para la identificación y recuento temprano de organismos gram-negativos Download PDF

Info

Publication number
WO2002000921A1
WO2002000921A1 PCT/CU2001/000004 CU0100004W WO0200921A1 WO 2002000921 A1 WO2002000921 A1 WO 2002000921A1 CU 0100004 W CU0100004 W CU 0100004W WO 0200921 A1 WO0200921 A1 WO 0200921A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
colonies
weight
appearance
fluorescence
Prior art date
Application number
PCT/CU2001/000004
Other languages
English (en)
French (fr)
Inventor
Anna Tsoraeva
Claudio Rodriguez Martinez
Vivian de Jesús QUESADA MUÑIZ
Original Assignee
Centro Nacional De Biopreparados
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro Nacional De Biopreparados filed Critical Centro Nacional De Biopreparados
Priority to DE60130459T priority Critical patent/DE60130459D1/de
Priority to BRPI0112005-0B8A priority patent/BR0112005B8/pt
Priority to EP01947123A priority patent/EP1300471B1/en
Priority to JP2002506235A priority patent/JP2004501654A/ja
Priority to CA002414485A priority patent/CA2414485A1/en
Priority to MXPA02012189A priority patent/MXPA02012189A/es
Publication of WO2002000921A1 publication Critical patent/WO2002000921A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/045Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to Microbiology and particularly to a nutritive mixture and a method for the identification and differentiated and early count of Gram-negative organisms.
  • the Red Bile Violet Agar medium incorporates bile salts and violet crystal for the inhibition of Gram-positive bacteria (Soria Melquizo, F. Difco Manual. Tenth edition. 1984; MERCK Manual of Culture Media. 1990; Manual of Culture Media OXOID. nineteen ninety five). This also contains lactose and pH indicator - neutral red. Coliform organisms, which grow in the middle, ferment lactose and neutral red gives the colony and the surrounding environment a deep red color. For a safe differentiation of E. coli and coliforms, additional confirmatory tests are needed, such as planting in the Brilliant Green Broth with lactose or striatum in the Blue Eosin Methylene Agar (Soria Melquizo, F. Difco Manual.
  • These media generally contain inhibitors of Gram-positive bacteria and some Gram-negative bacteria, for example, bile salts, sodium citrate and bright green.
  • the detection of Salmonella is based on the ability to ferment one or more carbohydrates and produce hydrogen sulfide in the presence of sodium thiosulfate and one of the iron salts.
  • These culture media in practice are not very specific since several species (Proteus vulgaris, P. mirabilis, Citrobacter freundii) can develop colorless colonies with the black center characteristic of Salmonella.
  • the production of H S by Salmonella strains does not always occur, as several factors, such as the pH of the medium and the concentration of oxygen around the colonies, can influence this biochemical manifestation.
  • the medium in turn includes nutrients, a fluorogenic or chromogenic compound for the enzyme ⁇ -galactosidase, glucuronic acid or one of its salts and pH indicator.
  • This culture medium also contains substances that inhibit the growth of genera and different species of Salmonella (bright green and sodium deoxycholate), which limits their ability to detect other Gram-negative organisms and makes their use impossible for counting. .
  • the culture medium needs the addition of sodium glucuronate as a supplement after sterilization.
  • the invention comprises a selective culture medium for E. coli differentiation, particularly of serotypes 0157 and / or Ol ⁇ , which contains a chromogenic substrate for the enzyme ⁇ -galactosidase.
  • a selective culture medium for E. coli differentiation particularly of serotypes 0157 and / or Ol ⁇ , which contains a chromogenic substrate for the enzyme ⁇ -galactosidase.
  • other chromogenic substrates have been added, for ⁇ -glucosidase that characterizes a large number of coliform bacteria and for ⁇ -glucuronidase that characterizes E. coli from serogroups other than 0157 and Ol ⁇ .
  • the patent describes a test medium and a quantitative method for the identification and differentiation of biological material in a sample to be tested, and consists of using a specific chromogenic substrate for one of the biological materials that provides a coloration to that material, a second chromogenic substrate that is specific to a second type of biological material and gives a second color different from the first, and a third biological material to be tested that is sensitive to degrading one of the two substrates.
  • the first and second biological material are capable of degrading a sugar, and the third biological material does not degrade that sugar.
  • a pH indicator is included in the composition, which changes the color of the medium when the sugar is degraded around the dyed colony of the colors provided by the chromogenic substrates.
  • the fundamental ingredients are 6-chloro-3-indolyl galactoside, 5-bromo-4-chloro-3-indolyl glucuronide, sorbitol and red phenol.
  • Other components are bile salts, sodium lauryl sulfate, sodium deoxycholate, polyglycol ether and acriflavin-derived antibiotics. An inducer of enzymatic reactions is needed, in this case, isopropyl-.beta.-D-thiogalactopyranoside.
  • Agars, pectins, carrageenans, alginates, xanthine, among other gelling agents and peptones are included.
  • This prototype can be considered the closest to the present invention and has a group of drawbacks: -
  • the medium allows the identification and enumeration of E. coli, E. coli O157: H7 and coliforms, but the accurate identification of Salmonella is difficult and for some strains impossible, since this may appear white, like other bacteria
  • Gram-negatives such as Proteus
  • Coliforms cannot be differentiated in the environment, and the use of additional diagnostic means is necessary for the subsequent identification of pathogens of great importance, such as Klebsiella.
  • the medium does not allow the identification and counting of other non-coliform Gram-negatives, such as Pseudomonas.
  • the growth-promoting ingredients in this medium are not sufficient to allow, on their own, the early development (before 24 hours) of the reactions that allow the identification of microorganisms, even requiring an inducer for the ⁇ -galactosidase enzyme, as IPTG.
  • IPTG inducer for the ⁇ -galactosidase enzyme
  • the objective of the present invention is to provide a nutritious mixture and a procedure for the identification and early counting of Gram-negative organisms.
  • the novelty of the invention is that for the first time a nutrient mixture is provided for the identification and early counting of Gram-negative organisms and a method that uses it to achieve the identification and differentiation of the microorganisms of interest, based on the appearance of at least 5 different colors to the visible light in the colonies, fluorescent emissions of 3 colors, halos of 3 different colors, appearance of a precipitation zone around them, and / or the combination of these characteristics with color changes medium.
  • Novel elements are provided, from providing amounts of the essential amino acid tryptophan that is involved in a considerable number of metabolic reactions, which serve as a basis for identification. Said quantities are supplied, taking into account their relationship with the organic and inorganic salts and the substances that provide the appearance of color or fluorescence, so that the observed reactions are clear and appear early.
  • the composition allows their growth, and the identification of the most important species from a clinical or health point of view, such as E. coli, Salmonella, Pseudomonas, Klebsiella, and also , the count of E. coli and coliforms.
  • composition allows the identification and early counting of a broad spectrum of Gram-negative organisms, managing to differentiate E. coli, Salmonella typhi from non-typhi, some of the coliforms of greater interest and other Gram-negative non-coliforms such as Pseudomonas, all in a single procedure, in a single plate and in a maximum period of 22 hours.
  • the identification is mainly done by the combination of the appearance of 5 different colors of the colonies, 3 fluorescence of different colors, the appearance of halos of 3 different colors and an area of opaque precipitate around the colonies, and changes
  • the color of the medium can play a secondary role, or not even play it to identify certain genera such as Shigella sonnei, E. coli O157: H7, Pseudomonas aeruginosa, which reduces the risk of false identification in the presence of contaminated samples With different germs.
  • the composition is very simple to prepare, it does not need autoclave sterilization, nor the addition of supplements that increase the risk of contamination of the sample. - When dispensing with sterilization, nutrients and growth promoters are better preserved and the pH of the composition is more stable.
  • the nutrients and favoring agents incorporated in the mixture are found in absolute proportions and amounts such in the composition, which guarantee the occurrence of chromatic and biochemical reactions early, in most cases before 22 hours
  • results can be easily interpreted by non-specialized personnel, since the morphological identification or differentiation of organisms is not based.
  • the present invention relates to a nutritive mixture for the identification and early count of Gram-negative organisms, which contains the following essential components:
  • a mixture to give the solid structure to the medium comprising amounts between 20 and 50% of the total mixture (weight / weight).
  • the proportion of each of the components of the mixture varies, within the predetermined ranges, depending on the nutritional medium to be prepared.
  • the mixture of tryptophan-rich protein fractions contains said amino acid in amounts ranging from 0.25 to 3.8% of said mixture (weight / weight);
  • said nutrient mixture contains organic and / or inorganic salts which are selected from NaCl, K 2 HPO 4 , KH 2 PO, (NH 4 ) SO, Na 2 CO 3 and sodium pyruvate and mixtures thereof, being selected in preferred embodiments of the invention NaCl and
  • Said mixture contains the following amounts (weight / weight) of organic and / or inorganic salts with respect to the total mixture:
  • the nutrient mixture of the invention also comprises a mixture of substances that provide the appearance of color or fluorescence among which are X-GAL, MUG, sorbitol and neutral red, preferably X-GAL and MUG being selected among them. These substances are found in the following quantities (weight / weight) with respect to the total mixture: - X-GAL between 0.16 and 0.36%;
  • the nutrient mixture of the invention includes substances that inhibit the growth of Gram-positive organisms, which may be sodium deoxycholate or bile salts.
  • the nutritive mixture of the invention contains a mixture of substances that give the solid structure to the culture medium where the microorganisms to be analyzed grow, which can be constituted by the following combinations of substances and in the following quantities (weight / weight) with Regarding the total mixture:
  • - agarose and agaropectin in amounts between 19 and 48% in combination with cellulose nitrate in amounts between 0.1 and 0.4%; or - cellulose and hemicellulose from 1.4 to 3% in combination with cellulose nitrate from 0.1 to
  • the nutrient mixture of the invention once prepared has a pH between 6.6 and 7.2.
  • Another aspect of the invention is that it provides a method for the identification and early counting of said Gram-negative organisms, which is based on the appearance of 5 different colors, 3-color fluorescent emissions and 3-color halos in the colonies, the change of the color of the medium and the appearance of a precipitate zone around said colonies, as well as the combinations of the aforementioned characteristics.
  • the nutrient mixture described once solidified and contacted with the organisms or samples containing them, is incubated for a period of 12 to 22 hours and at a temperature of 30 to 45 ° C, from which is possible to identify the microorganisms with the naked eye, while for the detection of fluorescence it is necessary to use ultraviolet light from 360 to 366 nm.
  • the identification of the different Gram-negative microorganisms, using the mixture and the process of the invention is as follows:
  • Shigella sonnei It is identified by the appearance of blue-green colonies, blue and half-orange fluorescence;
  • Shigella flexneri It is identified by the appearance of pale pink, yellowish and half orange colonies
  • Enterobacter E. aerogenes, E. cloacae, E. agglomerans
  • Enterobacter E. aerogenes, E. cloacae, E. agglomerans
  • Salmonella typhi It is identified by the appearance of red and medium red colonies with an opaque precipitate zone;
  • Salmonella "no typhi” It is identified by the appearance of red and medium red colonies, with appearance, after 24 hours of incubation, yellow center color and fluorescence;
  • Pseudomonas aeruginosa It is identified by the appearance of pale pink colonies, greenish fluorescence before 24 hours of incubation and half orange; greenish brown colonies, greenish fluorescence and greenish halo after 24 hours of incubation;
  • Proteus, Providencia, Alcaligenes and other Gram-negative - They are identified by the appearance of colorless or transparent colonies and half orange.
  • the identification of total coliforms is made by the greenish blue color of the colonies and specifically of E. coli also by blue fluorescence.
  • the conformation of the nutrient mixture of the invention the following operations are performed:
  • the substances that provide the protein fractions rich in tryptophan and / or free tryptophan in the amount of 22 to 46% are weighed in a conical bottle (this should have the volume 2 times greater than the amount of the nutrient mixture to be prepared), having Note that the nutrient mixture must contain between 0.25 and 3.8% of this amino acid with respect to its dry weight.
  • the set of organic and inorganic salts is weighed and added to the previous mixture, in an amount of 15 to 20% with respect to the dry weight of the nutrient mixture.
  • Said organic or inorganic salts are selected in the following amounts relative to the total nutrient mixture: NaCl 7 to 18%, K 2 HPO 4 6 to 11%, KH 2 PO 4 2 to 5%, (NH 4 ) 2 SO 4 of 1 to 4%, Na 2 CO 3 of 0.1 to 0.4% and sodium pyruvate of 0.7 to 3%. Then the Gram-positive organisms inhibitors are weighed and added in an amount of 2 to 4.5%, among which sodium deoxycholate and bile salts are used.
  • the premix of the substances that provide the appearance of color or fluorescence in an amount of 0.3 to 37%, is weighed.
  • the premix of these substances may contain sorbitol in amounts of 15 to 36.5%, MUG of 0.16 to 0.18%, X-GAL of 0.16 to 0.36% and neutral red of 0.09 to 0 , 11%, with respect to the dry weight of the nutrient mixture.
  • the suspension is stirred and allowed to soak for at least 15 min. It is then heated to a boil, cooled to approximately 45 ° C and distributed in the final test containers, leaving them at rest at room temperature for 20-30 minutes. If moisture accumulation occurs, before proceeding to inoculation, the containers must be dried under aseptic conditions.
  • the mixture of cellulose and hemicellulose is used, it is first sterilized (with steam steam at 121 ° C for 15 minutes or with ethylene oxide or by irradiation), then it is placed in the final test containers and the solution previously prepared in an amount of 2 to 4 mL per each container.
  • other layers formed by cellulose nitrate and / or other cellulose derivatives, such as cellulose acetate, can be placed both during and after sowing, to provide organisms to detect the effect of concentration on a solid structure for the development of its colonies, or to reveal a specific reaction.
  • the samples of interest can be inoculated by different methods of stretch marks or dilutions, and incubated at a temperature of 33 to 45 ° C, for at least 6 hours for the detection of E. coli, preferably between 12 hours and 22 hours, and between 18 and 22 hours for the differentiation of other Gram-negative microorganisms.
  • the results are read by observing the color of the isolated colony, the color of the culture medium and the presence of an opaque precipitate or halo around said colony, the presence and color of fluorescent emissions and colonial morphology can also be used.
  • composition of the nutrient mixture for the differentiation of different strains of Gram-negative bacteria turned out to be: Table 2: Composition of the mixture.
  • the test was performed by checking the behavior of different strains of enterobacteria with respect to the predetermined biochemical tests.
  • Example 4 The nutrient mixture similar to that described in Example 1 was prepared, but the content of the components of the set of tryptophan-rich protein fractions was as follows (Table 4): Table 4. Composition of the mixture described in Example 2.
  • the sowing of different ATCC collection organisms was carried out using the striated inoculum depletion method.
  • microorganisms were tested in parallel in the ⁇ C Broth with MUG adding the agar (13g / L) and X-GAL (0.1 g / L), this being the reference mixture (C). Seeding results were read with 6, 12, 19, 24 and 40 hours of incubation (tables 9, 10, 11, 12 and 13 respectively). The obteined results are showed next. Table 9. Growth at 6 hours of incubation.
  • E. aerogenes and E. cloacae have a differentiated coloration in the center and at the edges of the colonies.
  • the number of colonies has not changed the blue color in the centers of the colonies looks more intense. In some colonies of Salmonella no typhi, yellow centers and fluorescence are observed.
  • the experimental variants (MN) of the variables were the following (table 12): Table 12. Composition of the variants of the mixtures described in example 3.
  • E. aerogenes could be identified by its differentiated coloration in the center and at the edges of the colony and by its yellow fluorescence.
  • Streptococcus faecalis ATCC 29212 was completely inhibited in all variants studied (the microorganism was incubated for up to 72 hours).
  • Vodes-Proskauer + There is a significant difference (p ⁇ 0.05) in favor of the experimental variant of the nutrient mixture and the EC Broth with MUG (Difco) with the addition of agar (13g / L) and X-GAL (1.0 g / L).
  • the three variants without the mixture of agarose and agaropectin were used for the growth curves of the Gram-negative (positive control) and Gram-positive (negative control) microorganisms.
  • the EC Broth was inoculated with MUG from Difco.
  • the mixture was prepared with the ingredients of variant 2 of example No. 5, with the difference that the concentrations of neutral red and MUG were doubled and the mixture of agarose and agaropectin was replaced by the mixture of cellulose and hemicellulose, in the form of an absorbent disk, which provide organisms to detect a solid structure for the development of their colonies (exp). All the mentioned ingredients make up the first layer of the nutrient mixture.
  • the nutrient mixture was inoculated in parallel with the same composition of variant V2 of Example No. 5 and Agar S.S.
  • the objective of this test was to compare the specificity of the nutrient mixture subject of the present invention and the S.S Agar for the detection of Salmonella from a mixture of microorganisms.
  • the inoculum was prepared as follows:
  • decimal dilutions were made up to 10 "4. Then, to a tube with 9 mL of sterile saline solution, 1 mL of the 10 " 4 dilution of each microorganism was added and mixed with the aid of a Vortex shaker. One mL of this mixture was inoculated in 10 mL of Selenite Broth and incubated for 24 hours at 43 ° C.
  • a roast of the Selenite Broth was seeded in the Petri dishes with the nutrient mixture according to the invention and Agar S.S and incubated at 43 ° C.
  • the nutrient mixture was prepared according to the composition described in Table 20. Table 20. Composition of the mixture corresponding to example 8.
  • the functionality of the nutrient mixture was evaluated in the diagnosis of E. coli and coliforms in urine samples (where infection with E. coli and coliforms constitute about 90% of urinary sepsis). Subsequently, confirmation was made by biochemical tests of the pathogens causing urinary sepsis.
  • Table 21 below is a summary table (table 21) with the values of the incidence of the pathogens identified. Table 21. Incidence of pathogens identified by biochemical tests
  • Figure 1 Results of the growth of E. coli ATCC 10536. It is observed that only the nutrient mixture MN3, promotes to a lesser extent the growth of E. coli, while the variant MN2 at 3 hours, maximizes its growth. At 6 o'clock, there are practically no differences in growth promotion, except for the mix
  • Figure 2 Growth of Streptococcus faecalis ATCC 29212. It is shown that in all the proposed compositions Streptococcus faecalis is inhibited compared to the reference diagnostician.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La presente invención se relaciona con la microbiología, en concreto con una mezcla nutritiva y con un procedimiento para la identificación y el recuento temprano de microorganismos Gram negativos. En el medio de cultivo aparecen 5 colores diferentes, emisiones fluorescentes de 3 colores, halos de 3 colores y zonas de precipitación opaca alrededor de las colonias dependiendo del microorganismo de que se trate, todo lo cual permite la diferenciación con un alto grado de sensibilidad y especificidad. La mezcla comprende relaciones específicas de fracciones proteicas ricas en triptófano, libre o combinado, sales orgánicas y/o inorgánicas, sustancias que proporcionan color o fluorescencia, inhibidores de crecimiento de microorganismos Gram positivos, así como celulosa y hemicelulosa y otros componentes que proporcionan la estructura sólida al medio de cultivo.

Description

MEZCLA NUTRITIVA Y PROCEDIMIENTO PARA LA IDENTIFICACIÓN Y RECUENTO TEMPRANO DE ORGANISMOS GRAM-NEGATIVOS
Sector Técnico La presente invención se relaciona con la Microbiología y particularmente con una mezcla nutritiva y un método para la identificación y el recuento diferenciado y temprano de organismos Gram-negativos.
En el análisis de calidad microbiológica de diferentes productos (agua, alimentos, etc.) se utilizan ampliamente numerosas técnicas para la detección y recuento de microorganismos indicadores, como por ejemplo E. coli y organismos coliformes. Sin embargo, continúan las investigaciones con el objetivo de lograr los procedimientos más simples y efectivos. Generalmente, se conocen muy pocas características bioquímicas que pueden ser atribuidas solamente a un género de bacterias Gram-negativas específico, por ello se necesita el empleo diferentes conjuntos de pruebas apropiadas para lograr un diagnóstico certero. Actualmente existe una amplia gama de medios de cultivo para la detección y diferenciación de diversos grupos de bacterias Gram-negativas, algunos de ellos son cualitativos y otros cuantitativos.
El medio Agar Violeta Rojo Bilis incorpora sales biliares y cristal violeta para la inhibición de bacterias Gram-positivas (Soria Melquizo, F. Manual Difco. Décima edición. 1984; Manual MERCK de Medios de Cultivo. 1990; Manual de Medios de Cultivo OXOID. 1995). Este contiene, además, la lactosa e indicador de pH - rojo neutro. Los organismos coliformes, que crecen en el medio, fermentan la lactosa y el rojo neutro le proporciona el color rojo intenso a la colonia y al medio alrededor. Para una diferenciación segura de E. coli y coliformes se necesitan las pruebas confirmatorias adicionales, como por ejemplo siembra en el Caldo Verde Brillante con lactosa o estriado en el Agar Eosina Azul de Metileno (Soria Melquizo, F. Manual Difco. Décima edición. 1984; Manual MERCK de Medios de Cultivo. 1990; Manual de Medios de Cultivo OXOLD. 1995). También los resultados de las pruebas no se conocen hasta después de 48 h de incubación de la muestra. Por otra parte existe un grupo de medios de cultivo agarizados para la detección de Salmonella que utilizan, como mínimo, dos características bioquímicas de este género que se manifiestan por presencia o ausencia de color en el medio o en la colonia. Entre ellos se puede mencionar Agar Desoxicolato Curato, Agar Entérico Hektoen, Agar S. S., Agar XLD, Agar de Kristensen y Agar Verde Brillante (Soria Melquizo, F. Manual Difco. Décima edición. 1984; Manual MERCK de Medios de Cultivo. 1990; Manual de Medios de Cultivo OXOID. 1995).
Estos medios contienen generalmente inhibidores de las bacterias Gram-positivas y de algunas Gram-negativas, por ejemplo, sales biliares, sodio citrato y verde brillante. La detección de Salmonella aquí se basa en la habilidad de fermentar uno o más carbohidratos y de producir el gas sulfhídrico en presencia de tiosulfato de sodio y una de las sales de hierro. Estos medios de cultivo en la práctica no son muy específicos ya que varias especies (Proteus vulgaris, P. mirabilis, Citrobacter freundii) pueden desarrollar colonias incoloras con el centro negro características de Salmonella. Además, la producción de H S por las cepas de Salmonella no ocurre siempre, pues varios factores, tales como el pH del medio y la concentración de oxígeno alrededor de las colonias, pueden influir en esta manifestación bioquímica.
Alain Rambach, en 1993, patentó un medio para la identificación de Salmonella (Patente No. US 5 194 374), que incluye el empleo de un substrato cromogénico que desarrolla el color azul como resultado de la hidrólisis realizada por la enzima β-galactosidasa y la degradación del propilenglicol. La prueba bioquímica principal que se utiliza en este medio para la detección de Salmonella consiste en la fermentación de propilenglicol que se visualiza mediante el indicador de pH rojo neutro. El producto permite sólo identificar las bacterias coliformes y Salmonella no typhi de Proteus y otras bacterias Gram-negativas. Además, en la práctica alrededor del 9 % de las cepas de Salmonella pueden poseer la enzima β-galactosidasa y alrededor de 30 % no fermentan el propilenglicol. (Kaluzewski y Tomczuk, Med. Dosw. Mikrobiol., 1995, 47: 155-168) Roth y colaboradores recibieron la aprobación de la Patente No. US 5 393 662, mediante la cual proveen un medio y un método para la identificación y recuento de E. coli y coliformes rτ>n F(1 pmnlpn ΛP t¡π1->otríitr>o
Figure imgf000003_0002
Inα σnmnc frrvmΛfnrnc rlifprpntpc T→ ctp
Figure imgf000003_0001
«r» nprmitf» 1α la enzima β-galactosidasa. El medio a su vez incluye nutrientes, un compuesto fluorogénico o cromogénico para la enzima β-galactosidasa, ácido glucurónico o una de sus sales e indicador de pH. Este medio de cultivo contiene, además, las sustancias inhibidoras del crecimiento de los géneros y las especies diferentes de Salmonella (verde brillante y desoxicolato de sodio), lo que limita su habilidad de detectar otros organismos Gram- negativos e imposibilita su utilización para el recuento. El medio de cultivo necesita la adición del glucuronato de sodio en forma de suplemento después de esterilización. Según Denis y colaboradores, la especificidad de este medio de cultivo es de 93,3 %, mientras que del otro medio tradicional para la detección de Salmonella (Agar Entérico Hektoen) es de 85,3 % (Denis, et al, Revue francaise des laboratoires, Décembre 1994, No. 271).
Rambach solicitó patente para un medio de cultivo y el método para la detección de las cepas enterohemorrágicas de E. coli (Solicitud de Patente WO 97/39103). La invención comprende un medio de cultivo selectivo para la diferenciación E. coli, particularmente de los serotipos 0157 y/o Olí, que contiene un substrato cromogénico para la enzima α- galactosidasa. Para aumentar la capacidad diferencial del método se le han añadido otros sustratos cromogénicos, para β-glucosidasa que caracteriza a un gran número de bacterias coliformes y para β-glucuronidasa que caracteriza E. coli de serogrupos diferentes de 0157 y Ol í. Sin embargo, este medio de cultivo no permite la diferenciación de otras bacterias Gram-negativas y, por otra parte, se reporta que algunas cepas de E. coli y Citrobacter pueden dar resultados falsos-positivos (Wallace and Jones, J. Appl. Bacteriol., 1996, 81: 663-668).
Roth y colaboradores, en marzo de 1998 recibieron la aprobación de la patente No. US 5,726,031. En la patente se describe un medio de ensayo y un método cuantitativo para la identificación y diferenciación de material biológico en una muestra a ensayar, y consiste en emplear un substrato cromogénico específico para uno de los materiales biológicos que brinda una coloración a ese material, un segundo substrato cromogénico que es específico a un segundo tipo de material biológico y le brinda un segundo color diferente al primero, y un tercer material biológico a ensayar que es sensible a degradar uno de los dos substratos. El primer y segundo material biológico son capaces de degradar un azúcar, y el tercer material biológico no degrada ese azúcar. En la composición se incluye un indicador de pH, que cambia el color del medio al ser degradado el azúcar alrededor de la colonia teñida de los colores que aportan los substratos cromogénicos. Los ingredientes fundamentales son el 6-cloro-3 -indolil galactósido, 5-bromo-4-cloro-3- indolil glucurónido, sorbitol y fenol rojo. Otros componentes son las sales biliares, lauril sulfato de sodio, desoxicolato de sodio, éter de poliglicol y antibióticos derivados de la acriflavina. Se necesita un inductor de las reacciones enzimáticas, en este caso, el isopropil-.beta.-D- thiogalactopiranósido.
Se incluyen agares, pectinas, carrageninas, alginatos, xantina, entre otros agentes gelificantes y peptonas. Este prototipo puede ser considerado el más cercano a la presente invención y presenta un grupo de inconvenientes: - El medio permite la identificación y enumeración de E. coli, E. coli O157:H7 y coliformes, pero la identificación certera de Salmonella es difícil y para algunas cepas imposible, ya que esta se puede presentar blanca, al igual que otras bacterias
Gram-negativas, tales como Proteus, y en el caso de coexistir varias especies, es difícil diferenciar la presencia de la zona amarilla que caracteriza a la mayoría de las Salmonellas, ya que ésta se produce por la acidificación del medio.
- No se pueden diferenciar Salmonella. typhi de Salmonella no typhi.
Los coliformes no pueden ser diferenciados en el medio, y se precisa del empleo de otros medios diagnósticos adicionales para la ulterior identificación de patógenos de gran importancia, tales como Klebsiella. - El medio no permite la identificación y recuento de otros Gram-negativos no coliformes, tales como Pseudomonas.
- El método empleado para la identificación y recuento precisa de 24 a 48 horas para los microorganismos reivindicados, lo que no lo diferencia de los métodos de cultivo tradicionales. - El empleo del sodio dodecilsulfato, acriflavina y/o antibióticos en la formulación la hace más compleja, de mayor costo y menor estabilidad, sobre todo por la presencia de antibióticos que necesitan ser adicionados como suplementos, pues son termolábiles y no pueden ser adicionados a la formulación deshidratada en polvo.
- Los ingredientes favorecedores del crecimiento en este medio no son suficientes para permitir, por si solos, el desarrollo temprano (antes de 24 horas) de las reacciones que permiten la identificación de los microorganismos, necesitando incluso un inductor para la enzima β-galactosidasa, como IPTG. El método prevé que las reacciones tengan lugar hasta 40°C, inferior a los 44°C establecidos en los métodos tradicionales, lo que requiere establecer un nuevo parámetro en el equipo que se utiliza de rutina.
La temperatura de 40°C para incubar no está en los procedimientos de rutina de análisis microbiológico, por lo que requeriría de una extensa validación y aprobación como método oficial. Divulgación de la Invención
El objetivo de la presente invención consiste en proveer una mezcla nutritiva y un procedimiento para la identificación y recuento temprano de organismos Gram-negativos. La novedad de la invención está en que por primera vez se provee una mezcla nutritiva para la identificación y recuento temprano de organismos Gram-negativos y un procedimiento que la utiliza para lograr la identificación y la diferenciación de los microorganismos de interés, basada en la aparición de al menos 5 colores diferentes a la luz visible en las colonias, emisiones fluorescentes de 3 colores, halos de 3 colores diferentes, aparición de una zona de precipitación alrededor de las mismas, y/o la combinación de éstas características con los cambios de color del medio.
Elementos novedosos son aportados, a partir de proporcionar cantidades del aminoácido esencial triptófano que interviene en un número considerable de reacciones metabólicas, que sirven de base a la identificación. Dichas cantidades son suministradas, teniendo en cuenta la relación de estas con las sales orgánicas e inorgánicas y las sustancias que proporcionan la aparición de color o fluorescencia, de forma tal que las reacciones observadas sean nítidas y aparezcan de manera temprana.
Elementos nuevos e inesperados se han evidenciado, cuando determinados organismos de interés toman coloraciones no descritas previamente o emiten fluorescencia de colores no reportados como característicos, o presentan halos de colores no descritos, como el caso de Enterobacter (fluorescencia amarillenta y centro verde grisáceo), Citrobacter freundii (violeta oscuro con halo azul), Salmonella no typhi (centro y fluorescencia amarilla después de 24 horas), Salmonella typhi (zona de precipitado opaco alrededor de la colonia). Las relaciones entre los componentes de la mezcla fueron establecidas de manera experimental, y constituyen elementos que garantizan una mezcla de componentes no descrita anteriormente en cuanto a sus proporciones, o la composición cualitativa de los elementos incluidos. A continuación se presentan las ventajas que ofrece la presente invención. - Toda la identificación y diferenciación de los organismos de interés se realiza sólo con la mezcla preparada, y no se requieren pruebas adicionales o el uso de otros medios.
- Al no poseer inhibidores de bacterias Gram-negativas, la composición permite el crecimiento de éstas, y la identificación de las especies más importantes desde el punto de vista clínico o sanitario, tales como E. coli, Salmonella, Pseudomonas, Klebsiella, y además, el recuento de E. coli y coliformes.
- La identificación de los diferentes organismos es muy segura, pues se realiza combinando varias reacciones que ocurren en paralelo, basadas en las especificidades del metabolismo de dichos organismos, y que se producen gracias a la presencia de combinaciones de componentes de la mezcla en proporciones adecuadas. Algunas de estas se reportan por primera vez y constituyen hallazgos, como en el caso de Enterobacter (E. aerogenes, E. agglomerans, E. cloacae), que aparecen con un color de la colonias de rosa a rojo y centro verde grisáceo y Salmonella no typhi, que aparece como una colonia de color rojo a roja con el centro amarillo, ambos géneros con fluorescencia amarillenta (después de 24 horas de incubación), lo que permite identificarlas sin riesgo de equivocación. La composición permite la identificación y recuento temprano de un amplio espectro de organismos Gram-negativos, logrando diferenciar las E. coli, Salmonella typhi de no typhi, algunos de los coliformes de mayor interés y otros Gram-negativos no coliformes como Pseudomonas, todos en un solo procedimiento, en una sola placa y en un período máximo de 22 horas.
- La identificación se realiza fundamentalmente por la combinación de la aparición de 5 colores diferentes de las colonias, de 3 fluorescencias de diferentes colores, la aparición de halos de 3 colores diferentes y de una zona de precipitado opaco alrededor de las colonias, y los cambios de color del medio pueden jugar un papel secundario, o incluso no jugarlo para identificar determinados géneros como en el caso de Shigella sonnei, E. coli O157:H7, Pseudomonas aeruginosa, lo que disminuye el riesgo de una falsa identificación en presencia de muestras contaminadas con diferentes gérmenes.
La composición es muy sencilla de preparar, no necesita de esterilización en autoclave, ni la adición de suplementos que aumentan el riesgo de contaminación de la muestra. - Al prescindir de la esterilización, se conservan mejor los nutrientes y favorecedores del crecimiento y se mantiene más estable el pH de la composición.
- Los nutrientes y favorecedores incorporados en la mezcla, sobre todo los ricos en triptófano, se encuentran en proporciones y cantidades absolutas tales en la composición, que garantizan la ocurrencia de las reacciones cromáticas y bioquímicas tempranamente, en la mayoría de los casos antes de las 22 horas
- Los componentes sólidos que conforman las capas de la composición, son de tal naturaleza y composición, que permiten que las emanaciones de luz fluorescente se concentren en la colonia y no difundan al resto de la placa, lo que permite el recuento seguro de esos organismos.
- La selección de los inhibidores del crecimiento de los organismos Gram-positivos, su contenido absoluto y la relación con los demás componentes, permiten el crecimiento adecuado de los organismos de interés, a la vez que se logra la total inhibición (ausencia de crecimiento) de esos organismos Gram-positivos. - La amplia gama de sustancias, precursores o sustratos para las reacciones enzi áticas, permiten que, al adicionar una tercera capa con indicadores o reveladores de reacciones, a la composición en una porción de las placas, puedan ocurrir otras reacciones que permitan la ulterior identificación de otros organismos Gram-negativos. - La especificidad diagnóstica de la composición resultó del 100 % para los organismos ensayados y la sensibilidad analítica alcanzó 10 "6 UFC/mL a partir de una suspensión estandarizada al 50 % de transmitancia.
El balance entre nutrientes e inhibidores, permite la identificación temprana y el crecimiento exuberante de los organismos de interés, incluso de aquellos que generalmente crecen después de 24 horas, como Salmonella.
- Los resultados pueden ser fácilmente interpretados por personal no especializado, ya que no se basa la identificación o la diferenciación morfológicas de los organismos.
Descripción detallada de la invención
La presente invención se relaciona con una mezcla nutritiva para la identificación y recuento temprano de organismos Gram-negativos, la cual contiene los siguientes componentes esenciales:
- una mezcla de fracciones proteicas ricas en triptófano o triptófano libre, la cual se encuentra en cantidades entre 22 a 46 % de la mezcla total (peso/peso); - una mezcla de sales orgánicas y/o inorgánicas seleccionadas que se encuentra en un cantidades entre 15 y 20 % de la mezcla total (peso/peso);
- una mezcla de sustancias que proporcionan la aparición de color y fluorescencia, la que se encuentra en cantidades entre 0,3 a 37 % de la mezcla total (peso/peso); - sustancias inhibidoras del crecimiento de los organismos Gram positivos, las que se encuentra en cantidades entre 2 a 4,5 % de la mezcla total (peso/peso);
- y una mezcla para dar la estructura sólida al medio, que comprende cantidades entre 20 y 50 % de la mezcla total (peso/peso).
La proporción de cada uno de los componentes de la mezcla varía, dentro de los rangos predeterminados, en dependencia del medio nutritivo que se desee preparar.
En la mezcla nutritiva de la invención, la mezcla de fracciones proteicas ricas en triptófano contiene dicho aminoácido en cantidades que oscilan entre 0,25 a 3,8 % de dicha mezcla (peso/peso);
Asimismo, dicha mezcla nutritiva contiene sales orgánicas y/o inorgánicas las cuales son seleccionadas entre NaCl, K2HPO4, KH2PO , (NH4) SO , Na2CO3 y piruvato de sodio y sus mezclas, seleccionándose en realizaciones preferidas de la invención NaCl y
Na2CO3. Dicha mezcla contiene las siguientes cantidades (peso/peso) de sales orgánicas y/o inorgánicas con respecto a la mezcla total:
- NaCl entre 7 y 18 %; - K2HPO4 entre 6 y 11 %;
- KH2PO entre 2 y 5 %;
- (NH4)2SO4 entre l y 4 %;
- Na2CO3 entre 0, 1 y 0,4 %; y
- piruvato de sodio entre 0,7 y 3 %. La mezcla nutritiva de la invención también comprende una mezcla de sustancias que proporcionan la aparición de color o fluorescencia entre las que se encuentran X-GAL, MUG, sorbitol y rojo neutro, seleccionándose entre éstas preferiblemente X-GAL y MUG. Estas sustancias se encuentran en las siguientes cantidades (peso/peso) con respecto a la mezcla total: - X-GAL entre 0, 16 y 0,36 %;
- MUG entre 0,16 y 0,18 %; sorbitol entre 15 y 36,5 %; y
- rojo neutro entre 0,09 y 0,11 %. Por otra parte, la mezcla nutritiva de la invención incluye sustancias inhibidoras del crecimiento de los organismos Gram-positivos, las cuales pueden ser el desoxicolato de sodio o las sales biliares.
Finalmente la mezcla nutritiva de la invención contiene una mezcla sustancias que le dan la estructura sólida al medio de cultivo donde crecen los microorganismos a analizar, la cual puede estar constituida por las siguientes combinaciones de sustancias y en las siguientes cantidades (peso/peso) con respecto a la mezcla total:
- agarosa y agaropectina en cantidades entre 19 y 48 % en combinación con nitrato de celulosa en cantidades entre 0,1 y 0,4 %; ó - celulosa y hemicelulosa de 1,4 a 3 % en combinación con nitrato de celulosa de 0,1 a
0,4 %; ó
- agarosa y agaropectina solamente en cantidades entre 19 y 48 %.
La mezcla nutritiva de la invención una vez preparada presenta un pH entre 6,6 y 7,2. Otro aspecto de la invención es que la misma proporciona un procedimiento para la identificación y el recuento temprano de dichos organismos Gram-negativos, el cual se basa en la aparición de 5 colores diferentes, de emisiones fluorescentes de 3 colores y de halos de 3 colores en las colonias, el cambio del color del medio y la aparición de una zona de precipitado alrededor de dichas colonias, así como las combinaciones de las características anteriormente mencionadas. Mediante el procedimiento de la invención la mezcla nutritiva que se describe, una vez solidificada y contactada con los organismos o las muestras que los contienen, es incubada por un período de 12 a 22 horas y a temperatura de 30 a 45 °C, a partir del cual es posible la identificación de los microorganismos a simple vista, mientras que para la detección de la fluorescencia en necesario emplear luz ultravioleta de 360 a 366 nm. La identificación de los diferentes microorganismos Gram-negativos, empleando la mezcla y el procedimiento de la invención es como sigue:
Shigella sonnei - Se identifica por la aparición de colonias de color verde azul, fluorescencia azul y medio naranja;
Shigella flexneri - Se identifica por la aparición de colonias de color rosa pálido, halo amarilloso y medio naranja;
Enterobacter (E. aerogenes, E. cloacae, E. agglomerans) — Se identifica por la aparición de colonias de color rosa a rojo con centro verde grisáceo, fluorescencia amarilla y medio de color rojo; Escherichia coli, excepto O157:H7 - Se identifica por la aparición de colonias de color violeta claro, fluorescencia azul y medio de color rojo;
Escherichia coli O157:H7 - Se identifica por la aparición de colonias de color verde azul y medio naranja; Citribacter freundii - Se identifica por la aparición de colonias de color violeta oscuro con halo azul y medio de color rojo;
Klebsiella pneumoniae - Se identifica por la aparición de colonias de color violeta claro y medio de color rojo;
Salmonella typhi - Se identifica por la aparición de colonias de color rojo y medio de color rojo con zona de precipitado opaco;
Salmonella "no typhi" - Se identifica por la aparición de colonias de color rojo y medio de color rojo, con aparición, después de 24 horas de incubación, de color del centro y fluorescencia amarillos;
Pseudomonas aeruginosa — Se identifica por la aparición de colonias de color rosa pálido, fluorescencia verdosa antes de 24 horas de incubación y medio naranja; colonias de color pardo verdoso, fluorescencia verdosa y halo de color verdoso después de 24 horas de incubación;
Proteus, Providencia, Alcaligenes y otros Gram-negativos - Se identifican por la aparición de colonias incoloras o transparentes y medio naranja. En una realización particular de la presente invención, cuando se emplea la mezcla de sustancias que proporcionan la aparición de color o fluorescencia compuesta sólo por X- GAL y MUG, la identificación de coliformes totales se realiza por el color azul verdoso de las colonias y específicamente de E. coli además por la fluorescencia azul. Para la conformación de la mezcla nutritiva de la invención se realizan las operaciones siguientes:
Las sustancias que aportan las fracciones proteicas ricas en triptófano y/o triptófano libre en cantidad de 22 a 46 %, se pesan en un frasco cónico (éste debe tener el volumen 2 veces mayor que la cantidad de la mezcla nutritiva a preparar), teniendo en cuenta que la mezcla nutritiva debe contener entre 0,25 y 3,8 % de este aminoácido respecto a su peso seco. Seguidamente se pesa el conjunto de sales orgánicas e inorgánicas y se añade a la mezcla anterior, en cantidad de 15 a 20 % con respecto al peso seco de la mezcla nutritiva. Dichas sales orgánicas o inorgánicas son seleccionadas en las siguientes cantidades relativas a la mezcla nutritiva total: NaCl de 7 a 18 %, K2HPO4 de 6 a 11 %, KH2PO4 de 2 a 5 %, (NH4)2SO4 de 1 a 4 %, Na2CO3 de 0,1 a 0,4 % y Piruvato de sodio de 0,7 a 3 %. Luego se pesan y se adicionan los inhibidores de los organismos Gram-positivos en cantidad de 2 a 4,5 %, entre los que se emplean el desoxicolato de sodio y las sales biliares.
Separadamente, en la balanza analítica, se pesa la premezcla de las sustancias que proporcionan la aparición de color o fluorescencia, en cantidad de 0,3 a 37 %. La premezcla de estas sustancias puede contener sorbitol en cantidades de 15 a 36,5 %, MUG de 0,16 a 0,18 %, X-GAL de 0,16 a 0,36 % y rojo neutro de 0,09 a 0,11 %, con respecto al peso seco de la mezcla nutritiva.
Todos los componentes antes mencionados se unen con agua destilada o desionizada y se mezclan bien para lograr una solución homogénea con la concentración de solutos de 3,5 a 6,5 % y el pH de 6,6 a 7,2. Finalmente la solución preparada se une con la mezcla de agarosa y agaropectina y/o se vierte sobre estructuras de las mezclas de derivados de celulosa y hemicelulosa.
Si a la solución preparada se le adiciona la mezcla primera, la suspensión se agita y se deja remojar por al menos 15 min. Luego se calienta hasta ebullición, se enfría hasta aproximadamente 45°C y se distribuye en los envases finales del ensayo, dejándolos en reposo a temperatura ambiente durante 20- 30 minutos. Si ocurre acumulación de humedad, antes de proceder a la inoculación se debe secar los envases en condiciones asépticas.
En caso de utilizar la mezcla de celulosa y hemicelulosa, primeramente esta se esteriliza (con vapor húmedo a 121 °C por 15 minutos o con óxido de etileno o mediante irradiación), posteriormente se coloca en los envases finales de ensayo y se le adiciona la solución anteriormente preparada en cantidad de 2 a 4 mL por cada envase. En ambos casos pueden ser colocadas otras capas formadas por nitrato de celulosa y/o otros derivados de la celulosa, tales como el acetato de celulosa, tanto durante, como después de realización de la siembra, para proporcionar a los organismos a detectar el efecto de concentración sobre una estructura sólida para el desarrollo de sus colonias, o para revelar una reacción específica. Las muestras de interés pueden ser inoculadas por diferentes métodos de estría o de diluciones, e incubadas a temperatura de 33 a 45 °C, por al menos 6 horas para la detección de E. coli, preferiblemente entre 12 horas y 22 horas, y entre 18 y 22 horas para la diferenciación de otros microorganismos Gram-negativos. La lectura de los resultados se realiza observando el color de la colonia aislada, el color del medio de cultivo y la presencia de un precipitado opaco o halo alrededor de dicha colonia, la presencia y color de emisiones fluorescentes y puede emplearse además la morfología colonial.
Las colonias aisladas de diferentes bacterias Gram-negativas se observan del siguiente modo
(tabla 1):
Tabla 1. Características de las colonias y del medio.
Figure imgf000013_0001
( ) Características que aparecen después de 24 horas de incubación 0
Las diferentes cepas de bacterias Gram-negativas desarrollan las colonias de tamaño hasta 5 mm, según el tiempo de incubación.
EJEMPLOS DE REALIZACIÓN 5 Ejemplo No. 1
La composición de la mezcla nutritiva para la diferenciación de diferentes cepas de bacterias Gram-negativas (tabla 2) resultó ser: Tabla 2: Composición de la mezcla.
Figure imgf000014_0001
pH 7,0 ± 0,2 48 g de esta mezcla se suspendieron en 1 L de agua destilada o desionizada.
El ensayo se realizó comprobando el comportamiento de diferentes cepas de enterobacterias respecto a las pruebas bioquímicas predeterminadas.
Los resultados obtenidos (tabla 3) fueron los siguientes:
Tabla 3. Resultado del crecimiento en la mezcla.
Figure imgf000014_0002
Después de incubar 24 horas a 35 + 2°C, se le colocó en las tapas de los envases utilizados, una capa delgada de celulosa impregnada con el reactivo de Kovacs. En los contenedores con los microorganismos productores de indol a partir del triptófano (E. coli, P. vulgaris y Aeromonas hydrophila) el color de la capa de celulosa se tornó rosada en un intervalo de 30 minutos.
Ejemplo No. 2
Se preparó la mezcla nutritiva similar a lo descrito en el Ejemplo 1, pero el contenido de los componentes del conjunto de fracciones proteicas ricas en triptófano fue el siguiente (tabla 4): Tabla 4. Composición de la mezcla descrita en el ejemplo 2.
Figure imgf000015_0001
La siembra de diferentes organismos de colección ATCC se realizó mediante el método de agotamiento del inoculo por estriado.
La lectura de los resultados se realizó a las 6, 11, 19 y 24 horas de incubación y los mismos se muestran a continuación (tablas 5, 6, 7 y 8 respectivamente): Tabla 5. Crecimiento a las 6 horas de incubación.
Figure imgf000015_0002
Tabla 6. Crecimiento a las 11 horas de incubación.
Figure imgf000016_0001
Tabla 7. Crecimiento a las 19 horas de incubación.
Figure imgf000016_0002
Tabla 8, Crecimiento a las 24 horas de incubación.
Figure imgf000016_0003
Un hecho que llamó atención fue que se observó la formación del precipitado opaco alrededor de las colonias de S. typhi, lo que brinda una característica adicional para la diferenciación de la misma de otras cepas de Salmonella.
La misma mezcla nutritiva (identificada en lo adelante como exp) se inoculó con las diluciones 10" a partir de las suspensiones (estandarizadas a 50 % de transmitancia) de cepas de los microorganismos seleccionados.
Los microorganismos se ensayaron en paralelo en el Caldo ΕC con MUG adicionándole el agar (13g/L) y X-GAL (0,1 g/L), siendo esta la mezcla de referencia (C). La lectura de los resultados de la siembra se realizó con 6, 12, 19, 24 y 40 horas de incubación (tablas 9, 10, 11, 12 y 13 respectivamente). Los resultados obtenidos se muestran a continuación. Tabla 9. Crecimiento a las 6 horas de incubación.
Figure imgf000017_0001
Tabla 10. Crecimiento a las 12 horas de incubación.
Figure imgf000017_0002
exp. : experimental
C: control
Tabla 11. Crecimiento a las 19 horas de incubación.
Figure imgf000017_0003
Figure imgf000018_0001
c. : centro exp. : experimental
C: control
Sorprendentemente, a diferencia de otros organismos coliformes, E. aerogenes y E. cloacae presentan una coloración diferenciada en el centro y en los bordes de las colonias.
A las 24 horas de incubación.
Εl número de colonias no ha cambiado el color azul en los centros de las colonias se ve más intenso. Εn algunas colonias de Salmonella no typhi, se observan centros y fluorescencia amarillas.
A las 40 horas de incubación. Desaparece el color rojo y predomina el color azul en coliformes y amarillo en Salmonella.
Ejemplo No. 3
Se realizó el estudio de la influencia de diferentes activadores del crecimiento de organismos coliformes, de diferentes inhibidores y diferentes combinaciones de las fracciones proteicas ricas en triptófano mediante las curvas de crecimiento de dos cepas: Escherichia coli ATCC 10536 Streptococcus faecalis ATCC 29212
En paralelo se inoculó el Caldo EC con MUG (Difco).
Las variantes experimentales (MN) de las variables fueron las siguientes (tabla 12): Tabla 12. Composición de las variantes de las mezclas descritas en el ejemplo 3.
Figure imgf000018_0002
Figure imgf000019_0001
Los resultados obtenidos se muestran en las Figuras 1 y 2.
Como se observa en la Figura 1, sólo la mezcla nutritiva MN3, promueve en menor medida el crecimiento de E. coli, mientras que la variante MN2 a las 3 horas, promueve al máximo su crecimiento. A las 6 horas, prácticamente no hay diferencias en la promoción del crecimiento, a excepción de la mezcla MN3.
En la Figura 2 se observa que en todas las mezclas propuestas en la presente invención Streptococcus faecalis se encuentra inhibido en comparación con el diagnosticador de referencia. Ejemplo No. 4
En este ensayo se utilizó la siguiente formulación de la mezcla (tabla 13): Tabla 13. Mezcla correspondiente al ejemplo 4.
Figure imgf000019_0002
pH 7,0 ± 0,2 El método de siembra utilizado fue de inundación de superficie.
Condiciones de incubación: 24 horas a 35 °C.
Se sembraron diluciones 10~6 de las cepas de los microorganismos coliformes, Escherichia coli ATCC 25922 y Enterobacter aerogenes ATCC 13048, y la dilución 10"1 de
Streptococcus faecalis ATCC 29212. En paralelo se inoculó el medio Caldo EC con MUG (Difco) con adición de agar (13,0 g/L), el cual fue denominado como "control" (C). Los resultados obtenidos fueron los siguientes (tabla 14): Tabla 14. Resultados del crecimiento en las mezclas experimental y control .
Figure imgf000020_0001
exp: mezcla descrita en la presente invención
C: formulación control
No existe diferencia significativa (p < 0,05) entre la variante experimental y el Caldo EC
(Difco) en cuanto al desarrollo de colonias de Escherichia coli ATCC 25922, aunque el tamaño de las colonias en la mezcla nutritiva experimental es ligeramente mayor. La cantidad de colonias de Enterobacter aerogenes ATCC 13048 es mayor en la variante experimental, no obstante no existe diferencia significativa entre ambas (p = 0,06).
De manera inesperada, E. aerogenes pudo ser identificado por su coloración diferenciada en el centro y en los bordes de la colonia y por su fluorescencia amarilla.
Por otra parte Streptococcus faecalis ATCC 29212 fue inhibido completamente en todas las variantes estudiadas (el microorganismo se incubó hasta 72 horas).
Seguidamente se sembraron 10 mL de la muestra de agua potable estancada en las mismas variantes (tabla 15).
Tabla 15. Detección de crecimiento en muestra de agua potable.
Figure imgf000020_0002
exp: mezcla descrita en la presente invención C: formulación control c: centro Se realizó el recuento solamente de las colonias con las características presuntivas de coliformes. Las pruebas bioquímicas realizadas (mostradas a continuación) confirmaron que las colonias aisladas pertenecían al género Enterobacter.
Prueba Resultado
Utilización del citrato +
Descarboxilación de la lisina +
Descarboxilación de la ornitina +
Descarboxilación de la arginina -
Agar Hierro Kligler A/A Gas + H2S-
Ureasa -
Movilidad +
Producción de indol -
Rojo de metilo -
Vodes-Proskauer + Existe diferencia significativa (p < 0,05) a favor de la variante experimental de la mezcla nutritiva y el Caldo EC con MUG (Difco) con adición de agar (13g/L) y X-GAL (1,0 g/L). Ejemplo No. 5
Se preparó la misma mezcla nutritiva que en el Ejemplo No. 4, pero la cantidad total de las fracciones proteicas ricas en triptófano se disminuyó hasta: 40,4; 37,7 y 34,8 %, peso seco (VI , V2 y V3, respectivamente).
Se prepararon tres variantes con la mezcla con agarosa y agaropectina y las mismas sin la mezcla. En las primeras tres se sembró la dilución 10"6 de dos microorganismos: Escherichia coli ATCC 25922 y Salmonella typhimurium ATCC 14028 por el método de inundación de superficie. Los resultados obtenidos se muestran en la tabla 16.
Tabla 16. Crecimiento de diferentes organismos en la mezcla experimental.
Figure imgf000021_0001
No existe diferencia significativa (p < 0,05) entre las variantes en cuanto al desarrollo de colonias de Escherichia coli ATCC 25922, Enterobacter aerogenes ATCC 13048 y Salmonella typhimurium ATCC 14028.
Paralelamente las tres variantes sin la mezcla de agarosa y agaropectina, se utilizaron para las curvas de crecimiento de los microorganismos Gram-negativos (control positivo) y Gram-positivos (control negativo). Como mezcla control, se inoculó el Caldo EC con MUG de la firma Difco.
Sorprendentemente se observó que con 6 horas de incubación, el crecimiento (absorbancia) de las cepas Escherichia coli ATCC 25922, Enterobacter aerogenes ATCC 13048 y Salmonella typhimurium ATCC 14028 en las tres variantes experimentales es significativamente mayor (p < 0,05) que en el medio de referencia utilizado (Caldo EC con MUG), mientras que la inhibición de la cepa de Streptococcus faecalis ATCC 29212 (control negativo) es significativamente mayor en las mismas variantes correspondientes a la presente invención (Figuras 3-6 presentadas en los anexos). Ejemplo No. 6
Se preparó la mezcla con los ingredientes de la variante 2 del ejemplo No. 5, con la diferencia de que las concentraciones de rojo neutro y de MUG se elevaron a la doble y la mezcla de agarosa y agaropectina se sustituyo por la mezcla de celulosa y hemicelulosa, en forma de disco absorbente, que le proporcionan a los organismos a detectar una estructura sólida para el desarrollo de sus colonias (exp). Todos los ingredientes mencionados conforman la primera capa de la mezcla nutritiva.
Se inoculó por el método de filtración 1 mL de las diluciones 10"6 de los microorganismos representantes de varios géneros de enterobacterias, la dilución 10"5 de la cepa Klebsiella pneumoniae ATCC 13883 y la dilución 10"1 de la cepa Staphylococcus aureus ATCC 25923 (control negativo). Para filtrar se empleó un soporte de nitrato de celulosa el cual se colocó como otra capa de la mezcla nutritiva.
En paralelo se inoculó el Agar Violeta Rojo Bilis por el método de inundación de superficie (c). Los resultados de la lectura con 18 h de incubación se muestran a continuación en la tabla 18.
El tratamiento estadístico arrojó que no existe diferencia significativa (p<0.05) en cuanto a recuperación de las cepas Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, Citrobacter freundii, Shigella sonnei y Enterobacter aerogenes en la mezcla nutritiva experimental y Agar Violeta Rojo Bilis. Mientras que existe diferencia significativa (p<0.05) en cuanto a recuperación de las cepas Escherichia coli O157:H7 y
Shigella flexneri a favor la primera. Staphylococcus aureus fue inhibido completamente
(incubación hasta 48 h) en la dilución baja (10"1).
Posteriormente, se realizó un estudio comparativo de recuperación de diferentes bacterias
Gram-negativas en la misma composición de la mezcla nutritiva y en paralelo en el m-
Caldo Endo (Difco). Ambos se inocularon por el método de filtración, obteniendo los resultados descritos en la tabla 17.
Tabla 17. Crecimiento de diferentes cepas en la mezcla descrita en el ejemplo 6.
Figure imgf000023_0001
exp: mezcla descrita en la nvención C: medio control c: centro Tabla 18. Crecimiento de E. coli y E. coli O157:H7.
Figure imgf000024_0001
exp: mezcla descrita en la invención C: medio control c: centro
La diferenciación de diferentes representantes del grupo de coliformes es evidente en la mezcla nutritiva, sin embargo, en el m-Caldo Endo las colonias de Enterobacter aerogenes tienden a confundirse con algunas colonias de E. coli con menor brillo. Inesperadamente se detectó la formación de un halo azul alrededor de las colonias de Citrobacter freundii en esta composición de la mezcla nutritiva.
Los resultados obtenidos arrojaron que existen diferencias significativas (p< 0,05) en la recuperación de las cepas E. coli ATCC 25922, K pneumoniae ATCC 13883, y S. typhimurim ATCC 14028 a favor de la mezcla, mientras que para los microorganismos restantes no existe diferencia significativa. Estos resultados se pueden apreciar en la Fig. 7 que se muestra en los anexos. Ejemplo No. 7
Se inocularon en paralelo la mezcla nutritiva con la misma composición de la variante V2 del Ejemplo No. 5 y el Agar S.S.
El objetivo de este ensayo fue comparar la especificidad de la mezcla nutritiva sujeto de la presente invención y el Agar S.S para la detección de Salmonella a partir de una mezcla de microorganismos.
El inoculo se preparó de siguiente modo:
Disolviendo 1 colonia en 10 mL de solución salina estéril se prepararon las suspensiones primarias de Salmonella typhimurium ATCC 14028, Citrobacter freundii ATCC 8090, Serratia marcescens ATCC 8100, Enterobacter cloacae ATCC 23355, Pseudomonas aeruginosa ATCC 27835.
A cada suspensión se le realizaron diluciones decimales hasta 10"4. Luego a un tubo con 9 mL de solución salina estéril se añadió 1 mL de la dilución 10"4 de cada microorganismo y se mezcló con ayuda de un agitador Vortex. Un mL de esta mezcla se inoculó en 10 mL de Caldo Selenito y se incubó durante 24 horas a 43°C.
Una asada del Caldo Selenito se sembró en las placas de Petri con la mezcla nutritiva según la invención y Agar S.S y se incubaron a 43°C.
La lectura de los resultados se realizó con 24 horas de incubación. En los contenedores con la mezcla nutritiva se observaron tres tipos de colonias:
1. Colonias azules con el halo azul (Citrobacter freundii, presuntamente)
2. Colonias rojas con el centro amarillo (Salmonella, presuntamente)
3. Colonias medianas transparentes con el centro rosado y fluorescencia verdosa (Pseudomonas aeruginosa, presuntamente). En el Agar S.S se observaron 4 tipos de colonias:
1. Colonias blancas grandes con el centro negro (Salmonella o Citrobacter)
2. Colonias transparentes medianas con el centro negro (Salmonella o Citrobacter)
3. Colonias grandes rosadas (Coliformes)
4. Colonias pequeñas rosadas (Coliformes). Las pruebas bioquímicas arrojaron los resultados siguientes (tabla 19): Tabla 19. Pruebas bioquímicas de confirmación.
Figure imgf000026_0001
Los resultados de la identificación presuntiva en la mezcla nutritiva objeto de la invención se habían confirmado utilizando la prueba serológica con antisuero polivalente para Salmonella.
En el Agar S.S se confirmaron como Salmonella solamente las colonias medianas transparentes (son lisina descarboxilasa +). Ejemplo 8.
La mezcla nutritiva se preparó según la composición descrita en la tabla 20. Tabla 20. Composición de la mezcla correspondiente al ejemplo 8.
Figure imgf000026_0002
Se evaluó la funcionalidad de la mezcla nutritiva en el diagnóstico de E. coli y coliformes en muestras de orina (donde la infección por E. coli y coliformes constituyen cerca del 90 % de las sepsis urinarias). Posteriormente se realizó la confirmación por pruebas bioquímicas de los patógenos causantes de sepsis urinaria.
A continuación se expone una tabla resumen (tabla 21) con los valores de las incidencias de los patógenos identificados. Tabla 21. Incidencia de los patógenos identificados por pruebas bioquímicas
Figure imgf000027_0001
experimental. Durante la evaluación no se encontraron falsos negativos después de la identificación por lo que la especificidad diagnóstica resultó ser del 100 %. Se observó fluorescencia en una cepa de Klebsiella considerándose esta como un falso positivo por lo que la sensibilidad diagnóstica resultó ser del 98,04 %.
Breve Descripción de las Figuras:
Figura 1: Resultados del crecimiento de E. coli ATCC 10536. Se observa que sólo la mezcla nutritiva MN3, promueve en menor medida el crecimiento de E. coli, mientras que la variante MN2 a las 3 horas, promueve al máximo su crecimiento. A las 6 horas, prácticamente no hay diferencias en la promoción del crecimiento, a excepción de la mezcla
MN3.
Figura 2: Crecimiento de Streptococcus faecalis ATCC 29212. Se muestra que en todas las composiciones propuestas el Streptococcus faecalis se encuentra inhibido en comparación con el diagnosticador de referencia.
Figura 3: Crecimiento de Escherichia coli ATCC 25922 en las composiciones VI, V2 y
V3, y en el medio de referencia.
Figura 4: Crecimiento de Enterobacter aerogenes ATCC 13048 en las composiciones VI,
V2 y V3 y en el medio de referencia Figura 5: Crecimiento de Salmonella typhimurium ATCC 14029 en las composiciones VI,
V2 y V3 y en el medio de referencia.
Figura 6: Crecimiento de Streptococcus faecalis ATCC 29212 en las composiciones VI,
V2 y V3 y en el medio de referencia Figura 7: Comportamiento de diferentes microorganismos en la mezcla experimental (FCE) y en la composición de referencia.

Claims

REIVINDICACIONES
1. Una mezcla nutritiva para la identificación y recuento temprano de organismos Gram-negativos caracterizada porque contiene: - una mezcla de fracciones proteicas ricas en triptófano o triptófano libre, la cual se encuentra en cantidades entre el 22 y el 46 % de la mezcla total (peso/peso);
- una mezcla de sales orgánicas y/o inorgánicas seleccionadas que se encuentra en cantidades entre el 15 y el 20 % de la mezcla total (peso/peso);
- una mezcla de sustancias que proporcionan la aparición de color y fluorescencia, la que se encuentra en cantidades entre el 0,3 y el 37 % de la mezcla total (peso/peso);
- sustancias inhibidoras del crecimiento de los organismos Gram-positivos, las que se encuentran en cantidades entre el 2 y el 4,5 % de la mezcla total (peso/peso); y
- una mezcla para dar la estructura sólida al medio, que comprende cantidades entre el 20 y el 50 % de la mezcla total (peso/peso).
2. Una mezcla nutritiva según la reivindicación 1, caracterizada porque la mezcla de fracciones proteicas ricas en triptófano contiene dicho aminoácido en cantidades entre el 0,25 y el 3,8 % de dicha mezcla (peso/peso).
3. Una mezcla nutritiva según la reivindicación 1, caracterizada porque la mezcla de sales orgánicas y/o inorgánicas contiene sales seleccionadas entre NaCl, K2HPO4, KH2PO4, (NH4)2SO , Na2CO3 y piruvato de sodio y sus mezclas, seleccionándose preferiblemente NaCl y Na2CO3.
4. Una mezcla nutritiva según la reivindicación 3, caracterizada porque la mezcla de sales orgánicas y/o inorgánicas contiene las siguientes cantidades (peso/peso) con respecto a la mezcla total: - NaCl entre el 7 y el 18 %;
- K2HPO4 entre el 6 y el 11 %;
- KH2PO4 entre el 2 y el 5 %;
- (NH4)2SO4 entre el 1 y el 4 %;
- Na2CO3 entre el 0, 1 y el 0,4 %; y - piruvato de sodio entre el 0,7 y el 3 %.
5. Una mezcla nutritiva según la reivindicación 1, caracterizada porque la mezcla de sustancias que proporcionan la aparición de color o fluorescencia está constituida por sustancias seleccionadas entre X-GAL, MUG, sorbitol y rojo neutro, seleccionándose entre éstas preferiblemente X-GAL y MUG.
6. Una mezcla nutritiva según la reivindicación 5, caracterizada porque las sustancias que proporcionan la aparición de color o fluorescencia se encuentran en las siguientes cantidades (peso/peso) con respecto a la mezcla total:
- X-GAL entre el 0, 16 y el 0,36 %;
- MUG entre el 0,16 y el 0,18 %; sorbitol entre el 15 y el 36,5 %; y
- rojo neutro entre el 0,09 y el 0,11 %.
7. Una mezcla nutritiva, según la reivindicación 1, caracterizada porque las sustancias inhibidoras del crecimiento de los organismos Gram-positivos pueden ser el desoxicolato de sodio o las sales biliares.
8. Una mezcla nutritiva, según la reivindicación 1, caracterizada porque la mezcla sustancias que dan la estructura sólida al medio de cultivo comprende las siguientes combinaciones y cantidades (peso/peso) con respecto a la mezcla total:
- agarosa y agaropectina en cantidades entre el 19 y el 48 % con nitrato de celulosa en cantidades entre el 0,1 y el 0,4 %; ó
- celulosa y hemicelulosa en cantidades entre el 1,4 y el 3 % con nitrato de celulosa en cantidades entre el 0,1 y el 0,4 %; ó - agarosa y agaropectina solamente, en cantidades entre el 19 y el 48 %.
9. Una mezcla nutritiva según las reivindicaciones de la 1 a la 8, caracterizada por presentar un pH entre 6,6 y 7,2.
10. Un procedimiento para la identificación y recuento temprano de organismos Gram- negativos, caracterizado porque la mezcla nutritiva de cualquiera de las reivindicaciones de la 1 a la 9 una vez solidificada y contactada con los organismos o las muestras que los contienen, es incubada por un período de 12 a 22 horas y a temperatura de 30 a 45 °C, a partir del cual es posible la identificación de los microorganismos a simple vista, mientras que para la detección de la fluorescencia en necesario emplear luz ultravioleta de 360 a 366 nm.
11. Un procedimiento según la reivindicación 10 caracterizado porque la identificación de los microorganismos es posible por la aparición de cinco colores diferentes en las colonias, por emisiones fluorescentes de tres colores, por aparición halos de tres colores, por el cambio de coloración del medio, y por la aparición de una zona de precipitado alrededor de las colonias, así como combinaciones de estas características.
12. Un procedimiento según la reivindicación 11, caracterizado porque la identificación de los organismos a detectar es como sigue: Shigella sonnei - Aparición de colonias de color verde azul, fluorescencia azul y medio naranja;
Shigella flexneri - Aparición de colonias de color rosa pálido, halo amarilloso y medio naranja;
Enterobacter (E. aerogenes, E. cloacae, E. agglomerans) - Aparición de colonias de color rosa a rojo con centro verde grisáceo, fluorescencia amarilla y medio de color rojo;
Escherichia coli, excepto O157:H7 - Aparición de colonias de color violeta claro, fluorescencia azul y medio de color rojo;
Escherichia coli O157:H7 - Aparición de colonias de color verde azul y medio naranja;
Citribacter freundii - Aparición de colonias de color violeta oscuro con halo azul y medio de color rojo;
Klebsiella pneumoniae - Aparición de colonias de color violeta claro y medio de color rojo; Salmonella typhi - Aparición de colonias de color rojo y medio de color rojo con zona de precipitado opaco;
Salmonella "no typhi" - Aparición de colonias de color rojo y medio de color rojo, con aparición, después de 24 horas de incubación, de color del centro y fluorescencia amarillos; Pseudomonas aeruginosa - Aparición de colonias de color rosa pálido, fluorescencia verdosa antes de 24 horas de incubación y medio naranja; colonias de color pardo verdoso, fluorescencia verdosa y halo de color verdoso después de 24 horas de incubación; y
Proteus, Providencia, Alcaligenes y otros Gram-negativos - Aparición de colonias incoloras o transparentes y medio naranja.
13. Procedimiento según la reivindicación 10, caracterizado porque al emplear la mezcla de sustancias que proporcionan la aparición de color o fluorescencia compuesta sólo por X-GAL y MUG, la identificación de coliformes totales se realiza por el color azul verdoso de las colonias y específicamente de E. coli además por la fluorescencia azul
PCT/CU2001/000004 2000-06-29 2001-06-29 Mezcla nutritiva y procedimiento para la identificación y recuento temprano de organismos gram-negativos WO2002000921A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60130459T DE60130459D1 (de) 2000-06-29 2001-06-29 Nährmixtur und verfahren zur frühindentifizierung und zählung von gramnegativen organismen
BRPI0112005-0B8A BR0112005B8 (pt) 2000-06-29 2001-06-29 Composição e processo para a identificação e contagem precoce de organismos gram-negativos.
EP01947123A EP1300471B1 (en) 2000-06-29 2001-06-29 Nutritional mixture and method for early identification and count of gram-negative organisms
JP2002506235A JP2004501654A (ja) 2000-06-29 2001-06-29 グラム陰性菌の同定および初期菌数計算に用いる栄養混合物と手順
CA002414485A CA2414485A1 (en) 2000-06-29 2001-06-29 Nutritional mixture and method for early identification and count of gram-negative organisms
MXPA02012189A MXPA02012189A (es) 2000-06-29 2001-06-29 Mezcla nutritiva y procesamiento para la identificacion y recuento temprano de organismos gram-negativos.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU160/2000 2000-06-29
CU20000160A CU22789A1 (es) 2000-06-29 2000-06-29 Mezcla nutritiva y procedimiento para la identificación y recuento temprano de organismos gram-negativos

Publications (1)

Publication Number Publication Date
WO2002000921A1 true WO2002000921A1 (es) 2002-01-03

Family

ID=5459598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2001/000004 WO2002000921A1 (es) 2000-06-29 2001-06-29 Mezcla nutritiva y procedimiento para la identificación y recuento temprano de organismos gram-negativos

Country Status (16)

Country Link
US (1) US20030170773A1 (es)
EP (1) EP1300471B1 (es)
JP (1) JP2004501654A (es)
AR (1) AR031708A1 (es)
AT (1) ATE373103T1 (es)
BR (1) BR0112005B8 (es)
CA (1) CA2414485A1 (es)
CU (1) CU22789A1 (es)
DE (1) DE60130459D1 (es)
EG (1) EG23045A (es)
ES (1) ES2294004T3 (es)
GT (1) GT200100107A (es)
MX (1) MXPA02012189A (es)
PT (1) PT1300471E (es)
RU (1) RU2275429C2 (es)
WO (1) WO2002000921A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386946A (en) * 2002-03-27 2003-10-01 Danisco Detecting microorganisms
US9593361B2 (en) 2011-05-20 2017-03-14 3M Innovative Properties Company Salmonella detection articles and methods of use
CN108866150A (zh) * 2018-08-22 2018-11-23 广东省生物工程研究所(广州甘蔗糖业研究所) 一种鲍曼不动杆菌的检测方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2881755B1 (fr) * 2005-02-10 2012-11-30 Biomerieux Sa Milieux pour la detection specifique de micro-organismes resistants
CN101252942B (zh) * 2005-08-29 2010-12-22 赛普斯治疗有限责任公司 用于治疗或预防由革兰氏阳性细菌引起的病症的方法
FR2912423B1 (fr) * 2007-02-08 2009-03-20 Biomerieux Sa Milieu de detection et/ou d'identification de bacteries
US9677111B2 (en) 2011-12-28 2017-06-13 3M Innovative Properties Company Method of detecting a Salmonella microorganism
RU2508399C1 (ru) * 2012-07-17 2014-02-27 Федеральное бюджетное учреждение науки Государственный научный центр прикладной микробиологии и биотехнологии (ФБУН ГНЦ ПМБ) СУХАЯ ДИФФЕРЕНЦИАЛЬНО-ДИАГНОСТИЧЕСКАЯ ПИТАТЕЛЬНАЯ СРЕДА ДЛЯ ОБНАРУЖЕНИЯ И УЧЕТА E.coli И КОЛИФОРМНЫХ БАКТЕРИЙ
RU2508400C1 (ru) * 2012-07-17 2014-02-27 Федеральное бюджетное учреждение науки Государственный научный центр прикладной микробиологии и биотехнологии (ФБУН ГНЦ ПМБ) СУХАЯ ХРОМОГЕННАЯ ПИТАТЕЛЬНАЯ СРЕДА ДЛЯ ОБНАРУЖЕНИЯ КОЛИФОРМНЫХ БАКТЕРИЙ И E.coli (ВАРИАНТЫ)
RU2534342C2 (ru) * 2013-03-12 2014-11-27 Государственное бюджетное образовательное учреждение высшего профессионального образования "Дагестанская государственная медицинская академия" Министерства здравоохранения Российской Федерации Хромогенная питательная среда для одноэтапного выделения и идентификации возбудителей уроинфекций
CN110564808A (zh) * 2019-08-08 2019-12-13 河北省食品检验研究院(国家果类及农副加工产品质量监督检验中心、河北省食品安全实验室) 针对发酵乳中葡糖醋杆菌、醋化醋杆菌和葡萄糖杆菌的选择性显色培养方法及其专用培养基

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194374A (en) * 1989-04-27 1993-03-16 Eurec Isolating medium for identifying the salmonella bacterium
ES2079319A1 (es) * 1994-05-16 1996-01-01 Aguayo Jose Maria Garcia Medio de cultivo bacteriologico y procedimiento para su preparacion.
WO1996030543A1 (en) * 1995-03-24 1996-10-03 Orion-Yhtymä Oy Method and culture medium for identification of salmonellae

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146840A (en) * 1994-04-29 2000-11-14 The Regents Of The University Of California Simultaneous enumeration of E. coli and total coliforms
US5464755A (en) * 1994-04-29 1995-11-07 Biolog, Inc. Microbiological medium and method of assay
US5510243A (en) * 1994-06-21 1996-04-23 Gelman Sciences, Inc. Multiple chromogen enzyme targeting (MCET) for use in bacterial contamination monitoring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194374A (en) * 1989-04-27 1993-03-16 Eurec Isolating medium for identifying the salmonella bacterium
ES2079319A1 (es) * 1994-05-16 1996-01-01 Aguayo Jose Maria Garcia Medio de cultivo bacteriologico y procedimiento para su preparacion.
WO1996030543A1 (en) * 1995-03-24 1996-10-03 Orion-Yhtymä Oy Method and culture medium for identification of salmonellae

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE MEDLINE 1990, CHANG G ET AL: "Tryptophan and galactoside (TAG) media: simple and specific ways to enumerate E. coli and total coliforms in water and food", XP002901967 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386946A (en) * 2002-03-27 2003-10-01 Danisco Detecting microorganisms
US9593361B2 (en) 2011-05-20 2017-03-14 3M Innovative Properties Company Salmonella detection articles and methods of use
US10526635B2 (en) 2011-05-20 2020-01-07 3M Innovative Properties Company Salmonella detection articles and methods of use
CN108866150A (zh) * 2018-08-22 2018-11-23 广东省生物工程研究所(广州甘蔗糖业研究所) 一种鲍曼不动杆菌的检测方法
CN108866150B (zh) * 2018-08-22 2022-08-30 广东省生物工程研究所(广州甘蔗糖业研究所) 一种鲍曼不动杆菌的检测方法

Also Published As

Publication number Publication date
EG23045A (en) 2004-01-31
ES2294004T3 (es) 2008-04-01
AR031708A1 (es) 2003-10-01
BR0112005B8 (pt) 2013-11-12
BR0112005A (pt) 2003-05-13
MXPA02012189A (es) 2005-10-05
GT200100107A (es) 2002-05-23
CA2414485A1 (en) 2002-12-27
ATE373103T1 (de) 2007-09-15
PT1300471E (pt) 2007-12-07
BR0112005B1 (pt) 2013-09-03
EP1300471B1 (en) 2007-09-12
DE60130459D1 (de) 2007-10-25
JP2004501654A (ja) 2004-01-22
CU22789A1 (es) 2002-07-24
RU2275429C2 (ru) 2006-04-27
US20030170773A1 (en) 2003-09-11
EP1300471A1 (en) 2003-04-09

Similar Documents

Publication Publication Date Title
Merlino et al. Evaluation of CHROMagar Orientation for differentiation and presumptive identification of gram-negative bacilli and Enterococcus species
US5464755A (en) Microbiological medium and method of assay
ES2294004T3 (es) Mezcla nutritiva y procedimiento para la identificacion y recuento rapidos de organismos gram-negativos.
MXPA02000611A (es) Medio de prueba para identificacion t diferenciacion de enterobacterias.
CN105861623B (zh) 一种用于检测阪崎肠杆菌的显色培养基
Lakshmi et al. Utility of Urichrom II–A Chromogenic Medium for Uropathogens
EP1323832B1 (en) Culture medium and method for identifying gram-negative microorganisms
US9404141B2 (en) Method for detecting the presence or absence of a target microbe in a test sample
RU2264466C2 (ru) Композиция и способ обнаружения и раннего и дифференцированного подсчета грамотрицательных микроорганизмов
CN106086159B (zh) 一种能够同时检测两种粪便污染指示菌的酶底物培养基及其应用
ES2607629T3 (es) Utilización de un activador de beta-glucosidasa para la detección y/o la identificación de C. Difficile
US10233477B2 (en) Culture medium for microorganisms including para-aminobenzoic acid as a selective agent
Alam et al. Biochemical characterization of bacteria responsible for bacterial black pit disease of lime (Citrus aurantifolia) and their control system
ES2250003B2 (es) Medio de cultivo para la deteccion de clostridium perfringens.
JP4409068B2 (ja) 微生物判定用比色液
Hussain Antibiogram patterns of staphylococcus aureus obtained from packaged meat, milk and milk products, fruits and vegetables of various supermarkets in Dhaka city
Chandrashekhara Non Fermenting Gram Negative Bacilli: Isolation, Identification and Antibiotic Susceptibility Pattern in a Teaching Hospital
Chauhan et al. Studies on microbiological quality of sprouts of mung bean (Vigna radiate L.)
Tandon A Bacteriological Study of Isolation of E. coli from Various Sources of Contamination from Food Outlets at Railway Stations of Chandigarh and Nearby Places and Its Sensitivity towards Different Antibiotics
ISLAM of Shigella spp.
Lakshmi V Lakshmi, T Satheeshkumar, G Kulkarni

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA JP MX RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/012189

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2414485

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2003102442

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2001947123

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001947123

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10312348

Country of ref document: US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWG Wipo information: grant in national office

Ref document number: 2001947123

Country of ref document: EP