WO2002000734A1 - Compose dds et son procede de preparation - Google Patents

Compose dds et son procede de preparation Download PDF

Info

Publication number
WO2002000734A1
WO2002000734A1 PCT/JP2001/005498 JP0105498W WO0200734A1 WO 2002000734 A1 WO2002000734 A1 WO 2002000734A1 JP 0105498 W JP0105498 W JP 0105498W WO 0200734 A1 WO0200734 A1 WO 0200734A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyalcohol
amino
group
degree
dextran polyalcohol
Prior art date
Application number
PCT/JP2001/005498
Other languages
English (en)
French (fr)
Inventor
Akihiro Imura
Shigeru Noguchi
Tatsuya Yamaguchi
Tsutomu Yagi
Takefumi Kawabe
Original Assignee
Daiichi Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pharmaceutical Co., Ltd. filed Critical Daiichi Pharmaceutical Co., Ltd.
Priority to CA002412582A priority Critical patent/CA2412582A1/en
Priority to BR0112287-8A priority patent/BR0112287A/pt
Priority to EP01945629A priority patent/EP1298145A4/en
Priority to IL15350501A priority patent/IL153505A0/xx
Priority to AU2001267831A priority patent/AU2001267831A1/en
Priority to MXPA02012791A priority patent/MXPA02012791A/es
Publication of WO2002000734A1 publication Critical patent/WO2002000734A1/ja
Priority to NO20026212A priority patent/NO20026212L/no

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/65Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a drug delivery system compound (hereinafter, referred to as a “DSS compound”) in which a polysaccharide derivative obtained by polyalcoholizing carboxymethyl dextran and a pharmaceutical compound, and a method for producing the same.
  • DSS compound drug delivery system compound
  • Antitumor agents used in the treatment of solid cancers such as lung cancer and gastrointestinal cancer, and blood cancers such as leukemia are systemically administered by intravenous or oral administration routes and then migrate to specific tumor sites It inhibits or suppresses the growth of cancer cells and exerts a therapeutic effect.
  • systemically administered antitumor agents are rapidly taken up from the blood into the liver, reticulum and endothelium, or excreted into urine promptly, resulting in decreased blood levels and Migration may be restricted.
  • the antitumor agent due to the low selectivity of a normal antitumor agent itself to transfer to a tumor site (tumor selectivity), the antitumor agent is widely distributed in various cells and tissues throughout the body, and is not distributed to normal cells and tissues.
  • a polysaccharide derivative is used as a drug carrier, and an antitumor agent is bound to the polysaccharide derivative to delay the disappearance of the antitumor agent in the blood and to a cancer tissue.
  • an antitumor agent is bound to the polysaccharide derivative to delay the disappearance of the antitumor agent in the blood and to a cancer tissue.
  • DDS compounds using a polysaccharide derivative as a drug carrier those using a polysaccharide derivative obtained by polyalcoholizing carboxymethyl dextran as a drug carrier and linking a drug compound residue via a peptide chain to tumor selection It is particularly excellent in potency and is expected to be developed as an antitumor agent.
  • the present inventors have found that in the production of carboxymethyl dextran polyalcohol, the heat generated during the production of dextran polyalcohol causes a reduction in the molecular weight of the high-molecular-weight carrier. Due to the heat generation, the degree of carboxymethylation could not be controlled sufficiently, and the problem was that a high-quality polymer carrier could not be produced.
  • an object of the present invention is to select a molecular weight, a degree of carboxymethylation, and an introduction amount of the above-mentioned drug compound residue in a part of a polymer carrier which is a drug carrier in the above-mentioned DDS compound, and to achieve high levels of safety and
  • An object of the present invention is to provide the above-mentioned DDS compound having a broad and therapeutic effect.
  • Another object of the present invention is to provide a method suitable for industrialization, which enables the above-mentioned specific DDS compound to be produced with high quality and high yield efficiently.
  • the present inventors have made intensive efforts to solve the above-mentioned problems, and have succeeded in selecting a compound having high safety and a wide therapeutic range among the above-mentioned DDS compounds. More specifically, by optimizing the molecular weight, carboxymethylation degree, and the amount of the above-described drug compound residue of a portion of the polymer carrier that is a drug carrier, a compound satisfying specific conditions is highly safe and widely used. It has been found that it has a medicinal range.
  • the target DDS compound can be kept constant by selecting a means for controlling the reaction temperature, a means for monitoring the progress of the reaction, and a reaction reagent. We have found that it can be manufactured with high quality and efficiency. The present invention has been completed based on these findings.
  • the present invention relates to (1S, 9S) -1_amino-9-ethyl-5-fluoro-2,3-dihydro-9-hydroxy-4-methyl-1H, 12H-benzo [de] pyrano [ 3 ', 4,: 6,7] Indolizino [1,2-b] quinoline 1-10,13 (9H, 15H) 1-position of dione and carboxyl group of lipoxymethyl dextran polyalcohol Is a single amino acid or a DDS compound linked via a spacer consisting of 2 to 8 amino acids linked by a peptide, wherein (1) (1S, 9S) 1-11 amino-9-ethyl-5-fluoro- 2, 3—Jihi Draw 9—Hydroxy-1 4-Methyl — 1H, 12 H—Venzo [de] pyrano [3, 4 ': 6, 7] Indolizino [1, 2—b] Quinoline 1, 10, 13 (9H , 1 5 H) - in the range of 3.2 to 8
  • the carboxymethyl dextran polyalcohol has a degree of carboxymethynolelation in the range of 0.23 to 0.47.
  • (1 S, 9 S) one 1 one amino-9 Echiru 5- Furuoro 2, 3-di Hidoro 9 - arsenide Dorokishi _ 4-methyl-1 H, 1 211- base emission zone [(1 e] pyrano [3 4 ' : 6, 7] indolizino [1, 2—b] quinoline
  • One 10, 13 (9H, 15H) dione, one amino group at the 1-position of dione and one carboxyl group of carboxymethyl dextran polyalcohol A DDS compound linked via a spacer consisting of two to eight amino acids or two or more peptide-linked amino acids,
  • the standard weight average molecular weight of pullulan of the above ⁇ -boxymethyldextran polyalcohol is in the range of 240,000 to 480,000, and
  • a DDS compound characterized by the above is also provided by the present invention.
  • the above carboxymethyl dextran was obtained by capillary electrophoresis using a calibration curve obtained by measuring a standard substance by decomposition or NMR.
  • the above-mentioned DDS compound in which the degree of carboxymethylation of the run polyalcohol is measured is also provided by the present invention.
  • a medicine containing the above DDS compound, an antitumor agent containing the above DDS compound, and a method for using the above DDS compound for the production of the above medicine and treating a malignant tumor wherein the above DDS compound Administering to a mammal, including a human, a therapeutically effective amount of
  • the present invention provides a method for producing the DDS compound.
  • the method of the present invention is a method for producing the above DDS compound, comprising the following steps:
  • a preferred method of the present invention includes two or more steps selected from the above steps (A) to (D), and a more preferred method includes three or more steps selected from the above steps (A) to (D). Particularly preferred methods include all the steps (A) to (D) described above. Further, it is provided as a preferred embodiment that in step (D), the end point of the condensation reaction is determined by high performance liquid chromatography.
  • the pullulan standard weight average molecular weight for use in the production of the above-mentioned DDS compound is in the range of 240,000 to 480,000, and the degree of carboxymethylation is in the range of 0.23 to 0.47.
  • Certain carboxymethyl dextran polyalcohols, the pullulan standard weight average molecular weight for use in the production of the above DDS compound is in the range of 240,000-4'80,000, and the carboxymethylation degree is 0.14-0.47.
  • the carboxymethyl dextran polyalcohol and the carboxymethyl dextran of the carboxymethyl dextran polyalcohol described above were determined by carboxymethyl electrophoresis using a calibration curve obtained by a decomposition method or an NMR method.
  • Carboxymethyl dextran polyalcohol is provided. Also provided by the present invention is the use of the carboxymethyl dextran polyalcohol for the production of the DDS compound. Further, the method for producing carboxymethyl dextran polyalcohol is provided. hand,
  • step (B) A step of producing carboxymethyl dextran polyalcohol by reacting sodium chloromonoacetate with the dextran polyalcohol obtained in the above step (A), wherein the carboxymethylation reaction end point is determined by capillary electrophoresis.
  • Process characterized by the following:
  • the DDS compound of the present invention comprises (1S, 9S) -1-amino-1-9-ethyl-5-fluoro-1,2,3-dihydro-9-hydroxy-14-methyl-1-1-1,12H-benzen Zo [de] pyrano [3 ', 4,: 6,7] Indolizino [1,2—b] quinoline —10,13 (9H, 15H) -dione (hereinafter referred to as “pharmaceutical compound” in the present specification)
  • the DDS in which the 1-position amino group and the carboxyl group of carboxymethyl dextran alcohol are bonded via a spacer consisting of one amino acid or two to eight amino acids peptide-linked In the compound,
  • the pharmaceutically introduced amount of the residue of the compound is 3.2 to the total weight DD S compounds 8.4 wt 0/0, preferably in the range from 5.6 to 7.6 weight 0/0,
  • the carboxymethyl dextran polyalcohol has a pullulan standard weight average molecular weight in the range of 240,000 to 480,000, and
  • the carboxymethyl dextran polyalcohol has a degree of propyloxymethylation in the range of 0.23 to 0.47. It is characterized by:
  • DDS compounds provided by the present invention include (1S, 9S) -1-amino-9-ethynole-5-funoleo-1,2,3-dihydro-9-hydroxy-14-methyl-1 1H, 12H—Benzo [de] pyrano [3,, 4 ': 6, 7] Indolizino [1, 2-b] quinoline 10, 13 (9H, 15H) —dione In the detailed description, it may be referred to as “pharmaceutical compound.”
  • the amino acid consists of 2 to 8 amino acids in which the 1-position amino group and the carboxyl group of ethoxymethyl dextran polyalcohol are one amino acid or a peptide bond.
  • a spacer In a DDS compound bound via a spacer,
  • the introduction amount of the residue of the pharmaceutical compound is in the range of 3.2 to 8.4% by weight, preferably 5.6 to 7.6% by weight, based on the total weight of the DDS compound;
  • the carboxymethyl dextran polyalcohol has a standard weight average molecular weight of pullulan in the range of 240,000 to 480,000, and
  • the carboxymethyl dextran polyalcohol has a degree of carboxymethylation in the range of 0.14 to 0.47.
  • the weight average molecular weight of the carboxymethyl dextran polyalcohol functioning as a drug carrier is 240,000 to 480,000. It is in the range of 0.
  • Pullulan Standard of Carboxymethyl Dextran Polyalcohol The weight average molecular weight can be measured according to a method well known to those skilled in the art. For example, pullulan can be measured using gel filtration chromatography as a standard. Pullulan as a standard can be purchased from Shode X or the like.
  • the degree of carboxymethylation of the carboxymethyl dextran polyalcohol is in the range of 0.14 to 0.47 or in the range of 0.23 to 0.47.
  • the degree of carboxymethylation of carboxymethyl dextran polyalcohol can be measured according to a method well-known to those skilled in the art, for example, according to capillary electrophoresis.
  • a calibration curve obtained using a standard substance can be used.
  • the standard substance several kinds of carboxymethyl dextran polyalcohols having different amounts of carboxymethyl groups can be prepared and used.
  • the calibration curve can be obtained by, for example, either the decomposition method or the NMR method. However, the decomposition method and the NMR method may give different measured values of the degree of carboxymethylation for the same standard substance.
  • the measured value of the degree of carboxymethylation by the NMR method tends to be about 0.09 lower than the measured value by the decomposition method. Therefore, when a calibration curve prepared by the NMR method is used, the degree of carboxymethylation is preferably in the range of 0.14 to 0.38.
  • glycerol G1r
  • daricol aldehyde G1r
  • carboxymethyldaricerol C-G1r
  • Glycerol in the hydrolyzate can be directly quantified by high-performance liquid chromatography under basic conditions.Dalichol aldehyde reacts with the aldehyde-labeling reagent dansyl hydrazine, and then the reaction product is rapidly quantified. It can be determined by liquid chromatography.
  • the spacer constituting the DDS compound of the present invention may be a spacer containing one amino acid residue or an oligopeptide residue composed of 2 to 8 amino acid residues bonded by peptide. Can be used.
  • the spacer is a residue of one amino acid (meaning a residue obtained by removing one hydrogen atom and one hydroxyl group from an amino group and a carboxyl group of an amino acid, respectively), or a peptide bond.
  • Oligopeptide residues containing 2 to 8 amino acid residues meaning residues excluding one hydrogen atom and one hydroxyl group from the N-terminal amino group and the C-terminal carboxyl group, respectively
  • Preferred spacers are those containing an oligopeptide residue composed of 2 to 6 amino acid residues.
  • the type of amino acid constituting the spacer is not particularly limited.
  • L- or D-amino acid preferably L-amino acid can be used.
  • ⁇ -amino acid ⁇ -alanine, ⁇ -aminocaproic acid, ⁇ —Aminobutyric acid may be used.
  • Such an amino acid other than the ⁇ -amino acid is preferably arranged at a position close to the drug carrier in the spacer.
  • the amino acid sequence is not particularly limited.
  • a residue of a dipeptide represented by one X— ⁇ — represents a residue of a hydrophilic amino acid
  • X— ⁇ _ represents a peptide in which a hydrophobic amino acid (X) and a hydrophilic amino acid ( ⁇ ) are located on the ⁇ -terminal side and the C-terminal side, respectively.
  • a spacer containing as a partial peptide sequence can be suitably used.
  • the hydrophobic amino acid for example, phenylalanine, tyrosine, leucine and the like can be used, and as the hydrophilic amino acid, for example, glycine, alanine and the like can be used.
  • the spacer may have a repeating sequence of such dipeptide residues (for example, one X— ⁇ —X— ⁇ —,--- ⁇ - ⁇ - ⁇ —X— ⁇ —, etc.).
  • the spacer When a spacer containing such a dipeptide structure is used, the spacer is hydrolyzed at a tumor site or an inflammatory site which is considered to be rich in peptidase, and a high concentration of the peptide is rapidly obtained at the site. Since the drug compound is released, the partial structure formed by bonding the peptide containing the peptide to the drug compound is a preferable partial structure of the DDS compound of the present invention.
  • oligopeptide residues that can be used as spacers are shown in the following table, but the spacers used in the DDS compound of the present invention are not limited to the following, It goes without saying that the choice of one kind can be appropriately made by those skilled in the art so as to give an optimal release rate of the pharmaceutical compound (the peptide sequence is ⁇ -terminal on the left side, At the C-terminus (one carboxyl group in the case of a spacer containing one amino acid) (1 S, 9 S) _ 1-amino-9-ethynoley 5-fluoro-2,3-dihydro 9-hydroxy _ 4 1-methyl, 1H, 12-H-benzo [de] pyrano [3,, 4,: 6, 7] indolizino [1, 2_13] quinoline-10, 13 (9H, 15H)- Peptide bond).
  • D-Phe represents a D-phenylalanine residue
  • the other amino acids represent L-amino acids.
  • the magnitude of the release rate was determined by the degree of the effect of the DDS compound bound to doxorubicin on the Wa 1 ker 256 tumor-bearing rat or the free doxorubicin concentration at the tumor site of the Wa 1 ker 256 tumor-bearing rat. did. ).
  • the DDS compound of the present invention can express a desired antitumor activity in a tumor site-specific manner and can be used as an antitumor agent having high safety.
  • the medicament containing the DDS compound of the present invention can be usually filled into vials or the like in the form of a lyophilized product, and provided to the clinic as a parenteral administration formulation such as a dissolution-type injection or infusion formulation.
  • the pharmaceutical form of the medicament of the present invention is not limited to the above embodiment.
  • pharmaceutical additives available in the art such as a solubilizer, a pH adjuster, and a stabilizer can be used.
  • the dose of the medicament of the present invention is particularly limited. But it is not constant, day per body surface area lm 2 diary about 1 to 50 Omg about, preferably rather is administered once a day in the range of about 1 0 to 100 mg, it is preferably repeated every 3-4 weeks.
  • the method for producing the DDS compound of the present invention is not particularly limited, but it can be suitably produced by the above-mentioned production method provided by the present invention.
  • the method of the present invention includes any one of the above steps (A) to (D) or a combination of two or more steps, and most preferably includes all of the steps (A) to (D). .
  • a method including all of the steps (A) to (D) will be described as the most preferred embodiment of the present invention, but the scope of the present invention is not limited to this preferred embodiment.
  • a preferred method of the invention is
  • step (B) a step of producing carboxymethyl dextran polyalcohol by reacting sodium chloroacetate with the dextran polyalcohol obtained in the above step (A), wherein the carboxymethylation reaction end point is determined by capillary electrophoresis.
  • Step (A) is a step of obtaining dextran polyalcohol from dextran.
  • the type of dextran as a starting material is not particularly limited, and may optionally include an ⁇ -D-1, 6-bond.
  • dextran having a ratio of 1 D-1, 6-bond of 85% or more, 90% or more, or 95% or more can be used.
  • Dextran used as a raw material is preferably dextran T500 (manufactured by Pharmacia) or the like having a molecular weight of about 500,000.
  • the degree of polyalcoholization of the obtained dextran polyalcohol is not particularly limited, it is preferable to treat dextran under conditions under which substantially complete polyalcoholization is possible.
  • the molecular weight of textran polyalcohol may be reduced due to an increase in the temperature during the reaction, but the method of the present invention suppresses the reduction in molecular weight.
  • an aqueous solution containing sodium periodate is added to an aqueous solution containing dextran at a temperature of 4 ° C and a temperature of 2 ° C.
  • the aqueous solution containing dextran may, for example, contain a buffer.
  • the reaction is completed in a few days to about 20 days, usually about 10 days.
  • the concentration of dextran in the reaction solution is, for example, from several grams to 100 grams per liter of the reaction solution, and preferably about 10 grams per liter.
  • reaction solution After completion of the reaction, if necessary, ethylene glycol or the like is added to the obtained reaction solution to consume excess peracid, and if necessary, the pH of the reaction solution is adjusted to around neutral (for example, After adjusting the pH to about 6.5), the reaction solution is added at a temperature of 15 ° C or less to an aqueous solution containing sodium borohydride and reduced.
  • the molecular weight of dextran polyalcohol may be reduced due to an increase in temperature during the reaction.
  • the reaction solution of the above oxidation reaction is hydrogenated.
  • reaction is characterized in that it is added to an aqueous solution containing sodium borohydride at a temperature of 15 ° C or less. It is desirable to control the rate of addition so that the temperature of the reaction solution does not rise, and it is desirable to perform appropriate stirring to avoid a partial rise in temperature. Generally, by maintaining the reaction mixture at an ice-cooled temperature after the addition, the reaction is completed in several hours to several days, preferably about one day.
  • dextran polyalcohol having a desired molecular weight is desirable to fractionate dextran polyalcohol having a desired molecular weight from the obtained reaction solution and use it as a raw material in the next step (B). For example, it is desirable to remove low molecular weight and high molecular weight fractions using an ultrafiltration membrane, and if necessary, steps such as desalting and concentration may be added. Desalting and concentration can also be performed using an ultrafiltration membrane.
  • the dextran polyalcohol obtained in the step (A) is subjected to carboxymethylation, and the carboxymethyl having a weight average molecular weight (pullulan standard) of 240,000 to 480,000.
  • This is a process for producing dextran polyalcohol.
  • Carboxymethylation of dextran polyalcohol can be performed, for example, by reacting a hydroxyl group of dextran polyalcohol with a halogenated acetic acid such as chloroacetic acid or bromoacetic acid or a salt thereof, preferably a sodium salt of monochloroacetic acid. This can be achieved by partially carboxymethylating the hydroxyl group of the alcohol.
  • dextran polyalcohol is dissolved in an inert solvent that does not participate in the reaction (eg, water, N, N-dimethylformamide, dimethylsulfoxide, etc.) and a base (eg, sodium hydroxide, potassium hydroxide, etc.) is dissolved.
  • a salt of halogenated acetic acid or halogenated acetic acid is added, and the reaction may be carried out under ice cooling or in a temperature range of 100 ° C. for several minutes to several days. Preferably, the reaction can be carried out at 20 ° C. for several hours to about one day.
  • low molecular weight and high molecular weight It is desirable to remove a small amount of the fraction, and if necessary, steps such as desalting and concentration using an ultrafiltration membrane may be added.
  • the degree of carboxymethylation of carboxymethyl dextran polyalcohol can be controlled to some extent by the reaction temperature of propyloxymethylation and the amount of halogenated acetic acid or a salt thereof used as a reagent
  • the method of the present invention provides Strictly control the degree of lipoxymethylation within the range of 0.14 to 0.47 or 0.23 to 0.47 by determining the end point of lipoxymethylation by capillary electrophoresis. It is characterized by.
  • capillary electrophoresis is a method in which electrophoresis is performed in a fused silica capillary with an inner diameter of 10 ⁇ or less (see, for example, Yoshinobu Baba, Bunseki, 342, 1995, etc.). thing) .
  • C ⁇ capillary one-zone electrophoresis
  • EKC conduction chromatography
  • CG ⁇ capillary gel electrophoresis
  • capillary one-zone electrophoresis can be used, and separation can be performed by filling the capillary with a buffer solution such as phosphoric acid, citric acid, or boric acid.
  • a buffer solution such as phosphoric acid, citric acid, or boric acid.
  • the charge per unit molecular weight can be measured accurately, and the degree of propyloxymethylation of the sample in the reaction solution can be measured in a short time and with high sensitivity. Since the details of the method are specifically shown in the examples of the present specification, those skilled in the art can refer to the general descriptions of the above publications and other publications to describe the methods in the examples of the present specification.
  • the end point of the reaction of propyloxymethylation (the degree of carboxymethylation ranges from 0.14 to 0.47 or 0.23 to 0.47) can be obtained by appropriately modifying or altering them as necessary according to the specified method. ) Can be easily and accurately checked.
  • a calibration curve obtained using a standard substance can be used.
  • the calibration curve is, for example, although it can be obtained by any of the MR methods, the decomposition method and the NMR method may give different measured values of the degree of carboxymethylation for the same standard substance.
  • the measured value of the degree of propyloxymethylation by the NMR method tends to be about 0.09 lower than the value measured by the decomposition method. Therefore, when a calibration curve prepared by the NMR method is used, the carboxymethylation degree is preferably in the range of 0.14 to 0.38.
  • Step (C) comprises the steps of (IS, 9S) -111-amino-9-ethyl-5-fluoro-2,3-dihydro 9-hydroxy-4-methyl-1H, 12H-benzo [de] pyrano [3,, 4 ,: 6, 7] Indolizino [1, 2-b] quinoline C, 10-, 13- (9H, 15H) Oligopeptide C that uses the amino group at position 1 of dione as a spacer This is a step of condensing with a terminal carboxyl group ( ⁇ -carboxyl group when one amino acid is used).
  • oligonucleotide or amino acid used as a spacer must be protected with a tert-butoxycarbonyl group at the terminal amino group or a-amino group, respectively, in order to be subjected to this reaction.
  • the means are well known and commonly used by those skilled in the art.
  • 1-ethyl-3- (dimethylaminopropyl) carbodiimide (EPCI) or a salt thereof, preferably 1-ethyl-3- (dimethylamin) (Minopropyl) carposimid hydrochloride is used as a condensing agent.
  • EPCI 1-ethyl-3- (dimethylaminopropyl) carbodiimide
  • DCC dicyclohexylcarbodiimide
  • centrifugation and column operation for removing the condensing agent can be avoided, and the reaction time can also be reduced to about 1/5 of that when using DCC.
  • the substrate concentration can also be increased about 5-fold compared to using DCC.
  • the above reaction is performed using a conventional condensing agent, except that EPCI or a salt thereof is used as the condensing agent. Can be carried out in the same manner as in the condensation reaction for forming a peptide bond.
  • About 1 to 1.5 equivalents of tert-butoxycarbonylated amino acid or tert-butoxy ⁇ bonylated oligonucleotide is used in the above-mentioned drug compound in an inert solvent such as dimethylformamide.
  • the reaction can be performed.
  • the reaction is generally completed at room temperature for several hours to about one day, preferably at room temperature for about three hours.
  • the concentration of the drug compound in the reaction solution is not particularly limited, but is usually about 50 to 200 grams per liter, and preferably about 100 to 150 grams per liter.
  • the deprotected compound obtained by removing the tert_butoxycarbonyl group from the condensate obtained in the step (C) and the carboxymethyldextran polyalcohol obtained in the step (B) are This is a step of condensation.
  • the method for removing the tert-butoxycarbonyl group is well known and commonly used by those skilled in the art. For example, a method for treating with trifluoroacetic acid is preferable. When purifying the deprotected product, washing with, for example, isopropyl ether can be performed.
  • the N-terminal amino group of the spacer to which the pharmaceutical compound is bound ( ⁇ -amino acid when one amino acid is used as the spacer) and the carboxyl group of carboxymethyl dextran polyalcohol
  • 1-ethyl-3- (dimethylaminopropyl) carbodiimide (EPCI) or a salt thereof preferably 1-ethyl-3- (dimethylaminopropyl) carbodiimide hydrochloride is used as a condensing agent. It is characterized by.
  • the above reaction can be carried out in the same manner as a condensation reaction for forming a peptide bond using an ordinary condensing agent, except that EPCI is used as a condensing agent.
  • One part by weight of carboxymethyl dextran polyalcohol has an amino acid or
  • the reaction can be carried out in an inert solvent such as aqueous methanol using about 0.1 to 0.2 parts by weight of oligopeptide.
  • the reaction is generally completed at room temperature for about several hours to one day, preferably for about two to three hours at room temperature.
  • the medicament containing the DDS compound of the present invention can be usually filled in a vial or the like in the form of a lyophilized product, and used as a parenteral administration preparation such as a dissolution-type injection or infusion preparation for tumor treatment.
  • a parenteral administration preparation such as a dissolution-type injection or infusion preparation for tumor treatment.
  • a drug for The disclosure of WO 97/46260 is hereby incorporated by reference with respect to the use of the DDS compounds of the present invention as medicaments for treating tumors.
  • the pharmaceutical form of the drug of the present invention is not limited to the above-mentioned embodiment.
  • a pharmaceutical aid such as a dissolution aid, a pH adjuster, or a stabilizer may be used. Additives can be used.
  • the dosage of the pharmaceutical is not particularly limited, usually body area 1 m 2 diary about 0.. 1 to 100 mg about per chromatography, preferably parenterally administered once at a range of about. 1 to 30 mg, Preferably, the administration is repeated every 3 to 4 weeks.
  • [1,2-b] quinoline-1,10 (3H, 15H) -dione is sometimes referred to as “pharmaceutical compound AJ,” and “Gly—Gly—Phe—Gly” is glycylone. Glycyl-phenyl-2-alanyl-glycine or its residue.
  • the DDS compound used was a DDS compound in which the above pharmaceutical compound and carboxymethyldextran polyalcohol were bound via a tetrapeptide spacer (GlyG1y-Phe-G1y). It was prepared to have different polymeric carriers with different degrees of carboxymethylation and different molecular weights.
  • Example 1 Synthesis of dextran polyalcohol (De x—PA)
  • T 500 (Pharmacia Co., 300 g) the ⁇ 5. 5 two adjustments were 0. 2.mu. acetate buffer (1 5 1), N a I 0 4 a (990 g) in pure water (15 1) It was melted and left in a cold room (about 4 ° C). The next day, dextran - a solution of T 500 (3. 5 ° C) in Na I 0 4 solution (3. 5 ° C) temperature rise (7. 0 ° C or less) was slowly poured so that not occur, injection Thereafter, the mixture was stirred as it was in a low-temperature room (100 rpm).
  • Capillary electrophoresis uses a photodiode array of 190 nm as a detector. 300 nm (detection: 195 nm), fused silica having an inner diameter of 75 ⁇ , an effective length of 500 mm, and a total length of 67 Omm were used. A 20 mM aqueous sodium tetraborate solution was used as a running solution. The sample was adjusted to 2 mg / ml with a 0.02% aqueous sodium azide solution. Three lots having reaction times of 19 hours, 19.5 hours and 20 hours were used as samples.
  • Calibration curves were prepared using three types of carboxymethyldextran polyalcohol, whose degree of carboxymethylation was confirmed to be 0.22 0.42 and 0.62 by the decomposition method, as standard substances.
  • the respective retention times (min) were 4.496 5.442 and 6.600.
  • the retention time (min) of the sample was 5.325 5.400 and 5.446. From these results, the degree of propyloxymethylation for each sample was determined to be 0.38, 0.40, and 0.41.
  • Trifluoroacetic acid 360 ml was added dropwise to the pharmaceutical compound A (120 g) of tert-butoxycarbone G 1 y-Gly-Ph e -G 1 y obtained in Example 3 above under ice-cooling. After completely dissolving the one pharmaceutical compound A, tert-butoxycarbol-G 1 y-Gly-Phe-Gly, the completion of the tert-butoxycarbyl reaction was confirmed by HP LC. To this reaction solution, methanol (360 ml) and isopropyl ether (720 ml) were added dropwise so that the internal temperature was between 0 ° C and 15 ° C.
  • the precipitated crystals were collected by filtration and washed three times with ethyl acetate (500 ml).
  • ethyl acetate 500 ml
  • 20% aqueous methanol 400 ml
  • recrystallized by adding ethyl acetate (400 ml) and then isopropyl ether (800 ml).
  • the crystals were collected by filtration, dissolved in aqueous methanol (400 ml), and decolorized by adding activated carbon (4.4 g).
  • the mixture was reacted at room temperature (23 ° C. ⁇ 5 ° C.) for 2-3 hours. Further add 1-ethyl 3- (dimethylaminopropyl) carbodimid hydrochloride (8.1 g), adjust the pH to 6.8-7.2 with 1N HC1, and continue for 2-3 hours To some extent. Further, 1-ethyl-1- (dimethylaminopropyl) carbodiimide hydrochloride (5.6 g) was added, and the pH was adjusted to 6.8 to 7.2 with IN HC1, and the reaction was continued for about 1 hour. I let it.
  • Dextran was oxidized according to Example 1 at a substrate concentration of 1% and a scale of 20 g.
  • the reaction temperature was set at 4, 8, 12, and 15 ° C, and the retention time in gel filtration chromatography of the product when the reaction time was changed was measured.
  • Table 1 when the reaction temperature was 12 ° C. and 15 ° C., a clear delay in the retention time due to molecular weight reduction was confirmed on the sixth day. Even at 8 ° C., a clear delay in the retention time was confirmed on the 10th day.
  • Table 1 Reaction temperature / time 3 6 days 10 days
  • Example 6 Based on the results of Example 6, a similar experiment was performed with the temperature range set further finely (4 ° C, 1 ° C, 6.5 ° C). As shown in Table 2, the reaction proceeded without depolymerization in all temperature ranges, but when the reaction was carried out at 1 ° C, the precipitation of salts in the reaction system increased. Based on the above results, the safe temperature range for this reaction was determined to be 2 to 6 ° C. Table 2 Reaction temperature / time 3 days 6 days 10 days
  • Example 1 a reduction reaction following the acid reaction of dextran was performed.
  • the reaction temperature was set at 10, 15, 20, and 30 ° C., and after reacting for 12 to 24 hours, the retention time of the product in gel filtration chromatography was measured. As shown in Table 3, when the reaction temperature exceeded 15 ° C, a clear decrease in molecular weight was observed. Table 3
  • Test Examples are shown.
  • the degree of propyloxymethylation shown in the Test Examples is a value obtained by a decomposition method.
  • Test example 1
  • mice 6-week-old male BALB / c mice (Nippon SLC Co., Ltd.) with commercial feed and water ad libitum and allowed to test for one week after acclimation.
  • tumor cells mouse tumor cells Meth A fibrosarcoma were subcultured in the abdominal cavity of BALBZc, a syngeneic mouse, every week.
  • HBSS Hanks medium
  • Gibco-BRL Hanks medium
  • endotoxin concentration 50 pg / m1 or less
  • the tumor cells are rubbed from the peritoneal cavity of the mouse, and centrifuged several times (about 600 rpm, 5- 10 minutes, washed with 4 ° C), were transplanted into the abdominal cavity of a mouse at a rate of 1 X 10 6/0. 1 m 1 Z mouse suspended in HB SS medium.
  • BWL body weight loss
  • D / U body weight loss
  • the molecular weight of carboxymethyl dextran polyalcohol is 200,000 or more, a stable antitumor effect can be obtained even at a low dose.
  • the molecular weight of carboxymethyl dextran polyalcohol exceeds 500,000, problems such as poor stability against physical injury due to viscosity occurred. From these results, the molecular weight of carboxymethyl dextran polyalcohol in the DDS compound needs to be in the range of 50,000 to 500,000, and a stable product that achieves the desired antitumor effect and It was concluded that the carboxymethyl dextran polyalcohol should have a pullulan standard weight average molecular weight in the range of 240,000-480,000 for production. Test example 2
  • mice 69 mice, Japan SLC, Inc.
  • DDS compounds with different degrees of carboxymethylation (drug-induced Dose of 5.3-6.3% by weight, molecular weight 270,000-330,000).
  • Average body weight at the time of administration ranged from 21.1 to 25.4 g.
  • Animals are housed in an aluminum cage in a room set at room temperature (23 ⁇ 2 ° C), humidity (55 ⁇ 20%), and lighting time for 12 hours (8:00 to 20:00). Were fed with free feed (F2, manufactured by Funabashi Farm) and chlorinated tap water.
  • the DDS compound was dissolved in physiological saline solution of the Japanese Pharmacopoeia and administered to the tail vein at a concentration of 1.02 to 1.36 mg / m1 in a volume of lm1 / kg.
  • the animals were observed once daily for 15 days including the day of administration, and weighed before administration and on days 3, 7, 10, and 14 after administration. Dead animals were necropsied promptly after the death was found, and surviving animals were sacrificed by exsanguination by abdominal aortic amputation under ether anesthesia 14 days after administration, and various organs were visually observed. For body weight data, group mean soil standard deviation was calculated, and then statistical analysis was performed at a significance level of 5%. As a result, the maximum tolerated dose (MTD) of DDS compounds having degrees of carboxymethylation of 0.38, 0.43, and 0.47 was 11-7, 11.7, and 10.3 mg / D, respectively. kg, and when the degree of carboxymethylation exceeds 0.43, the toxicity tends to increase.
  • MTD maximum tolerated dose
  • the DDS compound of the present invention is highly safe and wide! / It has a therapeutic range and is extremely useful clinically as an antitumor agent.
  • the method of the present invention can produce the above-mentioned DDS compound with high quality and high efficiency in a high yield, and is suitable for industrial use.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

明細書
D D S化合物及びその製造方法 技術分野
本発明は、 カルボキシメチルデキストランをポリアルコール化した多糖誘導体 と医薬化合物とを結合させたドラッグデリバリーシステム化合物 (以下、 「D D S化合物」 という。 ) 及びその製造方法に関する。 背景技術
肺癌や消化器癌などの固形癌や白血病などの血液癌の治療に際して用いられる 抗腫瘍剤は、静脈内投与や経口投与などの投与経路により全身的に投与された後、 特定の腫瘍部位に移行して癌細胞の増殖を阻害ないし抑制することにより治療効 果を発揮する。 しかしながら、 全身投与された抗腫瘍剤は、 血中から肝臓、 細網 内皮系臓器に速やかに取り込まれたり、あるいは速やかに尿中排泄されるために、 血中濃度が低下して腫瘍部位への移行が制限される場合がある。 また、 通常の抗 腫瘍剤自体の腫瘍部位への移行選択性 (腫瘍選択性) が低いために、 抗腫瘍剤が 全身の様々な細胞や組織に広く分布してしまい、 正常な細胞や組織に対しても細 胞毒として作用し、 下痢、 発熱、 嘔吐、 あるいは脱毛などの副作用をきわめて高 率に発生させるという問題がある。 従って、 抗腫瘍剤を効率的かつ選択的に腫瘍 部位に移行させる手段の開発が求められている。
このような手段の一つとして、 多糖誘導体を薬物担体として用い、 該多糖誘導 体に対して抗腫瘍剤を結合させて抗腫瘍剤の血中における消失を遅延させるとと もに、 癌組織への指向性を高める方法が提案されている。 カルボキシル基を有す る多糖のカルボキシル基にぺプチド鎖を介して薬剤を結合させたもの (国際公開 WO 9 4 / 1 9 3 7 6号) 、 カルボキシメチル化されたマンノグルカン誘導体に シッフ塩基やアミ ド結合を介して薬剤を導入したもの(特公平 7— 8 4 4 8 1号)、 ポリアルコール化多糖誘導体を薬物担体として用い、 ペプチド鎖を介して、 さら にはぺプチド鎖及ぴパラアミノベンジルォキシカルポ二ル基を介して薬剤を結合 させたもの (国際公開 WO 99/61061号) 等が開示されている。
多糖誘導体を薬物担体として用いた DD S化合物のうち、 カルボキシメチルデ キストランをポリアルコール化した多糖誘導体を薬物担体として用い、 ペプチド 鎖を介して医薬化合物残基を結合した DD S化合物は、 腫瘍選択性が特に優れて おり、 抗腫瘍剤としての開発が期待されている。 なかでも、 医薬化合物残基とし て (I S, 9 S) — 1—ァミノ一 9—ェチルー 5—フルォロ一 2, 3—ジヒ ドロ — 9—ヒ ドロキシ一4—メチル _1H, 12H—べンゾ [d e] ピラノ [3, , 4' : 6, 7] インドリジノ [1, 2— b] キノリン一 10, 1 3 (9H, 15 H) ージオンを結合させた該 DDS化合物は、 優れた腫瘍選択性及び抗腫瘍活性 を発揮でき、 臨床上の有用性が期待できる D D S化合物である。
もっとも、 本発明者らの研究によれば、 医薬化合物残基として (1 S, 9 S) ― 1—アミノー 9ーェチルー 5—フルオロー 2, 3—ジヒ ドロー 9—ヒ ドロキシ —4—メチノレー 1 H, 1 2H—ベンゾ [d e] ピラノ [3, , 4, : 6, 7] ィ ンドリジノ [1, 2 - b] キノリン _ 10, 1 3 (9H, 15H) —ジオンを力 ルポキシメチルデキストランをポリアルコール化した多糖誘導体に対してぺプチ ドスぺーサ一を介して結合させた上記 DD S化合物は、 薬物担体である高分子キ ャリア一部分の分子量、 カルボキシメチル化度、 及び上記医薬化合物残基の導入 量の変化により安全性及び薬効域が大きく変動することが明らかとなった。 この 理由から、 上記 DD S化合物において、 高い安全性と広い薬効域を与える特定の DDS化合物を選択することが望まれる。
また、 本発明者らは、 カルボキシメチルデキストランポリアルコールの製造に おいて、 デキストランポリアルコールの製造時の発熱により高分子キヤリァ一の 低分子化が生じ、 さらにデキストランポリアルコールをカルボキシメチル化する 際の発熱によりカルボキシメチル化度を十分に制御できず、 一定品質の高分子キ ャリア一を製造できないという問題に直面していた。 また、 上記の医薬化合物と ぺプチドスぺーサ一とを結合させる工程、 及びぺプチドスぺーサを介して医薬化 合物を高分子キヤリァ一に結合させる工程においても、 従来の方法では目的物の 分離や精製が必要になるために作業が煩雑で、 目的物の収率が低く良好な品質の 製品を提供できないという問題があり、 それらを解決する必要に迫られていた。 発明の開示
従って、 本発明の目的は、 上記 DDS化合物において、 薬物担体である高分子 キャリア一部分の分子量、 カルボキシメチル化度、 及ぴ上記医薬化合物残基の導 入量を選択し、 高レ、安全性と広レ、薬効域を有する上記 D D S化合物を提供するこ とにある。 また、 本発明の別の目的は、 上記の特定の DDS化合物を高品質に、 かつ効率的に高収率で製造でき、 工業化に適した方法を提供することにある。
本発明者らは上記の課題を解決すべく鋭意努力し、 上記 DD S化合物において 高い安全性及び広い薬効域を有する化合物を選択することに成功した。 より具体 的には、薬物担体である高分子キヤリァ一部分の分子量、カルボキシメチル化度、 及び上記医薬化合物残基の導入量についての最適化を行い、 特定の条件を満たす 化合物が高い安全性と広い薬効域を有することを見出した。 また、 上記の特定の DDS化合物を製造するにあたり、 反応温度を制御するための手段、 反応の進行 をモニターするための手段、 及ぴ反応試薬などを選択することにより、 目的の D DS化合物を一定品質で、 かつ効率的に製造できることを見出した。 本発明はこ れらの知見を基にして完成されたものである。
すなわち、 本発明は、 (1 S, 9 S) — 1_アミノー 9一ェチル—5—フルォ ロー 2, 3—ジヒ ドロー 9ーヒドロキシー 4ーメチルー 1 H, 1 2 H—べンゾ [ d e] ピラノ [3' , 4, : 6, 7] インドリジノ [1, 2— b] キノリン一 10, 13 (9H, 1 5H) ージオンの 1—位のァミノ基と力ルポキシメチルデキスト ランポリアルコールのカルボキシル基とが 1個のアミノ酸又はぺプチド結合した 2〜 8個のアミノ酸からなるスぺーサーを介して結合した DD S化合物において、 (1) (1 S, 9 S) 一 1一アミノー 9ーェチルー 5—フルオロー 2, 3—ジヒ ドロー 9—ヒ ドロキシ一 4—メチル _ 1H, 1 2 H—べンゾ [d e]ピラノ [3,, 4' : 6, 7] インドリジノ [1, 2— b] キノリン一 10, 1 3 (9H, 1 5 H)—ジオンの残基の導入量が DD S化合物全重量に対して 3. 2〜8. 4重量0 /0 の範囲であり、
(2) 上記力 ^ /レポキシメチルデキストランポリアルコールのプルラン標準重量平 均分子量が 240, 000〜480, 000の範囲であり、 かつ
(3) 上記カルボキシメチルデキストランポリアルコールのカルボキシメチノレ化 度が 0. 23〜0. 47の範囲である
ことを特徴とする DDS化合物を提供するものである。
また、 (1 S, 9 S) 一 1一アミノー 9ーェチルー 5—フルオロー 2, 3—ジ ヒドロー 9—ヒ ドロキシ _ 4ーメチルー 1 H, 1 211—べンゾ[(1 e]ピラノ [3 4 ' : 6, 7] インドリジノ [1, 2— b] キノリン一 10, 1 3 (9 H, 1 5 H) ージオンの 1 --位のァミノ基とカルボキシメチルデキストランポリアルコー ルのカルボキシル基とが 1個のアミノ酸又はぺプチド結合した 2〜 8個のァミノ 酸からなるスぺーサーを介して結合した DD S化合物において、
(1) (I S, 9 S) _ 1ーァミノ一 9—ェチルー 5 _フルォロ一 2, 3—ジヒ ドロ _ 9ーヒ ドロキシ一 4ーメチル一 1H, 1 2H—ベンゾ [d e]ピラノ [3,, 4, : 6, 7] インドリジノ [1, 2— b] キノリン一 10, 1 3 (9H, 1 5 H)—ジオンの残基の導入量が DDS化合物全重量に対して 3. 2〜8. 4重量% の範囲であり、
(2) 上記カ^^ボキシメチルデキストランポリアルコールのプルラン標準重量平 均分子量が 240, 000〜 480, 000の範囲であり、 かつ
(3) 上記力ルポキシメチルデキス トランポリアルコールのカルボキシメチノレ化 度が 0. 14〜0. 47の範囲である
ことを特徴とする DDS化合物も本発明により提供される。 これらの DDS化合 物において、 標準物質を分解法又は NMR法により測定することにより得られる 検量線を用いてキヤピラリー電気泳動法により上記のカルボキシメチルデキスト ランポリアルコールのカルボキシメチル化度を測定した上記 DD S化合物も本発 明により提供される。
さらに、 本発明により、 上記 DDS化合物を含む医薬及び上記 DDS化合物を 含む抗腫瘍剤、 並びに、 上記医薬の製造のための上記 DDS化合物の使用及び悪 性腫瘍の治療方法であって、 上記 DDS化合物の治療有効量をヒ トを含む哺乳類 動物に投与する工程を含む方法が提供される。
別の観点からは、 本発明により上記 DDS化合物の製造方法が提供される。 本 発明の方法は、 上記 DDS化合物の製造方法であって、 下記の工程:
(A) デキストランを含む水溶液に 4。C± 2 °Cの温度で過ョゥ素酸ナトリウムを 含む水溶液を添加してデキストランを酸ィ匕した後、 得られた反応液を 15°C以下 の温度で水素化ホウ素ナトリゥムを含む水溶液に添加してデキストランポリアル コールを得る工程;
(B) デキストランポリアルコールにモノクロ口酢酸ナトリゥムを反応させて力 ルポキシメチルデキストランポリアルコールを製造する工程であって、 カルボキ シメチル化の反応終点をキヤビラリ一電気泳動法により決定することを特徴とす る工程; ' '
(C) ( 1 S, 9 S) — 1—ァミノ一 9ーェチルー 5—フルオロー 2, 3—ジヒ ドロ一 9—ヒ ドロキシー 4—メチノレー 1 H, 12 H—ベンゾ [d e]ピラノ [3,, 4, : 6, 7] インドリジノ [1, 2— b] キノリン一 10, 1 3 (9H, 1 5 H) —ジオンの 1位のアミノ基と、 ひーァミノ基が t e r t—ブトキシカルボ二 ル基で保護された 1個のアミノ酸の α—カルボキシル基又は N末端が t e r t— ブトキシカルボニル基で保護された 2〜 8個のアミノ酸からなるオリゴぺプチド の C末端カルボキシル基とを縮合する工程であって、 縮合剤として 1—ェチルー 3— (ジメチルァミノプロピル) カルポジイミ ド又はその塩を用いることを特徴 とする工程;及び
(D) ( 1 S, 9 S) - 1ーァミノ一 9ーェチル一 5 _フルオロー 2, 3—ジヒ ドロー 9ーヒ ドロキシ一 4ーメチルー 1 H, 12H—ベンゾ [d e]ピラノ [3,, 4, : 6, 7] インドリジノ [1, 2 - b] キノリン一 10, 13 (9 H, 15 H) ージオンの 1位のアミノ基と、 α—アミノ基が t e r t _ブトキシカルボ二 ル基で保護された 1個のァミノ酸の α—カルボキシル基又は Ν末端が t e r t— ブトキシカルボニル基で保護された 2〜 8個のアミノ酸からなるオリゴぺプチド の C末端カルボキシル基とを縮合した縮合体から t e r t—ブトキシカルポニル 基を除去して得られる脱保護体と、 カルボキシメチルデキストランポリアルコー ルとを縮合する工程であって、 縮合剤として 1一ェチル _ 3 _ (ジメチルァミノ プロピル) カルポジィミ ド又はその塩を用いることを特徴とする工程
からなる群から選ばれる 1以上の工程を含んでレヽる。
本発明の好ましい方法は、 上記 (A) から (D) の工程から選ばれる 2以上の 工程を含み、 さらに好ましい方法は上記 (A) から (D) の工程から選ばれる 3 以上の工程を含み、 特に好ましい方法は、 上記 (A) から (D) の全ての工程を 含む。 また、 工程 (D) において縮合反応の終点を高速液体クロマトグラフィー により決定することが好ましい態様として提供される。
さらに本発明により、 上記の DD S化合物の製造に用いるためのプルラン標準 重量平均分子量が 240, 000〜 480, 000の範囲であり、 カルボキシメ チル化度が 0. 23〜 0. 47の範囲であるカルボキシメチルデキストランポリ アルコール、 上記の D D S化合物の製造に用いるためのプルラン標準重量平均分 子量が 240, 000〜4'80, 000の範囲であり、 カルボキシメチル化度が 0. 14〜0.47の範囲であるカルボキシメチルデキストランポリアルコール、 及び上記のカルボキシメチルデキストランポリアルコールのカルボキシメチルイ匕 度が、 分解法又は NMR法で得られた検量線を用いてキヤビラリ一電気泳動法に より測定したカルボキシメチル化度であるカルボキシメチルデキストランポリア ルコールが提供される。 また、 上記 DD S化合物の製造のための上記カルボキシメチルデキストランポ リアルコールの使用が本発明により提供される。 さらに、 上記カルボキシメチルデキストランポリアルコールの製造方法であつ て、
(A) デキストランを含む水溶液に 4 °C± 2 °Cの温度で過ヨウ素酸ナトリゥムを 含む水溶液を添加してデキストランを酸ィヒした後、 得られた反応液を 1 5°C以下 の温度で水素化ホウ素ナトリゥムを含む水溶液に添加してデキストランポリアル コールを得る工程;及ぴ
(B) 上記工程 (A) で得られたデキストランポリアルコールにモノクロ口酢酸 ナトリゥムを反応させてカルボキシメチルデキストランポリアルコールを製造す る工程であって、 カルボキシメチル化の反応終点をキヤビラリ一電気泳動法に'よ り決定することを特徴とする工程
を含む方法が提供される。 発明を実施するための最良の形態
日本国特願 2000— 1 959 1 9号 (2000年 6月 29日出願) の全ての 開示を参照として本明細書の開示に含める。
本発明の DDS化合物は、 (1 S, 9 S) — 1—ァミノ一 9一ェチル一 5—フ ルォ口一 2, 3—ジヒ ドロー 9ーヒ ドロキシ一 4ーメチル一 11-1, 12H—ベン ゾ [d e] ピラノ [3' , 4, : 6, 7] インドリジノ [1, 2— b] キノリン — 1 0, 1 3 (9H, 1 5H) —ジオン (以下、 本明細書において 「医薬化合物」 という場合がある。 ) の 1一位のァミノ基とカルボキシメチルデキストランボリ アルコールのカルボキシル基とが 1個のアミノ酸又はぺプチド結合した 2〜 8個 のアミノ酸からなるスぺーサーを介して結合した DDS化合物において、
( 1 )上記医薬化合物の残基の導入量が DD S化合物全重量に対して 3.2〜 8. 4重量0 /0、 好ましくは 5. 6〜7. 6重量0 /0の範囲であり、
( 2 ) 上記カルボキシメチルデキストランポリアルコールのプルラン標準重量平 均分子量が 240, 000〜 480, 000の範囲であり、 かつ
(3) 上記カルボキシメチルデキストランポリアルコールの力ルポキシメチル化 度が 0. 23〜0. 47の範囲である ことを特徴としている。
また、 本発明により提供される他の DDS化合物は、 (1 S, 9 S) — 1ーァ ミノー 9ーェチノレー 5―フノレオ口一 2 , 3—ジヒ ドロ一 9ーヒ ドロキシ一 4—メ チル一 1H, 12H—ベンゾ [d e] ピラノ [3, , 4 ' : 6, 7] インドリジ ノ [1, 2— b] キノリン一 10, 1 3 (9 H, 1 5 H) —ジオン (以下、 本明 細書において 「医薬化合物」 という場合がある。 ) の 1一位のァミノ基と力ルポ キシメチルデキストランポリアルコールのカルボキシル基とが 1個のアミノ酸又 はぺプチド結合した 2〜 8個のアミノ酸からなるスぺーサーを介して結合した D DS化合物において、
( 1 )上記医薬化合物の残基の導入量が D D S化合物全重量に対して 3.2〜 8. 4重量%、 好ましくは 5. 6〜 7. 6重量%の範囲であり、
(2) 上記カルボキシメチルデキストランポリアルコールのプルラン標準重量平 均分子量が 240, 000〜480, 000の範囲であり、 かつ
(3) 上記カルボキシメチルデキストランポリアルコールのカルボキシメチル化 度が 0. 14〜0. 47の範囲である
ことを特徴としている。 .
本明細書において、 「〜」 で表示される数値範囲は、 下限及び上限の数値を含 む範囲である。
(I S, 9 S) 一 1ーァミノ _9—ェチル一 5—フルオロー 2, 3—ジヒ ドロ — 9ーヒ ドロキシー 4—メチル一 1 H, 12H—ベンゾ [d e] ピラノ [3, , 4, : 6, 7] インドリジノ [1, 2— b] キノリン一 10, 1 3 (9 H, 15 H) ージオンの 1一位のァミノ基とカルボキシメチルデキストランポリアルコー ルのカルボキシル基とが 1個のアミノ酸又はべプチド結合した 2〜 8個のァミノ 酸からなるスぺーサーを介して結合した薬物複合体は、 国際公開 W097/46 260に開示されているが、 上記の特定の DDS化合物は開示されていない。 本発明の DD S化合物において、 薬物担体として機能するカルボキシメチルデ キス トランポリアルコールの重量平均分子量は、 240, 000〜 480, 00 0の範囲である。 カルボキシメチルデキストランポリアルコールのプルラン標準 重量平均分子量は当業者に周知の方法に従って測定可能であるが、 例えば、 ゲル 濾過クロマトグラフィー法に従ってプルランを標準として測定することができる。 標準とするプルランは S h o d e X社等から購入することができる。 また、 カル ポキシメチルデキストランポリアルコールのカルボキシメチル化度は 0 . 1 4〜 0 . 4 7の範囲又は 0 . 2 3〜0 . 4 7の範囲である。
カルボキシメチルデキストランポリアルコールのカルボキシメチル化度は、 当 業者に周知の方法に従って測定可能であるが、 例えば、 キヤピラリー電気泳動法 に従って測定することができる。 キヤビラリ一電気泳動法によりカル.ボキシメチ ルデキストランポリアルコールのカルポ^シメチル化度の測定するにあたり、 標 準物質を用いて求めた検量線を用いることができる。 標準物質としては、 カルボ キシメチル基の導入量が異なる数種のカルボキシメチルデキストランポリアルコ ールを調製して用いることができる。 検量線は、 例えば分解法又は NMR法のい ずれかの方法により得ることができるが、 分解法と NMR法とでは、 同一の標準 物質について異なるカルボキシメチル化度の測定値を与える場合がある。 一般的 に、 NMR法によるカルボキシメチル化度の測定値は分解法による測定値に比べ て 0 . 0 9程度低くなる傾向がある。 従って、 NMR法で作成した検量線を用い る場合には、 カルボキシメチル化度が 0 . 1 4〜0 . 3 8の範囲であることが望 ましい。
分解法では、 カルボキシメチルデキストランポリアルコールの酸加水分解によ りそれぞれ定量的に生成するグリセロール (G 1 r ) 、 ダリコールアルデヒ ド(G A) 、 カルボキシメチルダリセロール ( C M- G 1 r ) 、 及び力ルボキシメチルグ リコールアルデヒ ド (CM - G A) を定量する。加水分解物中のグリセロールは塩 基性条件下で高速液体クロマトグラフィ一により直接定量することができ、 ダリ コールアルデヒ ドはアルデヒ ド標識化試薬であるダンシルヒ ドラジンと反応させ た後、反応生成物を高速液体ク口マトグラフィ一に付することにより定量できる。 カルボキシメチルグリセロールとカルボキシメチルグリコールアルデヒドについ ては、 カノレボキシメチルグリコールアルデヒ ドのアルデヒ ドを還元してカルボキ シメチルエチレングリコール (CM - EG) に変換した後、 それぞれカルボン酸の 蛍光標識化試薬である 9一アンスリル一ジァゾメタンと反応させ、 反応生成物を 高速液体クロマトグラフィーに付することにより定量できる。 カルボキシメチル 化度は下記の式: CM- G 1 r / (G 1 r +CM - G 1 r ) +CM- EG/ (GA + CM - EG) から計算することができる。
NMR法では、 カルボキシメチル基の導入量が異なる数種のカルボキシメチル デキストランポリアルコールを標準物質として用い、 それらの13 C— NMRを測 定する。 各標準物質のカルボキシメチルデキストランポリアルコールの C一 1位 及ぴ C一 5位、 並びにカルボキシメチル基が側鎖部分に結合している C一 1位及 び C一 5位の 4つのシグナルの面積強度を算出し、 C— 1位及び C— 5位の面積 強度合計のうち、 カルボキシメチル基が側鎖部分に結合している C— 1位及び C 一 5位の面積強度が占める割合により、 各力ルポキシメチルデキストランポリア ルコールのカルボキシメチル化度を求める。
本努明の DDS化合物を構成するスぺーサ一としては、 1個のアミノ酸残基を 含むスぺーサ一又はぺプチド結合した 2から 8個のァミノ酸残基で構成されるォ リゴペプチド残基を含むスぺーサーを用いることができる。 該スぺーサ一は、 1 個のアミノ酸の残基 (アミノ酸のアミノ基及ぴカルポキシル基からそれぞれ 1個 の水素原子及ぴ 1個の水酸基を除いた残基を意味する) 、 又はペプチド結合した 2ないし 8個のァミノ酸残基を含むォリゴぺプチドの残基 (N末端のァミノ基及 ぴ C末端のカルボキシル基からそれぞれ 1個の水素原子及ぴ 1個の水酸基を除い た残基を意味する) の形態を有しており、 C末端 (1個のアミノ酸を含むスぺー サ一の場合には α—カルボキシル基) で (1 S, 9 S) — 1—ァミノ一 9ーェチ ルー 5—フルォロ一 2, 3—ジヒドロ一 9—ヒ ドロキシ一 4—メチル一 1H, 1 2 H—べンゾ [d e] ピラノ [3' , 4' : 6, 7] インドリジノ [1, 2— b] キノリン一 10, 1 3 (9H, 15H) —ジオンの 1位のアミノ基にペプチド結 合する。 好ましいスぺーサ一は 2から 6個のアミノ酸残基で構成されるオリゴぺプチド 残基を含むスぺーサ一である。 スぺーサーを構成するアミノ酸の種類は特に限定 されないが、 例えば、 L—又は D—アミノ酸、 好ましくは L—アミノ酸を用いる ことができ、 α—アミノ酸のほか、 β—ァラニン、 ε—アミノカプロン酸、 Ί— ァミノ酪酸などを用いてもよい。 このような α—アミノ酸以外のアミノ酸は、 ス ぺーサ一中で薬物担体に近接した位置に配置されることが好ましい。
オリゴぺプチド残基を含むスぺーサーを用いる場合のアミノ酸配列は特に限定 されないが、 例えば、 スぺーサ一が一 X— Ζ—で表されるジペプチドの残基 (X は疎水性アミノ酸の残基を示し、 Ζは親水性アミノ酸の残基を示し、 一 X— Ζ _ は疎水性アミノ酸 (X) と親水性アミノ酸 (Ζ ) とがそれぞれ Ν末端側及び C末 端側となってぺプチド結合したジぺプチドの Ν末端のアミノ基及び C末端のカル ボキシル基からそれぞれ 1個の水素原子及び 1個の水酸基を除いた残基を意味す る) であるか、 又は該ジペプチドの残基を部分ペプチド配列として含むスぺーサ 一を好適に用いることができる。 疎水性アミノ酸としては、 例えば、 フエニルァ ラニン、チロシン、ロイシンなどを用いることができ、親水性アミノ酸としては、 例えば、 グリシン、 ァラニンなどを用いることができる。 スぺーサ一がこのよう なジペプチド残基の繰り返し配列 (例えば一 X— Ζ— X— Ζ—, - Χ - Ζ - Χ - Ζ— X— Ζ—など) を有していてもよい。
このようなジぺプチド構造を含むスぺーサーを用いると、 スぺーサ一がぺプチ ダーゼが豊富であると考えられる腫瘍部位や炎症部位で加水分解され、 当該部位 において短時間に高濃度の医薬化合物が遊離するので、 上記ジぺプチドを含むス ぺーサ一と医薬化合物とが結合して形成される部分構造は、 本発明の D D S化合 物の好ましい部分構造である。
スぺーサ一として利用可能なオリゴぺプチド残基の具体例を以下の表に示すが、 本発明の D D S化合物に用いられるスぺーサ一は以下のものに限定されることは なく、 スぺーサ一種類の選択は、 医薬化合物の至適な遊離速度を与えるように当 業者が適宜なしうることはいうまでもない(ぺプチド配列は左側が Ν末端であり、 C末端(1個のアミノ酸を含むスぺーサ一の場合には 一カルボキシル基)で(1 S, 9 S) _ 1—アミノー 9ーェチノレー 5—フルオロー 2, 3—ジヒ ドロー 9— ヒ ドロキシ _ 4ーメチルー 1H, 1 2 H—べンゾ [d e] ピラノ [3, , 4, : 6, 7] インドリジノ [1, 2_13] キノリンー 10, 13 (9H, 15 H) - ジオンの 1位のアミノ基にペプチド結合する) 。 D— P h eは D—フエ二ルァラ ユン残基を示し、 その他のアミノ酸は L一アミノ酸を示す。 なお、 遊離速度の大 小はドキソルビシンを結合した DD S化合物の Wa 1 k e r 256担癌ラットに 対する薬効の発現の程度、 又は Wa 1 k e r 256担癌ラットの腫瘍部位におけ る遊離ドキソルビシン濃度によって判定した。 ) 。 これらのうち、 本発明の DD S化合物では、 スぺーサ一として一G 1 y -G 1 y-P h e— G 1 y—を用いる ことが特に好ましい。
(a) 遊離速度が大きいスぺーサー
— L e u— y一
— Ty r— G l y—
-P h e— G 1 y一
一 G 1 y - P h e— G 1 y一
-G 1 y -G 1 y-P h e -G 1 y―
一 G l y-P h e -G 1 y-G 1 y -
-P h e -G 1 y-G 1 y-G 1 y—
-Ph e-P e-G l y-G l y—
一 G l y-G 1 y-G 1 y— Ph e— G l y -
(b) 遊離速度が比較的大きいスぺーサー
一 G l y-G 1 y-Ph e-Ph e- 一 G l y-G 1 y-G 1 y-G 1 y-G 1 y-G 1 y-
( c ) 遊離速度が比較的小さいスぺーサー
-Ph e-Ph e- -A 1 a -G 1 y―
— P r o— G l y―
-G 1 y -G 1 y— G 1 y - P h e -
(d) 遊離速度が小さいスぺーサー
-G 1 y-
_D— P h e -G 1 y- .
一 G l y - P h e—
- S e r一 G l y - 一 G 1 y-G 1 y-
-G 1 y— G 1 y— G 1 y一
-G 1 y -G 1 y— G 1 y-G 1 y—
(1 S, 9 S) — 1一アミノー 9ーェチルー 5—フルオロー 2, 3—ジヒ ドロ 一 9ーヒ ドロキシ一 4ーメチルー 1H, 1 2H—ベンゾ [d e] ピラノ [3, , 4 ' : 6, 7] インドリジノ [1, 2 - b] キノリン一 10, 1 3 (9 H, 1 5 H) —ジオンは、 特開平 5— 5906 1号公報に記載の方法により合成できる。 本発明の DD S化合物における上記医薬化合物の残基の導入量は、 DD S化合物 の重量に対して 3. 2〜8. 4重量%であり、 好ましくは 5. 6〜7. 6重量% である。 上記医薬化合物の導入量は、 例えば、 吸光度分析により当業者が容易に 確認できる。
本発明の DDS化合物は、 所望の抗腫瘍活性を腫瘍部位特異的に発現でき、 か つ、 高い安全性を保持した抗腫瘍剤として用いることができる。 本発明の DDS 化合物を含む医薬は、 通常、 凍結乾燥品などの形態でバイアル等に充填すること ができ、 用時溶解型の注射用又は点滴用製剤等の非経口投与用製剤として臨床に 提供されるが、 本発明の医薬の製剤形態は上記態様に限定されることはない。 上 記製剤の製造には、 例えば、 溶解補助剤、 pH調整剤、 安定化剤などの当業界で 利用可能な製剤用添加物を用いることができる。 本発明の医薬の投与量は特に限 定されないが、 一日あたり体表面積 lm2にっき約 1〜50 Omg程度、 好まし くは約 1 0〜100mgの範囲で一日一回投与し、 3〜 4週毎に繰り返すことが 好ましい。
本発明の DDS化合物の製造法は特に限定されないが、 本発明により提供され る上記の製造方法により好適に製造することができる。 本発明の方法は、 上記の 工程(A) から (D) のいずれか 1工程、又は 2以上の工程を組み合わせて含み、 最も好ましくは (A) 力 ら (D) の工程をすベて含む。 以下、 本発明の最も好ま しい形態として、 (A)から (D) の工程をすベて含む方法について説明するが、 本発明の範囲はこの好ましい形態に限定されることはない。
本発明の好ましい方法は、
(A) デキストランを含む水溶液に 4 °C± 2 °Cの温度で過ョゥ素酸ナトリウムを 含む水溶液を添加してデキストランを酸ィヒした後、 得られた反応液を 15°C以下 の温度で水素化ホウ素ナトリゥムを含む水溶液に添加してデキストランポリアル コールを得る工程;
(B) 上記工程 (A) で得られたデキストランポリアルコールにモノクロ口酢酸 ナトリゥムを反応させてカルボキシメチルデキストランポリアルコールを製造す る工程であって、 カルボキシメチル化の反応終点をキヤピラリー電気泳動法によ り決定することを特徴とする工程;
(C) ( 1 S, 9 S) — 1—アミノー 9一ェチル _ 5—フルオロー 2, 3—ジヒ ドロ一 9—ヒ ドロキシ一 4ーメチル一 1 H, 12 H—ベンゾ [d e]ピラノ [3,, 4' : 6, 7] インドリジノ [1, 2— b] キノリン一10, 1 3 (9H, 15 H) ージオンの 1位のアミノ基と、 α—ァミノ基が t e r t _ブトキシカルボ二 ル基で保護された 1個のァミノ酸の a一力ルポキシル基又は N末端が t e r t— プトキシカルボニル基で保護された 2〜8個のアミノ酸からなるオリゴぺプチド の C末端カルボキシル基とを縮合する工程であって、 縮合剤として 1—ェチルー 3— (ジメチルァミノプロピル) カルポジイミ ド又はその塩を用いることを特徴 とする工程;及ぴ (D ) 上記工程 (C ) で得られた縮合体から t e r t一ブトキシカルボ二ル基を 除去して得られる脱保護体と、 工程 (B ) で得られたカルボキシメチルデキスト ランポリアルコールとを縮合する工程であって、 縮合剤として 1—ェチル一 3—
(ジメチルァミノプロピル) カルポジイミ ド又はその塩を用いることを特徴とす る工程
を含んでいる。
工程 (A) は、 デキストランからデキストランポリアルコールを得る工程であ る。 出発原料であるデキストランの種類は特に限定されず、 α— D— 1, 6—結 合を任意に含んでいてもよい。 例えば、 一 D— l, 6—結合の割合が、 8 5 % 以上、 9 0 %以上、 又は 9 5 %以上のデキストランなどを用いることができる。 原料として用いるデキストランとしては、 デキストラン T 5 0 0 (フアルマシア 社製) 等の分子量が 5 0 0, .0 0 0程度のものが好ましい。 得られるデキストラ ンポリアルコールのポリアルコール化度は特に限定されないが、 実質的に完全に ポリアルコール化可能な条件下においてデキストランを処理することが好ましい。 上記過ヨウ素酸ナトリゥムを用いた酸化反応において、 反応時の温度上昇によ り、 テキストランポリアルコールの低分子化が生じる場合があるが、 本発明の方 法では、 この低分子化を抑制するために、 デキストランを含む水溶液中に 4 °C土 2 °Cの温度で過ヨウ素酸ナトリゥムを含む水溶液を添加することを特徴としてい る。 デキストランを含む水溶液は、 例えば緩衝剤を含んでいてもよい。 過ヨウ素 酸ナトリゥムを含む水溶液を添加する際には、 反応液の温度上昇が生じないよう に添加速度を制御することが望ましく、 部分的な温度上昇を避けるために適宜の 攪拌を行うことが望ましい。 反応は数日から 2 0日程度、 通常は 1 0日程度で完 了する。 反応液中のデキストランの濃度は、 例えば、 反応液 1リットルあたり数 グラムから 1 0 0グラム程度、 好ましくは 1リットルあたり 1 0グラム程度であ る。
反応の完了後、 必要に応じて得られた反応液にエチレングリコールなどを加え て過剰の過酸を消費させ、 さらに必要に応じて反応液の p Hを中性付近 (例えば p H 6 . 5程度) に調節した後、 この反応液を 1 5 °C以下の温度で水秦化ホゥ素 ナトリウムを含む水溶液に添加して還元を行う。 還元反応に際しても、 反応時の 温度上昇によりデキストランポリアルコールの低分子化が生じる場合があるが、 本発明の方法では、 この低分子化を抑制するために上記の酸化反応の反応液を水 素化ホウ素ナトリゥムを含む水溶液に 1 5 °C以下の温度で添加することを特徴と している。 添加速度は、 反応液の温度上昇が生じないように制御することが望ま しく、 部分的な温度上昇を避けるために適宜の攪拌を行うことが望ましい。 一般 的には、 添加後に反応混合物を氷冷温度で維持することにより、 反応は数時間か ら数日、 好ましくは 1日程度で完了する。
得られた反応液から、 所望の分子量を有するデキストランポリアルコールを分 画し、 次工程 (B ) の原料として用いることが望ましい。 例えば、 限外濾過膜を 用いて低分子量及び高分子量の分画を除去することが望ましく、 さらに必要に応 じて脱塩及び濃縮などの工程を付加してもよい。 脱塩及び濃縮も限外濾過膜を用 いて行うことができる。
工程 (B ) は、 上記工程 (A) で得られたデキストランポリアルコールをカル ボキシメチル化して、 重量平均分子量 (プルラン標準) が 2 4 0 , 0 0 0〜 4 8 0 , 0 0 0のカルボキシメチルデキストランポリアルコールを製造する工程であ る。 デキストランポリアルコールのカルボキシメチル化は、 例えば、 デキストラ ンポリアルコールの水酸基に対してクロル酢酸、 ブロム酢酸などのハロゲン化酢 酸又はその塩、 好ましくはモノクロル酢酸のナトリウム塩を反応させて、 デキス トランポリアルコールの水酸基を部分的にカルボキシメチル化することにより行 うことができる。 例えば、 デキストランポリアルコールを反応に関与しない不活 性溶媒 (例えば、 水、 N,N -ジメチルホルムアミ ド、 ジメチルスルホキシド等) に 溶解し、 塩基 (例えば、 水酸化ナトリウムや水酸化カリウム等) の存在下に、 ハ ロゲン化酢酸又はハロゲン化酢酸の塩を添加し、 氷冷下ないし 1 0 0 °Cの温度範 囲で数分ないし数日間反応させればよい。 好ましくは、 2 0 °Cで数時間から 1日 程度反応させることができる。 反応後、 限外濾過膜を用いて低分子量及び高分子 量の分画を除去することが望ましく、 さらに必要に応じて限外濾過膜を用いた脱 塩及び濃縮などの工程を付加してもよい。
カルボキシメチルデキストランポリアルコールのカルボキシメチル化度は、 力 ルポキシメチル化の反応温度や試薬として用いるハロゲン化酢酸又はその塩の添 加量等によりある程度の制御が可能であるが、 本発明の方法では、 より厳密に力 ルポキシメチル化の程度を 0. 14〜0. 47又は0. 23〜0. 47の範囲内 になるように制御するため、 力ルポキシメチル化の反応終点をキヤビラリ一電気 泳動法により決定することを特徴としている。
ャヒフリ一電気泳動 c a p i l l a r y e l e c t r o p h o r e s i s, CE) は、 通常、 内径 10 Ο μπι以下の溶融シリカ製のキヤピラリー内で電 気泳動を行う方法である (例えば、 馬場嘉信、 ぶんせき, 342, 1995など を参照のこと) 。 キヤピラリー電気泳動には、 キヤビラリ一ゾーン電気泳動 (C ΖΕ) 、 導電クロマトグラフィー (EKC) 、 キヤビラリーゲル電気泳動 (CG Ε) など数種の分離モードが提案されているが、 本発明の方法にはこれらの分離 モードのいずれを用いてもよレ、。 好ましくは、 キヤビラリ一ゾーン電気泳動を用 いることができ、 キヤピラリー内にリン酸、 クェン酸、 ホウ酸などの緩衝液を満 たして分離を行うことができる。 この方法により、 単位分子量あたりの電荷を正 確に測定することができ、 上記反応液中の試料の力ルポキシメチル化度を短時間 に、 かつ高感度に測定できる。 その方法の詳細を本明細書の実施例に具体的に示 したので、 当業者は、 上記の刊行物の一般的な説明及びその他の刊行物を参照し つつ、 本明細書の実施例に記載された具体的方法に従って、 必要に応じてそれら を適宜修飾ないし改変することにより、 力ルポキシメチル化の反応終点 (カルボ キシメチル化度が 0. 14〜0. 47又は0. 23〜0. 47の範囲) を容易か つ正確に確認することが可能である。
すでに説明したとおり、 キヤビラリ一電気泳動法によりカルボキシメチルデキ ストランポリアルコールのカルボキシメチル化度の測定するにあたり、 標準物質 を用いて求めた検量線を採用することができる。 検量線は、 例えば分解法又は Ν MR法のいずれかの方法により得ることができるが、 分解法と NMR法とでは、 同一の標準物質について異なるカルボキシメチル化度の測定値を与える場合があ る。 一般的に、 NMR法による力ルポキシメチル化度の測定値は分解法による測 定値に比べて 0. 0 9程度低くなる傾向がある。 従って、 NMR法で作成した検 量線を用いる場合には、 カルボキシメチル化度が 0. 1 4〜0. 3 8の範囲であ ることが望ましい。
工程(C) は、 (I S, 9 S) 一 1一アミノー 9ーェチルー 5—フルオロー 2, 3—ジヒ ドロー 9ーヒドロキシー 4ーメチルー 1 H, 1 2H—べンゾ [d e ] ピ ラノ [3, , 4, : 6, 7] インドリジノ [1, 2— b] キノリン一 1 0, 1 3 (9 H, 1 5H) ージオンの 1位のアミノ基を、 スぺーサ一として利用するオリ ゴぺプチドの C末端カルボキシル基 (1個のアミノ酸を用いる場合には α—カル ボキシル基) と縮合する工程である。 スぺーサ一として利用する上記オリゴぺプ チド又はァミノ酸は、 この反応に供するためにそれぞれ Ν末端ァミノ基又は a一 アミノ基を t e r t一ブトキシカルボニル基で保護しておく必要があるが、 その 手段は当業者に周知かつ慣用されている。
本発明の方法では、 上記の縮合反応を行うにあたり、 縮合剤として 1一ェチル — 3— (ジメチルァミノプロピル) カルボジィミ ド (E P C I ) 又はその塩、 好 ましくは 1ーェチル— 3— (ジメチルァミノプロピル) カルポジィミ ド塩酸塩を 用いることを特徴としている。 上記の縮合剤を用いると、 N, N, ージシクロへ キシルカルボジィミ ド (DC C) のような N, N, ージシクロアルキルカルボジ イミ ド類を縮合剤として用いる場合に比べて、 反応操作を簡略化でき、 反応時間 も大幅に短縮できる。 より具体的には、 縮合剤除去のための遠心分離及びカラム 操作を回避でき、 反応時間も D C Cを用いた場合の約 1 / 5程度に短縮可能であ る。 基質濃度も DC Cを用いる場合に比べて約 5倍増加させることができる。 特 に、 工業化を志向した大量合成系において、 試薬削減、 時間短縮等により大幅な コストダウンを図ることが可能である。
上記反応は、 縮合剤として E P C I又はその塩を用いる以外は、 通常の縮合剤 を用いたペプチド結合形成のための縮合反応と同様に行うことができる。 上記医 薬化合物に対して t e r t —ブトキシカルボ二ル化ァミノ酸又は t e r t —ブト キシカ^^ボニル化オリゴぺプチドを 1〜 1 . 5当量程度用い、 ジメチルホルムァ ミ ドなどの不活性溶媒中で反応を行うことができる。 反応は、 一般的に室温下で 数時間から 1日程度、 好ましくは室温下に 3時間程度で終了する。 反応液中の医 薬化合物の濃度は特に限定されないが、 通常は 1リットルあたり 5 0〜2 0 0グ ラム程度、 好ましくは 1リットルあたり 1 0 0〜1 5 0グラム程度である。
工程 (D ) は、 上記工程 (C ) で得られた縮合体から t e r t _ブトキシカル ボニル基を除去して得られる脱保護体と、 工程 (B ) で得られたカルボキシメチ ルデキストランポリアルコールとを縮合する工程である。 t e r t—ブトキシカ ルポ二ル基を除去する方法は当業者に周知かつ慣用されているが、 例えば、 トリ フルォ口酢酸で処理する方法が好ましい。脱保護体を精製する場合には、例えば、 イソプロピルエーテルなどによる洗浄を行うことができる。
' 本発明の方法では、 医薬化合物が結合したスぺーサ一の N末端アミノ基 (1個 のアミノ酸をスぺーサ一として用いる場合には α—アミノ酸) とカルボキシメチ ルデキストランポリアルコールのカルボキシル基とを結合させるにあたり、 縮合 剤として 1—ェチルー 3 - (ジメチルァミノプロピル) カルボジィミ ド ( E P C I ) 又はその塩、 好ましくは 1 —ェチルー 3 - (ジメチルァミノプロピル) カル ボジィミ ド塩酸塩を用いることを特徴としている。上記の縮合剤を用いると、 Ν, Ν, 一ジシク口へキシルカルポジィミ ド (D C C ) のような Ν , N ' ージシクロ アルキルカルポジイミ ド類を縮合剤として用いる場合に比べて、 縮合剤除去のた めの遠心分離及ぴカラム操作を回避でき、 反応時間も大幅な短縮が可能であるこ と力 ら、 工業化を志向した大量合成系において大幅なコストダウンを図ることが 可能である。 上記反応の終点は、 H P L Cにより決定するとよい。
上記反応は、 縮合剤として E P C Iを用いる以外は、 通常の縮合剤を用いたぺ プチド結合形成のための縮合反応と同様に行うことができる。 カルポキシメチル デキストランポリアルコール 1重量部に対して医薬化合物を結合したアミノ酸又 はォリゴぺプチドを 0. 1〜 0. 2重量部程度用い、 含水メタノールなどの不活 性溶媒中で反応を行うことができる。 反応は、 一般的に室温下で数時間から 1日 程度、 好ましくは室温下に 2〜 3時間程度で終了する。
なお、 本発明の方法の具体例が本明細書の実施例に示されているので、 当業者 は、 上記の一般的な説明及び実施例の具体的説明を参照しつつ、 必要に応じて適 宜の修飾ないし改変を加えて、 本発明の方法を行うことがで.きる。 また、 反応温 度や反応時間、 試薬の濃度などは当業者が本発明の範囲内で適宜選択可能である ことは言うまでもない。
本発明の DDS化合物を含む医薬は、 通常、 凍結乾燥品などの形態でバイアル 等に充填することができ、 用時溶解型の注射用または点滴用製剤等の非経口投与 用製剤として、 腫瘍治療のための医薬として臨床に提供される。 本発明の DDS 化合物の腫瘍治療のための医薬としての使用に関して国際公開 WO 97/462 60号の開示を参照として本明細書の開示に含める。 もっとも、 本発明の医薬の 製剤形態は上記態様に限定されることはなく、 上記医薬の製造には、 例えば、 溶 解補助剤、 pH調節剤、 安定化剤など当業界で利用可能な製剤用添加物を用いる ことができる。 上記医薬の投与量は特に限定されないが、 通常はー あたり体表 面積 1 m2 にっき約 0. 1〜 100 m g程度、 好ましくは約 1〜 30 m gの範囲 で非経口的に一回投与し、 3〜 4週毎に投与を繰り返すことが好ましい。 実施例
以下、 実施例により本発明をさらに具体的に説明するが、 本発明の範囲は下記 の実施例に限定されることはない。 なお、 実施例中、 (I S, 9 S) — 1—アミ ノー 9一ェチルー 5一フルォロ - 2, 3—ジヒ ドロ一 9ーヒ ドロキシ一 4ーメチ ル一 1H, 12 H—ベンゾ [d e] ピラノ [3, , 4, : 6, 7] インドリジノ
[1, 2-b] キノリン一 10, 1 3 (9 H, 1 5 H) —ジオンを 「医薬化合物 AJ と呼ぶ場合があり、 「G l y— G l y— Ph e— G l y」 はグリシル一グリ シル一フエ二ルァラニル一グリシン又はその残基を意味する。 また、 試験例にお いて用いた DD S化合物は、 上記の医薬化合物とカルボキシメチルデキストラン ポリアルコールとがテトラペプチドスぺーサー (G l y-G 1 y -P h e -G 1 y) を介して結合した DD S化合物であり、 異なるカルボキシメチル化度及び分 子量の異なる高分子キャリアーを有するように調製した。 · 例 1 :デキストランポリアルコール (De x— PA) の合成
Figure imgf000023_0001
デキストラン一 T 500 (フアルマシア社製、 300 g) を ρΗ 5. 5に調 整した 0. 2Μ酢酸緩衝液 (1 5 1) 、 N a I 04 (990 g) を純水 (15 1) に溶解し、 低温室 (約 4°C) でー晚放置した。 翌日、 デキストラン— T 500の 溶液 (3. 5°C) に Na I 04溶液 (3. 5°C) を温度上昇 (7. 0°C以下) が 起らないように徐々に注ぎ、注入後そのまま低温室で攪拌 (100 r pm)した。 10日間攪拌後、 エチレングリコール (210ml ) を加えて 2時間攪拌して過 酸の消失を P e r o X i d試験紙で確認した後、 10%N a OHを用いて反応液 を pH6. 5に調整した。 続いて、 この反応液を氷冷下で N a BH4溶液 (42 0 g、 12 1) に滴下した。 この時、 系内温度が 1 5 °Cを超えないようにし、 3 時間かけて滴下した。 その後、 反応混合物を低温室で一晚攪拌し、 翌日、 酢酸に より pH5.5に調整した後、さらに 1時間攪拌して 10%Na〇Hで pHを 7. 0とした。 得られた反応液をポール · フィルトロンの限外濾過膜 (1000 k) で処理して、 微粒子及び高分子画分の除去を行った。 さらにミリポアの限外濾過 膜 (50 k) で脱塩 (純水 90〜 100 1程度を使用) 及び濃縮を行い、 H P L Cでモニターしながら 1 997m 1まで濃縮した。 この一部 ( 1 m 1 X 3 ) をサ ンプリングし凍結乾燥した結果、 60. 1 m gであったため、 収量は 120 gと 算出された。 · 例 2 :カルボキシメチルデキストランポリアルコール (CM-D e X - P A) の 合成
Figure imgf000024_0001
CM-Dex-PA
(A) カルボキシメチルデキストランポリアルコール (CM-D e x-P A) の 合成
Na OH (1 93 g) を純水 ( 1537 m 1 ) に溶角 し、 液温を 25°Cに保ち つつデキストランポリアルコール水溶液を加え、 系内温度を 25 °Cに保ちながら 攪拌した。 この混合物にモノクロ口酢酸ナトリウムを徐々に加え、 同温度で 15 時間攪拌した。反応の終点をキヤビラリ一電気泳動法にて確認後、酢酸で p H 8. 0程度に調整し、 限外濾過を行った。 最初に 1000 kの膜で高分子を排除し、 次に 5 O kの膜で低分子 (試薬及び塩) を排除して濃縮した。 その際、 低分子の 除去状況は随時 H PLCで把握し、 低分子がほぼ除去されたことを確認して限外 濾過を終了した。 力 ^/ボキシメチルデキストランポリアルコール溶液を 3770 m lまで濃縮し、 その lm 1を凍結乾燥したところ 32. lmgであったため、 収量は 121 gと算出された。
(B) キヤピラリー電気泳動によるカルボキシメチルイ匕度の測定一その 1 キヤピラリー電気泳動は、 検出器としてフォトダイオードアレイ 1 90 nm— 300 nm (検出 1 9 5 nm) 、 キヤビラリ一としてヒューズドシリカ製内径 7 5 ιη、 有効長 500mm、 全長 67 Ommのものを用い、 泳動液には 20mM 四ホウ酸ナトリゥム水溶液を用いた。 試料は 0. 02 %アジ化ナトリゥム水溶液 で 2 m g /m 1に調製した。 試料として反応時間 1 9時間、 19. 5時間、 及ぴ 20時間の 3ロットを用いた。 検量線は、 分解法によりカルボキシメチル化度が 0. 22 0. 42、 及ぴ0. 62と確認された 3種類のカルボキシメチルデキ ストランポリアルコールを標準物質として用いて作成した。 それぞれの保持時間 (分) は 4. 496 5. 442、及び 6. 600であった。試料の保持時間 (分) は 5. 325 5. 400、 及ぴ 5. 446であった。 この結果から、 それぞれ の試料の力ルポキシメチル化度は 0. 38 0. 40、 及び 0. 41と求められ
例 3 t e r t—ブトキシカノレポエノレ (B o c) -G 1 y— G l y— Ph e— G 1 y—医薬ィ匕合物 Aの合成
Figure imgf000025_0001
医薬化合物 A ·メタンスルホン酸塩(80 g) と t e r t—ブトキシカルボ二 ルー G 1 y -G 1 y -P h e -G 1 y—OH (68 g) を N N—ジメチルホル ムアミ ド ( 1 200 m 1 ) に懸濁した。 氷冷攪拌下、 トリェチルァミン (48 m 1) 1一ェチル一3— (ジメチルァミノプロピル) カルポジイミ ド塩酸塩 (E PC I · HC 1 29. 6 g) 、 ヒ ドロキシベンゾトリアゾール (HBT 20. 8 g) を加え、 室温で攪拌した。 反応の終点を HP LCで確認後、 氷冷攪拌下、 反応液に水(800m l )を内温が 20 °C以下に保たれるよう 30分間で滴下し、 結晶を析出させた。 その後、 さらに水 (1 20 Om l) を滴下した。 つぎに、 酢 酸により溶液の pHを 7に調整した。析出した固体を濾過し水洗し、得られた結 晶を減圧下乾燥して表題の化合物 (120. 4 g、 定量的) を得た。
XH-NMR (DMS 0- d 6/TMS) δ (ρ ρ m) : 0. 97 (3 Η, m) , 1. 11 (2Η, d, J = 6. 3Hz) , 1. 1 (9Η, s) , 1. 91 (2 H, m) , 2. 05 (lH, m) , 2. 33 (4H, m) , 2. 95-3. 1 0 (4H, m) , 3. 58— 3. 72 (2H, m) , 3. 8 ( 1 H, m) , 4. 0 3 (1 H, m) , 4. 34 (1H, m) , 4. 74 ( 1 H, m) , 5. 13 (1 H, m) , 5. 33 (1 H, m) , 5, 58 (2H, m) , 7. 18 (5H, m) , 7. 49 (2H, m) 例 4: H-G 1 y -G 1 y -P h e -G 1 y—医薬化合物 A · トリフルォロ酢酸 塩の合成
CF3C00H
Figure imgf000026_0001
上記の例 3で得た t e r t—ブトキシカルポ二ルー G 1 y— G l y— Ph e -G 1 y一医薬化合物 A (120 g) にトリフルォロ酢酸(360m l ) を氷冷 下滴下した。 t e r t—ブトキシカルボ-ルー G 1 y— G l y— Ph e— G l y 一医薬化合物 Aを完全に溶解した後、 HP LCで脱 t e r t一ブトキシカルボ二 ル反応の終了を確認した。 この反応液にメタノール(360m l)及びィソプロ ピルエーテル (720m l) を内温が 0 °C〜 1 5 °Cの間となるように滴下した。 析出した結晶を濾取して酢酸ェチル (500ml) で 3回洗浄し、得られた結晶 を、 内温 50°C以下で 20%含水メタノール (400m l) に溶解し、 その後、 酢酸ェチル (400m l) 次いでィソプロピルエーテル (800m l) を加えて 再結晶した。 この結晶を濾取して含水メタノール ( 400 m 1 ) に溶解し、 活性 炭 (4. 4 g) を加えて脱色処理を行なった。 上記溶液を濾過し、 濾液に酢酸ェ チル (400m l ) 、 次いでィソプロピルエーテル (800m l ) を 55°C以下 で加えて再結晶した。濾過した結晶を減圧下乾燥し、 H-G 1 y-G 1 y-P h e— G l y_医薬化合物 A (1 1 1. 8 g、 医薬化合物 Aから換算して 90 %) を得た。
一 NMR (DMS 0- d 6/TMS) δ ( p m) : 0. 87 ( 3 H, m) , 1. 8 7 (2H, m) , 2. 17 (2H, m) , 2. 37 (3 H, m) , 2. 7
4 (1H, m) , 3. 00 ( 1 H, m) , 3. 16 ( 1 H, m) , 3. 58 (2 H, s) , 3. 65-3. 91 (4H, m) , 4. 48 (1H, m) , 5. 2 (2 H, s) , 5. 39 (2H, m) , 5. 58 (1H, m) , 6. 53 (1H, s) , 7. 2 1 (5H, m) , 7. 75 ( 1 H, d, J = 10. 9Hz) , 8. 06 (2 H, s ) , 8. 28 (1H, d, J = 8. 2Hz) , 8. 49 ( 1 H, m) , 8.
52 (1 H, m) 例 5 :本発明の DD S化合物の合成
Figure imgf000027_0001
カルボキシメチルデキストランポリアルコール(800 g) を含む水溶液に力 ルボキシメチルデキストランポリアルコール水溶液分と合わせて 32 1 となる ように純水を加え、 さらにメタノール (60 1 ) を加えた。 この混合液に例 4で 得た H— G 1 y-G 1 y-P h e -G 1 y—医薬化合物 A (133 g) とヒドロ キシベンゾトリアゾール(23. 4 g) を溶解した 20 %含水メタノール(4 1) を添加した。 1ーェチル— 3— (ジメチルァミノプロピル) カルボジィミ ド塩酸 塩 (33. 1 g) を加え、 IN Na OHにて pHを 6. 8〜7. 2に調整した。 この混合物を室温 (23°C± 5°C) で、 2〜 3時間反応させた。 さらに 1ーェチ ルー 3 - (ジメチルァミノプ ΰピル) カルポジィミ ド塩酸塩 ( 8. 1 g) を添カロ し、 1 N HC 1にて pHを 6. 8〜7. 2に調整し、 引続き 2〜 3時間程度反 応させた。 さらに 1—ェチル一 3― (ジメチルァミノプロピル) カルポジィミ ド 塩酸塩 (5. 6 g) を添加し、 IN HC 1にて pHを 6. 8〜7. 2に調整し、 引続き 1時間程度反応させた。 反応終了後、 1N ?^&011にて反応液の :9:を 8. 7〜9. 2に調整し、 10°C以下で保存した。 その後、 限外濾過膜 (50 k) にて溶液を脱塩及び濃縮した。次にメンブランフィルターで精密濾過し、得られ た溶液を凍結乾燥し、 本発明の DDS化合物 (880 g) を得た。 例 6 :デキストランポリアルコールの低分子化における反応温度の影響(酸化反 応)
基質濃度 1 %、 20 gスケールで例 1に従いデキストランの酸化反応を行った。 反応温度を 4、 8、 1 2、 1 5°Cに設定し、 反応時間を変化させた時の生成体の ゲル濾過クロマトグラフィーにおける保持時間を測定した。 表 1に示すように、 反応温度 1 2°C及び 1 5°Cの場合には、 6日目には低分子化による明らかな保持 時間の遅れが確認された。 8°Cにおいても、 10日目には、 明らかな保持時間の 遅れが確認できた。 表 1 反応温度/時間 3曰間 6日間 10日間
4°C 10.46分 10.44分 10.53分
8°C 10.52分 10.63分 10.83分
12°C 10.45分 10.63分
15°C 10.59分 10.92分 例 7:デキストランポリアルコールの低分子化における反応温度の影響(酸化反 応)
例 6の結果に基づき、 さらに温度範囲を細かく設定 (4°C、 1°C、 6. 5°C) して同様の実験を行った。表 2に示すように、すべての温度範囲において、低分 子化が起こることなく反応は進行したが、 1°Cで反応させた場合には、反応系中 の塩の析出が多くなつた。以上の結果から、 この反応の温度の安全域は 2〜6°C と判断された。 表 2 反応温度/時間 3日間 6日間 10日間
4。C 10.40分 10.39分 10.49分
1°C 10.42分 10.39分 10.45分
6. 5。C 10.40分 10.36分 10.39分 例 8:デキストランポリアルコールの低分子化における反応温度の影響(還元反 応)
例 1に従い、デキストランの酸ィヒ反応に引き続く還元反応を行った。反応温度 を 10、 15、 20、 30°Cに設定し、 12〜 24時間反応させた後、 生成体の ゲル濾過クロマトグラフィ一における保持時間を測定した。 表 3に示すように、 反応温度が 15 °Cを超えると明らかな低分子化が認められた。 表 3
反応温度 ゲル濾過クロマトグ
ラフィ一による判定
1 o。c 低分子化なし
15°C 若干の低分子化
20。C 低分子化
30。C 顕著な低分子化 例 9:カルボキシメチル化度の測定方法の違いによる DD S化合物のカルポキシ メチル化度の測定値変動
3種類のカルボキシメチルデキストランポリアルコールを標準物質として用 いて分解法及び NMR法により検量線を作成した。この検量線を用いて例 2 (B) と同様にして、 DDS化合物 (3ロット) のカルボキシメチルイ匕度を測定した。 結果を以下に示す。 NMRで求めた検量線を用いると、いずれのロットについて もカルボキシメチル化度の測定値が分解法で求めた場合よりも 0.09減少して いた。 ' 表 4 標準物質 トランポリアノレコーノレ) のカルボキシ メチル化度
標準物質 No. 1 標準物質 No. 2 標準物質 No. 3 分解法 0. 333 0. 439 0. 584
NMR法 0. 248 0. 360 0. 523 表 5 DD S化合物のカルボシキメチル化度
ロッ M ロッ卜 2 ロッ卜 3 分解法 0. 36 0. 37 0. 37
NMR法 0. 27 0. 28 0. 28
Δ 0. 09 Δ 0. 09 Δ 0. 09 以下、試験例を示すが、試験例中に示した力ルポキシメチル化度は分解法によ り求めた値である。 試験例 1
(A) 方法
動物は 6週齢の雄の BALB/cマウス (日本 S LC株式会社) を市販の飼料 及び水を自由に摂取させ、 1週間の馴化後に試験に供した。腫瘍細胞はマウス腫 瘍細胞 Me t h A線維肉腫を同系マウスである BALBZcの腹腔内にて 1週 間毎に継代維持した。 ェンドトキシン濃度 50 p g/m 1以下のハンクス培地 (HB S S、 G i b c o-BRL)を用いてマウスの腹腔内より腫瘍細胞を揉取 し、 数回の遠心操作 (約 600 r pm、 5—10分、 4°C) で洗浄した後、 HB S S培地に浮遊して 1 X 106/0. 1 m 1 Zマウスの割合でマウスの腹腔内に 移植した。
抗腫瘍試験では、 Me t h A細胞を 1 Χ 1 0 ΘΖθ. 1m l Zマウスの割合 でマウスの右鼠径部に皮下移植し (d a y 0) 、移植後 7又は 1 2日にノギスで 測定した腫瘍の長径 (L) 及び短径 (W) から算出した推定腫瘍重量 (ETW= L XW2/2m g) の群平均が約 10 Omgになるようにマウスを 6又は 7匹に 群分けし、検体を単回あるいは 4日毎 4回の用法で静脈内投与した。マウスを S重 瘍移植後 21 Θ又は 26日に類椎脱臼により屠殺し、腫瘍を摘出してその重量を 測定した。 腫瘍増殖抑制効果 (I R) は、 I R= (1 -TWt/TWc) X 10 0 (%) の式を用いて腫瘍重量値から算出した (TWt、 TWcはそれぞれ検体 投与群及び対照群の平均腫瘍重量)。 I Rが 58 %以上の場合に抗腫瘍効果を有 効と判断した。対照群と検体投与群の腫瘍重量の有意差検定はダネット法により 行った。
さらに、検体の副作用の強さを評価するために、 体重減少率 (BWL) 及び使 用マウス数に対する毒性死したマウス数との比(D/U) を毒性パラメーターと して設定した。 BWLは BWL= (1 -BWn/BWs) X 100 (%) の式を '用い、 投与開始時におけるマウスの平均体重 (BWs) 及ぴ n日目のマウスの平 均体重 (BWn) より算出した。 この BWLの最大値を BWLmaxとした。 ただ し、 投与開始日に比較し体重減少が認められない場合は BWLmaxを 0以下 (< 0) として示した。 なお、 検体は日本薬局方注射用生理食塩水に溶解し、 投与液 量 10又は 20ml /k gにて静脈内投与した。
(B) 結果
カルボキシメチルデキストランポリアルコールの分子量が 48, 000〜45 7, 000である DD S化合物 (力ルポキシメチル化度 0. 37〜0. 46、 薬 物導入量 4. 6〜6. 4重量%) について単回投与での試験を行ったところ、 力 ルボキシメチルデキストランポリアルコールの分子量が 200, 0 '00〜300, 000では、 低用量で安定して 58 %以上の有意な抗腫瘍効果が確認されたが、 分子量が 200, 000未満では最小有効量が増大した。 また、 分子量が 50 , 000未満の場合には、 毒性及び抗腫瘍効果が減弱し、 尿排泄を受けているもの と考えられた。 したがってカルボキシメチルデキストランポリアルコールの分子 量が 200, 000以上であれば、 低用量でも安定した抗腫瘍効果を得ることが できると結論された。 一方、 カルボキシメチルデキストランポリアルコールの分 子量が 500, 000を超えると、 粘性のために物理的傷害に対する安定性が悪 いなどの問題が生じた。 これらの結果から、 DD S化合物におけるカルボキシメ チルデキストランポリアルコールの分子量は 50, 000〜500, 000の範 囲であることが必要であり、 所望の抗腫瘍効果を達成し、 かつ安定な製品を製造 するためにはカルボキシメチルデキストランポリアルコールのプルラン標準重量 平均分子量が 240, 000〜480, 000の範囲であることが望ましいと結 剛された。 試験例 2
7週齢の BALB/c系雄マウス 69匹 (日本エスエルシー株式会社) を 1週 間馴化し、 1群 5匹としてカルボキシメチル化度の異なる DD S化合物 (薬物導 入量 5. 3〜6. 3重量%、 分子量 270, 000〜 330, 000) を投与し た。 投与時の平均体重は 21. 1から 25. 4 gであった。 動物は、 室温 (23 ± 2 °C) 、 湿度 ( 55 ± 20 %) 、 照明時間 12時間 (8 : 00〜 20 : 00) に設定された室内でアルミ製ケージに 5匹ずつ収容し、 市販の固形飼料 (F 2、 船橋農場製) 及び塩素添加上水道水を自由に摂取させて飼育した。 DDS化合物 は日本薬局方生理食塩水に溶解し、 1. 02〜1. 36mg/m 1の濃度として lm 1/k gの液量で尾静脈内に投与した。
動物の症状を 1日 1回、 投与日を含めて 1 5日間観察し、 投与前並びに投与後 3、 7、 10、 及び 14日に体重を測定した。 死亡例は死亡発見後速やかに剖検 し、 生存例は投与後 14日にエーテル麻酔下に腹大動脈切断により放血屠殺し、 全身諸臓器を肉眼的に観察した。 体重データは群平均値土標準偏差を算出し、 そ の後、 有意水準 5%で統計学的解析を行った。 その結果、 カルボキシメチル化度 が 0. 38、 0. 43、 及び 0. 47の DD S化合物の最大耐用量 (MTD) は それぞれ 1 1 - 7、 1 1. 7、 及ぴ 1 0. 3mg/k gであり、 カルボキシメチ ル化度が 0. 43を上回ると毒性が強くなる傾向が示唆された。 また、 カルポキ シメチル化度が 0. 53の DDS化合物を用いて同様に毒性を評価したところ、 1 Omg/k g投与群で 6匹中 3匹が死亡し、 体重減少及ぴ致死毒性が顕著に増 強された。 一方、 カルボキシメチル化度が 0. 23の DD S化合物の MTDは力 ルポキシメチル化度が 0. 38の DD S化合物と同等であった。 従って、 安全性 の面から DD S化合物のカルボキシメチル化度は 0. 23〜0. 47の範囲が好 ましいと結論された。 試験例 3
上記試験例 2と同様にして、医薬化合物残基の導入量が 3. 2〜 1 5重量%の DDS化合物 (カルボキシメチルイ匕度 0. 37〜0. 40、 分子量 260, 00 0〜320, 000) について抗腫瘍試験を実施した。 この結果、 1. 25mg Zk g投与群では導入率 3. 2〜7. 3重量%の範囲で1 80%以上と薬効が 認められたものの、導入率が 8. 4重量%を上回ると (〜1 5%の範囲まで) 薬 効がこれらよりも明らかに低下する傾向が認められた。また、導入率 8.4重量% を上回る場合には、 2. 5又は 5 m g/k g投与群において他の複合体と同等の 薬効を示したものの、 1 Omg/k g投与群において致死毒性の増強が認められ た。 これらの結果から、所望の抗腫瘍効果を達成し、安全性の高い DDS化合物 を提供するためには、 医薬化合物残基の導入量を 3. 2〜8. 4重量%の範囲と することが望ましいと結論された。 産業上の利用可能性
本発明の D D S化合物は高い安全性と広!/、薬効域を有しており、抗腫瘍剤とし て臨床上極めて有用である。 また、本発明の方法は、上記 DDS化合物を高品質 に、 かつ効率的に高収率で製造でき、 工業ィ匕に適している。

Claims

請 求 の 範 囲
1. (I S, 9 S) — 1—ァミノ _ 9—ェチル一 5—フルオロー 2, 3—ジヒ ド 口 _ 9ーヒ ドロキシ一 4—メチル一 1 H, 12H—ベンゾ [d e]ピラノ [3 ' , 4 ' : 6, 7] インドリジノ [1, 2— b] キノリン一 10, 13 (9H, 1 5 H)—ジオンの 1一位のアミノ基とカルボキシメチルデキストランポリアルコー ルのカルボキシル基とが 1個のアミノ酸又はべプチド結合した 2〜 8個のアミ ノ酸からなるスぺーサーを介して結合した DD S化合物において、
(1) ( 1 S, 9 S) 一 1一アミノー 9ーェチルー 5—フルォロ _ 2, 3—ジヒ ドロ一 9ーヒ ドロキシー 4ーメチノレー 1H, 1211—べンゾ[<1 e]ピラノ [3,, 4 ' : 6, 7] インドリジノ [1, 2 - b] キノリン一 1 0, 1 3 ( 9 H, 15 H)—ジオンの残基の導入量が DD S化合物全重量に対して 3. 2〜8. 4重量0 /0 の範囲であり、
(2) 上記カルボキシメチルデキストランポリアルコールのプルラン標準重量平 均分子量が 240, 000〜 480, 000の範囲であり、 かつ
(3) 上記カルボキシメチルデキストランポリアルコールのカルボキシメチル化 度が 0. 23〜0. 47の範囲である
ことを特徴とする DDS化合物。
2. (1 S, 9 S) — 1一アミノー 9ーェチルー 5—フルオロー 2, 3—ジヒ ド 口一 9—ヒ ドロキシー 4—メチルー 1H, 12 H—べンゾ [d e]ピラノ [3' , 4 ' : 6, 7] インドリジノ [1, 2— b] キノリン一 10, 13 (9 H, 1 5 H)—ジオンの 1一位のアミノ基とカルボキシメチルデキストランポリアルコー ルのカルポキシル基とが 1個のアミノ酸又はぺプチド結合した 2〜 8個のアミ ノ酸からなるスぺーサーを介して結合した DD S化合物において、
(1) (1 S, 9 S) — 1ーァミノ一 9一ェチノレ一 5—フルオロー 2, 3—ジヒ ドロ _ 9—ヒ ドロキシー 4—メチル一 1 H, 12 H—ベンゾ [d e]ピラノ [3 ', 4, : 6, 7] インドリジノ [1, 2-b] キノリン一 10, 13 ( 9 H, 1 5 H)—ジオンの残基の導入量が DDS化合物全重量に対して 3. 2〜8. 4重量% の範囲であり、
(2) 上記カルボキシメチルデキストランポリアルコールのプルラン標準重量平 均分子量が 240, 000〜 480, 000の範囲であり、 かつ
(3) 上記カルボキシメチルデキストランポリアルコールのカルボキシメチル化 度が 0. 14〜0. 47の範囲である
ことを特徴とする DDS化合物。
3. (1 S, 9 S) — 1一アミノー 9—ェチルー 5—フルオロー 2, 3—ジヒド ロー 9ーヒ ドロキシー 4ーメチルー 1 H, 12 H—べンゾ [d e]ピラノ [3,, 4, : 6, 7] インドリジノ [1, 2— b] キノリン一 10, 13 ( 9 H, 15 H)—ジオンの 1一位のァミノ基とカルボキシメチルデキストランポリアルコー ルのカルボキシル基とが 1個のアミノ酸又はペプチド結合した 2〜 8個のアミ ノ酸からなるスぺーサーを介して結合した DDS化合物において、
(1 ) (I S, 9 S) — 1ーァミノ _ 9ーェチルー 5—フルオロー 2, 3一ジヒ ドロー 9ーヒ ドロキシ一 4—メチル一 1 H, 12H—ベンゾ [d e]ピラノ [3,, 4, : 6, 7] インドリジノ [1, 2 - b] キノリン一 10, 1 3 ( 9 H, 1 5 H)—ジオンの残基の導入量が DD S化合物全重量に対して 3. 2〜8. 4重量% の範囲であり、
(2) 上記カルボキシメチルデキストランポリアルコールのプルラン標準重量平 均分子量が 240, 000〜480, 000の範囲であり、 かつ
(3) 上記カルボキシメチルデキストランポリアルコールの力ルポキシメチル化 度が 0. 14〜0. 38の範囲である
ことを特徴とする DDS化合物。
4. 上記 (3) におけるカルボキシメチル化度が、 標準物質であるカルボキシメ チルデキストランポリアルコールを分解法又は NMR法で測定することにより得 られる検量線を用いてキヤビラリ一電気泳動法により測定された力ルポキシメチ ル化度である請求の範囲第 1項ないし第 3項のいずれか 1項に記載の D D S化合 物。
5. 上記 (3) におけるカルボキシメチル化度が、 標準物質であるカルボキシメ チルデキストランポリアルコールを分解法で測定することにより得られる検量線 を用いてキヤビラリ一電気泳動法により測定されたカルボキシメチル化度である 請求の範囲第 1項に記載の D D S化合物。
6. 上記 (3) におけるカルボキシメチルイ匕度が、 標準物質であるカルボキシメ チルデキストランポリアルコールを NMR法で測定することにより得られる検量 線を用いてキヤピラリー電気泳動法により測定されたカルボキシメチル化度であ る請求の範囲第 3項に記載の DD S化合物。
7. 請求の範囲第 1項ないし第 6項のいずれか 1項に記載の DD S化合物を含む 抗腫瘍剤 0 '
8. 請求の範囲第 1項ないし第 6項のいずれか 1項に記載の D D S化合物の製造 方法であって、 下記の工程:
(A) デキストランを含む水溶液に 4 °C± 2 °Cの温度で過ヨウ素酸ナトリウムを 含む水溶液を添加してデキストランを酸ィ匕した後、 得られた反応液を 15°C以下 の温度で水素化ホウ素ナトリゥムを含む水溶液に添加してデキストランポリアル コールを得る工程;
(B) デキストランポリアルコールにモノクロ口酢酸ナトリゥムを反応させて力 ルボキシメチルデキストランポリアルコールを製造する工程であって、 カルボキ シメチル化の反応終点をキヤビラリ一電気泳動法により決定することを特敷とす る工程;
(C) (1 S, 9 S) — 1—アミノー 9一ェチル一 5—フルオロー 2, 3—ジヒ ドロー 9ーヒ ドロキシ一 4—メチルー 1 Η, 12 Η—ベンゾ [d e]ピラノ [3 ', 4, : 6, 7] インドリジノ [1, 2— b] キノ リン一 10, 1 3 (9H, 15 H) —ジオンの 1位のアミノ基と、 α—アミノ基が t e r t—プトキシカルボ二 ル基で保護された 1個のアミノ酸の α—力ルポキシル基又は N末端が t e r t— プトキシカルポニル基で保護された 2〜 8個のァミノ酸からなるオリゴぺプチド の C末端カルボキシル基とを縮合する工程であって、 縮合剤として 1ーェチルー 3— (ジメチルァミノプロピル) カルポジイミド又はその塩を用いることを特徴 とする工程;及ぴ
(D) ( 1 S, 9 S) _ 1—アミノー 9—ェチル _ 5—フルオロー 2, 3—ジヒ ドロー 9—ヒ ドロキシ一 4—メチノレ一 1 H, 12 H—べンゾ [d e]ピラノ [3,, 4, : 6, 7] インドリジノ [1, 2— b] キノリン一10, 1 3 (9H, 1 5 H) ージオンの 1位のアミノ基と、 α—ァミノ基が t e r t—ブトキシカルボ二 ル基で保護された 1個のァミノ酸のひ一カルボキシル基又は N末端が t e r t— プトキシカルポニル基で保護された 2〜 8個のァミノ酸からなるオリゴぺプチド の C末端力ルポキシル基とを縮合した縮合体から t e r tーブトキシカルボ二ノレ 基を除去して得られる脱保護体と、 カルボキシメチルデキストランポリアルコー ルとを縮合する工程であって、 縮合剤として 1ーェチルー 3— (ジメチルァミノ プロピル) カルボジィミ ド又はその塩を用いることを特徴とする工程
からなる群から選ばれる 1以上の工程を含む方法。
9. 請求の範囲第 1項ないし第 6項のいずれか 1項に記載の DD S化合物の製造 方法であって、 下記の工程:
(A) デキストランを含む水溶液に 4 °C± 2 °Cの温度で過ヨウ素酸ナトリウムを 含む水溶液を添加してデキストランを酸化した後、 得られた反応液を 15°C以下 の温度で水素化ホウ素ナトリゥムを含む水溶液に添加してデキストランポリアル コールを得る工程;
(B) 上記工程 (A) で得られたデキストランポリアルコールにモノクロ口酢酸 ナトリゥムを反応させてカルボキシメチルデキストランポリアルコールを製造す る工程であって、 カルボキシメチル化の反応終点をキヤピラリー電気泳動法によ り決定することを特徴とする工程;
(C) ( 1 S, 9 S) ― 1一アミノー 9—ェチル一 5—フノレオ口一 2, 3—ジヒ ドロー 9ーヒ ドロキシ一 4—メチノレー 1 H, 12H—ベンゾ [d e ]ピラノ [3,, 4' : 6, 7] インドリジノ [1, 2— b] キノ リン一 10, 1 3 (9H, 15 H) ージオンの 1位のアミノ基と、 一ァミノ基が t e r t—ブトキシカルポ二 ル基で保護された 1個のアミノ酸のひ一力ルポキシル基又は N末端が t e r t— ブトキシカルボニル基で保護された 2〜 8個のァミノ酸からなるオリゴぺプチド の C末端カルボキシル基とを縮合する工程であって、 縮合剤として 1ーェチルー 3- (ジメチルァミノプロピル) カルポジイミ ド又はその塩を用いることを特徴 とする工程;及び
(D) 上記工程 (C) で得られた縮合体から t e r t—ブトキシカルボ二ル基を 除去して得られる脱保護体と、 カルボキシメチルデキストランポリアルコールと を縮合する工程であって、 縮合剤として 1—ェチル _ 3— (ジメチルァミノプロ ピル) カルポジイミ ド又はその塩を用いることを特徴とする工程
を含む方法。 .
10. 請求の範囲第 1項ないし第 6項のいずれか 1項に記載の DDS化合物の製 造に用いるためのプルラン標準重量平均分子量が 240, 000〜480, 00 0の範囲であり、 カルボキシメチル化度が 0. 23〜0. 47の範囲であるカル ボキシメチルデキストランポリアルコール。
1 1. 請求の範囲第 1項ないし第 6項のいずれか 1項に記載の DDS化合物の製 造に用いるためのプルラン標準重量平均分子量が 240, 000〜480, 00 0の範囲であり、 カルボキシメチル化度が 0. 14〜0. 47の範囲であるカル ボキシメチルデキストランポリアルコール。
1 2. 請求の範囲第 1項ないし第 6項のいずれか 1項に記載の DDS化合物の製 造に用いるためのプルラン標準重量平均分子量が 240, 000〜480, 00 0の範囲であり、 カルボキシメチル化度が 0. 14〜0. 38の範囲であるカル ボキシメチルデキストランポリアルコール。
1 3. 上記カルボキシメチル化度が、 標準物質であるカルボキシメチルデキスト ランポリアルコールを分解法又は NMR法で測定することにより得られる検量線 を用いてキヤビラリ一電気泳動により測定されたカルボキシメチル化度である請 求の範囲第 10項ないし第 12項のいずれか 1項に記載のカルボキシメチルデキ ストランポリアルコール。 .
1 4 . 上記カルボキシメチル化度が、 標準物質であるカルボキシメチルデキス ト ランポリアルコールを分解法で測定することにより得られる検量線を用いてキヤ ビラリ一電気泳動により測定されたカルボキシメチル化度である請求の範囲第 1 0項に記載のカルボキシメチルデキストランポリアルコール。
1 5 . 上記カルボキシメチル化度が、 標準物質であるカルボキシメチルデキスト ランポリアルコールを NMR法で測定することにより得られる検量線を用いてキ ャピラリー電気泳動により測定されたカルボキシメチルイヒ度である請求の範囲第 1 2項に記載のカルボキシメチルデキストランポリアルコール。
1 6 . 請求の範囲第 1 0項ないし第 1 5項のいずれか 1項に記載のカルボキシメ チルデキストランポリアルコールの製造方法であって、
(A) デキストランを含む水溶液に 4 °C± 2。Cの温度で過ヨウ素酸ナトリゥムを 含む水溶液を添加してデキストランを酸化した後、 得られた反応液を 1 5 °C以下 の温度で水素化ホウ素ナトリゥムを含む水溶液に添加してデキストランポリアル コールを得る工程;及ぴ
( B ) 上記工程 (A) で得られたデキストランポリアルコールにモノクロ口酢酸 ナトリゥムを反応させてカルボキシメチルデキストランポリアルコールを製造す る工程であって、 カルボキシメチル化の反応終点をキヤピラリー電気泳動法によ り決定することを特徴とする工程
を含む方法。 '
PCT/JP2001/005498 2000-06-29 2001-06-27 Compose dds et son procede de preparation WO2002000734A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002412582A CA2412582A1 (en) 2000-06-29 2001-06-27 Dds compound and process for the preparation thereof
BR0112287-8A BR0112287A (pt) 2000-06-29 2001-06-27 Composto dds e seu método de preparação
EP01945629A EP1298145A4 (en) 2000-06-29 2001-06-27 DDS CONNECTION AND METHOD FOR PRODUCING THE SAME
IL15350501A IL153505A0 (en) 2000-06-29 2001-06-27 Dds compound and process for the preparation thereof
AU2001267831A AU2001267831A1 (en) 2000-06-29 2001-06-27 DDS compound and process for the preparation thereof
MXPA02012791A MXPA02012791A (es) 2000-06-29 2001-06-27 Compuestos dds y metodo para prepararlo.
NO20026212A NO20026212L (no) 2000-06-29 2002-12-23 Forbindelse for medikamentavleveringssystem og fremgangsmåte for fremstilling av forbindelsen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-195919 2000-06-29
JP2000195919 2000-06-29

Publications (1)

Publication Number Publication Date
WO2002000734A1 true WO2002000734A1 (fr) 2002-01-03

Family

ID=18694503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005498 WO2002000734A1 (fr) 2000-06-29 2001-06-27 Compose dds et son procede de preparation

Country Status (12)

Country Link
US (1) US20030166513A1 (ja)
EP (1) EP1298145A4 (ja)
KR (1) KR20030031502A (ja)
CN (1) CN1449412A (ja)
AU (1) AU2001267831A1 (ja)
BR (1) BR0112287A (ja)
CA (1) CA2412582A1 (ja)
IL (1) IL153505A0 (ja)
MX (1) MXPA02012791A (ja)
NO (1) NO20026212L (ja)
WO (1) WO2002000734A1 (ja)
ZA (1) ZA200300743B (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390624B2 (en) 1994-07-25 2008-06-24 Roche Diagnostics Gmbh Metal chelate-labelled peptides
WO2014057687A1 (ja) * 2012-10-11 2014-04-17 第一三共株式会社 抗体-薬物コンジュゲート
WO2014061277A1 (ja) * 2012-10-19 2014-04-24 第一三共株式会社 親水性構造を含むリンカーで結合させた抗体-薬物コンジュゲート
WO2015146132A1 (ja) * 2014-03-26 2015-10-01 第一三共株式会社 抗cd98抗体-薬物コンジュゲート
WO2015155976A1 (ja) * 2014-04-10 2015-10-15 第一三共株式会社 抗her2抗体-薬物コンジュゲート
US9850312B2 (en) 2013-12-25 2017-12-26 Daiichi Sankyo Company, Limited Anti-TROP2 antibody-drug conjugate
US10155821B2 (en) 2014-01-31 2018-12-18 Daiichi Sankyo Company, Limited Anti-HER2 antibody-drug conjugate
US10383878B2 (en) 2014-04-10 2019-08-20 Daiichi Sankyo Company, Limited Anti-HER3 antibody-drug conjugate
US10906974B2 (en) 2017-01-17 2021-02-02 Daiichi Sankyo Company, Limited Anti-GPR20 antibody and anti-GPR20 antibody-drug conjugate
US11077202B2 (en) 2017-05-15 2021-08-03 Daiichi Sankyo Company, Limited Anti-CDH6 antibody and anti-CDH6 antibody-drug conjugate
US11173213B2 (en) 2015-06-29 2021-11-16 Daiichi Sankyo Company, Limited Method for selectively manufacturing antibody-drug conjugate
US11273155B2 (en) 2016-12-12 2022-03-15 Daiichi Sankyo Company, Limited Combination of antibody-drug conjugate and immune checkpoint inhibitor
US11318212B2 (en) 2017-08-31 2022-05-03 Daiichi Sankyo Company, Limited Method for producing antibody-drug conjugate
US11872289B2 (en) 2018-05-18 2024-01-16 Daiichi Sankyo Co., Ltd. Anti-MUC1 antibody-drug conjugate
US11945882B2 (en) 2017-08-31 2024-04-02 Daiichi Sankyo Company, Limited Method for producing antibody-drug conjugate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL221351B1 (pl) 2012-03-14 2016-03-31 Politechnika Warszawska Sposób otrzymywania nanocząstek polisacharydowych
FR3045608A1 (fr) * 2015-12-18 2017-06-23 Rhodia Operations Dextrane carboxyle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046260A1 (en) * 1996-06-06 1997-12-11 Daiichi Pharmaceutical Co., Ltd. Drug complexes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69425464T2 (de) * 1993-02-26 2001-05-23 Drug Delivery System Institute, Ltd. Polysaccharidderivat und wirkstoffträger
SG50747A1 (en) * 1995-08-02 1998-07-20 Tanabe Seiyaku Co Comptothecin derivatives
TW409058B (en) * 1996-06-06 2000-10-21 Daiichi Seiyaku Co Method for preparation of a drug complex
KR100581443B1 (ko) * 1998-05-22 2006-05-23 다이이찌 세이야꾸 가부시기가이샤 약물복합체
EA003790B1 (ru) * 1998-10-30 2003-10-30 Дайити Фармасьютикал Ко., Лтд. Соединение сдлс и способ его измерения
EP1308171A1 (en) * 2000-07-13 2003-05-07 Daiichi Pharmaceutical Co., Ltd. Pharmaceutical compositions containing dds compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046260A1 (en) * 1996-06-06 1997-12-11 Daiichi Pharmaceutical Co., Ltd. Drug complexes

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390624B2 (en) 1994-07-25 2008-06-24 Roche Diagnostics Gmbh Metal chelate-labelled peptides
JP2017036274A (ja) * 2012-10-11 2017-02-16 第一三共株式会社 抗体−薬物コンジュゲート
US11633493B2 (en) 2012-10-11 2023-04-25 Daiichi Sankyo Company, Limited Antibody-drug conjugate
AU2013328111B2 (en) * 2012-10-11 2017-11-02 Daiichi Sankyo Company, Limited Antibody-drug conjugate
JP7523506B2 (ja) 2012-10-11 2024-07-26 第一三共株式会社 抗体-薬物コンジュゲート
US9808537B2 (en) 2012-10-11 2017-11-07 Daiichi Sankyo Company, Limited Antibody-drug conjugate
US20150297748A1 (en) 2012-10-11 2015-10-22 Daiichi Sankyo Company, Limited Antibody-drug conjugate
JP5953378B2 (ja) * 2012-10-11 2016-07-20 第一三共株式会社 抗体−薬物コンジュゲート
JP2023011799A (ja) * 2012-10-11 2023-01-24 第一三共株式会社 抗体-薬物コンジュゲート
JPWO2014057687A1 (ja) * 2012-10-11 2016-09-05 第一三共株式会社 抗体−薬物コンジュゲート
JP2016196484A (ja) * 2012-10-11 2016-11-24 第一三共株式会社 抗体−薬物コンジュゲート
JP6030267B1 (ja) * 2012-10-11 2016-11-24 第一三共株式会社 抗体−薬物コンジュゲート
US10973924B2 (en) 2012-10-11 2021-04-13 Daiichi Sankyo Company, Limited Antibody-drug conjugate
CN104755494A (zh) * 2012-10-11 2015-07-01 第一三共株式会社 抗体-药物偶联物
JP2020180124A (ja) * 2012-10-11 2020-11-05 第一三共株式会社 抗体−薬物コンジュゲート
JP2022008581A (ja) * 2012-10-11 2022-01-13 第一三共株式会社 抗体-薬物コンジュゲート
JP2018008982A (ja) * 2012-10-11 2018-01-18 第一三共株式会社 抗体−薬物コンジュゲート
WO2014057687A1 (ja) * 2012-10-11 2014-04-17 第一三共株式会社 抗体-薬物コンジュゲート
CN104755494B (zh) * 2012-10-11 2018-09-07 第一三共株式会社 抗体-药物偶联物
JP2018188455A (ja) * 2012-10-11 2018-11-29 第一三共株式会社 抗体−薬物コンジュゲート
JP7170812B2 (ja) 2012-10-11 2022-11-14 第一三共株式会社 抗体-薬物コンジュゲート
US10195288B2 (en) 2012-10-11 2019-02-05 Daiichi Sankyo Company, Limited Antibody-drug conjugate
US9872924B2 (en) 2012-10-19 2018-01-23 Daiichi Sankyo Company, Limited Antibody-drug conjugate produced by binding through linker having hydrophilic structure
JPWO2014061277A1 (ja) * 2012-10-19 2016-09-05 第一三共株式会社 親水性構造を含むリンカーで結合させた抗体−薬物コンジュゲート
US10729782B2 (en) 2012-10-19 2020-08-04 Daiichi Sankyo Company, Limited Antibody-drug conjugate produced by binding through linker having hydrophilic structure
WO2014061277A1 (ja) * 2012-10-19 2014-04-24 第一三共株式会社 親水性構造を含むリンカーで結合させた抗体-薬物コンジュゲート
US10227417B2 (en) 2013-12-25 2019-03-12 Daiichi Sankyo Company, Limited Anti-TROP2 antibody-drug conjugate
US11008398B2 (en) 2013-12-25 2021-05-18 Daiichi Sankyo Company, Limited Anti-TROP2 antibody-drug conjugate
US9850312B2 (en) 2013-12-25 2017-12-26 Daiichi Sankyo Company, Limited Anti-TROP2 antibody-drug conjugate
US10155821B2 (en) 2014-01-31 2018-12-18 Daiichi Sankyo Company, Limited Anti-HER2 antibody-drug conjugate
US11795236B2 (en) 2014-01-31 2023-10-24 Daiichi Sankyo Company, Limited Method for treating cancer comprising administration of anti-HER2 antibody-drug conjugate
US11584800B2 (en) 2014-01-31 2023-02-21 Daiichi Sankyo Company, Limited Method of treating cancer comprising administration of anti-HER2 antibody-drug conjugate
WO2015146132A1 (ja) * 2014-03-26 2015-10-01 第一三共株式会社 抗cd98抗体-薬物コンジュゲート
US11185594B2 (en) 2014-04-10 2021-11-30 Daiichi Sankyo Company, Limited (Anti-HER2 antibody)-drug conjugate
US11298359B2 (en) 2014-04-10 2022-04-12 Daiichi Sankyo Company, Limited Anti-HER3 antibody-drug conjugate
US10383878B2 (en) 2014-04-10 2019-08-20 Daiichi Sankyo Company, Limited Anti-HER3 antibody-drug conjugate
WO2015155976A1 (ja) * 2014-04-10 2015-10-15 第一三共株式会社 抗her2抗体-薬物コンジュゲート
US11173213B2 (en) 2015-06-29 2021-11-16 Daiichi Sankyo Company, Limited Method for selectively manufacturing antibody-drug conjugate
US11273155B2 (en) 2016-12-12 2022-03-15 Daiichi Sankyo Company, Limited Combination of antibody-drug conjugate and immune checkpoint inhibitor
US11434289B2 (en) 2017-01-17 2022-09-06 Daiichi Sankyo Company, Limited Anti-GPR20 antibody and anti-GPR20 antibody-drug conjugate
US10906974B2 (en) 2017-01-17 2021-02-02 Daiichi Sankyo Company, Limited Anti-GPR20 antibody and anti-GPR20 antibody-drug conjugate
US11446386B2 (en) 2017-05-15 2022-09-20 Daiichi Sankyo Company, Limited Anti-CDH6 antibody and method of producing an anti-CDH6 antibody-drug conjugate
US11077202B2 (en) 2017-05-15 2021-08-03 Daiichi Sankyo Company, Limited Anti-CDH6 antibody and anti-CDH6 antibody-drug conjugate
US11318212B2 (en) 2017-08-31 2022-05-03 Daiichi Sankyo Company, Limited Method for producing antibody-drug conjugate
US11945882B2 (en) 2017-08-31 2024-04-02 Daiichi Sankyo Company, Limited Method for producing antibody-drug conjugate
US11872289B2 (en) 2018-05-18 2024-01-16 Daiichi Sankyo Co., Ltd. Anti-MUC1 antibody-drug conjugate

Also Published As

Publication number Publication date
ZA200300743B (en) 2004-02-10
NO20026212D0 (no) 2002-12-23
CA2412582A1 (en) 2002-01-03
US20030166513A1 (en) 2003-09-04
CN1449412A (zh) 2003-10-15
KR20030031502A (ko) 2003-04-21
NO20026212L (no) 2003-02-06
AU2001267831A1 (en) 2002-01-08
BR0112287A (pt) 2003-05-06
IL153505A0 (en) 2003-07-06
EP1298145A1 (en) 2003-04-02
EP1298145A4 (en) 2004-12-08
MXPA02012791A (es) 2003-12-11

Similar Documents

Publication Publication Date Title
JP4137183B2 (ja) 薬物複合体
JP4560210B2 (ja) 薬物複合体
TWI232930B (en) Method for measuring drug delivery system compound (DDS)
JP4137184B2 (ja) 薬物複合体の製造方法
WO2002000734A1 (fr) Compose dds et son procede de preparation
KR100387191B1 (ko) 캄프토테신유도체
CN111689980A (zh) 一种喜树碱药物及其抗体偶联物
ES2697348T3 (es) Péptidos y conjugados de principio activo-péptido para direccionamiento renal
TW202216724A (zh) 一種喜樹鹼類藥物及其抗體偶聯物
JPH1192405A (ja) 薬物複合体
CN111686259A (zh) 一种含sn38的抗体药物偶联物
WO2021051720A1 (zh) 一类抗人egfr抗体药物偶联物及其制备方法与应用
CA2979527A1 (en) Conjugates of pyrrolobenzodiazepine (pbd) prodrugs for treating disease
KR102436012B1 (ko) 항암제 프로드러그 컨쥬게이트의 새로운 용도
JP2012512914A (ja) フェナゾピリジン化合物
US8642555B2 (en) Prodrugs
TW202115101A (zh) Cd38結合劑及其用途
CN114276390B (zh) 一种用于抗肿瘤药物递送的二硫代氨基甲酸酯衍生物纳米药物及其制备方法与应用
WO2024166056A1 (en) Linker for antibody-drug conjugate
KR20000016371A (ko) 약물복합체의 제조방법
JP2002030002A (ja) 薬物複合体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2412582

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 153505

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2002 505856

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001267831

Country of ref document: AU

Ref document number: PA/a/2002/012791

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2001945629

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027017768

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 148/CHENP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003/00743

Country of ref document: ZA

Ref document number: 200300743

Country of ref document: ZA

ENP Entry into the national phase

Ref document number: 2003102435

Country of ref document: RU

Kind code of ref document: A

Ref country code: RU

Ref document number: RU A

WWE Wipo information: entry into national phase

Ref document number: 018146171

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001945629

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027017768

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10297584

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001945629

Country of ref document: EP