WO2015146132A1 - 抗cd98抗体-薬物コンジュゲート - Google Patents

抗cd98抗体-薬物コンジュゲート Download PDF

Info

Publication number
WO2015146132A1
WO2015146132A1 PCT/JP2015/001624 JP2015001624W WO2015146132A1 WO 2015146132 A1 WO2015146132 A1 WO 2015146132A1 JP 2015001624 W JP2015001624 W JP 2015001624W WO 2015146132 A1 WO2015146132 A1 WO 2015146132A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
antibody
acid sequence
seq
heavy chain
Prior art date
Application number
PCT/JP2015/001624
Other languages
English (en)
French (fr)
Inventor
福地 圭介
長谷川 淳
あゆみ 橋本
Original Assignee
第一三共株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社 filed Critical 第一三共株式会社
Publication of WO2015146132A1 publication Critical patent/WO2015146132A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/6415Toxins or lectins, e.g. clostridial toxins or Pseudomonas exotoxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6889Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]

Definitions

  • the present invention relates to an antibody-drug conjugate in which an anti-CD98 antibody and an antitumor drug having antitumor activity are bound via a linker structure moiety.
  • ADCs Antibody-drug conjugates
  • cytotoxic drugs are bound to antibodies that bind to antigens that are expressed on the surface of cancer cells and can be internalized by cells
  • the drug can be delivered to the cancer cell, so that it can be expected to accumulate the drug in the cancer cell and kill the cancer cell (see Non-Patent Documents 1 to 3).
  • ADC for example, Mylotarg (registered trademark; gemtuzumab ozogamicin) in which calicheamicin is bound to an anti-CD33 antibody is approved as a therapeutic agent for acute myeloid leukemia.
  • Adcetris registered trademark; Brentuximab Bededin
  • auristatin E is bound to an anti-CD30 antibody
  • Drugs contained in previously approved ADCs target DNA or tubulin.
  • a camptothecin derivative that is a compound that inhibits topoisomerase I and exhibits an antitumor action is known as an antitumor low molecular weight compound.
  • SN-38 which is the active body of irinotecan, and topotecan also used in clinical practice, and has stronger cytotoxic activity against various cancer cells in vitro. Yes. In particular, it was effective against cancer cells that were resistant to SN-38, etc. due to the expression of P-glycoprotein.
  • a mouse human tumor subcutaneous transplantation model shows a strong antitumor effect, and clinical trials have not been performed yet (see Non-Patent Documents 5 to 10). It was not clear whether exatecan effectively acts as an ADC.
  • DE-310 is a complex in which exatecan is bound to a biodegradable carboxymethyldextran polyalcohol polymer via a GGFG peptide spacer (Patent Document 3).
  • exatecan which is the active body, and exatecan in which glycine is bonded to an amino group are continuously released by cleavage of the peptide spacer by an enzyme.
  • DE-310 despite various tumor evaluation models in non-clinical studies, was associated with a lower total amount of exatecan contained than the dose of exatecan alone. The efficacy was higher than that of the administration of exatecan alone.
  • clinical trials have been conducted and effective cases have been confirmed, and it has been reported that the active body has been confirmed to accumulate in tumors rather than normal tissues.
  • accumulation of DE-310 and active substance in tumors is not much different from accumulation in normal tissues, and there is a report that passive targeting was not seen in humans (see Non-Patent Documents 11 to 14).
  • DE-310 also did not go on the market, and it was not clear whether Exatecan effectively functions as a drug aimed at such targeting.
  • CD98 is a heterodimer consisting of a type-II single-pass transmembrane heavy chain of about 80-85 kDa and a disulfide-bonded multi-pass light chain of about 40 kDa (Non-patent Document 15).
  • the CD98 heavy chain (known as CD98hc, 4F2 or FRP-1) is encoded by the Slc3a2 gene in mice and the SLC3A2 gene in humans.
  • CD98hc is a type II transmembrane protein and has an extracellular domain, a transmembrane domain, and a cytoplasmic tail.
  • CD98 forms a heterodimer by a disulfide bond between one of at least six CD98 light chains (amino acid transporter, LAT-1, LAT-2, etc.) and the CD98hc extracellular domain.
  • This anti-CD98 antibody targeting CD98 is known to have antitumor activity and immunosuppressive activity (Patent Documents 5 to 11).
  • JP-A-5-59061 JP-A-8-337584 International Publication WO1997 / 46260 Pamphlet International Publication WO2000 / 25825 Pamphlet International Publication WO2007 / 114496 Pamphlet International Publication WO2008 / 017828 Pamphlet International Publication WO2009 / 043922 Brochure International Publication WO2009 / 090553 Brochure JP 2012-092068 A International Publication WO2011 / 118804 Pamphlet International Publication WO2013 / 078377 Pamphlet
  • an object of the present invention is to obtain and provide an antitumor agent having an excellent therapeutic effect and excellent antitumor effect and safety.
  • the inventors of the present invention are anti-CD98 antibodies that can target tumor cells, that is, antibodies that have the ability to recognize tumor cells, the ability to bind to tumor cells, or the ability to internalize tumor cells. Therefore, by converting exatecan, which is an antitumor compound, to an antibody-drug conjugate bound to the same antibody via a linker structure moiety, (1) the exatecan derivative is transported to tumor cells and excatecan The ability of the derivative to exert its antitumor effect specifically in tumor cells, (2) the ability to reduce the dose of exatecan derivative as compared to the single administration, as well as the reliable production of the antitumor effect, (3) normal We thought that it was possible to achieve higher safety because the influence of exatecan derivatives on cells could be alleviated.
  • the present inventors have succeeded in obtaining an anti-CD98 antibody-drug conjugate in which an anti-CD98 antibody and exatecan are linked through the creation of a linker having a specific structure, and this compound was found to exhibit an excellent antitumor effect, and the present invention was completed.
  • the present invention (1) An anti-CD98 antibody-drug conjugate comprising an anti-CD98 antibody, a linker and a drug, or a pharmaceutically acceptable salt thereof,
  • a compound represented by The nitrogen atom of the amino group at position 1 of the drug binds to the carbonyl moiety of the linker, An anti-CD98 antibody binds to the succinimide part of the linker, An anti-CD98 antibody-drug conjugate; (2) The antibody-drug conjugate or pharmacologically acceptable salt thereof according to (1) above, wherein the average number of drugs bound per antibody is in the range of 2 to 8; (3) The antibody-drug conjugate or pharmacologically acceptable salt thereof according to (1) above, wherein the average number of drugs bound per antibody is in the range of 3-6; (4) The antibody-drug conjugate or the pharmacologically acceptable product thereof according to (2) or (3), wherein the average number of drugs bound per antibody is measured by a reverse layer chromatography (RPC) method salt; (5) The antibody-drug conjugate or the pharmaceutically acceptable salt thereof according to the above (1), wherein the number of drug bonds per antibody is 2, 4, 6 or 8; (6)
  • the linker has the following formula: -(Succ
  • the antibody-drug conjugate or the drug thereof according to any one of (1) to (11) above, comprising a light chain variable region having at least 90% identity to an amino acid sequence consisting of the amino acid residues of A physically acceptable salt;
  • the anti-CD98 antibody is (1) an amino acid sequence consisting of amino acid residues 20 to 135 of SEQ ID NO: 12 or 14; (2) an amino acid sequence having at least 95% identity to the amino acid sequence of (1); and (3) one or several amino acids have been deleted, substituted or added in the amino acid sequence of (1) Amino acid sequence;
  • a heavy chain comprising a heavy chain variable region selected from the group consisting of: and (4) an amino acid sequence consisting of amino acid residues 21 to 135 of SEQ ID NO: 16 or 18; (5) an amino acid sequence having at least 95% identity to the amino acid sequence of (4); and (6) one or several amino acids are deleted, substituted or added in the amino acid sequence of (4) Amino acid sequence;
  • the antibody-drug conjugate or the pharmaceutically acceptable salt thereof according to any one of (1) to (11), (18)
  • the anti-CD98 antibody comprises a heavy chain consisting of an amino acid sequence consisting of amino acid residues 20 to 465 of SEQ ID NO: 12 and a light chain consisting of an amino acid sequence consisting of amino acid residues 21 to 240 of SEQ ID NO: 18.
  • the anti-CD98 antibody comprises a heavy chain consisting of an amino acid sequence consisting of amino acid residues 20 to 465 of SEQ ID NO: 14 and a light chain consisting of an amino acid sequence consisting of amino acid residues 21 to 240 of SEQ ID NO: 18.
  • the antibody-drug conjugate or the pharmaceutically acceptable salt thereof according to any one of (1) to (11), (20) an anti-CD98 antibody or an antigen-binding fragment thereof, which binds to a site consisting of amino acid residues 462 to 541 of SEQ ID NO: 38; (21) CDRH1 consisting of the amino acid sequence represented by SEQ ID NO: 19 or an amino acid sequence in which one or several amino acid residues are added, deleted or substituted in the amino acid sequence; CDRH2 consisting of the amino acid sequence represented by SEQ ID NO: 20 or an amino acid sequence in which one or several amino acid residues are added, deleted or substituted in the amino acid sequence; CDRH3 consisting of the amino acid sequence represented by SEQ ID NO: 21 or an amino acid sequence in which one or several amino acid residues are added, deleted or substituted in the amino acid sequence; CRL1 consisting of the amino acid sequence represented by SEQ ID NO: 22 or an amino acid sequence in which one or several amino acid residues are added, deleted or substituted in the amino acid sequence
  • the antibody-drug conjugate or the pharmacologically acceptable salt thereof according to any one of (1) to (19) and (31) or any one of (20) to (30)
  • a method for treating tumor and / or cancer comprising administering to a mammal a therapeutically effective amount of the anti-CD98 antibody or antigen-binding fragment of the antibody according to claim 1; (38) a polynucleotide encoding the antibody according to any one of (20) to (30); (39) The polynucleotide according to (38) above, (1) a nucleotide sequence consisting of nucleotides 58 to 405 of SEQ ID NO: 11 or 13; (2) a nucleotide sequence having at least 95% identity to the nucleotide sequence of (1); (3) a nucleotide sequence possessed by a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of (1); and (4) 1 or
  • nucleotide (1) The polynucleotide according to (39) above, comprising a polynucleotide comprising the nucleotide sequence comprising the 58th to 405th nucleotides of SEQ ID NO: 11 and a polynucleotide comprising the nucleotide sequence comprising the 61st to 405th nucleotides of SEQ ID NO: 17 nucleotide; (42) The polynucleotide according to (39) above, comprising a polynucleotide consisting of the nucleotide sequence consisting of nucleotides 58 to 405 of SEQ ID NO: 13 and a polynucleotide consisting of the nucleotide sequence consisting of nucleotides 61 to 405 of SEQ ID NO: 17.
  • nucleotide (43) A vector comprising the polynucleotide according to any one of (38) to (42); (44) A transformed host cell comprising the polynucleotide according to any one of (38) to (42) above; (45) a transformed host cell comprising the vector of (43); and (46) culturing the host cell of (44) or (45) and purifying the antibody from the culture product.
  • An excellent antitumor effect and safety can be achieved by an anti-CD98 antibody-drug conjugate in which exatecan is bound to an anti-CD98 antibody through a linker having a specific structure.
  • FIG. 1 shows the nucleotide sequence (SEQ ID NO: 7) and amino acid sequence (SEQ ID NO: 8) of the chimeric M23 antibody heavy chain.
  • FIG. 2 shows the nucleotide sequence (SEQ ID NO: 9) and amino acid sequence (SEQ ID NO: 10) of the chimeric M23 antibody light chain.
  • FIG. 3 shows the nucleotide sequence (SEQ ID NO: 11) and amino acid sequence (SEQ ID NO: 12) of the hM23-H1 type heavy chain.
  • FIG. 4 shows the nucleotide sequence (SEQ ID NO: 13) and amino acid sequence (SEQ ID NO: 14) of the hM23-H2 type heavy chain.
  • FIG. 1 shows the nucleotide sequence (SEQ ID NO: 7) and amino acid sequence (SEQ ID NO: 8) of the chimeric M23 antibody heavy chain.
  • FIG. 2 shows the nucleotide sequence (SEQ ID NO: 9) and amino acid sequence (SEQ ID NO:
  • FIG. 5 shows the nucleotide sequence (SEQ ID NO: 15) and amino acid sequence (SEQ ID NO: 16) of the hM23-L1 type light chain.
  • FIG. 6 shows the nucleotide sequence (SEQ ID NO: 17) and amino acid sequence (SEQ ID NO: 18) of the hM23-L2 type light chain.
  • 7 shows the amino acid sequence of CDRH1 of the M23 antibody (SEQ ID NO: 19), the amino acid sequence of CDRH2 (SEQ ID NO: 20), the amino acid sequence of CDRH3 (SEQ ID NO: 21), the amino acid sequence of CDRL1 (SEQ ID NO: 22), and the amino acid of CDRL2 And the amino acid sequence of CDRL3 (SEQ ID NO: 24).
  • FIG. 8 shows the internalization ability of the M23 antibody.
  • FIG. 9 shows the antitumor effect of hM23-H1L1-drug conjugate on human Burkitt lymphoma transplanted mice.
  • FIG. 10 shows the antitumor effect of hM23-H1L2-drug conjugate on human Burkitt lymphoma transplanted mice.
  • FIG. 11 shows the antitumor effect of hM23-H2L2-drug conjugate on mice implanted with human Burkitt lymphoma.
  • FIG. 12 shows the antitumor effect of hM23-H1L1-drug conjugate on human Burkitt lymphoma transplanted mice.
  • cancer and “tumor” are used interchangeably.
  • polynucleotide is used in the same meaning as nucleic acid, and includes DNA, RNA, probe, oligonucleotide, and primer.
  • polypeptide and “protein” are used interchangeably.
  • cell includes a cell in an animal individual and a cultured cell.
  • CD98 is used interchangeably with CD98 protein. Since CD98 consists of a heavy chain and a light chain, “CD98 heavy chain” and “CD98 light chain” are used interchangeably with CD98 heavy chain protein and CD98 light chain protein, respectively. Further, in this specification, “CD98” is interchangeable with “CD98 heavy chain” and “CD98 light chain” or “CD98 heavy chain” or “CD98 light chain” unless otherwise specified. Used for.
  • anti-CD98 antibody refers to an antibody that can bind to a CD98 heavy chain.
  • cytotoxicity refers to a pathological change in cells in some form, and is not limited to direct trauma, but also includes DNA cleavage, base dimer formation, chromosomal This refers to any structural or functional damage to cells such as cutting, damage to cell division equipment, or reduction of various enzyme activities.
  • antibody-dependent cytotoxic activity means “antibody dependent cellular cytotoxicity (ADCC) activity”, and the activity of NK cells to damage target cells such as tumor cells via antibodies. means.
  • ADCC antibody dependent cellular cytotoxicity
  • complement-dependent cytotoxic activity means “complement-dependent cytotoxicity (CDC) activity”, which is an activity in which complement damages target cells such as tumor cells via antibodies. Means.
  • the “antigen-binding fragment of an antibody” is also referred to as “functional fragment of an antibody” and means a partial fragment of an antibody having binding activity to an antigen, and Fab, F (ab ′) 2, including scFv. Further, Fab ', which is a monovalent fragment of the variable region of an antibody obtained by treating F (ab') 2 under reducing conditions, is also included in the antigen-binding fragment of an antibody.
  • the molecule is not limited to these molecules as long as it has the ability to bind to an antigen.
  • These antigen-binding fragments include not only those obtained by treating the full-length antibody protein molecule with an appropriate enzyme, but also proteins produced in appropriate host cells using genetically engineered antibody genes. It is.
  • Fab ′ is a monovalent fragment of the variable region of an antibody obtained by treating F (ab ′) 2 under reducing conditions as described above.
  • Fab 'produced using an antibody gene modified by genetic engineering is also included in Fab' in the present invention.
  • epitope means a partial peptide or partial three-dimensional structure of CD98 to which a specific anti-CD98 antibody binds.
  • the epitope which is a partial peptide of CD98 can be determined by methods well known to those skilled in the art such as immunoassay, for example, the following method.
  • various partial structures of the antigen are prepared. In producing the partial structure, a known oligopeptide synthesis technique can be used.
  • the epitope can be determined by synthesizing shorter peptides and examining their reactivity with those peptides.
  • an epitope which is a partial three-dimensional structure of an antigen to which a specific antibody binds can be determined by specifying amino acid residues of the antigen adjacent to the antibody by X-ray structural analysis.
  • an antibody that binds to the same epitope means different antibodies that bind to a common epitope. If the second antibody binds to the partial peptide or partial conformation to which the first antibody binds, it can be determined that the first antibody and the second antibody bind to the same epitope. In addition, by confirming that the second antibody competes for the binding of the first antibody to the antigen (that is, the second antibody prevents the binding of the first antibody and the antigen), a specific epitope is determined. Even if the sequence or structure of is not determined, it can be determined that the first antibody and the second antibody bind to the same epitope.
  • the second antibody when the first antibody and the second antibody bind to the same epitope and the first antibody has a special effect such as antitumor activity, the second antibody is expected to have the same activity. it can. Therefore, if the second anti-CD98 antibody binds to the partial peptide to which the first anti-CD98 antibody binds, it can be determined that the first antibody and the second antibody bind to the same epitope of CD98. An antibody in which the first antibody and the second antibody bind to the same epitope of CD98 by confirming that the second anti-CD98 antibody competes for the binding of the first anti-CD98 antibody to CD98. Can be determined.
  • CDR means a complementarity determining region (CDR). It is known that there are three CDRs in each of the heavy and light chains of the antibody molecule. CDRs, also called hypervariable domains, are sites in the variable region of the heavy and light chains of an antibody that have particularly high primary structure variability and are heavy and light chain polypeptide chains. In the primary structure, each is separated into three locations.
  • CDRH1, CDRH2, CDRH3 from the N-terminal side of the heavy chain amino acid sequence
  • CDRL1 from the N-terminal side of the light chain amino acid sequence. Indicated as CDRL2 and CDRL3. These sites are close to each other on the three-dimensional structure and determine the specificity for the antigen to be bound.
  • “several” means 2 to 10, 2 to 9, 2 to 8, 2 to 7, 2 to 6, 2 to 5, 2 to 4, 2 to 3 This means two or two, preferably two.
  • the “average drug binding number” is also called a drug-to-antibody ratio (DAR), and means the average number of drugs that bind to one antibody molecule.
  • DAR drug-to-antibody ratio
  • identity and “homology” are used interchangeably.
  • CD98 forms a heterodimer by a disulfide bond between one of at least six CD98 light chains (LAT-1, LAT-2, etc.) and the CD98hc extracellular domain.
  • the CD98 heavy chain is involved in integrin signaling and the CD98 light chain is involved in amino acid transport.
  • nucleotide and amino acid sequences of CD98 heavy chain are published on public databases.
  • nucleotide sequences can be referred to by NM_001012662, NM_001013251 (GenBank), amino acid sequences can be referred to by NP_001012680, NP_001013269 (GenBank), etc. is there.
  • the nucleotide sequence NM_001012662 is also disclosed herein as SEQ ID NO: 37, and the amino acid sequence NP_001012680 as SEQ ID NO: 38.
  • CD98 can be used by directly purifying from CD98-expressing cells of humans and non-human mammals (rats, mice, etc.) or by preparing a cell membrane fraction of the cells. It can be obtained by synthesis in vitro or production in a host cell by genetic manipulation. Specifically, in genetic manipulation, CD98 cDNA is incorporated into an expressible vector and then synthesized in a solution containing enzymes, substrates and energy substances necessary for transcription and translation, or other prokaryotic or eukaryotic organisms. The protein can be obtained by expressing CD98 by transforming the host cells of the organism. In addition, CD98-expressing cells obtained by the above-described genetic manipulation or cell lines expressing CD98 can be used as CD98.
  • the CD98 heavy chain includes a protein having an amino acid sequence in which one or several amino acids are substituted, deleted, and / or added in the amino acid sequence of the CD98 heavy chain, and having biological activity equivalent to that protein. .
  • the anti-CD98 antibody used in the present invention is not particularly limited as long as it can bind to the CD98 heavy chain.
  • Such antibodies have the property of recognizing tumor cells expressing CD98, the property of being able to bind to such tumor cells, and the property of being taken up and internalized within such tumor cells.
  • the anti-CD98 antibody used in the present invention is produced in vivo by immunizing an animal with a CD98 heavy chain or any polypeptide selected from the amino acid sequence of CD98 heavy chain using a method commonly practiced in this field. Can be obtained by collecting and purifying the antibody to be purified.
  • the species of CD98 as an antigen is not limited to humans, and animals can be immunized with CD98 derived from animals other than humans such as mice and rats.
  • an antibody applicable to a human disease can be selected by examining the cross-reactivity between the obtained antibody that binds to heterologous CD98 and human CD98.
  • a hybridoma can be established by fusing an antibody-producing cell that produces an anti-CD98 antibody and a myeloma cell to obtain a monoclonal antibody.
  • the CD98 heavy chain as an antigen can be obtained by causing a host cell to produce a CD98 heavy chain gene by genetic manipulation.
  • Antigen preparation Antigens for preparing anti-CD98 antibodies include CD98 heavy chain or a polypeptide comprising at least 6 consecutive partial amino acid sequences, and derivatives in which any amino acid sequence or carrier is added. And cells expressing CD98 heavy chain.
  • RTS rapid translation system
  • prokaryotic cell hosts examples include Escherichia coli and Bacillus subtilis.
  • the host cell is transformed with a plasmid vector containing a replicon or origin of replication from a species compatible with the host and regulatory sequences.
  • the vector preferably has a sequence capable of imparting phenotypic (phenotypic) selectivity to transformed cells.
  • Eukaryotic host cells include cells such as vertebrates, insects, and yeasts.
  • vertebrate cells include COS cells (Gluzman, Y. Cell (1981) 23, p. 175-182, ATCC CRL-1650; ATCC: American Type Culture) Collection), mouse fibroblast NIH3T3 (ATCC No. CRL-1658) and Chinese hamster ovary cells (CHO cells, ATCC CCL-61) dihydrofolate reductase Deficient strains (Urlaub, G. and Chasin, LA Proc. Natl. Acad. Sci. USA (1980) 77, p. 4126-4220) are often used, but are not limited thereto.
  • the transformant obtained as described above can be cultured according to a conventional method, and the target polypeptide is produced inside or outside the cell by the culture.
  • a histidine tag consisting of 6 residues
  • it can be efficiently purified with a nickel affinity column.
  • it can be efficiently purified on a protein A column by linking the IgG Fc region to the recombinant protein to be expressed.
  • mice there are no particular restrictions on the mouse and rat strains actually used, and in the case of mice, for example, each strain A, AKR, BALB / c, BDP, BA, CE, C3H, 57BL, C57BL, C57L, DBA , FL, HTH, HT1, LP, NZB, NZW, RF, R III, SJL, SWR, WB, 129, etc., and in the case of rats, for example, Wistar, Low, Lewis, Sprague, Dawley, ACI, BN Fischer or the like can be used.
  • a mouse having a reduced biological mechanism for removing autoantibodies that is, an autoimmune disease mouse.
  • Methods for immunizing animals include, for example, Weir, D. M., Handbook of Experimental Immunology Vol.I.II.III., Blackwell Scientific Publications, Oxford (1987), Kabat, E. A. and Mayer, M. Known methods described in M., Experimental Immunochemistry, Charles C Thomas Publisher Springfield, Illinois (1964) can be used.
  • the method of administering an antigen subcutaneously to an animal is preferred.
  • the antigen administration schedule varies depending on the type of animal to be immunized and individual differences, but in general, the number of antigen administrations is preferably 3 to 6 times, and the administration interval is 1 to 3 weeks. The administration frequency is 4 to 5 times, and the administration interval 1 to 2 weeks is more preferred.
  • the dose of antigen varies depending on the kind of animal and individual differences, but is generally 0.05 to 5 mg, preferably about 0.1 to 0.5 mg.
  • the booster immunization is performed 1 to 6 weeks after the antigen administration as described above, preferably 1 to 4 weeks, and more preferably 1 to 3 weeks. If the immunogen is a cell, use 1 ⁇ 10 6 to 1 ⁇ 10 7 cells.
  • the dose of antigen for booster immunization varies depending on the kind and size of the animal, but generally 0.05 to 5 mg, preferably 0.1 to 0.5 mg, more preferably 0.1 to 0.2 mg in the case of mice, for example. To the extent. If the immunogen is a cell, use 1 ⁇ 10 6 to 1 ⁇ 10 7 cells.
  • Spleen cells or lymphocytes containing antibody-producing cells are aseptically removed from the immunized animal 1 to 10 days after the booster, preferably 2 to 5 days, and more preferably 2 to 3 days later. In this case, if the antibody titer is measured and an animal having a sufficiently high antibody titer is used as a source of antibody-producing cells, the efficiency of subsequent operations can be increased.
  • Examples of the antibody titer measurement method used here include, but are not limited to, the RIA method and the ELISA method. In the case of ELISA method, it can be carried out by the procedure as described below.
  • the purified or partially purified antigen is adsorbed on a solid phase surface such as a 96-well plate for ELISA, and a solid phase surface on which no antigen is adsorbed is separated from a protein unrelated to the antigen, such as bovine serum albumin (in the present specification, “ After the surface is washed, it is brought into contact with a serially diluted sample (eg, mouse serum) as the first antibody, and the antibody in the sample is bound to the antigen.
  • a serially diluted sample eg, mouse serum
  • an antibody against a mouse antibody that is enzyme-labeled as a second antibody is added and bound to the mouse antibody. After washing, the substrate of the enzyme is added, and the change in absorbance due to color development based on substrate degradation is measured, thereby determining the antibody titer. calculate.
  • Separation of antibody-producing cells from the spleen cells or lymphocytes of the immunized animal can be performed by a known method (for example, Kohler et al., Nature (1975) 256, p.495, Kohler et al., Eur. J. Immunol. (1977) 6, p. 511; Milstein et al., Nature (1977) 266, p. 550; Walsh, Nature, (1977) 266, p. 495).
  • a general method of separating antibody-producing cells by chopping the spleen and filtering the cells through a stainless mesh and then suspending them in Eagle's minimum essential medium (MEM) can be employed. .
  • MEM Eagle's minimum essential medium
  • the myeloma used for cell fusion is not particularly limited, and can be appropriately selected from known cell lines. However, in consideration of convenience when selecting hybridomas from the fused cells, it is preferable to use a HGPRT (Hypoxanthine-guanine phosphoribosyl transferase) deficient strain in which the selection procedure has been established.
  • HGPRT Hydropoxanthine-guanine phosphoribosyl transferase
  • X63-Ag8 (X63), NS1-ANS / 1 (NS1), P3X63-Ag8.U1 (P3U1), X63-Ag8.653 (X63.653), SP2 / 0-Ag14 (SP2 / 0) derived from mouse ), MPC11-45.6TG1.7 (45.6TG), FO, S149 / 5XXO, BU.1, etc.
  • HGPRT-deficient strains can be obtained from, for example, ATCC.
  • 8-azaguanine medium RPMI-1640 medium with glutamine, 2-mercaptoethanol, gentamicin, and fetal calf serum (sometimes referred to herein as “FBS”).
  • FBS fetal calf serum
  • Subculture in medium supplemented with 8-azaguanine Iscove's Modified Dulbecco's Medium (IMDM), or Dulbecco's Modified Eagle Medium (DMEM), 3-4 of cell fusion
  • IMDM Iscove's Modified Dulbecco's Medium
  • DMEM Dulbecco's Modified Eagle Medium
  • a chemical method of mixing antibody-producing cells and myeloma cells in a high-concentration polymer solution such as polyethylene glycol, a physical method using electrical stimulation, or the like can be used.
  • a chemical method of mixing antibody-producing cells and myeloma cells in a high-concentration polymer solution such as polyethylene glycol, a physical method using electrical stimulation, or the like.
  • specific examples of the chemical method are as follows.
  • the antibody-producing cells can be used in a polyethylene glycol solution having a molecular weight of 1500 to 6000, preferably 2000 to 4000 at a temperature of 30 to 40 ° C., preferably 35 to 38 ° C. Mix with myeloma cells for 1-10 minutes, preferably 5-8 minutes.
  • Step of selecting a hybridoma group The method for selecting a hybridoma obtained by cell fusion is not particularly limited, but is usually a HAT (hypoxanthine / aminopterin / thymidine) selection method (Kohler et al., Nature (1975) 256). , p.495; Milstein et al., Nature (1977) 266, p.550).
  • HAT hyperxanthine / aminopterin / thymidine
  • This method is effective when hybridomas are obtained using HGPRT-deficient myeloma cells that cannot survive with aminopterin.
  • a hybridoma group formed by cell fusion is suspended and cultured in a methylcellulose medium such as ClonaCell-HY Selection Medium D (manufactured by StemCell Technologies # 03804), and the formed hybridoma colonies are recovered to recover the monoclonal hybridoma. Acquisition is possible.
  • a methylcellulose medium such as ClonaCell-HY Selection Medium D (manufactured by StemCell Technologies # 03804)
  • the formed hybridoma colonies are recovered to recover the monoclonal hybridoma. Acquisition is possible.
  • Each of the collected hybridoma colonies is cultured, and the one in which the antibody titer is stably recognized in the obtained hybridoma culture supernatant is selected as a CD98 monoclonal antibody-producing hybridoma strain.
  • (G) Step of producing monoclonal antibody The hybridoma selected in this manner can be obtained efficiently by culturing the hybridoma. Prior to the culturing, the hybridoma that produces the target monoclonal antibody can be obtained. It is desirable to screen.
  • the hybridoma obtained by the above method can be stored in a frozen state in liquid nitrogen or in a freezer at -80 ° C or lower.
  • Mass culture is performed by rotary culture using a large culture bottle or spinner culture. From the supernatant in this large-scale culture, a monoclonal antibody that specifically binds to the protein of the present invention can be obtained by purification using a method well known to those skilled in the art such as Protein A column purification.
  • ascites containing a large amount of the monoclonal antibody of the present invention is obtained by injecting a hybridoma into the abdominal cavity of the same strain of mice (for example, BALB / c as described above) or Nu / Nu mouse and growing the hybridoma. be able to.
  • the monoclonal antibody thus obtained has a high antigen specificity for CD98.
  • Octelrony method is simple, but concentration is necessary when the concentration of monoclonal antibody is low.
  • the culture supernatant is directly reacted with the antigen-adsorbed solid phase, and further, antibodies corresponding to various immunoglobulin isotypes and subclasses are used as secondary antibodies. Isotypes and subclasses can be identified.
  • a commercially available identification kit for example, mouse typer kit; manufactured by Bio-Rad
  • a commercially available identification kit for example, mouse typer kit; manufactured by Bio-Rad
  • the sequence or structure of a specific epitope can be determined. Even if not determined, it can be determined that the monoclonal antibody binds to the same epitope as the CD98 antibody. When it is confirmed that the epitope is the same, it is strongly expected that the monoclonal antibody has the same antigen binding ability or biological activity as the M23 antibody.
  • antibodies used in the present invention include genetically engineered antibodies that have been artificially modified for the purpose of reducing heteroantigenicity against humans, such as chimeras.
  • (Chimeric) antibodies, humanized antibodies, human antibodies and the like are also included. These antibodies can be produced using known methods.
  • the chimeric antibody derived from mouse anti-human CD98 antibody M23 is an antibody comprising a heavy chain comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 2 and a light chain comprising a light chain variable region comprising the amino acid sequence of SEQ ID NO: 4. , It may have a constant region derived from any human.
  • the amino acid sequence consisting of amino acid residues 1 to 20 is a signal sequence
  • the amino acid sequence consisting of amino acid residues 21 to 135 is a variable region
  • the amino acid sequence consisting of amino acid residues 136 to 240 is a constant region.
  • the heavy chain amino acid sequence shown in SEQ ID NO: 8 is encoded by the nucleotide sequence shown in SEQ ID NO: 7.
  • the nucleotide sequence consisting of nucleotides 1 to 57 of the nucleotide sequence shown in SEQ ID NO: 7 encodes the antibody heavy chain signal sequence
  • the nucleotide sequence consisting of nucleotides 58 to 405 contains the heavy chain variable region of the antibody.
  • the nucleotide sequence consisting of nucleotides 406 to 1395 encodes the heavy chain constant region of the antibody.
  • Humanized antibodies include antibodies in which only CDRs are incorporated into human-derived antibodies (see Nature (1986) 321, pp.522-525). By CDR grafting, the amino acid residues of some frameworks in addition to the CDR sequences are used.
  • An example is an antibody (international pamphlet WO 90/07861) transplanted to a human antibody.
  • the heavy chain variable region of the M23 antibody consists of CDRH1 (NYLIE) consisting of the amino acid sequence shown in SEQ ID NO: 19, CDRH2 (VINPGSGVTNYNEKFKG) consisting of the amino acid sequence shown in SEQ ID NO: 20, and the amino acid sequence shown in SEQ ID NO: 21
  • CDRH3 AEAWFAY
  • CDRL1 KSSQSLLYSSNQKNYLA
  • CDRL2 WASTRES
  • SEQ ID NO: 24 Possesses CDRL3 (QRYYGYPWT) consisting of the amino acid sequence.
  • Such amino acid substitution is preferably performed within a range that does not deteriorate the properties of the substance having the original amino acid sequence.
  • Further suitable antibody combinations include A heavy chain having a heavy chain variable region consisting of an amino acid sequence consisting of amino acid sequences 20 to 135 of SEQ ID NO: 12 and a light chain variable region consisting of an amino acid sequence consisting of 21st to 135th amino acid residues of SEQ ID NO: 16
  • an antibody having a biological activity equivalent to that of each of the above antibodies by combining a sequence showing high identity with the above heavy chain amino acid sequence and light chain amino acid sequence. Such identity is generally 80% or more identity, preferably 90% or more identity, more preferably 95% or more identity, and most preferably 99% or more identity. It is identity.
  • An antibody having biological activity equivalent to that of each of the above antibodies can also be selected by combining an amino acid sequence in which one to several amino acid residues are substituted, deleted or added to the amino acid sequence of the heavy chain or light chain. Is possible.
  • Blast algorithm version 2.2.2 (Altschul, Stephen F., Thomas L.Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997 ), “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”, Nucleic Acids Res. 25: 3389-3402).
  • Blast algorithm can also be used by accessing www.ncbi.nlm.nih.gov/blast on the Internet.
  • Examples of the antibody used in the present invention further include a human antibody that binds to the same epitope as the M23 antibody.
  • An anti-CD98 human antibody means a human antibody having only the gene sequence of an antibody derived from a human chromosome.
  • the anti-CD98 human antibody is produced by a method using a human antibody-producing mouse having a human chromosome fragment containing the heavy and light chain genes of a human antibody (Tomizuka, K. et al., Nature Genetics (1997) 16, p.133). -143 ; Kuroiwa, Y. et al., Nucl.Acids Res. (1998) 26, p.3447-3448; Yoshida, H.
  • endogenous immunoglobulin heavy chain and light chain loci are disrupted, and human immunoglobulins are exchanged via yeast artificial chromosome (Yeast artificial chromosome, YAC) vectors or the like instead.
  • yeast artificial chromosome Yeast artificial chromosome, YAC
  • Genetically modified animals introduced with heavy and light chain loci can be created by creating knockout and transgenic animals and crossing these animals together.
  • a human antibody can be obtained by preparing an expression vector having the sequence and introducing it into an appropriate host for expression (WO92 / 01047, WO92 / 20791, WO93 / 06213, WO93 / 11236, WO93 / 19172, WO95 / 01438, WO95 / 15388, Annu. Rev. Immunol (1994) 12, p.433-455, Nature Biotechnology (2005) 23 (9), p. 1105-1116).
  • a newly produced human antibody binds to a partial peptide or partial conformation to which the M23 antibody binds, it can be determined that the human antibody binds to the same epitope as the M23 antibody.
  • the human antibody competes for binding of M23 antibody to CD98 (that is, the human antibody prevents binding of M23 antibody to CD98)
  • the sequence or structure of a specific epitope can be determined. Even if not determined, it can be determined that the human antibody binds to the same epitope as the M23 antibody. When it is confirmed that the epitope is the same, it is strongly expected that the human antibody has a biological activity equivalent to that of the M23 antibody.
  • WO99 / 54342 WO00 / 61739, WO02 / 31140, and the like are known as techniques for regulating antibody sugar chain modification, but are not limited thereto.
  • the antibody used in the present invention includes an antibody in which the sugar chain modification is regulated.
  • animal cells When eukaryotic cells are used as hosts, animal cells, plant cells, and eukaryotic microorganisms can be used.
  • animal cells mammalian cells such as COS cells (Gluzman, Y. Cell (1981) 23, p.175-182, ATCC CRL-1650) which are monkey cells, mouse fibroblasts NIH3T3 (ATCC No. CRL-1658) and Chinese hamster ovary cells (CHO cells, ATCC CCL-61) dihydrofolate reductase-deficient strains (Urlaub, G. and Chasin, LA Proc. Natl. Acad. Sci. USA (1980) 77, p .4126-4220).
  • COS cells Gluzman, Y. Cell (1981) 23, p.175-182, ATCC CRL-1650
  • mouse fibroblasts NIH3T3 ATCC No. CRL-1658
  • Chinese hamster ovary cells CHO cells, ATCC CCL-61) dihydrofo
  • an antibody can be obtained by introducing a desired antibody gene into these cells by transformation and culturing the transformed cells in vitro.
  • the yield may vary depending on the sequence of the antibody, and it is possible to select an antibody having an equivalent binding activity that can be easily produced as a drug using the yield as an index. Therefore, the antibody used in the present invention includes a step of culturing the transformed host cell and a step of collecting a target antibody or an antigen-binding fragment of the antibody from the culture obtained in the step. The antibody obtained by the method for producing the antibody is also included.
  • the linker In the antitumor compound, a part or all of the linker is cleaved in the tumor cell to release the antitumor compound portion and to exhibit an antitumor effect.
  • the linker When the linker is cleaved at the binding site with the drug, the antitumor compound is released in its original structure, and its original antitumor effect is exhibited.
  • the antitumor compound include doxorubicin, daunorubicin, mitomycin C, bleomycin, cyclocytidine, vincristine, vinblastine, methotrexate, platinum antitumor agent (cisplatin or a derivative thereof), taxol or a derivative thereof, camptothecin or a derivative thereof (special feature).
  • An antitumor agent described in Kaihei 6-87746), and exatecan is preferable.
  • the biological activity of the anti-CD98 antibody used in the present invention includes antigen-binding activity, activity that is internalized in cells that express the antigen by binding to the antigen, activity that neutralizes the activity of the antigen, and activity of the antigen is enhanced.
  • Functions antibody-dependent cytotoxicity (ADCC) activity, complement-dependent cytotoxicity (CDC) activity and antibody-dependent cell-mediated phagocytosis (ADCP).
  • ADCC antibody-dependent cytotoxicity
  • CDC complement-dependent cytotoxicity
  • ADCP antibody-dependent cell-mediated phagocytosis
  • Is a binding activity to the CD98 heavy chain preferably an activity that is internalized in a CD98-expressing cell by binding to the CD98 heavy chain.
  • the antibody used in the present invention may have ADCC activity, CDC activity and / or ADCP activity in addition to cell internalization activity.
  • the antigen-binding activity of the antibody can be confirmed using flow cytometry.
  • chromatography examples include affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration chromatography, reverse phase chromatography, and adsorption chromatography.
  • chromatography can be performed using liquid chromatography such as HPLC or FPLC.
  • columns used for affinity chromatography include protein A columns and protein G columns.
  • protein A columns As a column using a protein A column, Hyper® D, POROS, Sepharose® F.F. (GE Healthcare) and the like can be mentioned.
  • the drug used in the present invention has the following formula:
  • Exatecan has a camptothecin structure, so in an acidic aqueous medium (for example, about pH 3), the equilibrium is biased to a structure in which a lactone ring is formed (ring-closed), whereas in a basic aqueous medium (for example, about pH 10), the lactone ring is It is known that the equilibrium is biased to the ring-opened structure (ring-opened body). Even drug conjugates into which exatecan residues corresponding to such a ring-closed structure and ring-opened structure are introduced are expected to have an equivalent antitumor effect, and any of them are included in the scope of the present invention. Nor.
  • the number of drugs bound to one antibody molecule is an important factor that affects its effectiveness and safety.
  • Antibody-drug conjugates are manufactured by specifying reaction conditions such as the amount of raw materials and reagents to be reacted so that the number of drug bonds is constant. What is a chemical reaction of a low-molecular compound? Unlike, it is usually obtained as a mixture of different numbers of drugs combined.
  • the number of drugs bound to one antibody molecule is specified and expressed as an average value, that is, the average number of drug bonds. In the present invention, unless otherwise indicated, the number of drug bindings is shown unless an antibody-drug conjugate having a specific drug binding number contained in an antibody-drug conjugate mixture having a different drug binding number is indicated. Mean value.
  • the number of binding of exatecan to the antibody molecule is controllable, and about 1 to 10 exatecans can be bound as the average number of drugs bound per antibody, preferably 2 to 8, more preferably Is 3-6.
  • a person skilled in the art can design a reaction that binds the required number of drugs to the antibody from the description of Examples below, and can obtain an antibody-drug conjugate in which the number of bindings of exatecan is controlled. .
  • the antibody-drug conjugate of the present invention is obtained by reducing the anti-CD98 antibody and converting the hinge disulfide bond to a sulfhydryl group.
  • Drug-linker intermediate compound shown It can manufacture by making either of these react.
  • Anti-CD98 antibodies having a sulfhydryl group can be obtained by methods well known to those skilled in the art (Hermanson, GT, Bioconjugate Techniques, pp. 56-136, pp. 456-493, Academic Press (1996)).
  • an organic solvent such as dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP) can be used.
  • DMSO dimethyl sulfoxide
  • DMF dimethylformamide
  • DMA dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • the organic solvent solution in which the drug-linker intermediate compound is dissolved may be reacted by adding 1 to 20% v / v to a buffer solution containing an antibody having a sulfhydryl group.
  • the reaction temperature is 0 to 37 ° C., more preferably 10 to 25 ° C., and the reaction time is 0.5 to 2 hours.
  • the antibody-drug conjugate of the present invention may become a hydrate by absorbing moisture or adsorbed water by being left in the atmosphere, or by recrystallization or purification operation. Yes, such water-containing compounds or pharmacologically acceptable salts are also encompassed by the present invention.
  • a pharmacologically acceptable acid addition salt can be formed as desired. Examples of such acid addition salts include hydrohalides such as hydrofluoride, hydrochloride, hydrobromide and hydroiodide; nitrates, perchlorates, sulfates and phosphates.
  • nucleotide sequence of the chimeric M23 antibody heavy chain is shown in SEQ ID NO: 7, and the amino acid sequence is shown in SEQ ID NO: 8.
  • the nucleotide sequence of SEQ ID NO: 7 and the amino acid sequence of SEQ ID NO: 8 are also shown in FIG.
  • Primer set for chimeric M23 antibody light chain 5'-ATCTCCGGCGCGTACGGCGACATTGTGATGTCACAGTCTCCATCCTCC-3 '(SEQ ID NO: 31: Primer M23L-F) 5'-GGAGGGGGCGGCCACAGCCCGTTTGATTTCCAGCTTGGTGCCTCC-3 '(SEQ ID NO: 32: primer M23L-R)
  • Polyethyleneimine (Polyscience, # 24765) 3.6mg was dissolved in Opti-Pro SFM (Invitrogen) 20ml, then light chain expression vector (0.8mg) and heavy chain prepared using PureLink HiPure Plasmid kit (Invitrogen) The expression vector (0.4 mg) was added to 20 ml of Opti-Pro SFM (Invitrogen). 20 ml of the expression vector / Opti-Pro SFM mixture was added to 20 ml of the Polyethyleneimine / Opti-Pro SFM mixture, gently stirred, allowed to stand for 5 minutes, and then added to FreeStyle 293F cells. The culture supernatant obtained by shaking culture at 90 rpm in an 8% CO 2 incubator at 37 ° C.
  • amino acid number 24 (glutamine) of the cM23 antibody heavy chain shown in SEQ ID NO: 8 is valine, amino acid number 30 ( Leucine) to valine, amino acid number 31 (valine) to lysine, amino acid number 32 (arginine) to lysine, amino acid number 35 (threonine) to alanine, amino acid number 57 (lysine) to arginine, amino acid number 59 ( Arginine) to alanine, amino acid number 67 (isoleucine) to methionine, amino acid number 86 (lysine) to arginine, amino acid number 87 (alanine) to valine, amino acid number 89 (leucine) to isoleucine, amino acid number 93 ( Lysine) to threonine, amino acid number 95 (serine) to threonine, amino acid number 101 (glutamine) to glut
  • Step 4 Glycylglycyl-L-phenylalanyl-N- (4- ⁇ [(1S, 9S) -9-ethyl-5-fluoro-9-hydroxy-4-methyl-10,13-dioxo-2,3, 9,10,13,15-Hexahydro-1H, 12H-benzo [de] pyrano [3 ', 4': 6,7] indolidino [1,2-b] quinolin-1-yl] amino ⁇ -4-oxobutyl ) Glycinamide trifluoroacetate
  • the compound obtained in Step 3 above (1.97 g, 2.10 mmol) was dissolved in dichloromethane (7 mL).
  • Trifluoroacetic acid (7 mL) was added to the resulting solution and stirred for 1 hour.
  • the title compound (1.97 g, 99%) was obtained.
  • the antibody or antibody-drug conjugate solution is placed in a container of Amicon Ultra (50,000 MWCO, Millipore Corporation), and this fraction is centrifuged using a centrifuge (Allegra X-15R, Beckman Coulter, Inc.). The antibody or antibody-drug conjugate solution was concentrated by centrifugation at 3800 G for 5-20 minutes. The antibody concentration was measured using a UV measuring instrument (Nanodrop 1000, Thermo Fisher Scientific Inc.) according to the method specified by the manufacturer. At that time, after measuring the antibody concentration using a 280 nm extinction coefficient (1.65 mLmg ⁇ 1 cm ⁇ 1 ), the antibody concentration was adjusted to 10 mg / mL using PBS6.0 / EDTA.
  • a 280 represents the absorbance of the antibody-drug conjugate aqueous solution at 280 nm
  • a 370 represents the absorbance of the antibody-drug conjugate aqueous solution at 370 nm
  • a A, 280 represents the absorbance of the antibody at 280 nm
  • a A , 370 represents the absorbance of the antibody at 370 nm
  • AD, 280 represents the absorbance of the conjugate precursor at 280 nm
  • AD, 370 represents the absorbance of the conjugate precursor at 370 nm
  • ⁇ A, 280 represents the absorbance at 280 nm.
  • the detection peak was assigned to any one of L 0 , L 1 , H 0 , H 1 , H 2 , and H 3 by comparing the retention times with L 0 and H 0 .
  • the peak area value is corrected according to the following formula using the molar extinction coefficient of the L chain, H chain, and drug linker according to the number of bonds of the drug linker. It was.
  • the molar extinction coefficient (280 nm) of the L chain and H chain in each antibody is determined by the known calculation method (Protein Science, 1995, vol.4, 2411-2423). The value estimated from the sequence was used. In the case of hM23-H1L1, hM23-H1L2, and hM23-H2L2, 41370 was used as the molar extinction coefficient of the L chain and 77810 was used as the estimated value as the molar extinction coefficient of the H chain according to the amino acid sequence.
  • the molar extinction coefficient (280 nm) of the drug linker was the actually measured molar extinction coefficient (280 nm) obtained in the common operation A described above. [B-3-3]
  • Each chain peak area ratio (%) with respect to the total peak area correction value was calculated according to the following formula.
  • Step 2 Benzyl [( ⁇ N-[(9H-fluoren-9-ylmethoxy) carbonyl] glycyl ⁇ amino) methoxy] acetate
  • the compound obtained in Step 1 above (3.68 g, 10.0 mmoL) and benzyl glycolate (4.99 g,
  • To a solution of 30.0 mmoL) in tetrahydrofuran (40.0 mL) was added potassium tert-butoxide (2.24 g, 20.0 mmoL) at 0 ° C., and the mixture was stirred at room temperature for 15 minutes.
  • Antibody concentration 1.52 mg / mL, antibody yield: 9.12 mg (91%), average number of drugs per antibody molecule measured in common procedure A (n): 3.0; antibody measured in common procedure B Average number of drugs bound per molecule (n): 3.7.
  • Antibody concentration 1.49 mg / mL, antibody yield: 8.94 mg (89%), average number of drugs per antibody molecule measured in common procedure A (n): 3.0; antibody measured in common procedure B Average number of drugs bound per molecule (n): 3.4.
  • Antibody concentration 1.56 mg / mL, antibody yield: 9.36 mg (94%), average number of drugs per antibody molecule measured in common procedure A (n): 5.9; antibody measured in common procedure B Average number of drugs bound per molecule (n): 7.1.
  • cM23, anti-transferrin receptor antibody (positive control) and control hIgG1 (negative control) were labeled with Alexa488.
  • Alexa488-labeled antibody was adjusted to 2 ⁇ g / mL with ice-cold RPMI 1640 supplemented with 10% FBS, and 50 ⁇ L was dispensed into a 96-well U-bottom plate.
  • Semi-confluent NCI-H322 cells were collected and suspended at 4 ⁇ 10 6 cells / mL with RPMI 1640 supplemented with ice-cold 10% FBS, and 50 ⁇ L of cells were dispensed onto each of the antibody-dispensed plates. After stirring with a plate mixer, the mixture was incubated at 4 ° C.
  • the antibody or ADC was diluted to 0.3 mg / mL with ABS and administered into the tail vein at 10 mL / kg (3 mg / kg). Thereafter, the tumor diameter was measured twice a week. The change in tumor volume is shown in FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 抗腫瘍効果と安全性面に優れる、優れた治療効果を有する抗腫瘍薬として、抗CD98抗体、リンカーおよび薬物からなる抗CD98抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩であって、リンカーが-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-;-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-;および-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-;からなる群から選択されるリンカーであり、薬物が次式で表される化合物であり、薬物の1位のアミノ基の窒素原子がリンカーのカルボニル部分と結合し、抗CD98抗体がリンカーのスクシンイミド部分と結合する、抗CD98抗体-薬物コンジュゲートを提供する。

Description

抗CD98抗体-薬物コンジュゲート
 本発明は、抗腫瘍活性を有する、抗CD98抗体と抗腫瘍性薬物とをリンカー構造部分を介して結合させた抗体-薬物コンジュゲートに関する。
 癌細胞表面に発現し、かつ、細胞に内在化できる抗原に結合する抗体に、細胞毒性のある薬物を結合させた抗体-薬物コンジュゲート(Antibody-Drug Conjugate;ADC)は、癌細胞に選択的に薬物を送達できることによって、癌細胞内に薬物を蓄積させ、癌細胞を死滅させることが期待できる(非特許文献1~3参照)。ADCとして例えば、抗CD33抗体にカリチアマイシンを結合させたMylotarg(登録商標;ゲムツズマブオゾガマイシン)が急性骨髄性白血病の治療薬として認可されている。また、抗CD30抗体にオーリスタチンEを結合させたAdcetris(登録商標;ブレンツキシマブベドティン)がホジキンリンパ腫と未分化大細胞リンパ腫の治療薬として認可された(非特許文献4参照)。これまでに認可されたADCに含有される薬物は、DNAまたはチューブリンを標的としている。
 抗腫瘍性の低分子化合物としてトポイソメラーゼIを阻害して抗腫瘍作用を発現する化合物であるカンプトテシン誘導体が知られている。その中で下式
Figure JPOXMLDOC01-appb-C000001
で示される抗腫瘍性化合物(エキサテカン、化学名:(1S,9S)-1-アミノ-9-エチル-5-フルオロ-2,3-ジヒドロ-9-ヒドロキシ-4-メチル-1H,12H-ベンゾ[de]ピラノ[3',4':6,7]インドリジノ[1,2-b]キノリン-10,13(9H,15H)-ジオン)は、カンプトテシン誘導体である(特許文献1、2)。この化合物は、現在臨床で用いられているイリノテカンとは異なり、抗腫瘍効果の発現には酵素による活性化を必要としない。また、イリノテカンの活性本体であるSN-38や、同じく臨床で用いられているトポテカンよりもトポイソメラーゼI阻害活性が強く、in vitroで種々の癌細胞に対して、より強い殺細胞活性を有している。特にP-glycoproteinの発現によってSN-38などに耐性を示す癌細胞に対しても効果を示した。また、マウスのヒト腫瘍皮下移植モデルでも強い抗腫瘍効果を示し、臨床試験が行われたものの上市には至っていない(非特許文献5~10参照)。エキサテカンがADCとして有効に作用するかについては明らかではなかった。
 DE-310は、生分解性のカルボキシメチルデキストランポリアルコールポリマーにエキサテカンをGGFGペプチドスペーサーを介して結合させた複合体である(特許文献3)。エキサテカンを高分子プロドラッグ化することによって、高い血中滞留性を保持させ、さらに腫瘍新生血管の透過性の亢進と腫瘍組織滞留性を利用して、受動的に腫瘍部位への指向性を高めたものである。DE-310は、酵素によるペプチドスペーサーの切断によって、活性本体であるエキサテカン、およびグリシンがアミノ基に結合しているエキサテカンが持続的に遊離される。その結果、薬物動態が改善され、非臨床試験における種々の腫瘍の評価モデルにおいて、DE-310は、ここに含まれるエキサテカンの総量がエキサテカン単剤の投与量よりも減少しているのにも拘らず、エキサテカン単剤の投与時よりも高い有効性を示した。DE-310に関しては臨床試験が実施されて有効例も確認され、活性本体が正常組織よりも腫瘍に集積することが確認されたとの報告がある。一方、腫瘍へのDE-310および活性本体の集積は正常組織への集積と大差なく、ヒトでは受動的なターゲティングは見られなかったとの報告もある(非特許文献11~14参照)。結果としてDE-310も上市には至らず、エキサテカンがこのようなターゲティングを指向した薬物として有効に機能するかについては明らかではなかった。
 DE-310の関連化合物として、-NH-(CH2)4-C(=O)-で示される構造部分を-GGFG-スペーサーとエキサテカンの間に挿入し、-GGFG-NH-(CH2)4-C(=O)-をスペーサー構造とする複合体も知られているが(特許文献4)、同複合体の抗腫瘍効果については全く知られていない。
 CD98は、約40kDaのmulti-pass軽鎖とジスルフィド結合した約80~85kDaのtype II single-pass transmembrane重鎖からなるヘテロダイマーである(非特許文献15)。CD98重鎖(CD98hc、4F2またはFRP-1として公知である)は、マウスにおいてSlc3a2遺伝子で、ヒトにおいてSLC3A2遺伝子でコードされる。CD98hcはtypeII膜貫通タンパク質であり、細胞外ドメイン、膜貫通ドメインおよび細胞質尾部を有する。CD98は、少なくとも6つ存在するCD98軽鎖(アミノ酸トランスポーター、LAT-1、LAT-2など)の一つとCD98hc細胞外ドメインとの間でジスルフィド結合によりヘテロダイマーを形成する。このCD98を標的とした抗CD98抗体は、抗腫瘍活性、免疫抑制活性を有することが知られている(特許文献5~11)。
特開平5-59061号公報 特開平8-337584号公報 国際公開WO1997/46260パンフレット 国際公開WO2000/25825パンフレット 国際公開WO2007/114496パンフレット 国際公開WO2008/017828パンフレット 国際公開WO2009/043922パンフレット 国際公開WO2009/090553パンフレット 特開2012-092068号公報 国際公開WO2011/118804パンフレット 国際公開WO2013/078377パンフレット
Ducry, L., et al., Bioconjugate Chem. (2010) 21, 5-13. Alley, S. C., et al., Current Opinion in Chemical Biology (2010)14, 529-537. Damle N.K., Expert Opin. Biol. Ther. (2004) 4, 1445-1452. Senter P. D., et al., Nature Biotechnology (2012) 30, 631-637. Kumazawa, E., Tohgo, A., Exp. Opin. Invest. Drugs (1998) 7, 625-632. Mitsui, I., Kumazawa, E., Hirota, Y., et al., Jpn J. Cancer Res. (1995) 86, 776-786. Takiguchi, S., Tohgo, A., et al., Jpn J. Cancer Res. (1997) 88, 760-769. Joto, N. et al., Int J Cancer (1997) 72, 680-686. Kumazawa, E. et al., Cancer Chemother. Pharmacol. (1998) 42, 210-220. De Jager, R., et al., Ann N Y Acad Sci (2000) 922, 260-273. Inoue, K. et al., Polymer Drugs in the Clinical Stage, Edited by Maeda et al. (2003), 145-153. Kumazawa, E. et al., Cancer Sci (2004) 95, 168-175. Soepenberg、 O. et al., Clinical Cancer Research, (2005) 11, 703-711. Wente M. N. et al., Investigational New Drugs (2005) 23, 339-347. Joseph M. Cantor et al., Jornal of Cell Science (2012) 125, 1373-1382.
 抗体による腫瘍の治療においては、抗体が抗原を認識して腫瘍細胞に結合しても抗腫瘍効果が十分でない場合が観察されることもあり、より効果の高い抗腫瘍抗体が必要とされる場合がある。また、抗腫瘍性の低分子化合物においては、抗腫瘍効果に優れていても副作用や毒性面など、安全性上の問題を有するものが多く、安全性をより高めてより優れた治療効果を獲得することも課題である。すなわち本発明は、抗腫瘍効果と安全性面に優れる、優れた治療効果を有する抗腫瘍剤を獲得して提供することが課題である。
 本発明者らは抗CD98抗体が、腫瘍細胞を標的にできる抗体であること、すなわち、腫瘍細胞を認識できる特性、腫瘍細胞に結合できる特性、あるいは腫瘍細胞に内在化できる特性などを備えた抗体であることから、抗腫瘍性化合物であるエキサテカンを、リンカー構造部分を介して同抗体に結合させた抗体-薬物コンジュゲートに変換することによって、(1)エキサテカン誘導体を腫瘍細胞に運搬してエキサテカン誘導体の抗腫瘍効果を腫瘍細胞で特異的に発揮させることができること、(2)抗腫瘍効果の確実な発揮とともにエキサテカン誘導体の投与量を単体投与時よりも減少させることができること、(3)通常細胞へのエキサテカン誘導体の影響を緩和させることができるのでより高い安全性を達成できること、が可能と考えた。
 このために本発明者らは特定の構造のリンカーを創出し、このリンカーを介して抗CD98抗体とエキサテカンとを結合させた抗CD98抗体-薬物コンジュゲートを獲得することに成功し、そしてこの化合物が優れた抗腫瘍効果を発揮することを見出して本発明を完成させたのである。
 すなわち本願発明は、
(1)抗CD98抗体、リンカーおよび薬物からなる抗CD98抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩であって、
 ここで、リンカーが次式:
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-;
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-;および
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-;
からなる群から選択されるリンカーであり、
 薬物が次式:
Figure JPOXMLDOC01-appb-C000002
で表される化合物であり、
 薬物の1位のアミノ基の窒素原子がリンカーのカルボニル部分と結合し、
 抗CD98抗体がリンカーのスクシンイミド部分と結合する、
抗CD98抗体-薬物コンジュゲート;
(2)1抗体あたりの薬物の平均結合数が2~8個の範囲である前記(1)に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(3)1抗体あたりの薬物の平均結合数が3~6個の範囲である前記(1)に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(4)1抗体あたりの薬物の平均結合数が逆層クロマトグラフィー(RPC)法により測定される前記(2)または(3)に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(5)1抗体あたりの薬物の結合数が2、4、6または8個である前記(1)に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(6)リンカーが、次式:
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-
である前記(1)~(5)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(7)リンカーが、次式:
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-
である前記(1)~(5)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(8)リンカーが、次式:
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-
である前記(1)~(5)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(9)抗CD98抗体が、配列番号38の462~541番目のアミノ酸残基からなる部位に結合する、前記(1)~(8)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(10)抗CD98抗体が、
 配列番号19で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRH1;
 配列番号20で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRH2;
 配列番号21で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRH3;
 配列番号22で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRL1;
 配列番号23で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRL2;および
 配列番号24で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRL3;
を含み、かつ、CD98重鎖に結合する、前記(1)~(9)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(11)抗CD98抗体が、
 配列番号19で表されるアミノ酸配列からなるCDRH1;
 配列番号20で表されるアミノ酸配列からなるCDRH2;
 配列番号21で表されるアミノ酸配列からなるCDRH3;
 配列番号22で表されるアミノ酸配列からなるCDRL1;
 配列番号23で表されるアミノ酸配列からなるCDRL2;および
 配列番号24で表されるアミノ酸配列からなるCDRL3;
を含み、かつ、CD98重鎖に結合する、前記(1)~(9)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(12)抗CD98抗体が、配列番号8の20~135番目のアミノ酸残基からなるアミノ酸配列に対して少なくとも90%の同一性を持つ重鎖可変領域および/または配列番号10の21~135番目のアミノ酸残基からなるアミノ酸配列に対して少なくとも90%の同一性を持つ軽鎖可変領域を含む、前記(1)~(11)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(13)抗CD98抗体が、
 (1)配列番号12または14の20~135番目のアミノ酸残基からなるアミノ酸配列;
 (2)(1)のアミノ酸配列に対して少なくとも95%以上の同一性を有するアミノ酸配列;および
 (3)(1)のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列;
からなる群より選択される重鎖可変領域を含む重鎖;ならびに
 (4)配列番号16または18の21~135番目のアミノ酸残基からなるアミノ酸配列;
 (5)(4)のアミノ酸配列に対して少なくとも95%以上の同一性を有するアミノ酸配列;および
 (6)(4)のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列;
からなる群より選択される軽鎖可変領域を含む軽鎖;
を含む、前記(1)~(11)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(14)抗CD98抗体が、配列番号12の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号16の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、前記(1)~(11)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(15)抗CD98抗体が、配列番号12の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号18の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、前記(1)~(11)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(16)抗CD98抗体が、配列番号14の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号18の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、前記(1)~(11)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(17)抗CD98抗体が、配列番号12の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖および配列番号16の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなる、前記(1)~(11)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(18)抗CD98抗体が、配列番号12の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖および配列番号18の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなる、前記(1)~(11)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(19)抗CD98抗体が、配列番号14の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖および配列番号18の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなる、前記(1)~(11)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(20)配列番号38の462~541番目のアミノ酸残基からなる部位に結合する、抗CD98抗体または該抗体の抗原結合断片;
(21)配列番号19で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRH1;
 配列番号20で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRH2;
 配列番号21で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRH3;
 配列番号22で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRL1;
 配列番号23で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRL2;および
 配列番号24で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRL3;
を含む、前記(20)に記載の抗CD98抗体または該抗体の抗原結合断片;
(22)配列番号19で表されるアミノ酸配列からなるCDRH1;
 配列番号20で表されるアミノ酸配列からなるCDRH2;
 配列番号21で表されるアミノ酸配列からなるCDRH3;
 配列番号22で表されるアミノ酸配列からなるCDRL1;
 配列番号23で表されるアミノ酸配列からなるCDRL2;および
 配列番号24で表されるアミノ酸配列からなるCDRL3;
を含む、前記(20)または(21)に記載の抗CD98抗体または該抗体の抗原結合断片;
(23)配列番号8の20~135番目のアミノ酸残基からなるアミノ酸配列に対して少なくとも90%の同一性を持つ重鎖可変領域および/または配列番号410の21~135番目のアミノ酸残基からなるアミノ酸配列に対して少なくとも90%の同一性を持つ軽鎖可変領域を含む、前記(20)~(22)のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片;
(24)
 (1)配列番号12または14の20~135番目のアミノ酸残基からなるアミノ酸配列;
 (2)(1)のアミノ酸配列に対して少なくとも95%以上の同一性を有するアミノ酸配列;および
 (3)(1)のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列;
からなる群より選択される重鎖可変領域を含む重鎖;ならびに
 (4)配列番号16または18の21~135番目のアミノ酸残基からなるアミノ酸配列;
 (5)(4)のアミノ酸配列に対して少なくとも95%以上の同一性を有するアミノ酸配列;および
 (6)(4)のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列;
からなる群より選択される軽鎖可変領域を含む軽鎖;
含む、前記(20)~(22)のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片;
(25)配列番号12の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号16の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、前記(20)~(22)のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片;
(26)配列番号12の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号18の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、前記(20)~(22)のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片;
(27)配列番号14の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号18の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、前記(20)~(22)のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片;
(28)配列番号12の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号16の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、前記(20)~(22)のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片;
(29)配列番号12の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号18の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、前記(20)~(22)のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片;
(30)配列番号14の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号18の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、前記(20)~(22)のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片;
(31)前記(20)~(30)のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片を含む抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩;
(32)前記(1)~(19)および(31)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩あるいは前記(20)~(30)のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片を活性成分として含有する医薬組成物;
(33)抗腫瘍または抗癌のための前記(32)に記載の医薬組成物;
(34)腫瘍または癌が、肺癌、腎癌、尿路上皮癌、大腸癌、前立腺癌、多形神経膠芽腫、卵巣癌、膵癌、乳癌、メラノーマ、肝癌、膀胱癌、胃癌、子宮頸癌、頭頸部癌、食道癌、リンパ腫、急性骨髄性白血病、急性リンパ性白血病、慢性骨髄性白血病または多発性骨髄腫である、前記(33)に記載の医薬組成物;
(35)医薬組成物を製造するための、前記(1)~(19)および(31)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬学的に許容され得る塩、あるいは、前記(20)~(30)のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片の使用; 
(36)腫瘍および/または癌の治療における使用のための、前記(1)~(19)および(31)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬学的に許容され得る塩、あるいは、前記(20)~(30)のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片。
(37)前記(1)~(19)および(31)のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩あるいは前記(20)~(30)のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片の治療有効量を哺乳動物に投与すること含む、腫瘍および/または癌の治療方法;
(38)前記(20)~(30)のいずれか1項に記載の抗体をコードするポリヌクレオチド;
(39)前記(38)に記載のポリヌクレオチドであって、
 (1)配列番号11または13の58~405番目のヌクレオチドからなるヌクレオチド配列;
 (2)(1)のヌクレオチド配列に対して少なくとも95%以上の同一性を有するヌクレオチド配列; 
 (3)(1)のヌクレオチド配列と相補的なヌクレオチド配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチドが保有するヌクレオチド配列;および
 (4)(1)のヌクレオチド配列において1または数個のヌクレオチドが欠失、置換または付加されたヌクレオチド配列;
からなる群より選択されるポリヌクレオチド;ならびに
 (5)配列番号15または17の61~405番目のヌクレオチドからなるヌクレオチド配列;
 (6)(5)のヌクレオチド配列に対して少なくとも95%以上の同一性を有するヌクレオチド配列; 
 (7)(5)のヌクレオチド配列と相補的なヌクレオチド配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチドが保有するヌクレオチド配列;および
 (8)(5)のヌクレオチド配列において1または数個のヌクレオチドが欠失、置換または付加されたヌクレオチド配列;
からなる群より選択されるポリヌクレオチド;
を含むポリヌクレオチド;
(40)配列番号11の58~405番目のヌクレオチドからなるヌクレオチド配列からなるポリヌクレオチドおよび配列番号15の61~405番目のヌクレオチドからなるヌクレオチド配列からなるポリヌクレオチドを含む前記(39)に記載のポリヌクレオチド;
(41)配列番号11の58~405番目のヌクレオチドからなるヌクレオチド配列からなるポリヌクレオチドおよび配列番号17の61~405番目のヌクレオチドからなるヌクレオチド配列からなるポリヌクレオチドを含む前記(39)に記載のポリヌクレオチド;
(42)配列番号13の58~405番目のヌクレオチドからなるヌクレオチド配列からなるポリヌクレオチドおよび配列番号17の61~405番目のヌクレオチドからなるヌクレオチド配列からなるポリヌクレオチドを含む前記(39)に記載のポリヌクレオチド;
(43)前記(38)~(42)のいずれか1項に記載のポリヌクレオチドを含むベクター;
(44)前記(38)~(42)のいずれか1項に記載のポリヌクレオチドを含む形質転換宿主細胞;
(45)前記(43)に記載のベクターを含む形質転換宿主細胞;ならびに
(46)前記(44)または(45)に記載の宿主細胞を培養し、培養産物から抗体を精製する工程を含む前記(20)~(30)のいずれか1項に記載の抗体の生産方法;
に関する。
 特定の構造のリンカーを介してエキサテカンを抗CD98抗体に結合させた抗CD98抗体-薬物コンジュゲートによって優れた抗腫瘍効果および安全性を達成することができる。
図1は、キメラM23抗体重鎖のヌクレオチド配列(配列番号7)およびアミノ酸配列(配列番号8)を示す。 図2は、キメラM23抗体軽鎖のヌクレオチド配列(配列番号9)およびアミノ酸配列(配列番号10)を示す。 図3は、hM23-H1タイプ重鎖のヌクレオチド配列(配列番号11)およびアミノ酸配列(配列番号12)を示す。 図4は、hM23-H2タイプ重鎖のヌクレオチド配列(配列番号13)およびアミノ酸配列(配列番号14)を示す。 図5は、hM23-L1タイプ軽鎖のヌクレオチド配列(配列番号15)およびアミノ酸配列(配列番号16)を示す。 図6は、hM23-L2タイプ軽鎖のヌクレオチド配列(配列番号17)およびアミノ酸配列(配列番号18)を示す。 図7は、M23抗体のCDRH1のアミノ酸配列(配列番号19)、CDRH2のアミノ酸配列(配列番号20)、CDRH3のアミノ酸配列(配列番号21)、CDRL1のアミノ酸配列(配列番号22)、CDRL2のアミノ酸配(配列番号23)およびCDRL3のアミノ酸配列(配列番号24)を示す。 図8は、M23抗体の細胞内在化能を示す。 図9は、hM23-H1L1-薬物コンジュゲートが、ヒトバーキットリンパ腫移植マウスに対して示す抗腫瘍効果を示す。 図10は、hM23-H1L2-薬物コンジュゲートが、ヒトバーキットリンパ腫移植マウスに対して示す抗腫瘍効果を示す。 図11は、hM23-H2L2-薬物コンジュゲートが、ヒトバーキットリンパ腫移植マウスに対して示す抗腫瘍効果を示す。 図12は、hM23-H1L1-薬物コンジュゲートが、ヒトバーキットリンパ腫移植マウスに対して示す抗腫瘍効果を示す。 図13は、一部のアミノ酸配列をマウスの配列に置換したヒトCD98とFLAGとの融合タンパクを発現させた細胞を用いて、M23抗体のエピトープを解析した結果を示す。 図14は、一部のアミノ酸配列をマウスの配列に置換したヒトCD98とFLAGとの融合タンパクを発現させた細胞の細胞膜上での該融合タンパク質の発現を確認した結果を示す。
 本明細書において、「癌」と「腫瘍」は同じ意味に用いられる。
 本明細書において、「遺伝子」は、DNAのみならずそのmRNA、cDNAおよびそのcRNAを含む。
 本明細書において、「ポリヌクレオチド」は核酸と同じ意味に用いられ、DNA、RNA、プローブ、オリゴヌクレオチドおよびプライマーを含む。
 本明細においては、「ポリペプチド」と「タンパク質」は同じ意味に用いられる。
 本明細書において、「細胞」は、動物個体内の細胞、培養細胞を含む。
 本明細書において、「CD98」はCD98タンパク質と同じ意味に用いられる。CD98は重鎖と軽鎖からなっているので、「CD98重鎖」および「CD98軽鎖」はそれぞれCD98重鎖タンパク質およびCD98軽鎖タンパク質と同じ意味に用いられる。さらに、本明細書において「CD98」は、特に明記されない限り、「CD98重鎖」および「CD98軽鎖」、または、「CD98重鎖」または「CD98軽鎖」のいずれか一つと相互に変換可能に用いられる。
 本明細書において、「抗CD98抗体」とは、CD98重鎖に結合できる抗体をいう。
 本明細書において、「細胞傷害」とは、何らかの形で、細胞に病理的な変化をもたらすことをいい、直接的な外傷にとどまらず、DNAの切断や塩基の二量体の形成、染色体の切断、細胞分裂装置の損傷、各種酵素活性の低下などあらゆる細胞の構造や機能上の損傷をいう。
 本明細書において、「細胞傷害活性」とは上記細胞傷害を引き起こすことをいう。
 本明細書において、「抗体依存性細胞傷害活性」とは、「antibody dependent cellular cytotoxicity(ADCC)活性」のことであり、NK細胞が抗体を介して腫瘍細胞などの標的細胞を傷害する作用活性を意味する。
 本明細書において、「補体依存性細胞傷害作用活性」とは、「complement dependent cytotoxicity(CDC)活性」のことであり、補体が抗体を介して腫瘍細胞などの標的細胞を傷害する作用活性を意味する。
 本明細書において、「抗体の抗原結合断片」とは、「抗体の機能性断片」とも呼ばれ、抗原との結合活性を有する抗体の部分断片を意味しており、Fab、F(ab’)2、scFvなどを含む。また、F(ab’)2を還元条件下で処理した抗体の可変領域の一価の断片であるFab’も抗体の抗原結合断片に含まれる。但し、抗原との結合能を有している限りこれらの分子に限定されない。また、これらの抗原結合断片には、抗体タンパク質の全長分子を適当な酵素で処理したもののみならず、遺伝子工学的に改変された抗体遺伝子を用いて適当な宿主細胞において産生されたタンパク質も含まれる。
 本明細書において、「Fab’」とは、上記のようにF(ab’)2を還元条件下で処理した抗体の可変領域の一価の断片であり。但し、遺伝子工学的に改変された抗体遺伝子を用いて産生されるFab’も本発明におけるFab’に含まれる。
 本明細書において、「エピトープ」とは、特定の抗CD98抗体の結合するCD98の部分ペプチドまたは部分立体構造を意味する。CD98の部分ペプチドであるエピトープは、免疫アッセイ法など当業者によく知られている方法、例えば以下の方法によって決定することができる。まず、抗原の様々な部分構造を作製する。部分構造の作製にあたっては、公知のオリゴペプチド合成技術を用いることができる。例えば、CD98のC末端あるいはN末端から適当な長さで順次短くした一連のポリペプチドを当業者に周知の遺伝子組み換え技術を用いて作製した後、それらに対する抗体の反応性を検討し、大まかな認識部位を決定した後に、さらに短いペプチドを合成してそれらのペプチドとの反応性を検討することによって、エピトープを決定することができる。また、特定の抗体の結合する抗原の部分立体構造であるエピトープは、X線構造解析によって前記の抗体と隣接する抗原のアミノ酸残基を特定することによって決定することができる。
 本明細書において、「同一のエピトープに結合する抗体」とは、共通のエピトープに結合する異なる抗体を意味している。第一の抗体の結合する部分ペプチドまたは部分立体構造に第二の抗体が結合すれば、第一の抗体と第二の抗体が同一のエピトープに結合すると判定することができる。また、第一の抗体の抗原に対する結合に対して第二の抗体が競合する(即ち、第二の抗体が第一の抗体と抗原の結合を妨げる)ことを確認することによって、具体的なエピトープの配列または構造が決定されていなくても、第一の抗体と第二の抗体が同一のエピトープに結合すると判定することができる。さらに、第一の抗体と第二の抗体が同一のエピトープに結合し、かつ第一の抗体が抗腫瘍活性などの特殊な効果を有する場合、第二の抗体も同様の活性を有することが期待できる。したがって、第一の抗CD98抗体の結合する部分ペプチドに第二の抗CD98抗体が結合すれば、第一の抗体と第二の抗体がCD98の同一のエピトープに結合すると判定することができる。また、第一の抗CD98抗体のCD98に対する結合に対して第二の抗CD98抗体が競合することを確認することによって、第一の抗体と第二の抗体がCD98の同一のエピトープに結合する抗体と判定することができる。
 本明細書において、「CDR」とは、相補性決定領域(CDR:Complemetarity detemining region)をいう。抗体分子の重鎖および軽鎖にはそれぞれ3箇所のCDRがあることが知られている。CDRは、超可変領域(hypervariable domain)とも呼ばれ、抗体の重鎖および軽鎖の可変領域内にあって、一次構造の変異性が特に高い部位であり、重鎖および軽鎖のポリペプチド鎖の一次構造上において、それぞれ3ヶ所に分離している。本明細書においては、抗体のCDRについて、重鎖のCDRを重鎖アミノ酸配列のN末端側からCDRH1、CDRH2、CDRH3と表記し、軽鎖のCDRを軽鎖アミノ酸配列のN末端側からCDRL1、CDRL2、CDRL3と表記する。これらの部位は立体構造の上で相互に近接し、結合する抗原に対する特異性を決定している。
 本明細書において、「数個」とは、2~10個、2~9個、2~8個、2~7個、2~6個、2~5個、2~4個、2~3個、または、2個を意味し、好ましくは2個である。
 本明細書において、「薬物平均結合数」とは、薬物抗体比(Drug-to-Antibody Ratio (DAR))とも呼ばれ、抗体1分子に対して結合する薬物の平均数を意味する。
 本明細においては、「同一性」と「相同性」は同じ意味に用いられる。
(CD98)
 CD98は、約40kDaのmulti-pass軽鎖とジスルフィド結合した約80~85kDaのtype II single-pass transmembrane重鎖からなるヘテロダイマーである(非特許文献15)。CD98重鎖(CD98hc、4F2、またはFRP-1として公知である)は、マウスにおいてSlc3a2遺伝子で、ヒトにおいてSLC3A2遺伝子でコードされる。CD98hcはtypeII膜貫通タンパク質であり、細胞外ドメイン、膜貫通ドメインおよび細胞質尾部を有する。CD98は、少なくとも6つ存在するCD98軽鎖(LAT-1、LAT-2など)の一つとCD98hc細胞外ドメインとの間でジスルフィド結合によりヘテロダイマーを形成する。CD98重鎖はインテグリンのシグナル伝達に関与し、CD98軽鎖はアミノ酸輸送に関与する。
 CD98重鎖のヌクレオチド配列およびアミノ酸配列は公的データベース上で公開されており、例えば、ヌクレオチド配列としては、NM_001012662、NM_001013251(GenBank)、アミノ酸配列としては、NP_001012680、NP_001013269(GenBank)などにより参照可能である。ヌクレオチド配列NM_001012662は配列番号37、アミノ酸配列NP_001012680は配列番号38として本明細書中にも開示されている。
 CD98は、ヒト、非ヒト哺乳動物(ラット、マウスなど)のCD98発現細胞から直接精製して使用するか、あるいは当該細胞の細胞膜画分を調製して使用することができ、また、CD98をin vitroにて合成する、あるいは遺伝子操作によって宿主細胞に産生させることによって得ることができる。遺伝子操作では、具体的には、CD98 cDNAを発現可能なベクターに組み込んだ後、転写と翻訳に必要な酵素、基質およびエネルギー物質を含む溶液中で合成する、あるいは他の原核生物、または真核生物の宿主細胞を形質転換させることによってCD98を発現させることによって、該タンパク質を得ることができる。また、前記の遺伝子操作によるCD98発現細胞、あるいはCD98を発現している細胞株をCD98として使用することも可能である。
 また、上記CD98重鎖のアミノ酸配列において、1または数個のアミノ酸が置換、欠失および/または付加されたアミノ酸配列からなり、当該タンパク質と同等の生物活性を有するタンパク質もCD98重鎖に含まれる。
(抗CD98抗体)
 本発明に用いられる抗CD98抗体は、CD98重鎖に結合できる抗体であれば特に限定されない。かかる抗体は、CD98を発現している腫瘍細胞を認識できる特性、かかる腫瘍細胞に結合できる特性、および、かかる腫瘍細胞内に取り込まれて内在化する特性を有する。
 本発明に用いられる抗CD98抗体は、この分野で通常実施される方法を用いて、CD98重鎖またはCD98重鎖のアミノ酸配列から選択される任意のポリペプチドを動物に免疫し、生体内に産生される抗体を採取、精製することによって得ることができる。抗原となるCD98の生物種はヒトに限定されず、マウス、ラットなどのヒト以外の動物に由来するCD98を動物に免疫することもできる。この場合には、取得された異種CD98に結合する抗体とヒトCD98との交差性を試験することによって、ヒトの疾患に適用可能な抗体を選別できる。
 また、公知の方法(例えば、Kohler and Milstein, Nature(1975)256, p.495-497;Kennet, R.ed., Monoclonal Antibodies, p.365-367, Plenum Press, N.Y.(1980))に従って、抗CD98抗体を産生する抗体産生細胞とミエローマ細胞とを融合させることによりハイブリドーマを樹立し、モノクローナル抗体を得ることもできる。
 なお、抗原となるCD98重鎖はCD98重鎖の遺伝子を遺伝子操作により宿主細胞に産生させることによって得ることができる。
 具体的には、CD98重鎖の遺伝子を発現可能なベクターを作製し、これを宿主細胞に導入して該遺伝子を発現させ、発現したCD98重鎖を精製すればよい。以下、具体的に抗CD98抗体の取得方法を説明する。
(1)抗原の調製
 抗CD98抗体を作製するための抗原としては、CD98重鎖またはその少なくとも6個の連続した部分アミノ酸配列からなるポリペプチド、これらに任意のアミノ酸配列や担体が付加された誘導体、CD98重鎖を発現している細胞などを挙げることができる。
 CD98は、ヒトの腫瘍組織あるいは腫瘍細胞から直接精製して使用することができ、また、CD98をin vitroにて合成する、あるいは遺伝子操作により宿主細胞に産生させることによって得ることができる。
 遺伝子操作では、具体的には、CD98のcDNAを発現可能なベクターに組み込んだ後、転写と翻訳に必要な酵素、基質およびエネルギー物質を含む溶液中で合成する、あるいは他の原核生物、または真核生物の宿主細胞を形質転換させることによってCD98を発現させることにより、抗原を得ることができる。
 また、膜タンパク質であるCD98の細胞外領域と抗体の定常領域とを連結した融合タンパク質を適切な宿主・ベクター系において発現させることによって、分泌タンパク質として抗原を得ることも可能である。
 CD98のcDNAは例えば、CD98のcDNAを発現しているcDNAライブラリーを鋳型として、CD98のcDNAを特異的に増幅するプライマーを用いてポリメラーゼ連鎖反応(以下「PCR」という)(Saiki, R. K., et al., Science(1988)239, p.487-489参照)を行なう、いわゆるPCR法により取得することができる。
 ポリペプチドのin vitro合成としては、例えばロシュ・ダイアグノスティックス社製のラピッドトランスレーションシステム(RTS)を挙げることができるが、これに限定されない。
 原核細胞の宿主としては、例えば、大腸菌(Escherichia coli)や枯草菌(Bacillus subtilis)などを挙げることができる。目的の遺伝子をこれらの宿主細胞内で形質転換させるには、宿主と適合し得る種由来のレプリコンすなわち複製起点と、調節配列を含んでいるプラスミドベクターで宿主細胞を形質転換させる。また、ベクターとしては、形質転換細胞に表現形質(表現型)の選択性を付与することができる配列を有するものが好ましい。
 真核細胞の宿主細胞には、脊椎動物、昆虫、酵母などの細胞が含まれ、脊椎動物細胞としては、例えば、サルの細胞であるCOS細胞(Gluzman, Y. Cell(1981)23, p.175-182、ATCC CRL-1650;ATCC:American Type Culture Collection)、マウス線維芽細胞NIH3T3(ATCC No.CRL-1658)やチャイニーズ・ハムスター卵巣細胞(CHO細胞、ATCC CCL-61)のジヒドロ葉酸還元酵素欠損株(Urlaub, G. and Chasin, L.A. Proc. Natl. Acad. Sci. U.S.A.(1980)77, p.4126-4220)などがよく用いられているが、これらに限定されない。
 上記のようにして得られる形質転換体は、常法に従い培養することができ、該培養により細胞内、または細胞外に目的のポリペプチドが産生される。
 該培養に用いられる培地としては、採用した宿主細胞に応じて慣用される各種のものを適宜選択でき、大腸菌であれば、例えば、LB培地に必要に応じて、アンピシリンなどの抗生物質やIPMGを添加して用いることができる。
 上記培養により、形質転換体の細胞内または細胞外に産生される組換えタンパク質は、該タンパク質の物理的性質や化学的性質などを利用した各種の公知の分離操作法により分離・精製することができる。
 該方法としては、具体的には例えば、通常のタンパク質沈殿剤による処理、限外濾過、分子ふるいクロマトグラフィー(ゲル濾過)、吸着クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィーなどの各種液体クロマトグラフィー、透析法、これらの組合せなどを例示できる。
 また、発現させる組換えタンパク質に6残基からなるヒスチジンタグを繋げることにより、ニッケルアフィニティーカラムで効率的に精製することができる。あるいは、発現させる組換えタンパク質にIgGのFc領域を繋げることにより、プロテインAカラムで効率的に精製することができる。
 上記方法を組合せることにより容易に高収率、高純度で目的とするポリペプチドを大量に製造できる。
(2)抗CD98モノクローナル抗体の製造
 CD98と特異的に結合する抗体の例として、CD98と特異的に結合するモノクローナル抗体を挙げることができるが、その取得方法は、以下に記載する通りである。
 モノクローナル抗体の製造にあたっては、一般に下記のような作業工程が必要である。すなわち、
(a)抗原を調製する工程、
(b)抗原を動物に注射することによって免疫した後、血液を採取しその抗体価を検定して脾臓摘出の時期を決定してから、抗体産生細胞を調製する工程、
(c)ミエローマを調製する工程、
(d)抗体産生細胞とミエローマとを細胞融合させる工程、
(e)目的とする抗体を産生するハイブリドーマ群を選別する工程、
(f)単一細胞クローンへ分割(クローニング)する工程、
(g)場合によっては、ハイブリドーマを培養してモノクローナル抗体を製造する工程、または、ハイブリドーマを移植した動物を飼育してモノクローナル抗体を製造する工程、
(h)このようにして製造されたモノクローナル抗体の生理活性、およびその結合特異性を検討、あるいは標識試薬としての特性を検定する工程
などである。
 以下、モノクローナル抗体の作製法を上記工程に沿って詳述するが、該抗体の作製法はこれに制限されず、例えば脾細胞以外の抗体産生細胞およびミエローマを使用することもできる。
(a)抗原を調製する工程
 抗原としては、前記したような方法で調製したCD98またはその一部、CD98発現組換え体細胞よって調製した膜画分、CD98発現組換え体細胞、CD98発現細胞株、当業者に周知の方法を用いて、化学合成したCD98の部分ペプチドなどを使用することができる。
(b)抗体産生細胞を調製する工程
 工程(a)で得られた抗原と、フロインドの完全または不完全アジュバント、またはカリミョウバンのような助剤とを混合し、免疫原として実験動物に免疫する。あるいはCD98発現細胞を免疫原として実験動物に免疫する。実験動物は公知のハイブリドーマ作製法に用いられる動物を支障なく使用することができる。具体的には、例えばマウス、ラット、ヤギ、ヒツジ、ウシ、ウマなどを使用することができる。ただし、摘出した抗体産生細胞と融合させるミエローマ細胞の入手容易性などの観点から、マウスまたはラットを被免疫動物とするのが好ましい。
 また、実際に使用するマウスおよびラットの系統には特に制限はなく、マウスの場合には、例えば各系統A、AKR、BALB/c、BDP、BA、CE、C3H、57BL、C57BL、C57L、DBA、FL、HTH、HT1、LP、NZB、NZW、RF、R III、SJL、SWR、WB、129などが、またラットの場合には、例えば、Wistar、Low、Lewis、Sprague、Dawley、ACI、BN、Fischerなどを用いることができる。
 これらのマウスおよびラットは例えば日本クレア社、日本チャ-ルス・リバー社、など実験動物飼育販売業者より入手することができる。
 このうち、後述のミエローマ細胞との融合適合性を勘案すれば、マウスではBALB/c系統が、ラットではWistarおよびLow系統が被免疫動物としてさらに好ましい。
 また、抗原のヒトとマウスでの同一性を考慮し、自己抗体を除去する生体機構を低下させたマウス、すなわち自己免疫疾患マウスを用いることも好ましい。
 なお、これらマウスまたはラットの免疫時の週齢は、好ましくは3~12週齢、さらに好ましくは4~6週齢である。
 動物を免疫する方法としては、例えば、Weir, D. M., Handbook of Experimental Immunology Vol.I.II.III., Blackwell Scientific Publications, Oxford(1987)、Kabat, E. A. and Mayer, M. M., Experimental Immunochemistry, Charles C Thomas Publisher Springfield, Illinois(1964)などに記載されている公知の方法を用いることができる。
 これらの免疫法のうち、抗原を動物の皮下に投与する方法が好ましい。免疫効率を高めるために、前半は皮内投与を行い、後半または最終回のみ静脈内投与を行うことがさらに好ましい。
 抗原の投与スケジュールは、被免疫動物の種類、個体差などによって異なるが、一般には、抗原投与回数3~6回、投与間隔1~3週間が好ましく、投与回数4~5回、投与間隔1~2週間がさらに好ましい。
 また、抗原の投与量は、動物の種類、個体差などによって異なるが、一般には0.05~5mg、好ましくは0.1~0.5mg程度とする。
 追加免疫は、以上の通りの抗原投与の1~6週間後、好ましくは1~4週間後、さらに好ましくは1~3週間後に行う。免疫原が細胞の場合には、1×106~1×107個の細胞を使用する。
 なお、追加免疫を行う際の抗原投与量は、動物の種類、大きさなどによって異なるが、一般に、例えばマウスの場合には0.05~5mg、好ましくは0.1~0.5mg、さらに好ましくは0.1~0.2mg程度とする。免疫原が細胞の場合には、1×106~1×107個の細胞を使用する。
 上記追加免疫から1~10日後、好ましくは2~5日後、さらに好ましくは2~3日後に被免疫動物から抗体産生細胞を含む脾臓細胞またはリンパ球を無菌的に取り出す。その際に抗体価を測定し、抗体価が十分高くなった動物を抗体産生細胞の供給源として用いれば、以後の操作の効率を高めることができる。
 ここで用いられる抗体価の測定法としては、例えば、RIA法またはELISA法を挙げることができるがこれらの方法に制限されない。ELISA法の場合は、以下に記載するような手順によって行うことができる。
 まず、精製または部分精製した抗原をELISA用96ウェルプレートなどの固相表面に吸着させ、さらに抗原が吸着していない固相表面を抗原と無関係なタンパク質、例えばウシ血清アルブミン(本明細書において「BSA」という場合がある)によって覆い、該表面を洗浄後、第一抗体として段階希釈した試料(例えばマウス血清)に接触させ、上記抗原に試料中の抗体を結合させる。
 さらに第二抗体として酵素標識されたマウス抗体に対する抗体を加えてマウス抗体に結合させ、洗浄後該酵素の基質を加え、基質分解に基づく発色による吸光度の変化などを測定することによって、抗体価を算出する。
 被免疫動物の脾臓細胞またはリンパ球からの抗体産生細胞の分離は、公知の方法(例えば、Kohler et al., Nature(1975)256, p.495、Kohler et al., Eur. J. Immunol.(1977)6, p.511;Milstein et al., Nature(1977)266, p.550;Walsh, Nature,(1977)266, p.495)に従って行うことができる。例えば、脾臓細胞の場合には、脾臓を細切して細胞をステンレスメッシュで濾過した後、イーグル最小必須培地(MEM)に浮遊させて抗体産生細胞を分離する一般的方法を採用することができる。
(c)ミエローマを調製する工程
 細胞融合に用いるミエローマには特段の制限はなく、公知の細胞株から適宜選択して用いることができる。ただし、融合細胞からハイブリドーマを選択する際の利便性を考慮して、その選択手続が確立しているHGPRT(Hypoxanthine-guanine phosphoribosyl transferase)欠損株を用いるのが好ましい。
 すなわち、マウス由来のX63-Ag8(X63)、NS1-ANS/1(NS1)、P3X63-Ag8.U1(P3U1)、X63-Ag8.653(X63.653)、SP2/0-Ag14(SP2/0)、MPC11-45.6TG1.7(45.6TG)、FO、S149/5XXO、BU.1など、ラット由来の210.RSY3.Ag.1.2.3(Y3)など、ヒト由来のU266AR(SKO-007)、GM1500・GTG-A12(GM1500)、UC729-6、LICR-LOW-HMy2(HMy2)、8226AR/NIP4-1(NP41)などである。これらのHGPRT欠損株は例えば、ATCCなどから入手することができる。
 これらの細胞株は、適当な培地、例えば8-アザグアニン培地[RPMI-1640培地にグルタミン、2-メルカプトエタノール、ゲンタマイシン、およびウシ胎仔血清(本明細書において「FBS」という場合がある)を加えた培地に8-アザグアニンを加えた培地]、イスコフ改変ダルベッコ培地(Iscove’s Modified Dulbecco’s Medium;IMDM)、またはダルベッコ改変イーグル培地(Dulbecco’s Modified Eagle Medium;DMEM)で継代培養するが、細胞融合の3~4日前に正常培地(例えば、10% FBSを含むASF104培地(味の素社製))で継代培養し、融合当日に2×107以上の細胞数を確保しておく。
(d)細胞融合させる工程
 抗体産生細胞とミエローマ細胞との融合は、公知の方法(Weir, D.M., Handbookof Experimental Immunology Vol.I.II.III., Blackwell Scientific Publications, Oxford(1987);Kabat, E.A. and Mayer, M.M., Experimental Immunochemistry, Charles C Thomas Publisher Springfield, Illinois(1964)など)に従い、細胞の生存率を極度に低下させない程度の条件下で適宜実施することができる。
 そのような方法は、例えば、ポリエチレングリコールなどの高濃度ポリマー溶液中で抗体産生細胞とミエローマ細胞とを混合する化学的方法、電気的刺激を利用する物理的方法などを用いることができる。このうち、上記化学的方法の具体例を示せば以下のとおりである。
 すなわち、高濃度ポリマー溶液としてポリエチレングリコールを用いる場合には、分子量1500~6000、好ましくは2000~4000のポリエチレングリコール溶液中で、30~40℃、好ましくは35~38℃の温度で抗体産生細胞とミエローマ細胞とを1~10分間、好ましくは5~8分間混合する。
(e)ハイブリドーマ群を選択する工程
 上記細胞融合によって得られるハイブリドーマの選択方法は特に制限はないが、通常HAT(ヒポキサンチン・アミノプテリン・チミジン)選択法(Kohler et al., Nature(1975)256, p.495;Milstein et al., Nature(1977)266, p.550)が用いられる。
 この方法は、アミノプテリンで生存し得ないHGPRT欠損株のミエローマ細胞を用いてハイブリドーマを得る場合に有効である。
 すなわち、未融合細胞およびハイブリドーマをHAT培地で培養することによって、アミノプテリンに対する耐性を持ち合わせたハイブリドーマのみを選択的に残存させ、かつ増殖させることができる。
(f)単一細胞クローンへ分割(クローニング)する工程
 ハイブリドーマのクローニング法としては、例えばメチルセルロース法、軟アガロース法、限界希釈法などの公知の方法を用いることができる(例えばBarbara, B.M.and Stanley, M.S.:Selected Methods in Cellular Immunology, W.H. Freeman and Company, San Francisco(1980)参照)。これらの方法のうち、特にメチルセルロース法などの三次元培養法が好適である。例えば、細胞融合によって形成されたハイブリドーマ群をClonaCell-HY Selection Medium D(StemCell Technologies社製 #03804)などのメチルセルロース培地に懸濁して培養し、形成されたハイブリドーマコロニーを回収することでモノクローンハイブリドーマの取得が可能である。回収された各ハイブリドーマコロニーを培養し、得られたハイブリドーマ培養上清中に安定して抗体価の認められたものをCD98モノクローナル抗体産生ハイブリドーマ株として選択する。
 このようにして樹立されたハイブリドーマ株の例としては、CD98ハイブリドーマM23を挙げることができる。なお、本明細書において、CD98ハイブリドーマM23が産生する抗体を、「M23抗体」または単に「M23」と記載する。
 M23抗体の重鎖可変領域は、配列表の配列番号2に示されるアミノ酸配列を有する。また、M23抗体の軽鎖可変領域は、配列表の配列番号4に示されるアミノ酸配列を有する。
(g)モノクローナル抗体を製造する工程
 このようにして選択されたハイブリドーマは、これを培養することによって、モノクローナル抗体を効率よく得ることができるが、培養に先立ち、目的とするモノクローナル抗体を産生するハイブリドーマをスクリーニングすることが望ましい。
 このスクリーニングにはそれ自体既知の方法が採用できる。
 抗体価の測定は、例えば上記(b)の項目で説明したELISA法によって行うことができる。
 以上の方法によって得たハイブリドーマは、液体窒素中または-80℃以下の冷凍庫中に凍結状態で保存することができる。
 クローニングを完了したハイブリドーマは、培地をHAT培地から正常培地に換えて培養される。
 大量培養は、大型培養瓶を用いた回転培養、あるいはスピナー培養で行われる。この大量培養における上清から、Protein Aカラム精製など、当業者に周知の方法を用いて精製することによって、本発明のタンパク質に特異的に結合するモノクローナル抗体を得ることができる。
 また、同系統のマウス(例えば、上記のBALB/c)、あるいはNu/Nuマウスの腹腔内にハイブリドーマを注射し、該ハイブリドーマを増殖させることによって、本発明のモノクローナル抗体を大量に含む腹水を得ることができる。
 腹腔内に投与する場合には、事前(3~7日前)に2,6,10,14-テトラメチルペンタデカン(2,6,10,14-tetramethylpentadecane;プリスタン)などの鉱物油を投与すると、より多量の腹水が得られる。
 例えば、ハイブリドーマと同系統のマウスの腹腔内に予め免疫抑制剤を注射し、T細胞を不活性化した後、20日後に106~107個のハイブリドーマ・クローン細胞を、血清を含まない培地中に浮遊(0.5mL)させて腹腔内に投与し、通常腹部が膨満し、腹水がたまったところでマウスより腹水を採取する。この方法によって、培養液中に比べて約100倍以上の濃度のモノクローナル抗体が得られる。
 上記方法によって得たモノクローナル抗体は、例えばWeir, D.M.:Handbook of Experimental Immunology, Vol.I,II,III, Blackwell Scientific Publications, Oxford(1978)に記載されている方法で精製することができる。
 かくして得られるモノクローナル抗体は、CD98に対して高い抗原特異性を有する。
(h)モノクローナル抗体の検定
 かくして得られたモノクローナル抗体のアイソタイプおよびサブクラスの決定は以下のように行うことができる。
 まず、同定法としてはオクテルロニー(Ouchterlony)法、ELISA法、またはRIA法を挙げることができる。
 オクテルロニー法は簡便ではあるが、モノクローナル抗体の濃度が低い場合には濃縮操作が必要である。
 一方、ELISA法またはRIA法を用いた場合は、培養上清をそのまま抗原吸着固相と反応させ、さらに第二次抗体として各種イムノグロブリンアイソタイプ、サブクラスに対応する抗体を用いることによって、モノクローナル抗体のアイソタイプ、サブクラスを同定することが可能である。
 また、さらに簡便な方法として、市販の同定用のキット(例えば、マウスタイパーキット;バイオラッド社製)などを利用することもできる。
 さらに、タンパク質の定量は、フォーリンロウリー法、および280nmにおける吸光度(1.4(OD280)=イムノグロブリン1mg/mL)より算出する方法によって行うことができる。
 さらに、(2)の(a)~(h)の工程を再度実施して別途に独立してモノクローナル抗体を取得した場合においても、M23抗体と同等の細胞傷害活性を有する抗体を取得することが可能である。このような抗体の一例として、M23抗体と同一のエピトープに結合する抗体を挙げることができる。新たに作製されたモノクローナル抗体が、M23抗体の結合する部分ペプチドまたは部分立体構造に結合すれば、該モノクローナル抗体がM23抗体と同一のエピトープに結合すると判定することができる。また、M23抗体のCD98に対する結合に対して該モノクローナル抗体が競合する(即ち、該モノクローナル抗体が、M23抗体とCD98の結合を妨げる)ことを確認することによって、具体的なエピトープの配列または構造が決定されていなくても、該モノクローナル抗体がCD98抗体と同一のエピトープに結合すると判定することができる。エピトープが同一であることが確認された場合、該モノクローナル抗体がM23抗体と同等の抗原結合能または生物活性を有していることが強く期待される。
(3)その他の抗体
 本発明に用いられる抗体には、上記CD98に対するモノクローナル抗体に加え、ヒトに対する異種抗原性を低下させることなどを目的として人為的に改変した遺伝子組換え型抗体、例えば、キメラ(Chimeric)抗体、ヒト化(Humanized)抗体、ヒト抗体なども含まれる。これらの抗体は、既知の方法を用いて製造することができる。
 キメラ抗体としては、抗体の可変領域と定常領域が互いに異種である抗体、例えばマウスまたはラット由来抗体の可変領域をヒト由来の定常領域に接合したキメラ抗体を挙げることができる(Proc. Natl. Acad. Sci. U.S.A., 81, 6851-6855(1984)参照)。
 マウス抗ヒトCD98抗体M23由来のキメラ抗体は、配列番号2のアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号4のアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる抗体であり、任意のヒト由来の定常領域を有していて良い。
 このようなキメラ抗体の一例として、配列番号8の20~465番目のアミノ酸残基からなるアミノ酸配列を有する重鎖および配列番号10の21~240番目のアミノ酸残基からなるアミノ酸配列を有する軽鎖からなる抗体を挙げることができる。なお、配列番号8に示される重鎖配列中で、1~19番目のアミノ酸残基からなるアミノ酸配列はシグナル配列であり、20~135番目のアミノ酸残基からなるアミノ酸配列は可変領域であり、136~465番目のアミノ酸残基からなるアミノ酸配列は定常領域である。また、配列表の配列番号10に示される軽鎖配列中で、1~20番目のアミノ酸残基からなるアミノ酸配列はシグナル配列であり、21~135番目のアミノ酸残基からなるアミノ酸配列は可変領域であり、136~240番目のアミノ酸残基からなるアミノ酸配列は定常領域である。
 配列番号8に示される重鎖アミノ酸配列は、配列番号7に示されるヌクレオチド配列によってコードされている。配列番号7に示されるヌクレオチド配列の1~57番目のヌクレオチドからなるヌクレオチド配列は抗体の重鎖シグナル配列をコードしており、58~405番目のヌクレオチドからなるヌクレオチド配列は抗体の重鎖可変領域をコードしており、406~1395番目のヌクレオチドからなるヌクレオチド配列は抗体の重鎖定常領域をコードしている。
 配列番号10に示される軽鎖アミノ酸配列は、配列番号9に示されるヌクレオチド配列によってコードされている。配列番号9に示されるヌクレオチド配列の1~60番目のヌクレオチドからなるヌクレオチド配列は抗体の軽鎖シグナル配列をコードしており、61~405番目のヌクレオチドからなるヌクレオチド配列は抗体の軽鎖可変領域をコードしており、406~720番目のヌクレオチドからなるヌクレオチド配列は抗体の軽鎖定常領域をコードしている。
 配列番号7および8の配列は図1に、配列番号9および10の配列は図2に各々記載されている。
 ヒト化抗体としては、CDRのみをヒト由来の抗体に組み込んだ抗体(Nature(1986)321, p.522-525参照)、CDR移植法によって、CDRの配列に加え一部のフレームワークのアミノ酸残基もヒト抗体に移植した抗体(国際公開パンフレットWO90/07861)を挙げることができる。
 M23抗体由来のヒト化抗体(本明細書において、「ヒト化M23抗体」、「ヒト化M23」、「hM23抗体」または「hM23」という場合がある。)としては、M23抗体の6種全てのCDR配列を保持する限り、特定のヒト化抗体に限定されない。なお、M23抗体の重鎖可変領域は、配列番号19に示されるアミノ酸配列からなるCDRH1(NYLIE)、配列番号20に示されるアミノ酸配列からなるCDRH2(VINPGSGVTNYNEKFKG)、および配列番号21に示されるアミノ酸配列からなるCDRH3(AEAWFAY)を保有している。また、M23抗体の軽鎖可変領域は、配列表の配列番号22に示されるアミノ酸配列からなるCDRL1(KSSQSLLYSSNQKNYLA)、配列番号23に示されるアミノ酸配列からなるCDRL2(WASTRES)、および配列番号24に示されるアミノ酸配列からなるCDRL3(QRYYGYPWT)を保有している。
 マウス抗体M23のヒト化抗体の例としては、
(1)配列番号12または14の20~135番目のアミノ酸残基からなるアミノ酸配列、
(2)上記(1)のアミノ酸配列に対して少なくとも95%以上の同一性を有するアミノ酸配列、および
(3)上記(1)のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
からなる群より選択される重鎖可変領域を含む重鎖、ならびに
(4)配列番号16または18の21~135番目のアミノ酸残基からなるアミノ酸配列、
(5)上記(4)のアミノ酸配列に対して少なくとも95%以上の同一性を有するアミノ酸配列、および
(6)上記(4)のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列
からなる群より選択される軽鎖可変領域を含む軽鎖、
の任意の組合せを挙げることができる。
 また、アミノ酸の置換としては保存的アミノ酸置換が好ましい。保存的アミノ酸置換とは、アミノ酸側鎖に関連のあるアミノ酸グループ内で生じる置換である。好適なアミノ酸グループは、以下のとおりである:
酸性グループ=アスパラギン酸およびグルタミン酸;塩基性グループ=リシン、アルギニンおよびヒスチジン;
非極性グループ=アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニンおよびトリプトファン;ならびに
非帯電極性ファミリー=グリシン、アスパラギン、グルタミン、システイン、セリン、スレオニンおよびチロシン。
 他の好適なアミノ酸グループは次のとおりである:
脂肪族ヒドロキシグループ=セリンおよびスレオニン;
アミド含有グループ=アスパラギンおよびグルタミン;
脂肪族グループ=アラニン、バリン、ロイシンおよびイソロイシン;ならびに
芳香族グループ=フェニルアラニン、トリプトファンおよびチロシン。
 かかるアミノ酸置換は元のアミノ酸配列を有する物質の特性を低下させない範囲で行うのが好ましい。
 上記重鎖および軽鎖の好適な組合せの抗体としては、
 配列番号12の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を有する重鎖および配列番号16の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を有する軽鎖からなる抗体、
 配列番号12の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を有する重鎖および配列番号18の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を有する軽鎖からなる抗体、
 配列番号14の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を有する重鎖および配列番号16の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を有する軽鎖からなる抗体、ならびに、
 配列番号14の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を有する重鎖および配列番号18の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を有する軽鎖からなる抗体、
を挙げることができる。
 さらに好適な組合せの抗体としては、
 配列番号12の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を有する重鎖および配列番号16の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を有する軽鎖からなる抗体、
 配列番号12の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を有する重鎖および配列番号18の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を有する軽鎖からなる抗体、ならびに、
 配列番号14の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を有する重鎖および配列番号18の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を有する軽鎖からなる抗体、
を挙げることができる。
 また、別の好適な組合せの抗体としては、
 配列番号12の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖および配列番号16の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなる抗体、
 配列番12の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖および配列番号18の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなる抗体、
 配列番号14の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖および配列番号16の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなる抗体、ならびに、
 配列番号14の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖および配列番号18の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなる抗体、
を挙げることができる。
 さらに好適な組み合わせの抗体としては、
 配列番号12の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖および配列番号16の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなる抗体、
 配列番12の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖および配列番号18の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなる抗体、ならびに、
 配列番号14の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖および配列番号18の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなる抗体、
を挙げることができる。
 上記の重鎖アミノ酸配列および軽鎖アミノ酸配列と高い同一性を示す配列を組み合わせることによって、上記の各抗体と同等の生物活性を有する抗体を選択することが可能である。このような同一性は、一般的には80%以上の同一性であり、好ましくは90%以上の同一性であり、より好ましくは95%以上の同一性であり、最も好ましくは99%以上の同一性である。また、重鎖または軽鎖のアミノ酸配列に1~数個のアミノ酸残基が置換、欠失または付加されたアミノ酸配列を組み合わせることによっても、上記の各抗体と同等の生物活性を有する抗体を選択することが可能である。
 二種類のアミノ酸配列間の同一性は、Blast algorithm version 2.2.2(Altschul, Stephen F., Thomas L.Madden, Alejandro A. Schaffer, Jinghui Zhang、 Zheng Zhang、 Webb Miller, and David J. Lipman(1997),「Gapped BLAST and PSI-BLAST:a new generation of protein database search programs」, Nucleic Acids Res. 25:3389-3402)のデフォルトパラメーターを使用することによって決定することができる。Blast algorithmは、インターネットでwww.ncbi.nlm.nih.gov/blastにアクセスすることによっても使用することができる。
 なお、配列番号12または14に示される重鎖アミノ酸配列中で、1~19番目のアミノ酸残基からなるアミノ酸配列はシグナル配列であり、20~135番目のアミノ酸残基からなるアミノ酸配列は可変領域であり、136~465番目のアミノ酸残基からなるアミノ酸配列は定常領域である。配列番号12または14に示される重鎖アミノ酸配列は、それぞれ配列番号11または13に示されるヌクレオチド配列によってコードされている。各ヌクレオチド配列の1~57番目のヌクレオチドからなるヌクレオチド配列は抗体の重鎖シグナル配列をコードしており、58~405番目のヌクレオチドからなるヌクレオチド配列は抗体の重鎖可変領域をコードしており、406~1395番目のヌクレオチドからなるヌクレオチド配列は抗体の重鎖定常領域をコードしている。配列番号11および12の配列は図3に、配列番号13および14の配列は図4に各々記載されている。
 また、配列表の配列番号16または18に示される軽鎖アミノ酸配列中で、1~20番目のアミノ酸残基からなるアミノ酸配列はシグナル配列であり、21~135番目のアミノ酸残基からなるアミノ酸配列は可変領域であり、136~240番目のアミノ酸残基からなるアミノ酸配列は定常領域である。配列番号16または18に示される軽鎖アミノ酸配列は、それぞれ配列番号15または17に示されるヌクレオチド配列によってコードされている。各ヌクレオチド配列の1~60番目のヌクレオチドからなるヌクレオチド配列は抗体の軽鎖シグナル配列をコードしており、61~405番目のヌクレオチドからなるヌクレオチド配列は抗体の軽鎖可変領域をコードしており、406~720番目のヌクレオチドからなるヌクレオチド配列は抗体の軽鎖定常領域をコードしている。配列番号15および16の配列は図5に、配列番号17および18の配列は図6に各々記載されている。
 これらのヌクレオチド配列と他の抗体のヌクレオチド配列との間の同一性についてはBlast algorithmによって決定することができる。
 本発明に用いられる抗体としては、さらに、M23抗体と同一のエピトープに結合するヒト抗体を挙げることができる。抗CD98ヒト抗体とは、ヒト染色体由来の抗体の遺伝子配列のみを有するヒト抗体を意味する。抗CD98ヒト抗体は、ヒト抗体の重鎖と軽鎖の遺伝子を含むヒト染色体断片を有するヒト抗体産生マウスを用いた方法(Tomizuka, K. et al., Nature Genetics(1997)16, p.133-143;Kuroiwa, Y. et al., Nucl.Acids Res.(1998)26, p.3447-3448;Yoshida, H. et al., Animal Cell Technology:Basic and Applied Aspects vol.10, p.69-73(Kitagawa, Y., Matsuda, T. and Iijima, S., eds.), Kluwer Academic Publishers, 1999.;Tomizuka, K. et al., Proc. Natl. Acad. Sci. U.S.A.(2000)97, p.722-727などを参照。)によって取得することができる。
 このようなヒト抗体産生マウスは、具体的には、内在性免疫グロブリン重鎖および軽鎖の遺伝子座が破壊され、代わりに酵母人工染色体(Yeast artificial chromosome、YAC)ベクターなどを介してヒト免疫グロブリン重鎖および軽鎖の遺伝子座が導入された遺伝子組み換え動物を、ノックアウト動物およびトランスジェニック動物の作製、およびこれらの動物同士を掛け合わせることによって作り出すことができる。
 また、遺伝子組換え技術によって、そのようなヒト抗体の重鎖および軽鎖の各々をコードするcDNA、好ましくは該cDNAを含むベクターによって真核細胞を形質転換し、遺伝子組換えヒトモノクローナル抗体を産生する形質転換細胞を培養することによって、この抗体を培養上清中から得ることもできる。
 ここで、宿主としては例えば真核細胞、好ましくはCHO細胞、リンパ球やミエローマなどの哺乳動物細胞を用いることができる。
 また、ヒト抗体ライブラリーより選別したファージディスプレイ由来のヒト抗体を取得する方法(Wormstone, I.M. et al, Investigative Ophthalmology & Visual Science.(2002)43(7), p.2301-2308;Carmen, S. et al., Briefings in Functional Genomics and Proteomics(2002), 1(2), p.189-203;Siriwardena, D. et al., Ophthalmology(2002)109(3), p.427-431など参照。)も知られている。
 例えば、ヒト抗体の可変領域を一本鎖抗体(scFv)としてファージ表面に発現させて、抗原に結合するファージを選択するファージディスプレイ法(Nature Biotechnology(2005), 23, (9), p.1105-1116)を用いることができる。
 抗原に結合することで選択されたファージの遺伝子を解析することによって、抗原に結合するヒト抗体の可変領域をコードするDNA配列を決定することができる。
 抗原に結合するscFvのDNA配列が明らかになれば、当該配列を有する発現ベクターを作製し、適当な宿主に導入して発現させることによってヒト抗体を取得することができる(WO92/01047、WO92/20791、WO93/06213、WO93/11236、WO93/19172、WO95/01438、WO95/15388、Annu. Rev. Immunol(1994)12, p.433-455、Nature Biotechnology(2005)23(9), p.1105-1116)。
 新たに作製されたヒト抗体が、M23抗体の結合する部分ペプチドまたは部分立体構造に結合すれば、該ヒト抗体がM23抗体と同一のエピトープに結合すると判定することができる。また、M23抗体のCD98に対する結合に対して該ヒト抗体が競合する(すなわち、該ヒト抗体が、M23抗体とCD98の結合を妨げる)ことを確認することによって、具体的なエピトープの配列または構造が決定されていなくても、該ヒト抗体がM23抗体と同一のエピトープに結合すると判定することができる。エピトープが同一であることが確認された場合、該ヒト抗体がM23抗体と同等の生物活性を有していることが強く期待される。
 以上の方法によって得られたキメラ抗体、ヒト化抗体、またはヒト抗体は、公知の方法などによって抗原に対する結合性を評価し、好適な抗体を選抜することができる。
 抗体の性質を比較する際の別の指標の一例としては、抗体の安定性を挙げることができる。示差走査カロリメトリー(DSC)は、蛋白の相対的構造安定性のよい指標となる熱変性中点(Tm)を素早く、また正確に測定することができる装置である。DSCを用いてTm値を測定し、その値を比較することによって、熱安定性の違いを比較することができる。抗体の保存安定性は、抗体の熱安定性とある程度の相関を示すことが知られており(Lori Burton, et al., Pharmaceutical Development and Technology(2007)12, p.265-273)、熱安定性を指標に、好適な抗体を選抜することができる。抗体を選抜するための他の指標としては、適切な宿主細胞における収量が高いこと、および水溶液中での凝集性が低いことを挙げることができる。例えば収量の最も高い抗体が最も高い熱安定性を示すとは限らないので、以上に述べた指標に基づいて総合的に判断して、ヒトへの投与に最も適した抗体を選抜する必要がある。
 本発明に用いられる抗体には抗体の修飾体も含まれる。当該修飾体とは、抗体に化学的または生物学的な修飾が施されてなるものを意味する。化学的な修飾体には、アミノ酸骨格への化学部分の結合、N-結合またはO-結合炭水化物鎖の化学修飾体などが含まれる。生物学的な修飾体には、翻訳後修飾(例えば、N-結合またはO-結合への糖鎖付加、N末端またはC末端のプロセッシング、脱アミド化、アスパラギン酸の異性化、メチオニンの酸化)されたもの、原核生物宿主細胞を用いて発現させることによってN末端にメチオニン残基が付加したものなどが含まれる。また、本発明に用いられる抗体または抗原の検出または単離を可能にするために標識されたもの、例えば、酵素標識体、蛍光標識体、アフィニティ標識体もかかる修飾物の意味に含まれる。このような本発明に用いられる抗体の修飾物は、元の抗体の安定性および血中滞留性の改善、抗原性の低減、かかる抗体または抗原の検出または単離などに有用である。
 また、抗体に結合している糖鎖修飾を調節すること(グリコシル化、脱フコース化など)によって、抗体依存性細胞傷害活性を増強することが可能である。抗体の糖鎖修飾の調節技術としては、WO99/54342、WO00/61739、WO02/31140などが知られているが、これらに限定されるものではない。本発明に用いられる抗体には当該糖鎖修飾を調節された抗体も含まれる。
 本発明に用いられる抗CD98抗体は、抗体遺伝子を一旦単離した後、適当な宿主に導入して得ることもできる。抗体遺伝子の具体例としては、本明細書に記載された抗体の重鎖配列をコードする遺伝子および軽鎖配列をコードする遺伝子を組み合わせたものを挙げることができる。宿主細胞を形質転換する際には、重鎖配列遺伝子と軽鎖配列遺伝子は、同一の発現ベクターに挿入されていることが可能であり、また別々の発現ベクターに挿入されていることも可能である。
 真核細胞を宿主として使用する場合、動物細胞、植物細胞、真核微生物を用いることができる。特に動物細胞としては、哺乳類細胞、例えば、サルの細胞であるCOS細胞(Gluzman, Y. Cell(1981)23, p.175-182、ATCC CRL-1650)、マウス線維芽細胞NIH3T3(ATCC No.CRL-1658)やチャイニーズ・ハムスター卵巣細胞(CHO細胞、ATCC CCL-61)のジヒドロ葉酸還元酵素欠損株(Urlaub, G. and Chasin, L.A. Proc. Natl. Acad. Sci. U.S.A.(1980)77, p.4126-4220)を挙げることができる。
 原核細胞を使用する場合は、例えば、大腸菌、枯草菌を挙げることができる。
 これらの細胞に目的とする抗体遺伝子を形質転換によって導入し、形質転換された細胞をin vitroで培養することによって抗体が得られる。当該培養においては抗体の配列によって収量が異なる場合があり、同等な結合活性を持つ抗体の中から収量を指標に医薬としての生産が容易なものを選別することが可能である。よって、本発明に用いられる抗体には、上記形質転換された宿主細胞を培養する工程、および当該工程で得られた培養物から目的の抗体または当該抗体の抗原結合断片を採取する工程を含むことを特徴とする当該抗体の製造方法によって得られる抗体も含まれる。
 なお、哺乳類培養細胞で生産される抗体の重鎖のカルボキシル末端のリシン残基が欠失することが知られており(Journal of Chromatography A, 705:129-134(1995))、また、同じく重鎖カルボキシル末端のグリシン、リシンの2アミノ酸残基が欠失し、新たにカルボキシル末端に位置するプロリン残基がアミド化されることが知られている(Analytical Biochemistry, 360:75-83(2007))。しかし、これらの重鎖配列の欠失および修飾は、抗体の抗原結合能およびエフェクター機能(補体の活性化や抗体依存性細胞傷害作用など)には影響を及ぼさない。したがって、本発明には当該修飾を受けた抗体および当該抗体の抗原結合断片も含まれ、重鎖カルボキシル末端において1または2のアミノ酸が欠失した欠失体、およびアミド化された当該欠失体(例えば、カルボキシル末端部位のプロリン残基がアミド化された重鎖)などを挙げることができる。但し、抗原結合能およびエフェクター機能が保たれている限り、本発明に用いられる抗体の重鎖のカルボキシル末端の欠失体は上記の種類に限定されない。本発明に用いられる抗体を構成する2本の重鎖は、完全長および上記の欠失体からなる群から選択される重鎖のいずれか一種であってもよいし、いずれか二種を組み合わせたものであってもよい。各欠失体の量比は本発明に用いられる抗体を産生する哺乳類培養細胞の種類および培養条件に影響を受け得るが、本発明に用いられる抗体の主成分としては2本の重鎖の双方でカルボキシル末端の1つのアミノ酸残基が欠失している場合を挙げることができる。
 本発明に用いられる抗体のアイソタイプとしては、例えばIgG(IgG1、IgG2、IgG3、IgG4)などを挙げることができるが、好ましくはIgG1またはIgG2を挙げることができる。
 また本発明に用いられる抗体は、抗体の抗原結合部を有する抗体の抗原結合断片またはその修飾物であってもよい。抗体をパパイン、ペプシンなどの蛋白質分解酵素で処理するか、あるいは抗体遺伝子を遺伝子工学的手法によって改変し適当な培養細胞において発現させることによって、該抗体の断片を得ることができる。このような抗体断片のうちで、抗体全長分子の持つ機能の全てまたは一部を保持している断片を抗体の抗原結合断片と呼ぶことができる。例えば、抗体の断片としては、Fab、F(ab’)2、Fv、または重鎖及び軽鎖のFvを適当なリンカーで連結させたシングルチェインFv(scFv)、diabody(diabodies)、線状抗体、及び抗体断片より形成された多特異性抗体などを挙げることができる。また、F(ab’)2を還元条件下で処理した抗体の可変領域の一価の断片であるFab’も抗体の断片に含まれる。
 本発明に用いられる抗体は、抗腫瘍性化合物を結合させた抗体―薬物コンジュゲートでもよい。抗腫瘍性化合物としては、抗腫瘍効果を有する化合物であって、リンカー構造に結合できる置換基、部分構造を有するものであれば特に制限はない。抗腫瘍性化合物は、リンカーの一部または全部が腫瘍細胞内で切断されて抗腫瘍性化合物部分が遊離されて抗腫瘍効果が発現される。リンカーが薬物との結合部分で切断されれば抗腫瘍性化合物が本来の構造で遊離され、その本来の抗腫瘍効果が発揮される。
 抗腫瘍性化合物としては、例えば、ドキソルビシン、ダウノルビシン、マイトマイシンC、ブレオマイシン、シクロシチジン、ビンクリスチン、ビンブラスチン、メトトレキセート、白金系抗腫瘍剤(シスプラチン若しくはその誘導体)、タキソール若しくはその誘導体、カンプトテシン若しくはその誘導体(特開平6-87746号公報に記載された抗腫瘍剤)などを挙げることができ、好ましくはエキサテカンである。
 本発明に用いられる抗CD98抗体の生物活性としては、抗原結合活性、抗原と結合することによって該抗原を発現する細胞に内在化する活性、抗原の活性を中和する活性、抗原の活性を増強する活性、抗体依存性細胞傷害(ADCC)活性、補体依存性細胞傷害(CDC)活性および抗体依存性細胞媒介食作用(ADCP)を挙げることができるが、本発明に用いられる抗体が有する機能は、CD98重鎖に対する結合活性であり、好ましくはCD98重鎖と結合することによってCD98発現細胞に内在化する活性である。さらに、本発明に用いられる抗体は、細胞内在化活性に加えて、ADCC活性、CDC活性および/またはADCP活性を併せ持っていても良い。
 抗体の抗原結合活性は、フローサイトメトリーを用いて確認できる。
 細胞に内在化する活性は、(1)治療抗体に結合する二次抗体(蛍光標識)を用いて細胞内に取り込まれた抗体を蛍光顕微鏡で可視化するアッセイ(Cell Death and Differentiation(2008) 15, 751-761)、(2)治療抗体に結合する二次抗体(蛍光標識)を用いて細胞内に取り込まれた蛍光量を測定するアッセイ(Molecular Biology of the Cell Vol. 15, 5268-5282, December 2004)、または(3)治療抗体に結合するイムノトキシンを用いて、細胞内に取り込まれると毒素が放出されて細胞増殖が抑制されるというMab-ZAPアッセイ(BioTechniques 28:162-165, January 2000)を用いて確認できる。イムノトキシンとしては、ジフテリア毒素の触媒領域とプロテインGのリコンビナント複合タンパク質も使用可能である。
 得られた抗体は、均一にまで精製することができる。抗体の分離、精製は通常のタンパク質で使用されている分離、精製方法を使用すればよい。例えばカラムクロマトグラフィー、フィルター濾過、限外濾過、塩析、透析、調製用ポリアクリルアミドゲル電気泳動、等電点電気泳動などを適宜選択、組み合わせれば、抗体を分離、精製することができる(Strategies for Protein Purification and Characterization:A Laboratory Course Manual, Daniel R.Marshak et al., eds., Cold Spring Harbor Laboratory Press(1996);Antibodies:A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory(1988))が、これらに限定されるものではない。
 クロマトグラフィーとしては、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過クロマトグラフィー、逆相クロマトグラフィー、吸着クロマトグラフィーなどを挙げることができる。
 これらのクロマトグラフィーは、HPLCやFPLCなどの液体クロマトグラフィーを用いて行うことができる。
 アフィニティークロマトグラフィーに用いるカラムとしては、プロテインAカラム、プロテインGカラムを挙げることができる。例えばプロテインAカラムを用いたカラムとして、Hyper D、POROS、Sepharose F.F.(GEヘルスケア社)などを挙げることができる。
 また抗原を固定化した担体を用いて、抗原への結合性を利用して抗体を精製することも可能である。
 本発明に用いられる抗CD98抗体は、CD98重鎖に結合できる抗体であれば特に限定されないが、好ましくは、次の抗体である:
 (1)CD98重鎖と結合することによってCD98発現細胞に内在化する特性を有する抗体;
 (2)CD98がヒトCD98である上記(1)に記載の抗体または当該抗体;
 (3)抗体の重鎖におけるCDRとして、配列番号19に記載のアミノ酸配列からなるCDRH1、配列番号20に記載のアミノ酸配列からなるCDRH2、および、配列番号21に記載のアミノ酸配列からなるCDRH3、ならびに、抗体の軽鎖におけるCDRとして、配列番号22に記載のアミノ酸配列からなるCDRL1、配列番号23に記載のアミノ酸配列からなるCDRL2、および、配列番号24に記載のアミノ酸配列からなるCDRL3を有する上記(1)または(2)に記載の抗体;
 (4)定常領域がヒト由来定常領域である上記(1)~(3)のいずれか1項に記載の抗体;
 (5)ヒト化されている上記(1)~(4)のいずれか1項に記載の抗体;
 (6)抗体の重鎖の可変領域が、
  (a)配列番号12におけるアミノ酸番号20~135に記載のアミノ酸配列、
  (b)配列番号14におけるアミノ酸番号20~135に記載のアミノ酸配列、
  (c)(a)または(b)の配列に対して少なくとも95%以上の同一性を有するアミノ酸配列、および、
  (d)(a)または(b)の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列からなる群から選択されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなり、
 抗体の軽鎖の可変領域が、
  (e)配列番号16におけるアミノ酸番号21~135に記載のアミノ酸配列、
  (f)配列番号18におけるアミノ酸番号21~135に記載のアミノ酸配列、
  (g)(e)または(f)の配列に対して少なくとも95%以上の同一性を有するアミノ酸配列、および、
  (h)(e)または(f)の配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列、
からなる群から選択されるアミノ酸配列からなる、上記(5)に記載の抗体;
 (7)抗体の重鎖の可変領域および抗体の軽鎖の可変領域の組合せが、
 配列番号12におけるアミノ酸番号20~135に記載のアミノ酸配列からなる重鎖の可変領域および配列番号16におけるアミノ酸番号21~135に記載のアミノ酸配列からなる軽鎖の可変領域の組合せ、
 配列番号12におけるアミノ酸番号20~135に記載のアミノ酸配列からなる重鎖の可変領域および配列番号18におけるアミノ酸番号21~135に記載のアミノ酸配列からなる軽鎖の可変領域の組合せ、
 配列番号14におけるアミノ酸番号20~135に記載のアミノ酸配列からなる重鎖の可変領域および配列番号16におけるアミノ酸番号21~135に記載のアミノ酸配列からなる軽鎖の可変領域の組合せ、および
 配列番号14におけるアミノ酸番号20~135に記載のアミノ酸配列からなる重鎖の可変領域および配列番号18におけるアミノ酸番号21~135に記載のアミノ酸配列からなる軽鎖の可変領域の組合せ、
からなる群より選択される組合せである、上記(6)に記載の抗体;
(8)抗体の重鎖の可変領域および抗体の軽鎖の可変領域の組合せが、
 配列番号12におけるアミノ酸番号20~135に記載のアミノ酸配列からなる重鎖の可変領域および配列番号16におけるアミノ酸番号21~135に記載のアミノ酸配列からなる軽鎖の可変領域の組合せ、
 配列番号12におけるアミノ酸番号20~135に記載のアミノ酸配列からなる重鎖の可変領域および配列番号18におけるアミノ酸番号21~135に記載のアミノ酸配列からなる軽鎖の可変領域の組合せ、または、
 配列番号14におけるアミノ酸番号20~135に記載のアミノ酸配列からなる重鎖の可変領域および配列番号18におけるアミノ酸番号21~135に記載のアミノ酸配列からなる軽鎖の可変領域の組合せ、
である、上記(6)に記載の抗体;
(9)重鎖および軽鎖の組合せが、
 配列番号12におけるアミノ酸番号20~465に記載のアミノ酸配列からなる重鎖および配列番号16におけるアミノ酸番号21~240に記載のアミノ酸配列からなる軽鎖の組合せ、
 配列番号12におけるアミノ酸番号20~465に記載のアミノ酸配列からなる重鎖および配列番号18におけるアミノ酸番号21~240に記載のアミノ酸配列からなる軽鎖の組合せ、
 配列番号14におけるアミノ酸番号20~465に記載のアミノ酸配列からなる重鎖および配列番号16におけるアミノ酸番号21~240に記載のアミノ酸配列からなる軽鎖の組合せ、および、
 配列番号14におけるアミノ酸番号20~465に記載のアミノ酸配列からなる重鎖および配列番号18におけるアミノ酸番号21~240に記載のアミノ酸配列からなる軽鎖の組合せ、
からなる群から選択される組合せである、上記(6)に記載の抗体;
(10)重鎖および軽鎖の組合せが、
 配列番号12におけるアミノ酸番号20~465に記載のアミノ酸配列からなる重鎖および配列番号16におけるアミノ酸番号21~240に記載のアミノ酸配列からなる軽鎖の組合せ、
 配列番号12におけるアミノ酸番号20~465に記載のアミノ酸配列からなる重鎖および配列番号18におけるアミノ酸番号21~240に記載のアミノ酸配列からなる軽鎖の組合せ、または、
 配列番号14におけるアミノ酸番号20~465に記載のアミノ酸配列からなる重鎖および配列番号18におけるアミノ酸番号21~240に記載のアミノ酸配列からなる軽鎖の組合せ、
である、上記(6)に記載の抗体;あるいは、
(11)上記(1)~(10)のいずれか1項に記載の抗体をコードするポリヌクレオチドを含有する発現ベクターによって形質転換された宿主細胞を培養する工程および当該工程で得られた培養物から目的の抗体を採取する工程を含む当該抗体の製造方法によって得られる抗体。
(薬物)
 本発明に用いられる薬物は、次式:
Figure JPOXMLDOC01-appb-C000003
で表されるカンプトテシン誘導体であるエキサテカン((1S,9S)-1-アミノ-9-エチル-5-フルオロ-2,3-ジヒドロ-9-ヒドロキシ-4-メチル-1H,12H-ベンゾ[de]ピラノ[3',4':6,7]インドリジノ[1,2-b]キノリン-10,13(9H,15H)-ジオン)である。エキサテカンは、優れた抗腫瘍活性を有しているものの、抗腫瘍薬として市販されるには至っていない。エキサテカンは、公知の方法で容易に取得でき、1位のアミノ基をリンカー構造への結合部位として好適に使用することができる。また、エキサテカンはリンカーの一部が結合した状態で腫瘍細胞内に遊離される場合もあるが、このような状態でも優れた抗腫瘍効果が発揮される優れた化合物である。
 エキサテカンはカンプトテシン構造を有するので、酸性水性媒体中(例えばpH3程度)ではラクトン環が形成された構造(閉環体)に平衡が偏り、一方、塩基性水性媒体中(例えばpH10程度)ではラクトン環が開環した構造(開環体)に平衡が偏ることが知られている。このような閉環構造および開環構造に対応するエキサテカン残基を導入した薬物コンジュゲートであっても同等の抗腫瘍効果が期待され、いずれのものも本発明の範囲に包含されることはいうまでもない。
 抗体-薬物コンジュゲートにおいて、抗体1分子への薬物の結合数は、その有効性、安全性に影響する重要因子である。抗体-薬物コンジュゲートの製造は、薬物の結合数が一定の数となるよう、反応させる原料・試薬の使用量などの反応条件を規定して実施されるが、低分子化合物の化学反応とは異なり、異なる数の薬物が結合した混合物として得られるのが通常である。抗体1分子への薬物の結合数は平均値、すなわち、平均薬物結合数として特定され、表記される。本発明でも原則として断りのない限り、すなわち、異なる薬物結合数をもつ抗体-薬物コンジュゲート混合物に含まれる特定の薬物結合数をもつ抗体-薬物コンジュゲートを示す場合を除き、薬物の結合数は平均値を意味する。抗体分子へのエキサテカンの結合数はコントロール可能であり、1抗体あたりの薬物平均結合数として、1~10個程度のエキサテカンを結合させることができるが、好ましくは2~8個であり、より好ましくは3~6個である。なお、当業者であれば後述の実施例の記載から抗体に必要な数の薬物を結合させる反応を設計することができ、エキサテカンの結合数をコントロールした抗体-薬物コンジュゲートを取得することができる。
(リンカー)
 本発明に用いられるリンカーは、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-、または
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-
の構造で示されるリンカーであるが、これ等から選択されるいずれか1種のリンカーであればよい。これらのうちでは、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-
が特に好ましい。なおここで「-(Succinimid-3-yl-N)-」は、次式:
Figure JPOXMLDOC01-appb-C000004
で表される構造を有する。この部分構造における3位が抗CD98抗体への結合部位である。この3位での該抗体との結合は、チオエーテルを形成して結合することが特徴である。この構造部分の1位の窒素原子は、この構造が含まれるリンカー内に存在するメチレンの炭素原子と結合する。すなわち、抗体とリンカーの結合部分は次式:
Figure JPOXMLDOC01-appb-C000005
(式中、「抗体-S-」は抗体由来であり、n1は2または5である。)で示される。
 「GGFG」は、グリシン-グリシン-フェニルアラニン-グリシンからなるテトラペプチドである。
 本発明に用いられるリンカーは例えば、後述する実施例に記載に方法に従って調製することができる。
(抗体-薬物コンジュゲート)
 本発明の抗体-薬物コンジュゲートは、抗CD98抗体を還元してそのヒンジ部のジスルフィド結合をスルフヒドリル基に変換した抗体に対し、実施例記載の方法で得られる、末端にマレイミジル基を有する次に示す薬物-リンカー中間体化合物
Figure JPOXMLDOC01-appb-C000006
のいずれかを反応させることによって製造することができる。
 スルフヒドリル基を有する抗CD98抗体は、当業者周知の方法で得ることができる(Hermanson, G.T, Bioconjugate Techniques, pp.56-136, pp.456-493, Academic Press(1996))。例えば、Traut’s試薬を抗体のアミノ基に作用させる方法、N-サクシンイミジル S-アセチルチオアルカノエート類を抗体のアミノ基に作用させた後、ヒドロキシルアミンを作用させる方法、N-サクシンイミジル 3-(ピリジルジチオ)プロピオネートを作用させた後、還元剤を作用させる方法、ジチオトレイトール、2-メルカプトエタノール、トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)などの還元剤を抗体に作用させて抗体内ヒンジ部のジスルフィド結合を還元してスルフヒドリル基を生成させる方法などを挙げることができるがこれらに限定されない。
 具体的には、還元剤としてTCEPを、抗体内ヒンジ部ジスルフィド1個当たりに対して0.3~3モル当量用い、キレート剤を含む緩衝液中で、抗体と反応させることで、抗体内ヒンジ部ジスルフィドが部分的若しくは完全に還元された抗体を得ることができる。
 キレート剤としては、例えばエチレンジアミン四酢酸(EDTA)やジエチレントリアミン五酢酸(DTPA)などを挙げることができる。これらを1~20mMの濃度で用いればよい。
 緩衝液としては、リン酸ナトリウムやホウ酸ナトリウム、酢酸ナトリウム溶液などを用いることができる。具体的には、抗体は4~37℃にて1~4時間TCEPと反応させることで部分的若しくは完全に還元されたスルフヒドリル基を有する抗体を得ることができる。
 このスルフヒドリル基を有する抗体1個あたり、2乃至20モル当量の薬物-リンカー中間体化合物を使用して、抗体1個当たり2個乃至8個の薬物が結合した抗体―薬物コンジュゲートを製造することができる。具体的には、スルフヒドリル基を有する抗体を含む緩衝液に、薬物-リンカー中間体化合物を溶解させた溶液を加えて反応させればよい。ここで、緩衝液としては、酢酸ナトリウム溶液、リン酸ナトリウムやホウ酸ナトリウムなどを用いればよい。反応時のpHは5乃至9であり、より好適にはpH7付近で反応させればよい。薬物-リンカー中間体化合物を溶解させる溶媒としては、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)、N-メチル-2-ピロリドン(NMP)などの有機溶媒を用いることができる。
 薬物-リンカー中間体化合物を溶解させた有機溶媒溶液は、スルフヒドリル基を有する抗体を含む緩衝液に1乃至20%v/vを加えて反応させればよい。反応温度は、0乃至37℃、より好適には10乃至25℃であり、反応時間は、0.5乃至2時間である。反応は、未反応の薬物-リンカー中間体化合物の反応性をチオール含有試薬によって失活させることによって終了できる。チオール含有試薬は例えば、システインまたはN-アセチル-L-システイン(NAC)である。より具体的には、NACを、用いた薬物-リンカー中間体化合物に対して、1乃至2モル当量加え、室温で10乃至30分インキュベートすることにより反応を終了できる。
 製造した抗体-薬物コンジュゲートは、以下の共通操作によって濃縮、バッファー交換、精製、抗体濃度及び抗体一分子あたりの薬物平均結合数の測定を行い、抗体-薬物コンジュゲートの同定を行うことができる。
1.抗体または抗体-薬物コンジュゲート水溶液の濃縮
 Amicon Ultra(50,000 MWCO、Millipore Corporation)の容器内に抗体または抗体-薬物コンジュゲート溶液を入れ、遠心機(Allegra X-15R、Beckman Coulter, Inc.)を用いた遠心操作(2000G~3800Gにて5~20分間遠心)にて、抗体若しくは抗体-薬物コンジュゲート溶液を濃縮する。
2.抗体の濃度測定
 UV測定器(Nanodrop 1000、Thermo Fisher Scientific Inc.)を用いて、メーカー規定の方法に従い、抗体濃度の測定を行う。その際に、抗体ごとに異なる280nm吸光係数(1.3mLmg-1cm-1~1.8mLmg-1cm-1)を用いる。
3.抗体のバッファー交換
 Sephadex G-25担体を使用したNAP-25カラム(Cat. No. 17-0852-02、GE Healthcare Japan Corporation)を、メーカー規定の方法に従い、塩化ナトリウム(137mM)およびエチレンジアミン四酢酸(EDTA、5mM)を含むリン酸緩衝液(10mM、pH6.0;本明細書において「PBS6.0/EDTA」という場合がある。)にて平衡化する。このNAP-25カラム一本につき、抗体水溶液2.5mLをのせたのち、PBS6.0/EDTA 3.5mLで溶出させた画分(3.5mL)を分取する。この画分を共通操作Aによって濃縮し、共通操作Bを用いて抗体濃度の測定を行ったのちに、PBS6.0/EDTAを用いて10mg/mLに抗体濃度を調整する。
4.抗体-薬物コンジュゲートの精製
 Sorbitol(5%)を含む酢酸緩衝液(10mM、pH5.5;本明細書において「ABS」という場合がある。)にてNAP-25カラムを平衡化する。このNAP-25カラムに、抗体-薬物コンジュゲート反応水溶液(2.5mL)をのせ、メーカー規定の量の緩衝液で溶出させることで、抗体画分を分取した。この分取画分を再びNAP-25カラムにのせ、緩衝液で溶出させるゲルろ過精製操作を計2~3回繰り返すことで、未結合の薬物リンカーや低分子化合物(トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)、N-アセチル-L-システイン(NAC)およびジメチルスルホキシド)を除いた抗体-薬物コンジュゲートを得る。
5.抗体-薬物コンジュゲートにおける抗体濃度および抗体一分子あたりの薬物平均結合数の測定(UV法)
 抗体-薬物コンジュゲートにおける結合薬物濃度は、抗体-薬物コンジュゲート水溶液の280nmおよび370nmの二波長におけるUV吸光度を測定したのちに下記の計算を行うことで、算出することができる。
 ある波長における全吸光度は系内に存在する全ての吸収化学種の吸光度の和に等しい[吸光度の加成性]ことから、抗体と薬物のコンジュゲーション前後において、抗体および薬物のモル吸光係数に変化がないと仮定すると、抗体-薬物コンジュゲートにおける抗体濃度および薬物濃度は、下記の関係式で示される。
A280=AD,280+AA,280=εD,280CD+εA,280CA  式(1)
A370=AD,370+AA,370=εD,370CD+εA,370CA  式(2)
 ここで、A280は280nmにおける抗体-薬物コンジュゲート水溶液の吸光度を示し、A370は370nmにおける抗体-薬物コンジュゲート水溶液の吸光度を示し、AA,280は280nmにおける抗体の吸光度を示し、AA,370は370nmにおける抗体の吸光度を示し、AD,280は280nmにおけるコンジュゲート前駆体の吸光度を示し、AD,370は370nmにおけるコンジュゲート前駆体の吸光度を示し、εA,280は280nmにおける抗体のモル吸光係数を示し、εA,370は370nmにおける抗体のモル吸光係数を示し、εD,280は280nmにおけるコンジュゲート前駆体のモル吸光係数を示し、εD,370は370nmにおけるコンジュゲート前駆体のモル吸光係数を示し、CAは抗体-薬物コンジュゲートにおける抗体濃度を示し、CDは抗体-薬物コンジュゲートにおける薬物濃度を示す。
 ここで、εA,280、εA,370、εD,280およびεD,370は、事前に用意した値(計算推定値若しくは化合物のUV測定から得られた実測値)が用いられる。例えば、εA,280は、抗体のアミノ酸配列から、既知の計算方法(Protein Science, 1995, vol.4, 2411-2423)によって推定することができる。εA,370は、通常、ゼロである。εD,280およびεD,370は、用いるコンジュゲート前駆体をあるモル濃度に溶解させた溶液の吸光度を測定することで、ランベルト・ベールの法則(吸光度=モル濃度×モル吸光係数×セル光路長)によって、得ることができる。抗体-薬物コンジュゲート水溶液のA280およびA370を測定し、これらの値を式(1)および(2)に代入して連立方程式を解くことによって、CAおよびCDを求めることができる。さらにCDをCAで除することで1抗体あたりの薬物平均結合数が求めることができる。
6.抗体-薬物コンジュゲートにおける抗体一分子あたりの薬物平均結合数の測定(RPC法)
 抗体-薬物コンジュゲートにおける抗体一分子あたりの薬物平均結合数は、前述のUV法に加え、以下の逆層クロマトグラフィー(Reversed Phase Chromatography (RPC))法を用いる高速液体クロマトグラフィー(HPLC)分析によっても求めることができる。
[6-1.HPLC分析用サンプルの調製(抗体-薬物コンジュゲートの還元)]
 抗体-薬物コンジュゲート溶液(約1mg/mL、60μL)をジチオトレイトール(DTT)水溶液(100mM、15μL)と混合する。混合物を37℃で30分インキュベートすることで、抗体-薬物コンジュゲートのL鎖及びH鎖間のジスルフィド結合を切断したサンプルを、HPLC分析に用いる。
[6-2.HPLC分析]
 HPLC分析を、下記の測定条件にて行う。
 HPLCシステム:Agilent 1290 HPLCシステム(Agilent Technologies)
 検出器:紫外吸光度計(測定波長:280nm)
 カラム:PLRP-S(2.1×50mm、8μm、1000Å;Agilent Technologies、P/N PL1912-1802)
 カラム温度:80℃
 移動相A:0.04%トリフルオロ酢酸(TFA)水溶液
 移動相B:0.04%TFAを含むアセトニトリル溶液
 グラジエントプログラム:29%-36%(0分-12.5分)、36%-42%(12.5-15分)、42%-29%(15分―15.1分)、29%-29%(15.1分―25分)
 サンプル注入量:15μL
[6-3.データ解析]
〔6-3-1〕 薬物の結合していない抗体のL鎖(L0)及びH鎖(H0)に対して、薬物の結合したL鎖(薬物が一つ結合したL鎖:L1)及びH鎖(薬物が一つ結合したH鎖:H1、薬物が二つ結合したH鎖:H2、薬物が三つ結合したH鎖:H3)は、結合した薬物の数に比例して疎水性が増し保持時間が大きくなることから、L0、L1、H0、H1、H2、H3の順に溶出される。L0及びH0との保持時間比較により検出ピークをL0、L1、H0、H1、H2、H3のいずれかに割り当てることができる。
〔6-3-2〕 薬物リンカーにUV吸収があるため、薬物リンカーの結合数に応じて、L鎖、H鎖及び薬物リンカーのモル吸光係数を用いて下式に従ってピーク面積値の補正を行う。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、各抗体におけるL鎖及びH鎖のモル吸光係数(280nm)は、既知の計算方法(Protein Science, 1995, vol.4, 2411-2423)によって、各抗体のL鎖及びH鎖のアミノ酸配列から推定される値を用いることができる。また、薬物リンカーのモル吸光係数(280nm)は、各薬物リンカーをメルカプトエタノールまたはN-アセチルシステインで反応させ、マレイミド基をサクシニイミドチオエーテルに変換した化合物の実測のモル吸光係数(280nm)を用いることができる。
〔6-3-3〕 ピーク面積補正値合計に対する各鎖ピーク面積比(%)を下式に従って計算する。
Figure JPOXMLDOC01-appb-M000003
〔6-3-4〕 抗体-薬物コンジュゲートにおける抗体一分子あたりの薬物平均結合数を、下式に従って計算する。
 薬物平均結合数=(L0ピーク面積比×0+L0ピーク面積比×1+H0ピーク面積比×0+H1ピーク面積比×1+H2ピーク面積比×2+H3ピーク面積比×3)/100×2
 本発明の抗体-薬物コンジュゲートは、腫瘍細胞内に移動した後にはリンカー部分が切断され、NH2-CH2-O-CH2-C(=O)-(NH-DX)、NH2-CH2CH2-O-CH2-C(=O)-(NH-DX)、またはNH2-CH2CH2CH2-C(=O)-(NH-DX)が腫瘍細胞内で遊離する。ここで、「-(NH-DX)」は次式:
Figure JPOXMLDOC01-appb-C000007
で表され、1位のアミノ基の窒素原子がリンカーのカルボニル基と結合する。
 また、NH2-CH2-O-CH2-C(=O)-(NH-DX)の場合は同分子内にあるアミナール構造が不安定であるため、さらに自己分解してHO-CH2-C(=O)-(NH-DX)が遊離されることが確認された。これらの化合物は本発明の抗体-薬物コンジュゲートの製造中間体としても好適に用いることができる。
 本発明の抗体-薬物コンジュゲートは、大気中に放置したり、または再結晶や精製操作をすることにより、水分を吸収し、あるいは吸着水が付着するなどして、水和物になる場合があり、そのような水を含む化合物または薬理学的に許容され得る塩も本発明に包含される。
 本発明の抗体-薬物コンジュゲートが、アミノ基などの塩基性基を有する場合、所望により薬理学的に許容され得る酸付加塩を形成することができる。そのような酸付加塩としては、例えばフッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩などのハロゲン化水素酸塩;硝酸塩、過塩素酸塩、硫酸塩、燐酸塩などの無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩などの低級アルカンスルホン酸塩;ベンゼンスルホン酸塩、p-トルエンスルホン酸塩などのアリ-ルスルホン酸塩;蟻酸塩、酢酸塩、トリフルオロ酢酸塩、りんご酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩などの有機酸塩;またはオルニチン酸塩、グルタミン酸塩、アスパラギン酸塩などのアミノ酸塩などを挙げることができる。
 本発明の抗体-薬物コンジュゲートが、カルボキシ基などの酸性基を有する場合、所望により薬理学的に許容され得る塩基付加塩を形成することができる。そのような塩基付加塩としては、例えばナトリウム塩、カリウム塩、リチウム塩などのアルカリ金属塩;カルシウム塩、マグネシウム塩などのアルカリ土類金属塩;アンモニウム塩などの無機塩;ジベンジルアミン塩、モルホリン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、N-メチルグルカミン塩、ジエチルアミン塩、トリエチルアミン塩、シクロヘキシルアミン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミン塩、ジエタノールアミン塩、N-ベンジル-N-(2-フェニルエトキシ)アミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩などの有機アミン塩などを挙げることができる。
 本発明はまた、抗体-薬物コンジュゲートを構成する原子の1以上が、その原子の同位体で置換された抗体-薬物コンジュゲートを包含し得る。同位体には放射性同位体および安定同位体の2種類が存在し、同位体の例としては、例えば、水素の同位体(2Hおよび3H)、炭素の同位体(11C、13Cおよび14C)、窒素の同位体(13Nおよび15N)、酸素の同位体(15O、17Oおよび18O)、フッ素の同位体(18F)などを挙げることができる。同位体で標識された抗体-薬物コンジュゲートを含む組成物は、例えば、治療剤、予防剤、研究試薬、アッセイ試薬、診断剤、インビボ画像診断剤などとして有用である。同位体で標識された抗体-薬物コンジュゲート、および、同位体で標識された抗体-薬物コンジュゲートの任意の割合の混合物もすべて本発明に包含される。同位体で標識された抗体-薬物コンジュゲートは、当該分野で公知の方法により、例えば、後述する本発明の製造方法における原料の代わりに同位体で標識された原料を用いることにより、製造することができる。
 本発明の抗体-薬物コンジュゲートは、癌細胞に対して細胞傷害活性を示すことから、癌に対する治療および/または予防のための医薬組成物の有効成分として使用することができる。
 すなわち本発明の抗CD98抗体-薬物コンジュゲートは、癌治療の主要な治療法である化学療法のための薬剤として選択して使用することができ、その結果として、癌細胞の成長を遅らせ、増殖を抑え、さらには癌細胞を破壊することができる。これ等によって、癌患者において、癌による症状からの解放や、QOLの改善を達成でき、癌患者の生命を保って治療効果が達成される。癌細胞の破壊には至らない場合であっても、癌細胞の増殖の抑制やコントロールによって癌患者においてより高いQOLを達成しつつより長期の生存を達成させることができる。
 このような薬物療法においての薬物単独での使用の他、アジュバント療法において他の療法と組み合わせる薬剤としても使用でき、外科手術や、放射線療法、ホルモン療法などと組み合わせることができる。さらにはネオアジュバント療法における薬物療法の薬剤として使用することもできる。
 以上のような治療的使用の他、微細な転移癌細胞の増殖を押さえ、さらには破壊する効果も期待することができる。特に原発性の癌細胞においてCD98の発現が確認されたときに本発明の抗CD98抗体-薬物コンジュゲートを投与することよって癌転移の抑制や、予防効果を期待することができる。例えば、転移過程で体液中にある癌細胞を抑制し破壊する効果や、いずれかの組織に着床した直後の微細な癌細胞に対する抑制、破壊などの効果が期待できる。したがって、特に外科的な癌の除去後においての癌転移の抑制、予防効果が期待できる。
 本発明の抗CD98抗体-薬物コンジュゲートは、患者に対しては全身療法として投与する他、癌組織に局所的に投与して治療効果を期待することができる。
 癌の種類としては、肺癌、腎癌、尿路上皮癌、大腸癌、前立腺癌、多形神経膠芽腫、卵巣癌、膵癌、乳癌、メラノーマ、肝癌、膀胱癌、胃癌、子宮頸癌、頭頸部癌、食道癌、リンパ腫、急性骨髄性白血病、急性リンパ性白血病、慢性骨髄性白血病、多発性骨髄腫などを挙げることができるが、CD98を発現している癌細胞由来の癌であればこれらに限定されない。
 本発明に用いられるCD98抗体または本発明の抗体-薬物コンジュゲートは、自己免疫疾患を治療するための医薬組成物、または、移植に対する拒絶反応を抑制するための医薬組成物の有効成分として使用することができる。
 本発明の抗体-薬物コンジュゲートを含有する医薬組成物は、哺乳動物(例えば、ヒト、ウマ、ウシ、ブタなど、好ましくはヒト)に投与される場合には、全身的または局所的に、好ましくは非経口で投与され得る。
 非経口の投与経路として、皮内、筋肉内、腹腔内、静脈内および皮下の経路が挙げられるが、これらに限定されない。投与方法としては、例えば、注入、ボーラス注射などが挙げられるが、好ましくは、注入である。
 本発明の医薬組成物は、投与方法に応じて適切な形態を選択し、通常用いられている各種製剤の調製法によって調製できる。
 例えば、本発明の抗体-薬物コンジュゲートと、E.W.Martinによる「Remington’s Pharmaceutical Sciences」などに記載されている、滅菌した液体(例えば、水および油(石油、動物、植物、または合成起源の油(例えば、ラッカセイ油、大豆油、鉱油、ゴマ油など)を含む))、食塩水溶液、デキストロース水溶液、グリセロール水溶液などの溶媒、湿潤剤、乳化剤、pH緩衝化剤などの添加剤などを混合して本発明の医薬組成物を調製することができる。
 本発明の医薬組成物はまた、可溶化剤、注射部位での疼痛を和らげるための局所麻酔剤(例えば、リグノカイン)などを含有してもよい。本発明の医薬組成物は、有効成分と溶媒などを別個の容器に入れた態様で供給されてもよい。また、本発明の医薬組成物が注入によって投与される場合、例えば、有効成分および滅菌の製薬グレードの水または食塩水を含む注入ボトルで投与されてもよい。本発明の医薬組成物が注射によって投与される場合、投与前に有効成分を注射用滅菌水または食塩水と混合して投与されてもよい。
 本発明の医薬組成物は、抗CD98抗体-薬物コンジュゲートおよび少なくとも一つのこれ以外の癌治療剤を含んでもよい。本発明の抗体-薬物コンジュゲートは、他の癌治療剤と共に投与することもでき、これによって抗癌効果を増強させることができる。このような目的で使用される他の抗癌剤は、抗体-薬物コンジュゲートと同時に、別々に、あるいは連続して個体に投与されてもよいし、それぞれの投与間隔を変えて投与してもよい。このような癌治療剤としては、carboplatin、cisplatin、gemcitabine、irinotecan(CPT-11)、paclitaxel、pemetrexed、sorafenib、vinblastin、国際公開第WO2003/038043号パンフレットに記載の薬剤、更にLH-RHアナログ(リュープロレリン、ゴセレリンなど)、エストラムスチン・フォスフェイト、エストロジェン拮抗薬(タモキシフェン、ラロキシフェンなど)、アロマターゼ阻害剤(アナストロゾール、レトロゾール、エキセメスタンなど)などを挙げることができるが、抗腫瘍活性を有する薬剤であれば限定されることはない。
 本発明の医薬組成物は、凍結乾燥製剤または液状製剤として提供されてもよい。凍結乾燥製剤として提供される場合には、この分野において使用される適当な製剤添加物が含まれる製剤であってもよい。また液状製剤においても同様にして、この分野において使用される適当な製剤添加物が含まされる製剤であってもよい。
 本発明の医薬組成物の組成および有効成分の濃度は投与方法によっても変化するが、本発明の医薬組成物に含まれる抗CD98抗体-薬物コンジュゲートは、抗体-薬物コンジュゲートの抗原に対する親和性、すなわち、抗原に対する解離定数(Kd値)の点において、親和性が高い(Kd値が低い)ほど、少量の投与量であっても薬効を発揮させことができる。したがって、抗体-薬物コンジュゲートの投与量の決定に当たっては、抗体-薬物コンジュゲートと抗原との親和性の状況に基づいて投与量を設定することもできる。本発明の抗体-薬物コンジュゲートをヒトに対して投与する際には、例えば、約0.001~100mg/kgを1回あるいは1~180日間に1回の間隔で複数回投与すればよい。
 以下に示す実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。また、これらはいかなる意味においても限定的に解釈されるものではない。また、本明細書において、特に記載のない試薬、溶媒および出発材料は、市販の供給源から容易に入手可能である。
(実施例1)モノクローナル抗体作製および抗体スクリーニング
(1-1)免疫
 4~6週齢のBALB/cAnNCrlCrljマウス(日本チャールス・リバー社)を使用した。0日目、7日目、15日目および24日目にベルセン(ライフテクノロジー社)で剥がした5×106個のMCF7細胞(ATCC HTB-22)をPBSに懸濁して背部皮下に投与した。31日目に同じ細胞を5×106個静脈投与し、同日に脾臓を採取しハイブリドーマ作製に用いた。
(1-2)ハイブリドーマの作製
 脾臓細胞とマウスミエローマP3X63Ag8U.1細胞(ATCC CRL-1597)とをPEG4000(IBL社)を用いて細胞融合しハイブリドーマを作製した。その結果、MCF7細胞免疫マウスより1760クローンのハイブリドーマを樹立した。得られたハイブリドーマ培養上清を用いて抗体産生ハイブリドーマのCDCアッセイによるスクリーニングを行った。
(1-3)ハイブリドーマのスクリーニング(CDCアッセイ)
 5000細胞/80μLとなるようにMCF7細胞を10%ウシ胎児血清(FBS)含有RPMI培地(ライフテクノロジー社)を用いて希釈し、96well plateに80μL/well添加し、一晩培養した。ハイブリドーマ培養上清を、細胞を播いたplateに20μL/well添加し、4℃で1時間静置した。ウサギ補体の希釈凍結乾燥品(Cedarlane社)に1バイアルあたり1mLの滅菌水を氷上で添加した。1分間静置、混合したのち、19mLの0.1% BSA/RPMI1640培地(BSA Sigma社)と混合した。ハイブリドーマ培養上清を添加したplateに同補体希釈液を20μL/well添加し37℃で1時間反応を行った。
 プレートを室温で30分間放置し、室温に戻した。CellTiter-Glo試薬(Promega社)を各wellに120μL添加し、室温で10分間反応した。プレートリーダー(ARVO HTS Prekin Elmer社)にて発光量を測定した。発光量の少ないwellは、補体依存的な細胞死を誘導したと判断された。そのような補体依存的な細胞死を誘導した培養上清を産生するハイブリドーマを選択した。その結果、15クローンのスクリーニング陽性ハイブリドーマクローンが得られた。
(実施例2)ハイブリドーマからの抗体の調製
 プリスタン(2,6,10,14-テトラメチルペンタデカン;0.5ml)を腹腔内投与して予め2週間飼育した8~10週齢のマウスまたはヌードマウス(BALB/cヌードマウス、雌、日本クレア社)に、実施例1で得られたモノクローナル抗体産生ハイブリドーマ1~2×106細胞をPBSに懸濁し、0.5mLを腹腔内に注射した。10~21日後、ハイブリドーマを腹水癌化させた後に腹水を採取した。得られた腹水を遠心分離して固形分を除去後、2倍以上のPBSを添加後、MabSelect Sure HiTrap 5mlカラム(GE Healthcare Life Sciences社)による精製を行い、中性域でカラムに結合したIgG画分を回収し、精製モノクローナル抗体とした。
(実施例3)ハイブリドーマが産生する抗体が結合する抗原の同定
(3-1)結合特異性
(3-1-1)抗原遺伝子発現細胞の調整
 CD98をコードするSLC3A2遺伝子発現ベクターを市販のSLC3A2遺伝子クローン(IOH-4673、ライフテクノロジー社)およびGateway発現ベクターpDEST40(ライフテクノロジー社)を用いて作製した。
 NIH-3T3細胞(ATCC CRL-1658)を1×105細胞/mlになるよう10%ウシ胎児血清(FBS)含有RPMI培地(ライフテクノロジー社)中で調整し、pcDNA-DEST40-SLC3A2をNIH-3T3細胞にFUGENE6(ロシュアプライドサイエンス社)を用いてトランスフェクションし、37℃、5% CO2の条件下で更に2晩培養した。同様にプラスミドを含まないFUGEN6で処理した細胞をCD98陰性コントロールとして用いた。トランスフェクションされたNIH-3T3細胞をトリプシン処理し、10% FBS含有RPMIで細胞を洗浄した後、5% FBS含有PBSに懸濁した。得られた細胞懸濁液をフローサイトメトリー解析に使用した。
(3-1-2)フローサイトメトリー解析
 3-1-1で調製した細胞懸濁液を遠心し、上清を除去した後、各ベクターをトランスフェクトしたNIH-3T3細胞に対しハイブリドーマ培養上清または精製抗体を加えて懸濁し、4℃で0.5~1時間静置した。5% FBS含有PBSで2回洗浄した後、5% FBS含有PBSで400倍に希釈したFluorescein-conjugated goat IgG fraction to mouse IgG(Whole Molecule;ICN Pharmaceuticals社、#55493)を加えて懸濁し、4℃で0.5~1時間静置した。5% FBS含有PBSで2回洗浄した後、2μg/ml 7-aminoactinomycin D(インビトロジェン(Molecular Probes)社)を含む5% FBS含有PBSに再懸濁し、フローサイトメーター(FC500:BeckmanCoulter社)で検出を行った。データ解析はFlowjo(TreeStar社)で行った。7-aminoactinomycin D陽性の死細胞をゲートで除外した後、生細胞のFITC蛍光強度のヒストグラムを作成した。陰性コントロールであるプラスミドを導入していないNIH-3T3細胞の蛍光強度ヒストグラムに対してCD98発現NIH-3T3細胞のヒストグラムが強蛍光強度側にシフトしているサンプル(ハイブリドーマ培養上清または精製抗体)を産生するハイブリドーマを抗CD98抗体産生ハイブリドーマとして取得した。このハイブリドーマをCD98ハイブリドーマM23と呼び、CD98ハイブリドーマM23が産生する抗体を、M23抗体またはM23と呼ぶ。
(3-2)エピトープの決定
(3-2-1)抗原遺伝子発現細胞の調製
 インテグリンαvおよびインテグリンβ3をHEK293細胞内に安定形質移入した細胞株293α細胞を2.6×106細胞/dishになるようコラーゲンコートした100 mm dish(AGC TECHNO GLASS 社製)に播種し、10% FBS含有DMEM培地中で37℃、5% CO2の条件下で一晩培養した。翌日、一部の配列をマウスのものと入れ替えたpcDNA3.1-FLAG-hCD98-mouse206-271、pcDNA3.1-FLAG-hCD98-mouse262-331、pcDNA3.1-FLAG-hCD98-mouse322-401、pcDNA3.1-FLAG-hCD98-mouse392-471、pcDNA3.1-FLAG-hCD98-mouse462-541、pcDNA3.1-FLAG-hCD98-mouse532-631、マウスCD98発現ベクターであるpGEM-T-mouseCD98をそれぞれ293α細胞にLipofectamine 2000 Transfection Reagentを用いて導入し、37℃、5% CO2の条件下でさらに一晩培養した。翌日、発現ベクター導入細胞をTrypLE Express(Life Technologies社製)で処理し、3% FBS含有PBSで細胞を洗浄した後、3% FBS含有PBSに懸濁した。得られた細胞懸濁液をフローサイトメトリー解析に使用した。
(3-2-2)フローサイトメトリー解析
 3-2-1で調製した細胞懸濁液を遠心し、上清を除去した後、2×105細胞の発現ベクター導入細胞に対し、M23抗体、ポジティブコントロールとしてMonoclonal ANTI-FLAG M2 antibody produced in mouse、ネガティブコントロールとしてMouse IgG2Aをそれぞれ10μg/mLになるように添加して懸濁し、4℃で15分間静置した。3% FBS含有PBSで1回洗浄した後、3% FBS含有PBSで500倍に希釈したAnti-Mouse IgG FITC conjugateを加えて懸濁し、4℃で20分間静置した。3% FBS含有PBSで洗浄した後、3% FBS含有PBSに再懸濁し、フローサイトメーター(BD FACSCant II:BD Biosciences社)で検出を行った。データ解析はFlowjoで行った。FITC蛍光強度のヒストグラムを作成し、ネガティブコントロールであるMouse IgG2Aの蛍光強度ヒストグラムが未染色のものに対してシフトせず、M23抗体のヒストグラムが発現ベクター非導入細胞対して発現ベクター導入細胞で強蛍光強度側にシフトしている場合を、結合すると判断した。その結果M23抗体は、pcDNA3.1-FLAG-hCD98-mouse206-271、pcDNA3.1-FLAG-hCD98-mouse262-331、pcDNA3.1-FLAG-hCD98-mouse322-401、pcDNA3.1-FLAG-hCD98-mouse392-471もしくはpcDNA3.1-FLAG-hCD98-mouse532-631導入細胞には結合し、pcDNA3.1-FLAG-hCD98-mouse462-541導入細胞には結合しなかった。したがって、M23抗体は、配列表の配列番号38に示される、ヒトCD98の462乃至541番目のアミノ酸配列のうち、マウスCD98と異なる配列を認識することが示された(図13)。なお、各抗原が細胞膜上に発現していることはポジティブコントロールの抗FLAG抗体を用いて確認され(図14)、M23がマウスCD98に結合しないことも確認された(図13)。
(実施例4)M23抗体遺伝子の可変領域をコードするcDNAのヌクレオチド配列の決定とキメラM23抗体の作製
(4-1)M23抗体遺伝子の可変領域をコードするcDNAのヌクレオチド配列の決定
(4-1-1)CD98ハイブリドーマM23からのmRNAの調製
 M23抗体の可変領域を含むcDNAを増幅するため、CD98ハイブリドーマM23よりmRNA Isolation kit(Roche applied science社)を用いてmRNAを調製した。
(4-1-2)cDNA(5’-RACE-Ready cDNA)の合成
 cDNA(5’-RACE-Ready cDNA)の合成は4-1-1で調製したmRNAの100ngとSMARTer RACE cDNA Amplification Kit(CLONTECH社)を用いて実施した。
(4-1-3)5’-RACE PCRによるM23抗体の重鎖可変領域を含むcDNAの増幅と配列の決定
 重鎖遺伝子の可変領域のcDNAをPCRで増幅するためのプライマーとして、UPM(Universal Primer A Mix:SMARTer RACE cDNA Amplification Kitに付属)、および5’-GGCATCCTAGAGTCACCGAGGAGCCAGTTG-3’(配列番号25:プライマーmG2aVR1)の配列を有するオリゴヌクレオチドを用いた。UPMはSMARTer RACE cDNA Amplification Kit(CLONTECH社)に付属のものを使用し、mG2aVR1はデータベースのマウス重鎖(IgG2a)の定常領域の配列から設計した。
 このプライマーの組み合わせと、4-1-2で合成したcDNA(5’-RACE-Ready cDNA)を鋳型とした5’-RACE PCRによりM23抗体の重鎖の可変領域を含むcDNAを増幅した。PCRは、PolymeraseとしてKOD-Plus-(TOYOBO社)を用い、SMARTer RACE cDNA Amplification Kit(CLONTECH社)のマニュアルに従い、タッチダウンPCRプログラムで実施した。
 5’-RACE PCRで増幅した重鎖の可変領域を含むcDNAをMinElute PCR Purification Kit(QIAGEN社)を用いて精製後、Zero Blunt TOPO PCR Cloning Kit(Invitrogen社)を用いてクローニングし、クローニングした重鎖の可変領域を含むcDNAのヌクレオチド配列のシークエンス解析を実施した。シークエンスプライマーとして、データベースのマウス重鎖の定常領域の配列から設計した5’-GGCATCCTAGAGTCACCGAGGAGCCAGTTG-3’(配列番号25:プライマーmG2aVR1)の配列を有するオリゴヌクレオチド、および、NUP(Nested Universal Primer A:SMARTer RACE cDNA Amplification Kitに付属)を用いた。
 シークエンス解析は遺伝子配列解析装置(ABI PRISM 3700 DNA Analyzer;Applied Biosystems社、または、Applied Biosystems 3730xl Analyzer;Applied Biosystems社)を用いて実施し、シークエンス反応は、GeneAmp 9700(Applied Biosystems社)を用いた。
 決定されたM23抗体の重鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号1に示し、アミノ酸配列を配列番号2に示した。
(4-1-4)5’-RACE PCRによるM23抗体の軽鎖可変領域を含むcDNAの増幅と配列の決定
 M23抗体の軽鎖遺伝子の可変領域のcDNAをPCRで増幅するためのプライマーとして、UPM(Universal Primer A Mix:SMARTer RACE cDNA Amplification Kitに付属)および5’-AGTCCAACTGTTCAGGACGCCATTTTGTCG-3’(配列番号26:プライマーmKVR2)の配列を有するオリゴヌクレオチドを用いた。UPMはSMARTer RACE cDNA Amplification Kit(CLONTECH社)に付属のものを使用し、mKVR2はデータベースのマウス軽鎖の定常領域の配列から設計した。
 このプライマーの組み合わせと、4-1-2で合成したcDNA(5’-RACE-Ready cDNA)を鋳型とした5’-RACE PCRによりM23抗体の軽鎖の可変領域を含むcDNAを増幅した。
 PCRは、PolymeraseとしてKOD-Plus-(TOYOBO社)を用い、SMARTer RACE cDNA Amplification Kit(CLONTECH社)のマニュアルに従い、タッチダウンPCRプログラムで実施した。
 5’-RACE PCRで増幅した軽鎖の可変領域を含むcDNAをMinElute PCR Purification Kit(QIAGEN社)を用いて精製後、Zero Blunt TOPO PCR Cloning Kit(Invitrogen社)を用いてクローニングし、クローニングした軽鎖の可変領域を含むcDNAのヌクレオチド配列のシークエンス解析を実施した。シークエンスプライマーとして、データベースのマウス軽鎖の定常領域の配列から設計した5’-AGTCCAACTGTTCAGGACGCCATTTTGTCG-3’(配列番号26:プライマーmKVR2)の配列を有するオリゴヌクレオチド、および、NUP(Nested Universal Primer A:SMARTer RACE cDNA Amplification Kitに付属)を用いた。
 シークエンス解析は遺伝子配列解析装置(ABI PRISM 3700 DNA Analyzer;Applied Biosystems社、または、Applied Biosystems 3730xl Analyzer;Applied Biosystems社)を用いて実施し、シークエンス反応は、GeneAmp 9700(Applied Biosystems社)を用いた。
 決定されたM23抗体の軽鎖の可変領域をコードするcDNAのヌクレオチド配列を配列番号3に示し、アミノ酸配列を配列番号4に示した。
(4-2)キメラM23抗体の作製
(4-2-1)キメラおよびヒト化抗体軽鎖発現ベクターpCMA-LKの構築
 プラスミドpcDNA3.3-TOPO/LacZ(Invitrogen社)を制限酵素XbaIおよびPmeIで消化して得られる約5.4kbのフラグメントと、配列番号5に示すヒトκ鎖分泌シグナルおよびヒトκ鎖定常領域をコードするヌクレオチド配列を含むDNA断片をIn-Fusion Advantage PCRクローニングキット(CLONTECH社)を用いて結合して、pcDNA3.3/LKを作製した。
 pcDNA3.3/LKを鋳型として、下記プライマーセットでPCRを行い、得られた約3.8kbのフラグメントをリン酸化後セルフライゲーションすることによりCMVプロモーターの下流にシグナル配列、クローニングサイト、およびヒトκ鎖定常領域を持つ、キメラおよびヒト化抗体軽鎖発現ベクターpCMA-LKを構築した。
プライマーセット
5’-TATACCGTCGACCTCTAGCTAGAGCTTGGC-3’(配列番号27:プライマー 3.3-F1)
5’-GCTATGGCAGGGCCTGCCGCCCCGACGTTG-3’(配列番号28:プライマー 3.3-R1)
(4-2-2)キメラおよびヒト化抗体IgG1タイプ重鎖発現ベクターpCMA-G1の構築
 pCMA-LKをXbaIおよびPmeIで消化してκ鎖分泌シグナルおよびヒトκ鎖定常領域を取り除いたDNA断片と、配列番号6に示すヒト重鎖分泌シグナル配列およびヒトIgG1定常領域をコードするヌクレオチド配列を含むDNA断片をIn-Fusion Advantage PCRクローニングキット(CLONTECH社)を用いて結合して、CMVプロモーターの下流にシグナル配列、クローニングサイトおよびヒトIgG1重鎖定常領域をもつキメラおよびヒト化抗体IgG1タイプ重鎖発現ベクターpCMA-G1を構築した。
(4-2-3)キメラM23抗体重鎖発現ベクターの構築
 4-1-3で得られたM23抗体の重鎖の可変領域を含むcDNAをテンプレートとして、KOD-Plus-(TOYOBO社)と下記のプライマーセットで重鎖の可変領域をコードするcDNAを含むDNA断片を増幅し、キメラおよびヒト化IgG1タイプ重鎖発現ベクターpCMA-G1を制限酵素BlpIで切断した箇所にIn-Fusion HD PCRクローニングキット(CLONTECH社)を用いて挿入することにより、キメラM23抗体重鎖発現ベクターを構築した。得られた発現ベクターを「pCMA-G1/cM23」と命名した。キメラM23抗体重鎖のヌクレオチド配列を配列番号7に、アミノ酸配列を配列番号8に示した。配列番号7のヌクレオチド配列および配列番号8のアミノ酸配列は、図1にも記載されている。
キメラM23抗体重鎖用プライマーセット
5’-CCAGATGGGTGCTGAGCCAGGTCCAGCTGCAGCAGTCTGGAGCTGAG-3’(配列番号29:プライマー M23H-F)
5’-GGGCCCTTGGTGGAGGCTGCAGAGACAGTGACCAGAGTCCCTTGGCC-3’(配列番号30:プライマー M23H-R)
(4-2-4)キメラM23抗体軽鎖発現ベクターの構築
 4-1-4で得られたM23抗体の軽鎖の可変領域を含むcDNAをテンプレートとして、KOD-Plus-(TOYOBO社)と下記のプライマーセットで軽鎖の可変領域をコードするcDNAを含むDAN断片を増幅し、キメラおよびヒト化抗体軽鎖発現汎用ベクターpCMA-LKを制限酵素BsiWIで切断した箇所にIn-Fusion HD PCRクローニングキット(CLONTECH社)を用いて挿入することにより、キメラM23抗体の軽鎖発現ベクターを構築した。得られた発現ベクターを「pCMA-LK/cM23」と命名した。キメラM23抗体の軽鎖のヌクレオチド配列を配列番号9に、アミノ酸配列を配列番号10に示した。配列番号9のヌクレオチド配列および配列番号10のアミノ酸配列は、図2にも記載されている。
キメラM23抗体軽鎖用プライマーセット
5’-ATCTCCGGCGCGTACGGCGACATTGTGATGTCACAGTCTCCATCCTCC-3’(配列番号31:プライマー M23L-F)
5’-GGAGGGGGCGGCCACAGCCCGTTTGATTTCCAGCTTGGTGCCTCC-3’(配列番号32:プライマー M23L-R)
(4-2-5)キメラM23抗体の生産
 マニュアルに従い、FreeStyle 293F細胞(Invitrogen社)を継代培養した。対数増殖期の1.2×109個のFreeStyle 293F細胞(Invitrogen社)を3L Fernbach Erlenmeyer Flask(CORNING社)に播種し、FreeStyle293 expression medium (Invitrogen社)で希釈して1.0×106細胞/mlに調製したのちに、37℃、8% CO2インキュベータ内で90rpmで一時間振とう培養した。Polyethyleneimine(Polyscience社、#24765)3.6mgをOpti-Pro SFM(Invitrogen社)20mlに溶解し、次にPureLink HiPure Plasmidキット(Invitrogen社)を用いて調製した軽鎖発現ベクター(0.8mg)および重鎖発現ベクター(0.4mg)を20mlのOpti-Pro SFM(Invitrogen社)に添加した。Polyethyleneimine/Opti-Pro SFM混合液20mlに、発現ベクター/Opti-Pro SFM混合液20mlを加えて穏やかに攪拌し、さらに5分間放置した後にFreeStyle 293F細胞に添加した。37℃、8% CO2インキュベータで7日間、90rpmで振とう培養して得られた培養上清をDisposable Capsule Filter(ADVANTEC #CCS-045-E1H)でろ過した。pCMA-G1/cM23とpCMA-LK/cM23との組合せによって取得されたキメラM23抗体を「cM23抗体」と命名した。
(4-2-6)cM23抗体の精製
 4-2-5で得られた培養上清から抗体を、rProtein Aアフィニティークロマトグラフィー(4-6℃下)とセラミックハイドロキシアパタイト(室温下)を用いて2段階で精製した。rProtein Aアフィニティークロマトグラフィー精製後とセラミックハイドロキシアパタイト精製後のバッファー置換工程は4~6℃下で実施した。最初に、培養上清を、PBSで平衡化したMabSelectSuRe(GE Healthcare Bioscience社、HiTrapカラム)にアプライした。培養上清がカラムに全て入ったのち、カラム容量2倍以上のPBSでカラムを洗浄した。次に2Mアルギニン塩酸塩溶液(pH4.0)で溶出し、抗体の含まれる画分を集めた。その画分を透析(Thermo Scientific社、Slide-A-Lyzer Dialysis Cassette)によりPBSに置換した後、5mMリン酸ナトリウム/50mM MES/pH7.0のバッファーで5倍希釈した抗体溶液を、5mM NaPi/50mM MES/30mM NaCl/pH7.0のバッファーで平衡化されたセラミックハイドロキシアパタイトカラム(日本バイオラッド、Bio-Scale CHT Type-I Hydroxyapatite Column)にアプライした。塩化ナトリウムによる直線的濃度勾配溶出を実施し、抗体の含まれる画分を集めた。その画分を透析(Thermo Scientific社、Slide-A-Lyzer Dialysis Cassette)によりHBSor(25mM ヒスチジン/5% ソルビトール、pH6.0)への液置換を行った。最後にCentrifugal UF Filter Device VIVASPIN20(分画分子量UF10K、Sartorius社、4℃下)にて濃縮し、IgG濃度を10mg/ml以上に調製し精製サンプルとした。
(実施例5)マウス抗CD98モノクローナル抗体のヒト化抗体の設計
(5-1)M23抗体のヒト化バージョンの設計
(5-1-1)M23抗体の可変領域の分子モデリング
 M23の可変領域の分子モデリングを、相同性モデリングとして公知の方法(Methods in Enzymology, 203, 121-153(1991))によって実行した。Protein Data Bank(Nuc. Acid Res., 35, D301-D303(2007))に登録されるヒト免疫グロブリンの可変領域の1次配列(X線結晶構造から誘導される三次元構造が入手可能である)を、実施例4で決定したM23の可変領域と比較した。結果として、1MJUが、M23抗体の重鎖の可変領域に対して同様にフレームワーク中に欠損がある抗体の中で、最も高い配列相同性を有するとして選択された。また、3MBXが、M23抗体の軽鎖の可変領域に対して最も高い配列相同性を有するとして選択された。フレームワーク領域の三次元構造は、M23抗体の重鎖および軽鎖に対応する1MJUおよび3MBXの座標を組み合わせて、「フレームワークモデル」を得ることによって作製された。次いで、それぞれのCDRについての代表的なコンホメーションがフレームワークモデルに組み込まれた。
 最後に、エネルギーの点でM23抗体の可変領域の可能性のある分子モデルを得るために、不利な原子間接触を除くためのエネルギー計算を行った。上記手順を、市販のタンパク質立体構造解析プログラムDiscoveryStudio(Accelrys社)を用いて行った。
(5-1-2)ヒト化M23抗体に対するアミノ酸配列の設計
 ヒト化M23抗体の構築を、CDRグラフティング(Proc. Natl. Acad. Sci. U.S.A 86, 10029-10033(1989))として公知の方法によって行った。アクセプター抗体は、フレームワーク領域内のアミノ酸相同性に基づいて選択された。M23抗体のフレームワーク領域の配列を、抗体のアミノ酸配列のKabatデータベース(Nuc. Acid Res., 29, 205-206(2001))の全てのヒトフレームワークと比較し、結果として、HuMc3抗体がフレームワーク領域についての80%の配列相同性に起因して、アクセプターとして選択された。HuMc3についてのフレームワーク領域のアミノ酸残基を、M23抗体についてのアミノ酸残基と整列させ、異なるアミノ酸が使用される位置を同定した。これらの残基の位置は、上で構築されたM23抗体の三次元モデルを使用して分析され、そしてアクセプター上にグラフティングされるべきドナー残基が、Queen et al.(Proc. Natl. Acad. Sci. U.S.A., 86, 10029-10033(1989))によって与えられる基準によって選択された。選択されたいくつかのドナー残基をアクセプター抗体に移入することによって、ヒト化M23抗体の配列を以下の実施例に記載されるように構築した。
(5-2)M23抗体重鎖のヒト化
(5-2-1)hM23-H1タイプ重鎖
 配列番号8に示されるcM23抗体重鎖のアミノ酸番号24(グルタミン)をバリンに、アミノ酸番号30(ロイシン)をバリンに、アミノ酸番号31(バリン)をリシンに、アミノ酸番号32(アルギニン)をリシンに、アミノ酸番号35(スレオニン)をアラニンに、アミノ酸番号57(リシン)をアルギニンに、アミノ酸番号59(アルギニン)をアラニンに、アミノ酸番号67(イソロイシン)をメチオニンに、アミノ酸番号86(リシン)をアルギニンに、アミノ酸番号87(アラニン)をバリンに、アミノ酸番号89(ロイシン)をイソロイシンに、アミノ酸番号93(リシン)をスレオニンに、アミノ酸番号95(セリン)をスレオニンに、アミノ酸番号101(グルタミン)をグルタミン酸に、アミノ酸番号106(スレオニン)をアルギニンに、アミノ酸番号108(アスパラギン酸)をグルタミン酸に、アミノ酸番号110(セリン)をスレオニンに、アミノ酸番号111(セリン)をアラニンに、アミノ酸番号114(フェニルアラニン)をチロシンに、アミノ酸番号135(アラニン)をセリンに、置き換えることを伴い設計されたヒト化M23抗体重鎖を「hM23-H1タイプ重鎖」と命名した。
 hM23-H1タイプ重鎖のアミノ酸配列は、配列番号12に記載されている。配列番号12のアミノ酸配列の1~19番目のアミノ残基からなる配列、20~135番目のアミノ酸残基からなる配列、136~465番目のアミノ酸残基からなる配列が、それぞれシグナル配列、重鎖可変領域、重鎖定常領域に相当する。配列番号12のアミノ酸配列をコードするヌクレオチド配列は、配列番号11に記載されている。配列番号11のヌクレオチド配列の1~57番目のヌクレオチドからなる配列、58~405番目のヌクレオチドからなる配列、406~1395番目のヌクレオチドからなる配列が、それぞれシグナル配列、重鎖可変領域配列、重鎖定常領域配列をコードしている。配列番号11のヌクレオチド配列および配列番号12のアミノ酸配列は、図3にも記載されている。
(5-2-2)hM23-H2タイプ重鎖
 配列番号8に示されるcM23重鎖のアミノ酸番号30(ロイシン)をバリンに、アミノ酸番号31(バリン)をリシンに、アミノ酸番号32(アルギニン)をリシンに、アミノ酸番号35(スレオニン)をアラニンに、アミノ酸番号57(リシン)をアルギニンに、アミノ酸番号59(アルギニン)をアラニンに、アミノ酸番号67(イソロイシン)をメチオニンに、アミノ酸番号89(ロイシン)をイソロイシンに、アミノ酸番号95(セリン)をスレオニンに、アミノ酸番号101(グルタミン)をグルタミン酸に、アミノ酸番号108(アスパラギン酸)をグルタミン酸に、アミノ酸番号110(セリン)をスレオニンに、アミノ酸番号111(セリン)をアラニンに、アミノ酸番号114(フェニルアラニン)をチロシンに、アミノ酸番号135(アラニン)をセリンに、置き換えることを伴い設計されたヒト化M23抗体重鎖を「hM23-H2タイプ重鎖」と命名した。
 hM23-H2タイプ重鎖のアミノ酸配列は、配列番号14に記載されている。配列番号14のアミノ酸配列の1~19番目のアミノ残基からなる配列、20~135番目のアミノ酸残基からなる配列、136~465番目のアミノ酸残基からなる配列が、それぞれシグナル配列、重鎖可変領域、重鎖定常領域に相当する。配列番号14のアミノ酸配列をコードするヌクレオチド配列は、配列番号13に記載されている。配列番号13のヌクレオチド配列の1~57番目のヌクレオチドからなる配列、58~405番目のヌクレオチドからなる配列、406~1395番目のヌクレオチドからなる配列が、それぞれシグナル配列、重鎖可変領域配列、重鎖定常領域配列をコードしている。配列番号13のヌクレオチド配列および配列番号14のアミノ酸配列は、図4にも記載されている。
(5-3)M23抗体軽鎖のヒト化
(5-3-1)hM23-L1タイプ軽鎖
 配列番号10に示されるcM23抗体軽鎖のアミノ酸番号25(セリン)をスレオニンに、アミノ酸番号29(セリン)をアスパラギン酸に、アミノ酸番号35(バリン)をロイシンに、アミノ酸番号38(リシン)をアルギニンに、アミノ酸番号39(バリン)をアラニンに、アミノ酸番号41(メチオニン)をイソロイシンに、アミノ酸番号42(スレオニン)をアスパラギンに、アミノ酸番号69(セリン)をプロリンに、アミノ酸番号89(スレオニン)をセリンに、アミノ酸番号103(アスパラギン)をセリンに、アミノ酸番号104(バリン)をロイシンに、アミノ酸番号109(ロイシン)をバリンに、アミノ酸番号126(グリシン)をグルタミンに、アミノ酸番号130(ロイシン)をバリンに、アミノ酸番号135(アラニン)をスレオニンに、置き換えることを伴い設計されたヒト化M23抗体軽鎖を「hM23-L1タイプ軽鎖」と命名した。
 hM23-L1タイプ軽鎖のアミノ酸配列は、配列番号16に記載されている。配列番号16のアミノ酸配列の1~20番目のアミノ残基からなる配列、21~135番目のアミノ酸残基からなる配列、136~240番目のアミノ酸残基からなる配列が、それぞれシグナル配列、軽鎖可変領域、軽鎖定常領域に相当する。配列番号16のアミノ酸配列をコードするヌクレオチド配列は、配列番号15に記載されている。配列番号15のヌクレオチド配列の1~60番目のヌクレオチドからなる配列、61~405番目のヌクレオチドからなる配列、406~720番目のヌクレオチドからなる配列が、それぞれシグナル配列、軽鎖可変領域配列、軽鎖定常領域配列をコードしている。配列番号15のヌクレオチド配列および配列番号16のアミノ酸配列は、図5にも記載されている。
(5-3-2)hM23-L2タイプ軽鎖
 配列表の配列番号10に示されるcM23抗体軽鎖のアミノ酸番号25(セリン)をスレオニンに、アミノ酸番号29(セリン)をアスパラギン酸に、アミノ酸番号35(バリン)をロイシンに、アミノ酸番号38(リシン)をアルギニンに、アミノ酸番号39(バリン)をアラニンに、アミノ酸番号41(メチオニン)をイソロイシンに、アミノ酸番号42(スレオニン)をアスパラギンに、アミノ酸番号69(セリン)をプロリンに、アミノ酸番号89(スレオニン)をセリンに、アミノ酸番号103(アスパラギン)をセリンに、アミノ酸番号104(バリン)をロイシンに、アミノ酸番号109(ロイシン)をバリンに、アミノ酸番号130(ロイシン)をバリンに、アミノ酸番号135(アラニン)をスレオニンに、置き換えることを伴い設計されたヒト化M23抗体軽鎖を「hM23-L2タイプ軽鎖」と命名した。
 hM23-L2タイプ軽鎖のアミノ酸配列は、配列表の配列番号18に記載されている。配列番号18のアミノ酸配列の1~20番目のアミノ残基からなる配列、21~135番目のアミノ酸残基からなる配列、136~240番目のアミノ酸残基からなる配列が、それぞれシグナル配列、軽鎖可変領域、軽鎖定常領域に相当する。配列番号18のアミノ酸配列をコードするヌクレオチド配列は、配列表の配列番号17に記載されている。配列番号17のヌクレオチド配列の1~60番目のヌクレオチドからなる配列、61~405番目のヌクレオチドからなる配列、406~720番目のヌクレオチドからなる配列が、それぞれシグナル配列、軽鎖可変領域配列、軽鎖定常領域配列をコードしている。配列番号17のヌクレオチド配列および配列番号18のアミノ酸配列は、図6にも記載されている。
(実施例6)ヒト化M23抗体発現ベクターの構築と抗体の生産
(6-1)ヒト化M23抗体の重鎖発現ベクターの構築
(6-1-1)hM23-H1タイプ重鎖発現ベクターの構築
 配列番号11に示すhM23-H1タイプ重鎖のヌクレオチド配列のヌクレオチド番号58~405に示されるhM23-H1タイプ重鎖の可変領域をコードするDNA配列を含むDNA断片(ヌクレオチド番号36~422)を合成した(GENEART社 人工遺伝子合成サービス)。合成したDNA断片をテンプレートとして、KOD-Plus-(TOYOBO社)と下記のプライマーセットでhM23-H1タイプ重鎖の可変領域をコードするDNA配列を含むDNA断片を増幅し、キメラおよびヒト化抗体IgG1タイプ重鎖発現ベクターpCMA-G1を制限酵素BlpIで切断した箇所にIn-Fusion HD PCRクローニングキット(CLONTECH社)を用いて挿入することによりhM23-H1タイプ重鎖発現ベクターを構築した。得られた発現ベクターを「pCMA-G1/hM23-H1」と命名した。
プライマーセット
5’-AGCTCCCAGATGGGTGCTGAGC-3’(配列番号33:プライマー EG-Inf-F)
5’-GGGCCCTTGGTGGAGGCTGAGC-3’(配列番号34:プライマー EG1-Inf-R)
(6-1-2)hM23-H2タイプ重鎖発現ベクターの構築
 配列番号13に示すhM23-H2タイプ重鎖のヌクレオチド配列のヌクレオチド番号58~405に示されるhM23-H2タイプ重鎖の可変領域をコードするDNA配列を含むDNA断片(ヌクレオチド番号36~422)を合成し(GENEART社 人工遺伝子合成サービス)、6-1-1と同様の方法でhM23-H2タイプ重鎖発現ベクターを構築した。得られた発現ベクターを「pCMA-G1/hM23-H2」と命名した。
(6-2)ヒト化M23抗体の軽鎖発現ベクターの構築
(6-2-1)hM23-L1タイプ軽鎖発現ベクターの構築
 配列番号15に示すhM23-L1タイプ軽鎖のヌクレオチド配列のヌクレオチド番号61~405に示されるhM23-L1タイプ軽鎖の可変領域をコードするDNA配列を含むDNA断片(ヌクレオチド番号38~420)を合成した(GENEART社 人工遺伝子合成サービス)。合成したDNA断片をテンプレートとして、KOD-Plus-(TOYOBO社)と下記のプライマーセットでhM23-L1タイプ軽鎖の可変領域をコードするDNA配列を含むDNA断片を増幅し、キメラおよびヒト化抗体軽鎖発現ベクターpCMA-LKを制限酵素BsiWIで切断した箇所にIn-Fusion HD PCRクローニングキット(CLONTECH社)を用いて挿入することによりhM23-L1タイプ軽鎖発現ベクターを構築した。得られた発現ベクターを「pCMA-LK/hM23-L1」と命名した。
プライマーセット
5’-CTGTGGATCTCCGGCGCGTACGGC-3’(配列番号35:プライマー CM-LKF)
5’-GGAGGGGGCGGCCACCGTACG-3’(配列番号36:プライマー KCL-Inf-R)
(6-2-2)hM23-L2タイプ軽鎖発現ベクターの構築
 配列番号17に示すhM23-L2タイプ軽鎖のヌクレオチド配列のヌクレオチド番号61~405に示されるhM23-L2タイプ軽鎖の可変領域をコードするDNA配列を含むDNA断片(ヌクレオチド番号38~420)を合成し(GENEART社 人工遺伝子合成サービス)、6-2-1と同様の方法でhM23-L2タイプ軽鎖発現ベクターを構築した。得られた発現ベクターを「pCMA-LK/hM23-L2」と命名した。
(6-3)ヒト化M23抗体の生産と精製
(6-3-1)ヒト化M23抗体の生産
 ヒト化M23抗体を4-2-5と同様の方法で生産した。pCMA-G1/hM23-H1とpCMA-LK/hM23-L1との組合せによって取得されたヒト化M23抗体を「hM23-H1L1」、pCMA-G1/hM23-H1とpCMA-LK/hM23-L2との組合せによって取得されたヒト化M23抗体を「hM23-H1L2」、およびpCMA-G1/hM23-H2とpCMA-LK/hM23-L2との組合せによって取得されたヒト化M23抗体を「hM23-H2L2」と命名した。
(6-3-2)ヒト化M23抗体の精製
 6-3-1で得られた培養上清から抗体を4-2-6と同様の方法で精製した。
(実施例7)hM23-H1L1 ADC(1)の作製
Figure JPOXMLDOC01-appb-C000008
工程1:tert-ブチル(4-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-4-オキソブチル)カーバメート
 4-(tert-ブトキシカルボニルアミノ)ブタン酸(0.237g、1.13mmoL)をジクロロメタン(10mL)に溶解し、N-ヒドロキシスクシンイミド(0.130g、1.13mmoL)および1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(0.216g、1.13mmoL)を加えて1時間撹拌した。得られた混合物をエキサテカンのメシル酸塩(0.500g、0.94mmoL)およびトリエチルアミン(0.157mL、1.13mmoL)を加えたN,N-ジメチルホルムアミド溶液(10mL)に滴下し、室温にて一日間撹拌した。溶媒を減圧留去し、得られた残留物をシリカゲルカラムクロマトグラフィー[クロロホルム~クロロホルム:メタノール=8:2(v/v)]にて精製し、標記化合物(0.595g、定量的)を得た。
1H-NMR(400MHz,DMSO-d6)δ:0.87(3H,t,J=7.2Hz),1.31(9H,s),1.58(1H,t,J=7.2Hz),1.66(2H,t,J=7.2Hz),1.89-1.82(2H,m),2.12-2.21(3H,m),2.39(3H,s),2.92(2H,t,J=6.5Hz),3.17(2H,s),5.16(1H,d,J=19.2Hz),5.24(1H,d,J=18.8Hz),5.42(2H,s),5.59-5.55(1H,m),6.53(1H,s),6.78(1H,t,J=6.3Hz),7.30(1H,s),7.79(1H,d,J=11.0Hz),8.40(1H,d,J=8.6Hz).
MS(APCI)m/z:621(M+H)+.
工程2:4-アミノ-N-[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]ブタンアミドトリフルオロ酢酸塩
 上記工程1で得た化合物(0.388g、0.61mmoL)をジクロロメタン(9mL)に溶解した。トリフルオロ酢酸(9mL)を加え4時間撹拌した。溶媒を減圧留去し、得られた残留物をシリカゲルカラムクロマトグラフィー[クロロホルム~クロロホルム:メタノール:水=7:3:1(v/v/v)の分配有機層]にて精製し、標記化合物(0.343g、定量的)を得た。
1H-NMR(400MHz,DMSO-d6)δ:0.87(3H,t,J=9.4Hz),1.90-1.80(4H,m),2.15-2.13(2H,m),2.27(2H,t,J=7.0Hz),2.41(3H,s),2.87-2.82(2H,m),3.18(2H,dd,J=8.0,3.7Hz)5.15(1H,d,J=19.2Hz),5.26(1H,d,J=18.8Hz),5.43(2H,s),5.61-5.56(1H,m),6.57(1H,s),7.32(1H,s),7.72(3H,brs),7.82(1H,d,J=10.9Hz),8.55(1H,d,J=8.6Hz).
MS(APCI)m/z:521(M+H)+.
工程3:N-(tert-ブトキシカルボニル)グリシルグリシル-L-フェニルアラニル-N-(4-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-4-オキソブチル)グリシンアミド
 N-(tert-ブトキシカルボニル)グリシルグリシル-L-フェニルアラニルグリシン(0.081g、0.19mmoL)をジクロロメタン(3mL)に溶解し、N-ヒドロキシスクシンイミド(0.021g、0.19moL)および1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(0.036g、0.19mmoL)を加え3.5時間撹拌した。得られた混合物を上記工程2で得た化合物(0.080g、0.15mmoL)を加えたN,N-ジメチルホルムアミド溶液(1.5mL)に滴下し、室温にて4時間撹拌した。溶媒を減圧留去し、得られた残留物をシリカゲルカラムクロマトグラフィー[クロロホルム~クロロホルム:メタノール=8:2(v/v)]にて精製し、標記化合物(0.106g、73%)を得た。
1H-NMR(400MHz,DMSO-d6)δ:0.87(3H,t,J=7.4Hz),1.36(9H,s),1.71(2H,m),1.86(2H,t,J=7.8Hz),2.15-2.19(4H,m),2.40(3H,s),2.77(1H,dd,J=12.7,8.8Hz),3.02(1H,dd,J=14.1,4.7Hz),3.08-3.11(2H,m),3.16-3.19(2H,m),3.54(2H,d,J=5.9Hz),3.57-3.77(4H,m),4.46-4.48(1H,m),5.16(1H,d,J=19.2Hz),5.25(1H,d,J=18.8Hz),5.42(2H,s),5.55-5.60(1H,m),6.53(1H,s),7.00(1H,t,J=6.3Hz),7.17-7.26(5H,m),7.31(1H,s),7.71(1H,t,J=5.7Hz),7.80(1H,d,J=11.0Hz),7.92(1H,t,J=5.7Hz),8.15(1H,d,J=8.2Hz),8.27(1H,t,J=5.5Hz),8.46(1H,d,J=8.2Hz).
MS(APCI)m/z:939(M+H)+.
工程4:グリシルグリシル-L-フェニルアラニル-N-(4-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-4-オキソブチル)グリシンアミドトリフルオロ酢酸塩
 上記工程3で得た化合物(1.97g、2.10mmoL)をジクロロメタン(7mL)に溶解した。得られた溶液にトリフルオロ酢酸(7mL)を加えて1時間撹拌した。溶媒を減圧留去し、トルエンを加えて共沸し、得られた残留物をシリカゲルカラムクロマトグラフィー[クロロホルム~クロロホルム:メタノール:水=7:3:1(v/v/v)の分配有機層]にて精製し、標記化合物(1.97g、99%)を得た。
1H-NMR(400MHz,DMSO-d6)δ:0.87(3H,t,J=7.4Hz),1.71-1.73(2H,m),1.82-1.90(2H,m),2.12-2.20(4H,m),2.40(3H,s),2.75(1H,dd,J=13.7,9.4Hz),3.03-3.09(3H,m),3.18-3.19(2H,m),3.58-3.60(2H,m),3.64(1H,d,J=5.9Hz),3.69(1H,d,J=5.9Hz),3.72(1H,d,J=5.5Hz),3.87(1H,dd,J=16.8,5.9Hz),4.50-4.56(1H,m),5.16(1H,d,J=19.2Hz),5.25(1H,d,J=18.8Hz),5.42(2H,s),5.55-5.60(1H,m),7.17-7.27(5H,m),7.32(1H,s),7.78-7.81(2H,m),7.95-7.97(3H,m),8.33-8.35(2H,m),8.48-8.51(2H,m).
MS(APCI)m/z:839(M+H)+.
工程5:N-{3-[2-(2-{[3-(2,5-ジオキソ-2,5-ジヒドロ-1H-ピロール-1-イル)プロパノイル]アミノ}エトキシ)エトキシ]プロパノイル}グリシルグリシル-L-フェニルアラニル-N-(4-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-4-オキソブチル)グリシンアミド
 上記工程4で得た化合物(100mg、0.119mmoL)のN,N-ジメチルホルムアミド(1.20mL)溶液に、ジイソプロピルエチルアミン(20.8μL、0.119mmoL)および3-(2-(2-(3-マレインイミドプロパンアミド)エトキシ)エトキシ)プロパン酸N-スクシンイミジル(50.7mg、0.119mmoL)を加え、室温で1時間撹拌した。溶媒を減圧留去し、得られた残留物をシリカゲルカラムクロマトグラフィー[クロロホルム~クロロホルム:メタノール=5:1(v/v)]にて精製し、標記化合物(66.5mg、48%)を得た。
1H-NMR(400MHz,DMSO-d6)δ:0.85(3H,t,J=7.4Hz),1.65-1.74(2H,m),1.77-1.90(2H,m),2.07-2.19(4H,m),2.30(2H,t,J=7.2Hz),2.33-2.36(2H,m),2.38(3H,s),2.76(1H,dd,J=13.7,9.8Hz),2.96-3.18(9H,m),3.42-3.44(4H,m),3.53-3.76(10H,m),4.43(1H,td,J=8.6,4.7Hz),5.14(1H,d,J=18.8Hz),5.23(1H,d,J=18.8Hz),5.38(1H,d,J=17.2Hz),5.42(1H,d,J=17.2Hz),5.52-5.58(1H,m),6.52(1H,s),6.98(2H,s),7.12-7.17(1H,m),7.18-7.25(4H,m),7.29(1H,s),7.69(1H,t,J=5.5Hz),7.78(1H,d,J=11.3Hz),7.98-8.03(2H,m),8.11(1H,d,J=7.8Hz),8.16(1H,t,J=5.7Hz),8.23(1H,t,J=5.9Hz),8.44(1H,d,J=9.0Hz).
MS(APCI)m/z:1149(M+H)+.
工程6:hM23-H1L1 ADC(1)
(i)抗体のバッファー交換及び濃度調整
 実施例6にて作製したhM23-H1L1を、Sephadex G-25担体を使用したNAP-25カラム(Cat. No. 17-0852-02、GE Healthcare Japan Corporation)を、メーカー規定の方法に従い、塩化ナトリウム(137mM)およびエチレンジアミン四酢酸(EDTA、5mM)を含むリン酸緩衝液(10mM、pH6.0;本明細書において「PBS6.0/EDTA」という場合がある。)にて平衡化した。このNAP-25カラム一本につき、抗体水溶液2.5mLをのせたのち、PBS6.0/EDTA 3.5mLで溶出させた画分(3.5mL)を分取した。この画分をAmicon Ultra(50,000 MWCO、Millipore Corporation)の容器内に抗体または抗体-薬物コンジュゲート溶液を入れ、遠心機(Allegra X-15R、Beckman Coulter, Inc.)を用いた遠心操作(2000G~3800Gにて5~20分間遠心)にて、抗体若しくは抗体-薬物コンジュゲート溶液を濃縮した。UV測定器(Nanodrop 1000、Thermo Fisher Scientific Inc.)を用いて、メーカー規定の方法に従い、抗体濃度の測定を行った。その際に、280nm吸光係数(1.65mLmg-1cm-1)を用いて抗体濃度の測定を行ったのちに、PBS6.0/EDTAを用いて10mg/mLに抗体濃度を調整した。
(ii)抗体の還元
 本溶液(1.00mL)を2mLポリプロピレン製チューブに採取し、10mM TCEP(東京化成工業株式会社)水溶液(0.0315mL;抗体一分子に対して4.6当量)および1Mリン酸水素二カリウム水溶液(Nacalai Tesque, Inc.; 0.015mL)を加えた。本溶液のpHが7.0±0.1内であることを確認した後に、37℃で2時間インキュベートすることによって、抗体内ヒンジ部のジスルフィド結合を還元した。
(iii)抗体と薬物リンカーのコンジュゲーション
 上記溶液を常温水浴で10分間インキュベートした後に、上記工程5で得た化合物の10mMジメチルスルホキシド溶液(0.0579mL;抗体一分子に対して9.2当量)を加え、チューブローテーター(MTR-103、アズワン株式会社)を用いて室温で60分間撹拌し、薬物リンカーを抗体へ結合させた。次に、100mM NAC(Sigma-Aldrich Co. LLC)水溶液(0.0126mL;抗体一分子に対して18.4当量)を加え、さらに室温にて20分間撹拌し、薬物リンカーの反応を停止させた。
(iv)精製
 Sorbitol(5%)を含む酢酸緩衝液(10mM、pH5.5;本明細書において「ABS」という場合がある。)にてNAP-25カラムを平衡化する。このNAP-25カラムに、抗体-薬物コンジュゲート反応水溶液(2.5mL)をのせ、メーカー規定の量の緩衝液で溶出させることで、抗体画分を分取した。この分取画分を再びNAP-25カラムにのせ、緩衝液で溶出させるゲルろ過精製操作を計2~3回繰り返すことで、未結合の薬物リンカーや低分子化合物(トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)、N-アセチル-L-システイン(NAC)およびジメチルスルホキシド)を除いた抗体-薬物コンジュゲートを含有する溶液を6.0mL得た。
(v)特性評価
共通操作A:抗体-薬物コンジュゲートにおける抗体濃度および抗体一分子あたりの薬物平均結合数の測定(1)
 抗体-薬物コンジュゲートにおける結合薬物濃度は、抗体-薬物コンジュゲート水溶液の280nmおよび370nmの二波長におけるUV吸光度を測定したのちに下記の計算を行った。
 ある波長における全吸光度は系内に存在する全ての吸収化学種の吸光度の和に等しい[吸光度の加成性]ことから、抗体と薬物のコンジュゲーション前後において、抗体および薬物のモル吸光係数に変化がないと仮定すると、抗体-薬物コンジュゲートにおける抗体濃度および薬物濃度は、下記の関係式で示される。
A280=AD,280+AA,280=εD,280CD+εA,280CA  式(1)
A370=AD,370+AA,370=εD,370CD+εA,370CA  式(2)
 ここで、A280は280nmにおける抗体-薬物コンジュゲート水溶液の吸光度を示し、A370は370nmにおける抗体-薬物コンジュゲート水溶液の吸光度を示し、AA,280は280nmにおける抗体の吸光度を示し、AA,370は370nmにおける抗体の吸光度を示し、AD,280は280nmにおけるコンジュゲート前駆体の吸光度を示し、AD,370は370nmにおけるコンジュゲート前駆体の吸光度を示し、εA,280は280nmにおける抗体のモル吸光係数を示し、εA,370は370nmにおける抗体のモル吸光係数を示し、εD,280は280nmにおけるコンジュゲート前駆体のモル吸光係数を示し、εD,370は370nmにおけるコンジュゲート前駆体のモル吸光係数を示し、CAは抗体-薬物コンジュゲートにおける抗体濃度を示し、CDは抗体-薬物コンジュゲートにおける薬物濃度を示す。
 ここで、εA,280、εA,370、εD,280およびεD,370は、事前に用意した値(計算推定値若しくは化合物のUV測定から得られた実測値)を用いた。εA,280は、抗体のアミノ酸配列から、既知の計算方法(Protein Science, 1995, vol.4, 2411-2423)によって推定した。hM23-H1L1、hM23-H1L2、hM23-H2L2の場合、そのアミノ酸配列に従って、240400を推定値として用いた。εA,370は、ゼロとした。薬物リンカーのモル吸光係数(280nm、370nm)は、薬物リンカーをメルカプトエタノールで反応させ、マレイミド基をサクシニイミドチオエーテルに変換した化合物の実測のモル吸光係数(280nm、370nm)を用いた(本実施例では、εD,280=4964εD,370=18982を使用)。抗体-薬物コンジュゲート水溶液のA280およびA370を測定し、これらの値を式(1)および(2)に代入して連立方程式を解くことによって、CAおよびCDを求めた。さらにCDをCAで除することで1抗体あたりの薬物平均結合数を求めた。
共通操作B:抗体-薬物コンジュゲートにおける抗体一分子あたりの薬物平均結合数の測定(2)
 抗体-薬物コンジュゲートにおける抗体一分子あたりの薬物平均結合数は、前述の共通操作Aに加え、以下の方法を用いる高速液体クロマトグラフィー(HPLC)分析によっても求めた。
[B-1.HPLC分析用サンプルの調製(抗体-薬物コンジュゲートの還元)]
 抗体-薬物コンジュゲート溶液(約1mg/mL、60μL)をジチオトレイトール(DTT)水溶液(100mM、15μL)と混合した。混合物を37℃で30分インキュベートすることで、抗体-薬物コンジュゲートのL鎖及びH鎖間のジスルフィド結合を切断したサンプルを、HPLC分析に用いた。
[B-2.HPLC分析]
 HPLC分析を、下記の測定条件にて行った。
 HPLCシステム:Agilent 1290 HPLCシステム(Agilent Technologies)
 検出器:紫外吸光度計(測定波長:280nm)
 カラム:PLRP-S(2.1×50mm、8μm、1000Å;Agilent Technologies、P/N PL1912-1802)
 カラム温度:80℃
 移動相A:0.04%トリフルオロ酢酸(TFA)水溶液
 移動相B:0.04%TFAを含むアセトニトリル溶液
 グラジエントプログラム:29%-36%(0分-12.5分)、36%-42%(12.5-15分)、42%-29%(15分―15.1分)、29%-29%(15.1分―25分)
 サンプル注入量:15μL
[B-3.データ解析]
〔B-3-1〕 薬物の結合していない抗体のL鎖(L0)及びH鎖(H0)に対して、薬物の結合したL鎖(薬物が一つ結合したL鎖:L1)及びH鎖(薬物が一つ結合したH鎖:H1、薬物が二つ結合したH鎖:H2、薬物が三つ結合したH鎖:H3)は、結合した薬物の数に比例して疎水性が増し保持時間が大きくなることから、L0、L1、H0、H1、H2、H3の順に溶出された。L0及びH0との保持時間比較により検出ピークをL0、L1、H0、H1、H2、H3のいずれかに割り当てた。
〔B-3-2〕 薬物リンカーにUV吸収があるため、薬物リンカーの結合数に応じて、L鎖、H鎖及び薬物リンカーのモル吸光係数を用いて下式に従ってピーク面積値の補正を行った。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 ここで、各抗体におけるL鎖及びH鎖のモル吸光係数(280nm)は、既知の計算方法(Protein Science, 1995, vol.4, 2411-2423)によって、各抗体のL鎖及びH鎖のアミノ酸配列から推定される値を用いた。hM23-H1L1、hM23-H1L2、hM23-H2L2の場合、そのアミノ酸配列に従って、L鎖のモル吸光係数として41370を、H鎖のモル吸光係数として77810を推定値として用いた。また、薬物リンカーのモル吸光係数(280nm)は、前述の共通操作Aで求めた実測のモル吸光係数(280nm)を用いた。
〔B-3-3〕 ピーク面積補正値合計に対する各鎖ピーク面積比(%)を下式に従って計算した。
Figure JPOXMLDOC01-appb-M000006
〔B-3-4〕 抗体-薬物コンジュゲートにおける抗体一分子あたりの薬物平均結合数を、下式に従って計算した。
 薬物平均結合数=(L0ピーク面積比×0+L0ピーク面積比×1+H0ピーク面積比×0+H1ピーク面積比×1+H2ピーク面積比×2+H3ピーク面積比×3)/100×2
共通操作A及びBを使用して下記の特性値を得た。
抗体濃度:1.50mg/mL、抗体収量:9.00mg(90%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):6.0;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):7.1。
(実施例8)hM23-H1L2 ADC(1)の作製
Figure JPOXMLDOC01-appb-C000009
工程1:hM23-H1L2 ADC(1)
 実施例6にて作製したhM23-H1L2および実施例7工程5で得た化合物を用いて、実施例7工程6と同様の方法により、標記抗体-薬物コンジュゲートを得た。
抗体濃度:1.54mg/mL、抗体収量:9.24mg(92%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):6.0;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):7.1。
(実施例9)hM23-H2L2 ADC(1)の作製
Figure JPOXMLDOC01-appb-C000010
工程1:hM23-H2L2 ADC(1)
 実施例6にて作製したhM23-H2L2および実施例7工程5で得た化合物を用いて、実施例7工程6と同様の方法により、標記抗体-薬物コンジュゲートを得た。
抗体濃度:1.45mg/mL、抗体収量:8.70mg(87%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):6.0;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):7.1。
(実施例10)hM23-H1L1 ADC(2)の作製
Figure JPOXMLDOC01-appb-C000011
工程1:({N-[(9H-フルオレン-9-イルメトキシ)カルボニル]グリシル}アミノ)メチルアセテート
 N-9-フルオレニルメトキシカルボニルグリシルグリシン(4.33g、12.2mmol)、テトラヒドロフラン(120ml)およびトルエン(40.0ml)からなる混合物に、ピリジン(1.16ml、14.7mmol)および四酢酸鉛(6.84g、14.7mmol)を加え、5時間加熱還流した。反応液を室温まで冷却した後、不溶物をセライト濾過によって除き、減圧下濃縮した。得られた残留物を酢酸エチルに溶解し、水および飽和食塩水で洗浄後、有機層を無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去した後、得られた残留物をシリカゲルカラムクロマトグラフィー[ヘキサン:酢酸エチル=9:1(v/v)~酢酸エチル]にて精製し、標記化合物(3.00g、67%)を得た。
1H-NMR(400MHz,CDCl3)δ:2.07(3H,s),3.90(2H,d,J=5.1Hz),4.23(1H,t,J=7.0Hz),4.46(2H,d,J=6.6Hz),5.26(2H,d,J=7.0Hz),5.32(1H,brs),6.96(1H,brs),7.32(2H,t,J=7.3Hz),7.41(2H,t,J=7.3Hz),7.59(2H,d,J=7.3Hz),7.77(2H,d,J=7.3Hz).
工程2:ベンジル [({N-[(9H-フルオレン-9-イルメトキシ)カルボニル]グリシル}アミノ)メトキシ]アセテート
 上記工程1で得た化合物(3.68g、10.0mmoL)およびベンジルグリコレート(4.99g、30.0mmoL)のテトラヒドロフラン(40.0mL)溶液に、カリウムtert-ブトキシド(2.24g、20.0mmoL)を0℃で加え、室温にて15分間撹拌した。反応溶液に酢酸エチル、水を0℃で加え、酢酸エチル、クロロホルムで抽出し、得られた有機層を硫酸ナトリウムで乾燥し、ろ過した。溶媒を減圧留去し、得られた残留物をジオキサン(40.0mL)、水(10.0mL)に溶解し、炭酸水素ナトリウム(1.01g、12.0mmoL)、クロロギ酸9-フルオレニルメチル(2.59g、10.0mmoL)を加え、室温で2時間撹拌した。反応溶液に水を加え、酢酸エチルで抽出し、得られた有機層を硫酸ナトリウムで乾燥し、ろ過した。溶媒を減圧留去し、得られた残留物をシリカゲルカラムクロマトグラフィー[ヘキサン:酢酸エチル=100:0(v/v)~0:100]にて精製し、標記化合物(1.88g、40%)を得た。
1H-NMR(400MHz,CDCl3)δ:3.84(2H,d,J=5.5Hz),4.24(3H,t,J=6.5Hz),4.49(2H,d,J=6.7Hz),4.88(2H,d,J=6.7Hz),5.15-5.27(1H,m),5.19(2H,s),6.74(1H,brs),7.31-7.39(7H,m),7.43(2H,t,J=7.4Hz),7.61(2H,d,J=7.4Hz),7.79(2H,d,J=7.4Hz).
工程3:[({N-[(9H-フルオレン-9-イルメトキシ)カルボニル]グリシル}アミノ)メトキシ]酢酸
 上記工程2で得た化合物(1.88g、3.96mmoL)をエタノール(40.0mL)、酢酸エチル(20.0ml)に溶解した。パラジウム炭素触媒(376mg)を加え、水素雰囲気下、室温にて2時間撹拌した。不溶物をセライト濾過によって除き、溶媒を減圧留去し、標記化合物(1.52g、定量的)を得た。
1H-NMR(400MHz,DMSO-d6)δ:3.62(2H,d,J=6.3Hz),3.97(2H,s),4.18-4.32(3H,m),4.60(2H,d,J=6.7Hz),7.29-7.46(4H,m),7.58(1H,t,J=5.9Hz),7.72(2H,d,J=7.4Hz),7.90(2H,d,J=7.4Hz),8.71(1H,t,J=6.5Hz).
工程4:9H-フルオレン-9-イルメチル(2-{[(2-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-2-オキソエトキシ)メチル]アミノ}-2-オキソエチル)カーバメート
 氷冷下、エキサテカンのメシル酸塩(0.283g、0.533mmoL)、N-ヒドロキシスクシンイミド(61.4mg、0.533mmoL)、および上記工程3で得た化合物(0.205g、0.533mmoL)のN,N-ジメチルホルムアミド(10.0mL)溶液に、N,N-ジイソプロピルエチルアミン(92.9μL、0.533mmoL)およびN,N’-ジシクロヘキシルカルボジイミド(0.143g、0.693mmoL)を加え、室温にて3日間撹拌した。溶媒を減圧留去し、得られた残留物をシリカゲルカラムクロマトグラフィー[クロロホルム~クロロホルム:メタノール:水=7:3:1(v/v/v)の分配有機層]にて精製し、標記化合物(0.352g、82%)を得た。
1H-NMR(400MHz,DMSO-d6)δ:0.81(3H,t,J=7.4Hz),1.73-1.87(2H,m),2.06-2.20(2H,m),2.34(3H,s),3.01-3.23(2H,m),3.58(2H,d,J=6.7Hz),3.98(2H,s),4.13-4.25(3H,m),4.60(2H,d,J=6.7Hz),5.09-5.22(2H,m),5.32-5.42(2H,m),5.50-5.59(1H,m),6.49(1H,s),7.24-7.30(3H,m),7.36(2H,t,J=7.4Hz),7.53(1H,t,J=6.3Hz),7.66(2H,d,J=7.4Hz),7.75(1H,d,J=11.0Hz),7.84(2H,d,J=7.4Hz),8.47(1H,d,J=8.6Hz),8.77(1H,t,J=6.7Hz).
MS(ESI)m/z:802(M+H)+.
工程5:N-[(2-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-2-オキソエトキシ)メチル]グリシンアミド
 上記工程4で得た化合物(0.881g、1.10mmoL)のN,N-ジメチルホルムアミド(11.0mL)溶液に、ピペリジン(1.1mL)を加え、室温で2時間撹拌した。溶媒を減圧留去し、標記化合物を含む混合物を得た。本混合物は、これ以上の精製は行わずに次の反応に用いた。
工程6:N-[(9H-フルオレン-9-イルメトキシ)カルボニル]グリシルグリシル-L-フェニルアラニル-N-[(2-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-2-オキソエトキシ)メチル]グリシンアミド
 氷冷下、上記工程5で得た混合物(0.439mmoL)、N-ヒドロキシスクシンイミド(0.101g、0.878mmoL)およびN-[(9H-フルオレン-9-イルメトキシ)カルボニル]グリシルグリシル-L-フェニルアラニン(特開2002-60351号公報に記載された化合物;0.440g、0.878mmoL)のN,N-ジメチルホルムアミド(50.0mL)溶液に、N,N’-ジシクロヘキシルカルボジイミド(0.181g、0.878mmoL)を加え、室温にて4日間撹拌した。溶媒を減圧留去し、得られた残留物をシリカゲルカラムクロマトグラフィー[クロロホルム~クロロホルム:メタノール=9:1(v/v)]にて精製し、標記化合物(0.269g、58%)を得た。
MS(ESI)m/z:1063(M+H)+.
工程7:グリシルグリシル-L-フェニルアラニル-N-[(2-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-2-オキソエトキシ)メチル]グリシンアミド
 上記工程6で得た化合物(0.269g、0.253mmoL)のN,N-ジメチルホルムアミド(4.00mL)溶液に、ピペリジン(0.251mL、2.53mmoL)を加え、室温で2時間撹拌した。溶媒を減圧留去し、標記化合物を含む混合物を得た。本混合物は、これ以上の精製は行わずに次の反応に用いた。
工程8:N-[6-(2,5-ジオキソ-2,5-ジヒドロ-1H-ピロール-1-イル)ヘキサノイル]グリシルグリシル-L-フェニルアラニル-N-[(2-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-2-オキソエトキシ)メチル]グリシンアミド
 上記工程7で得た化合物(0.253mmoL)のN,N-ジメチルホルムアミド(10.0mL)溶液に、6-マレイミドヘキサン酸N-スクシンイミジル(0.156g、0.506mmoL)を加え、室温で3日間撹拌した。溶媒を減圧留去し、得られた残留物をシリカゲルカラムクロマトグラフィー[クロロホルム~クロロホルム:メタノール=9:1(v/v)]にて精製し、標記化合物(0.100g、38%)を得た。
1H-NMR(400MHz,DMSO-d6)δ:0.83(3H,t,J=7.2Hz),1.09-1.21(2H,m),1.33-1.47(4H,m),1.75-1.90(2H,m),2.00-2.23(4H,m),2.36(3H,s),2.69-2.81(1H,m),2.94-3.03(1H,m),3.06-3.22(2H,m),3.23-3.74(6H,m),3.98(2H,s),4.39-4.50(1H,m),4.60(2H,d,J=6.7Hz),5.17(2H,s),5.39(2H,s),5.53-5.61(1H,m),6.50(1H,s),6.96(2H,s),7.11-7.24(5H,m),7.28(1H,s),7.75(1H,d,J=11.0Hz),7.97(1H,t,J=5.7Hz),8.03(1H,t,J=5.9Hz),8.09(1H,d,J=7.8Hz),8.27(1H,t,J=6.5Hz),8.48(1H,d,J=9.0Hz),8.60(1H,t,J=6.5Hz).
MS(ESI)m/z:1034(M+H)+.
工程9:hM23-H1L1 ADC(2)
(i)抗体のバッファー交換及び濃度調整
 実施例6にて作製したhM23-H1L1を、Sephadex G-25担体を使用したNAP-25カラム(Cat. No. 17-0852-02、GE Healthcare Japan Corporation)を、メーカー規定の方法に従い、塩化ナトリウム(137mM)およびエチレンジアミン四酢酸(EDTA、5mM)を含むリン酸緩衝液(10mM、pH6.0;本明細書において「PBS6.0/EDTA」という場合がある。)にて平衡化した。このNAP-25カラム一本につき、抗体水溶液2.5mLをのせたのち、PBS6.0/EDTA 3.5mLで溶出させた画分(3.5mL)を分取した。この画分をAmicon Ultra(50,000 MWCO、Millipore Corporation)の容器内に抗体または抗体-薬物コンジュゲート溶液を入れ、遠心機(Allegra X-15R、Beckman Coulter, Inc.)を用いた遠心操作(2000G~3800Gにて5~20分間遠心)にて、抗体若しくは抗体-薬物コンジュゲート溶液を濃縮した。UV測定器(Nanodrop 1000、Thermo Fisher Scientific Inc.)を用いて、メーカー規定の方法に従い、抗体濃度の測定を行った。その際に、280nm吸光係数(1.65mLmg-1cm-1)を用いて抗体濃度の測定を行ったのちに、PBS6.0/EDTAを用いて10mg/mLに抗体濃度を調整した。
(ii)抗体の還元
 本溶液(1.00mL)を2mLポリプロピレン製チューブに採取し、10mM TCEP(東京化成工業株式会社)水溶液(0.0158mL;抗体一分子に対して2.3当量)および1Mリン酸水素二カリウム水溶液(Nacalai Tesque, Inc.; 0.015mL)を加えた。本溶液のpHが7.0±0.1内であることを確認した後に、37℃で2時間インキュベートすることによって、抗体内ヒンジ部のジスルフィド結合を還元した。
(iii)抗体と薬物リンカーのコンジュゲーション
 上記溶液を常温水浴で10分間インキュベートした後にジメチルスルホキシド(0.0228mL)を添加した。次いで上記工程8で得た化合物の10mMジメチルスルホキシド溶液(0.0268mL;抗体一分子に対して4.6当量)を加え、チューブローテーター(MTR-103、アズワン株式会社)を用いて室温下60分間撹拌し、薬物リンカーを抗体へ結合させた。次に、100mM NAC(Sigma-Aldrich Co. LLC)水溶液(0.0063mL;抗体一分子に対して9.2当量)を加え、さらに室温にて20分間撹拌し、薬物リンカーの反応を停止させた。
(v)精製
 Sorbitol(5%)を含む酢酸緩衝液(10mM、pH5.5)にてNAP-25カラムを平衡化した。このNAP-25カラムに、抗体-薬物コンジュゲート反応水溶液(2.5mL)をのせ、メーカー規定の量の緩衝液で溶出させることで、抗体画分を分取した。この分取画分を再びNAP-25カラムにのせ、緩衝液で溶出させるゲルろ過精製操作を計2~3回繰り返すことで、未結合の薬物リンカーや低分子化合物(トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)、N-アセチル-L-システイン(NAC)およびジメチルスルホキシド)を除いた抗体-薬物コンジュゲートを含有する溶液を6.0mL得た。
(v)特性評価
 共通操作A及びB(εD,280=5178(実測値)εD,370=20217(実測値)を使用)を使用して、下記の特性値を得た。
抗体濃度:1.53mg/mL、抗体収量:9.18mg(92%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):2.9;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):3.6。
(実施例11)hM23-H1L1 ADC(3)の作製
Figure JPOXMLDOC01-appb-C000012
工程1:hM23-H1L1 ADC(3)
 実施例6にて作製したhM23-H1L1および実施例10工程8で得た化合物を用いて、実施例7工程6と同様の方法により、標記抗体-薬物コンジュゲートを得た。共通操作A及びB(εD,280=5178(実測値)εD,370=20217(実測値)を使用)を使用して、下記の特性値を得た。
抗体濃度:1.59mg/mL、抗体収量:9.54mg(95%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):5.4;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):6.7。
(実施例12)hM23-H1L2 ADC(2)の作製
Figure JPOXMLDOC01-appb-C000013
工程1:hM23-H1L2 ADC(2)
 実施例6にて作製したhM23-H1L2および実施例10工程8で得た化合物を用いて、実施例10工程9と同様の方法により、標記抗体-薬物コンジュゲートを得た。
抗体濃度:1.52mg/mL、抗体収量:9.12mg(91%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):3.0;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):3.7。
(実施例13)hM23-H1L2 ADC(3)の作製
Figure JPOXMLDOC01-appb-C000014
工程1:hM23-H1L2 ADC(3)
 実施例6にて作製したhM23-H1L2および実施例10工程8で得た化合物を用いて、実施例7工程6と同様の方法により、標記抗体-薬物コンジュゲートを得た。共通操作A及びB(εD,280=5178(実測値)εD,370=20217(実測値)を使用)を使用して、下記の特性値を得た。
抗体濃度:1.57mg/mL、抗体収量:9.42mg(94%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):5.7;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):7.1。
(実施例14)hM23-H2L2 ADC(2)の作製
Figure JPOXMLDOC01-appb-C000015
工程1:hM23-H2L2 ADC(2)
 実施例6にて作製したhM23-H2L2および実施例10工程8で得た化合物を用いて、実施例10工程9と同様の方法により、標記抗体-薬物コンジュゲートを得た。
抗体濃度:1.50mg/mL、抗体収量:9.00mg(90%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):3.0;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):3.8。
(実施例15)hM23-H2L2 ADC(3)の作製
Figure JPOXMLDOC01-appb-C000016
工程1:hM23-H2L2 ADC(3)
 実施例6にて作製したhM23-H2L2および実施例10工程8で得た化合物を用いて、実施例7工程6と同様の方法により、標記抗体-薬物コンジュゲートを得た。共通操作A及びB(εD,280=5178(実測値)εD,370=20217(実測値)を使用)を使用して、下記の特性値を得た。
抗体濃度:1.51mg/mL、抗体収量:9.06mg(91%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):5.8;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):7.1。
(実施例16)hM23-H1L1 ADC(4)の作製
Figure JPOXMLDOC01-appb-C000017
工程1:tert-ブチル [2-(2-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-2-オキソエトキシ)エチル]カーバメート
 4-(tert-ブトキシカルボニルアミノ)ブタン酸の代わりに{2-[(tert-ブトキシカルボニル)アミノ]エトキシ}酢酸(J. Med. Chem., 1992年, 35巻, 2928頁;1.55g、6.01mmol)を用いて、実施例7工程1と同様にして、標記化合物(2.56g、73%)を得た。
1H-NMR(400MHz,DMSO-d6)δ:0.87(3H,t,J=7.3Hz),1.26(9H,s),1.81-1.91(2H,m),2.13-2.22(2H,m),2.40(3H,s),3.08-3.26(4H,m),3.43-3.53(2H,m),4.00(1H,d,J=15.1Hz),4.05(1H,d,J=15.1Hz),5.14(1H,d,J=18.7Hz),5.22(1H,d,J=18.7Hz),5.40(1H,d,J=16.6Hz),5.44(1H,d,J=16.6Hz),5.59-5.66(1H,m),6.53(1H,s),6.86(1H,t,J=5.4Hz),7.31(1H,s),7.79(1H,d,J=10.9Hz),8.49(1H,d,J=9.1Hz).
MS(APCI)m/z:637(M+H)+.
工程2:2-(2-アミノエトキシ)-N-[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アセトアミドトリフルオロ酢酸塩
 上記工程1で得た化合物(1.50g、2.36mol)を、実施例7工程2と同様に反応させ、標記化合物(1.50g、定量的)を得た。
1H-NMR(400MHz,DMSO-d6)δ:0.87(3H,t,J=7.5Hz),1.81-1.92(2H,m),2.15-2.23(2H,m),2.41(3H,s),3.05(2H,t,J=5.1Hz),3.15-3.23(2H,m),3.71(2H,t,J=5.1Hz),4.10(2H,s),5.19(1H,d,J=18.7Hz),5.24(1H,d,J=18.7Hz),5.43(2H,s),5.58-5.66(1H,m),6.55(1H,s),7.33(1H,s),7.73-7.84(4H,m),8.55(1H,d,J=9.1Hz).
MS(APCI)m/z:537(M+H)+.
工程3:N-(tert-ブトキシカルボニル)グリシルグリシル-L-フェニルアラニル-N-[2-(2-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-2-オキソエトキシ)エチル]グリシンアミド
 上記工程2で得た化合物(554mg、0.85mmol)を、実施例7工程3と同様に反応させ、標記化合物(775mg、95%)を得た。
1H-NMR(400MHz,DMSO-d6)δ:0.85(3H,t,J=7.3Hz),1.36(9H,s),1.78-1.89(2H,m),2.13-2.22(2H,m),2.39(3H,s),2.71(1H,dd,J=13.4,9.8Hz),2.95(1H,dd,J=13.4,4.3Hz),3.09-3.23(1H,m),3.23-3.32(2H,m),3.40-3.62(8H,m),3.73(1H,dd,J=16.5,5.5Hz),4.03(2H,s),4.39-4.47(1H,m),5.17(1H,d,J=18.9Hz),5.25(1H,d,J=18.9Hz),5.41(1H,d,J=16.8Hz),5.45(1H,d,J=16.8Hz),5.57-5.64(1H,m),6.54(1H,s),6.99(1H,t,J=5.8Hz),7.13-7.26(5H,m),7.31(1H,s),7.76-7.82(2H,m),7.90(1H,t,J=5.2Hz),8.13(1H,d,J=7.9Hz),8.27(1H,t,J=5.8Hz),8.49(1H,d,J=8.5Hz).
MS(APCI)m/z:955(M+H)+.
工程4:グリシルグリシル-L-フェニルアラニル-N-[2-(2-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-2-オキソエトキシ)エチル]グリシンアミドトリフルオロ酢酸塩
 上記工程3で得た化合物(630mg、0.659mmol)を、実施例7工程4と同様に反応させ、標記化合物(588mg、92%)を得た。
1H-NMR(400MHz,DMSO-d6)δ:0.86(3H,t,J=7.3Hz),1.79-1.90(2H,m),2.13-2.22(2H,m),2.39(3H,s),2.71(1H,dd,J=13.4,10.1Hz),2.99(1H,dd,J=13.4,4.3Hz),3.09-3.23(1H,m),3.24-3.32(3H,m),3.41-3.71(7H,m),3.86(1H,dd,J=16.8,5.8Hz),4.04(2H,s),4.52(1H,td,J=9.0,4.1Hz),5.17(1H,d,J=18.9Hz),5.25(1H,d,J=18.9Hz),5.41(1H,d,J=16.5Hz),5.45(1H,d,J=16.5Hz),5.56-5.65(1H,m),6.55(1H,s),7.13-7.26(5H,m),7.32(1H,s),7.80(1H,d,J=11.0Hz),7.87-8.01(4H,m),8.29-8.36(2H,m),8.46-8.55(2H,m).
MS(APCI)m/z:855(M+H)+.
工程5:N-[6-(2,5-ジオキソ-2,5-ジヒドロ-1H-ピロール-1-イル)ヘキサノイル]グリシルグリシル-L-フェニルアラニル-N-[2-(2-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-2-オキソエトキシ)エチル]グリシンアミド
 ジイソプロピルエチルアミンの代わりにトリエチルアミン(31.4μL、0.22mmoL)を、3-(2-(2-(3-マレインイミドプロパンアミド)エトキシ)エトキシ)プロパン酸N-スクシンイミジルの代わりに6-マレイミドヘキサン酸N-スクシンイミジル(95.3mg、0.31mmoL)を用いて、実施例7工程5と同様に標記化合物(162mg、62%)を得た。
1H-NMR(400MHz,DMSO-d6)δ:0.86(3H,t,J=7.6Hz),1.13-1.22(2H,m),1.40-1.51(4H,m),1.78-1.90(2H,m),2.09(2H,t,J=7.6Hz),2.14-2.21(2H,m),2.39(3H,s),2.74(1H,dd,J=13.6,9.7Hz),2.96(1H,dd,J=13.6,4.5Hz),3.08-3.24(1H,m),3.24-3.30(1H,m),3.33-3.40(4H,m),3.47-3.68(7H,m),3.72(1H,dd,J=16.6,5.7Hz),4.03(2H,s),4.42(1H,td,J=8.6,4.2Hz),5.17(1H,d,J=18.7Hz),5.25(1H,d,J=18.7Hz),5.40(1H,d,J=17.2Hz),5.44(1H,d,J=17.2Hz),5.57-5.64(1H,m),6.52(1H,s),6.99(2H,s),7.13-7.25(5H,m),7.31(1H,s),7.74-7.81(2H,m),7.99(1H,t,J=5.7Hz),8.03-8.11(2H,m),8.22(1H,t,J=5.7Hz),8.47(1H,d,J=9.1Hz).
MS(APCI)m/z:1048(M+H)+.
工程6:hM23-H1L1 ADC(4)
 実施例6にて作製したhM23-H1L1および上記工程5で得た化合物を用いて、実施例10工程9と同様の方法により、標記抗体-薬物コンジュゲートを得た。共通操作A及びB(εD,280=5193(実測値)εD,370=20347(実測値)を使用)を使用して、下記の特性値を得た。
抗体濃度:1.47mg/mL、抗体収量:8.82mg(88%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):2.8;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):3.6。
(実施例17)hM23-H1L1 ADC(5)の作製
Figure JPOXMLDOC01-appb-C000018
工程1:hM23-H1L1 ADC(5)
 実施例6にて作製したhM23-H1L1および実施例16工程5で得た化合物を用いて、実施例7工程6と同様の方法により、標記抗体-薬物コンジュゲートを得た。共通操作A及びB(εD,280=5193(実測値)εD,370=20347(実測値)を使用)を使用して、下記の特性値を得た。
抗体濃度:1.47mg/mL、抗体収量:8.82mg(88%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):5.3;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):6.7。
(実施例18)hM23-H1L2 ADC(4)の作製
Figure JPOXMLDOC01-appb-C000019
工程1:hM23-H1L2 ADC(4)
 実施例6にて作製したhM23-H1L2および実施例16工程5で得た化合物を用いて、実施例10工程9と同様の方法により、標記抗体-薬物コンジュゲートを得た。共通操作A及びB(εD,280=5193(実測値)εD,370=20347(実測値)を使用)を使用して、下記の特性値を得た。
抗体濃度:1.49mg/mL、抗体収量:8.94mg(89%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):3.0;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):3.4。
(実施例19)hM23-H1L2 ADC(5)の作製
Figure JPOXMLDOC01-appb-C000020
工程1:hM23-H1L2 ADC(5)
 実施例6にて作製したhM23-H1L2および実施例16工程5で得た化合物を用いて、実施例7工程6と同様の方法により、標記抗体-薬物コンジュゲートを得た。共通操作A及びB(εD,280=5193(実測値)εD,370=20347(実測値)を使用)を使用して、下記の特性値を得た。
抗体濃度:1.57mg/mL、抗体収量:9.42mg(94%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):5.8;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):6.9。
(実施例20)hM23-H2L2 ADC(4)の作製
Figure JPOXMLDOC01-appb-C000021
工程1:hM23-H2L2 ADC(4)
 実施例6にて作製したhM23-H1L1および上記実施例16工程5で得た化合物を用いて、実施例10工程9と同様の方法により、標記抗体-薬物コンジュゲートを得た。共通操作A及びB(εD,280=5193(実測値)εD,370=20347(実測値)を使用)を使用して、下記の特性値を得た。
抗体濃度:1.48mg/mL、抗体収量:8.88mg(89%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):3.1;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):3.9。
(実施例21)hM23-H2L2 ADC(5)の作製
Figure JPOXMLDOC01-appb-C000022
工程1:hM23-H2L2 ADC(5)
 実施例6にて作製したhM23-H1L1および上記実施例16工程5で得た化合物を用いて、実施例7工程6と同様の方法により、標記抗体-薬物コンジュゲートを得た。共通操作A及びB(εD,280=5193(実測値)εD,370=20347(実測値)を使用)を使用して、下記の特性値を得た。
抗体濃度:1.56mg/mL、抗体収量:9.36mg(94%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):5.9;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):7.1。
(実施例22)hM23-H1L1 ADC(6)の作製
Figure JPOXMLDOC01-appb-C000023
工程1:hM23-H1L1 ADC(6)
(i)抗体のバッファー交換及び濃度調整
 実施例6にて作製したhM23-H1L1を、Sephadex G-25担体を使用したNAP-25カラム(Cat. No. 17-0852-02、GE Healthcare Japan Corporation)を、メーカー規定の方法に従い、塩化ナトリウム(137mM)およびエチレンジアミン四酢酸(EDTA、5mM)を含むリン酸緩衝液(10mM、pH6.0;本明細書において「PBS6.0/EDTA」という場合がある。)にて平衡化する。このNAP-25カラム一本につき、抗体水溶液2.5mLをのせたのち、PBS6.0/EDTA 3.5mLで溶出させた画分(3.5mL)を分取する。この画分をAmicon Ultra(50,000 MWCO、Millipore Corporation)の容器内に抗体または抗体-薬物コンジュゲート溶液を入れ、遠心機(Allegra X-15R、Beckman Coulter, Inc.)を用いた遠心操作(2000G~3800Gにて5~20分間遠心)にて、抗体若しくは抗体-薬物コンジュゲート溶液を濃縮した。UV測定器(Nanodrop 1000、Thermo Fisher Scientific Inc.)を用いて、メーカー規定の方法に従い、抗体濃度の測定を行った。その際に、280nm吸光係数(1.65mLmg-1cm-1)を用いて抗体濃度の測定を行ったのちに、PBS6.0/EDTAを用いて10mg/mLに抗体濃度を調整した。
(ii)抗体の還元
 本溶液(10 mL)を50mLポリプロピレン製チューブに採取し、10mM TCEP水溶液(0.377 mL;抗体一分子に対して5.5当量)および1Mリン酸水素二カリウム水溶液(0.287 mL)を加えた。本溶液のpHが7.2±0.1内であることを確認した後に、37℃で2時間インキュベートすることによって、抗体内ヒンジ部のジスルフィド結合を還元した。
(iii)抗体と薬物リンカーのコンジュゲーション
 上記溶液を15℃の水浴中で5分間インキュベートした後に、実施例10工程8で得た化合物の10mMジメチルスルホキシド溶液(0.617 mL;抗体一分子に対して9.0当量)を加え、15℃の水浴中で30分間撹拌し、薬物リンカーを抗体へ結合させた。次に、100mM NAC水溶液(0.088mL;抗体一分子に対して12.9当量)を加え、さらに室温にて20分間撹拌し、薬物リンカーの反応性を停止させた。
(iv)精製
 Sorbitol(5%)を含む酢酸緩衝液(10mM、pH5.5)にてNAP-25カラムを平衡化した。このNAP-25カラムに、抗体-薬物コンジュゲート反応水溶液(2.5mL)をのせ、メーカー規定の量の緩衝液で溶出させることで、抗体画分を分取した。この分取画分を再びNAP-25カラムにのせ、緩衝液で溶出させるゲルろ過精製操作を計2~3回繰り返すことで、未結合の薬物リンカーや低分子化合物(トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)、N-アセチル-L-システイン(NAC)およびジメチルスルホキシド)を除いた抗体-薬物コンジュゲートを含有する溶液を35mL得た。
(v)特性評価
 共通操作A及びB(εD,280=5178(実測値)εD,370=20217(実測値)を使用)を使用して、下記の特性値を得た。
抗体濃度:2.59 mg/mL、抗体収量:90.7 mg(91%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):6.4;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):7.8。
(実施例23)hM23-H1L1 ADC(7)の作製
Figure JPOXMLDOC01-appb-C000024
工程1:hM23-H1L1 ADC(7)
(i)抗体のバッファー交換及び濃度調整
 実施例6にて作製したhM23-H1L1を、Sephadex G-25担体を使用したNAP-25カラム(Cat. No. 17-0852-02、GE Healthcare Japan Corporation)を、メーカー規定の方法に従い、塩化ナトリウム(137mM)およびエチレンジアミン四酢酸(EDTA、5mM)を含むリン酸緩衝液(10mM、pH6.0;本明細書において「PBS6.0/EDTA」という場合がある。)にて平衡化した。このNAP-25カラム一本につき、抗体水溶液2.5mLをのせたのち、PBS6.0/EDTA 3.5mLで溶出させた画分(3.5mL)を分取する。この画分をAmicon Ultra(50,000 MWCO、Millipore Corporation)の容器内に抗体または抗体-薬物コンジュゲート溶液を入れ、遠心機(Allegra X-15R、Beckman Coulter, Inc.)を用いた遠心操作(2000G~3800Gにて5~20分間遠心)にて、抗体若しくは抗体-薬物コンジュゲート溶液を濃縮した。UV測定器(Nanodrop 1000、Thermo Fisher Scientific Inc.)を用いて、メーカー規定の方法に従い、抗体濃度の測定を行った。その際に、280nm吸光係数(1.65mLmg-1cm-1)を用いて抗体濃度の測定を行ったのちに、PBS6.0/EDTAを用いて10mg/mLに抗体濃度を調整した。
(ii)抗体の還元
 本溶液(10 mL)を50mLポリプロピレン製チューブに採取し、10mM TCEP水溶液(0.178 mL;抗体一分子に対して2.6当量)および1Mリン酸水素二カリウム水溶液(0.287 mL)を加えた。本溶液のpHが7.2±0.1内であることを確認した後に、37℃で1時間インキュベートすることによって、抗体内ヒンジ部のジスルフィド結合を還元した。
(iii)抗体と薬物リンカーのコンジュゲーション
 上記溶液を15℃の水浴中で5分間インキュベートした後に、実施例10工程8で得た化合物の10mMジメチルスルホキシド溶液(0.308 mL;抗体一分子に対して4.5当量)を加え、15℃の水浴中で1時間撹拌し、薬物リンカーを抗体へ結合させた。次に、100mM NAC水溶液(0.088mL;抗体一分子に対して12.9当量)を加え、さらに室温にて20分間撹拌し、薬物リンカーの反応性を停止させた。
(iv)精製
 Sorbitol(5%)を含む酢酸緩衝液(10mM、pH5.5)にてNAP-25カラムを平衡化した。このNAP-25カラムに、抗体-薬物コンジュゲート反応水溶液(2.5mL)をのせ、メーカー規定の量の緩衝液で溶出させることで、抗体画分を分取した。この分取画分を再びNAP-25カラムにのせ、緩衝液で溶出させるゲルろ過精製操作を計2~3回繰り返すことで、未結合の薬物リンカーや低分子化合物(トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)、N-アセチル-L-システイン(NAC)およびジメチルスルホキシド)を除いた抗体-薬物コンジュゲートを含有する溶液を35mL得た。
(v)特性評価
 共通操作A及びB(εD,280=5178(実測値)εD,370=20217(実測値)を使用)を使用して、下記の特性値を得た。
抗体濃度:2.63mg/mL、抗体収量:92.1mg(92%)、共通操作Aにて測定された抗体一分子あたりの薬物平均結合数(n):3.3;共通操作Bにて測定された抗体一分子あたりの薬物平均結合数(n):3.9。
(試験例1)cM23抗体の内在化活性
 Mol Biol Cell. 2004; 15: 5268-5282に準じてcM23抗体の内在化活性を調べた。
 cM23、抗transferrin receptor抗体(陽性コントロール)およびコントロールhIgG1(陰性コントロール)をAlexa488標識した。各Alexa488標識抗体を氷冷10% FBS添加RPMI 1640で2μg/mLに調整し、96-well U底plateに50μLずつ分注した。セミコンフルエントのNCI-H322細胞を回収し、氷冷10% FBS添加RPMI 1640で4×106cells/mLに懸濁し、抗体分注済みのplateに細胞を50μLずつ分注した。plate mixerで攪拌した後、4℃で1時間インキュベートし、氷冷wash buffer(3% FBS添加PBS)150μLを加え、遠心して上清を除去した。さらに氷冷wash buffer 200μLを加えて上清を除去することを2回行った。
(1)4℃インキュベーションのみのサンプル:上記洗浄済みの細胞に氷冷wash buffer(1000倍希釈LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit(dead cell dye、Invitrogen社 #L10119)添加)またはAnti-Alexa-488溶液(25μg/mL Anti-Alexa-488 antibody、1000倍希釈dead cell dye添加)を75μL添加し、新しいplateに移して氷上で30分間インキュベートした。氷冷固定溶液(2% PFAおよび3% FBS添加PBS)を150μL/wellで添加し、空いているwellに固定溶液とwash bufferの2:1溶液を150μLずつ分注し、サンプルを100μL添加しFACS Canto(ベクトン・ディッキンソン社)で蛍光を測定した。
(2)37℃インキュベーションサンプル:上記洗浄済みの細胞に37℃に温めた10% FBSを添加したRPMI 1640を100μL加えてplate mixerで懸濁し、96well V bottom plateに移して1時間または3時間37℃、5% CO2下でインキュベートした。100μLの氷冷wash bufferを添加し、全量を96-well round bottom plateに移して遠心した。上清を除去後、氷冷wash buffer(1000倍希釈dead cell dye添加)またはAnti-Alexa-488溶液(25μg/mL、1000倍希釈dead cell dye添加)を75μL添加し、新しいplateに移して氷上で30分間インキュベートした。氷冷固定溶液を150μL/wellで添加し、空いているwellに固定溶液とwash bufferの2:1溶液を150μLずつ分注し、サンプルを100μL添加してFACS Cantoで蛍光を測定した。
 図8に示すように、NCI-H322細胞についてAlexa488標識cM23を用いた評価により、約16%のcM23の内在化活性が認められた。なお、図8におけるTfR AbはAlexa488で標識した抗transferrin receptor抗体の略である。
(試験例2)hM23抗体の抗原結合活性の測定
(2-1)抗体(培養上清)を用いた抗原結合活性の測定
 抗体と抗原(Recombinant Human SLC3A2/MDU1(Sino Biological Inc.))との解離定数測定は、Biacore T200(GE Healthcare Bio-Sciences)を使用し、固定化した抗ヒトIgG(Fc)抗体に抗体をリガンドとして捕捉(キャプチャー)して抗原をアナライトとして測定するキャプチャー法にて行った。抗ヒトIgG(Fc)抗体(Human anibody capture kit、GE Healthcare Bio-Sciences)は、センサーチップCM5(GE Healthcare Bio-Sciences)へアミンカップリング法にて約1000RU共有結合させた。リファレンスセルにも同様に固定化した。ランニングバッファーとしてHBS-EP+(10mM HEPES pH7.4、0.15M NaCl、3mM EDTA、0.05% Surfactant P20、GE Healthcare Bio-Sciences)を用いた。抗ヒトIgG(Fc)抗体を固定化した測定側セルに、流速10μL/分で60秒間の添加で20-30RUのキャプチャーとなるようにHBS-EP+にて濃度調整した抗体を含む培養上清(6-3-1で得られた培養上清)を添加した。リファレンスセルおよび測定側セルに抗原の希釈系列溶液(0.077-100nMおよび0nM)を流速30μL/分で300秒間添加し、引き続き600秒間の解離相をモニターした。再生溶液として、3M MgCl2を流速10μL/分で60秒間、2回添加した。データの解析には、分析ソフトウェア(Biacore T200 Evaluation Software、version 1.0)の1:1 Bindingモデルを用いて、結合速度定数kon、解離速度定数koffおよび解離定数(KD;KD=koff/kon)を算出した。
Figure JPOXMLDOC01-appb-T000001
(2-2)精製抗体を用いた抗原結合活性の測定
 6-3-2で得られた抗体を用いて、上記と同様に結合速度定数、解離速度定数および解離定数を算出した。
Figure JPOXMLDOC01-appb-T000002
(試験例3)ADCの細胞傷害活性
 ヒト形質細胞腫NCI-H929、ヒトバーキットリンパ腫Ramos、ヒトメラノーマMeWoをAmerican Type Culture Collectionから購入した。NCI-H929細胞およびRamos細胞は2×103cells/well、MeWo細胞は1×103cells/wellで96-well plateに播種し、同時に培地で系列希釈した各抗体とADCを添加した(終濃度:0.1、1、10、100、1000ng/mL、各n=2)。37℃、5% CO2に設定したインキュベーターにて6日間培養し、Cell Titer Glo(Promega KK)を用いてATP量を測定した。細胞生存率を次式により算出し、回帰直線を用いて50%生存抑制濃度IC50(ng/mL)を算出した。その結果を表に示す。
細胞生存率 (%) = 100 × (T-B)/(C-B)
T: ADC処理細胞ウェルの発光量
C: 無処理細胞ウェルの平均発光量 (n = 2)
B:ブランクウェルの平均発光量 (n = 2)
Figure JPOXMLDOC01-appb-T000003
 hM23H1L1、hM23H1L2およびhM23H2L2はin vitro細胞傷害活性を示さなかったが、それらのADCは細胞傷害活性を示した。
(試験例4)ADCの抗腫瘍効果(1)
 5週齢の雌SCIDマウス(日本チャールス・リバー社)を実験使用前にSPF条件化で7日間馴化した。マウスには固形飼料(FR-2、Funabashi Farms Co., Ltd)を給餌し、1~5ppmの塩素を添加した水を与えた。生理食塩水に懸濁したRamos細胞(8×107cells/mL)を100μL/mouseでSCIDマウスの右腋窩部に皮下移植した(Day 0)。Day 10に腫瘍の長径および短径をデジタルキャリパー(CD-15CX、Mitutoyo Corp.)で測定し、下記式に従って算出した腫瘍体積を基に群分けを実施した(n=6)。
腫瘍体積(mm3)=1/2×長径(mm)×[短径(mm)]2
 群分け当日に抗体またはADCをABSで0.3mg/mLに希釈し、10mL/kgで尾静脈内投与した(3mg/kg)。その後、週に2回腫瘍径を測定した。腫瘍体積の変化を図9~11に示す。
 hM23H1L1、hM23H1L2およびhM23H2L2は腫瘍増殖抑制活性を示したが、それらのADCは抗体単独よりも強い抗腫瘍活性を示した。
(試験例5)ADCの抗腫瘍効果(2)
 5週齢の雌SCIDマウス(日本チャールス・リバー社)を実験使用前にSPF条件化で9日間馴化した。マウスには固形飼料(FR-2、Funabashi Farms Co.,Ltd)を給餌し、1~5ppmの塩素を添加した水を与えた。生理食塩水に懸濁したRamos細胞(5×107cells/mL)を100μL/mouseでSCIDマウスの右腋窩部に皮下移植した(Day 0)。Day 11に腫瘍の長径および短径をデジタルキャリパー(CD-15CX、Mitutoyo Corp.)で測定し、下記式に従って算出した腫瘍体積を基に群分けを実施した(n=8)。
腫瘍体積(mm3)=1/2×長径(mm)×[短径(mm)]2
 群分け当日に抗体またはADCをABSで0.3mg/mLに希釈し、10mL/kgで尾静脈内投与した(3mg/kg)。その後、週に2回腫瘍径を測定した。腫瘍体積の変化を図12に示す。
 hM23-H1L1は腫瘍増殖抑制活性を示したが、ADCは抗体単独よりも強い抗腫瘍活性を示した。
配列番号1:M23抗体の重鎖の可変領域をコードするcDNAのヌクレオチド配列
配列番号2:M23抗体の重鎖の可変領域のアミノ酸配列
配列番号3:M23抗体の軽鎖の可変領域をコードするcDNAのヌクレオチド配列
配列番号4:M23抗体の軽鎖の可変領域のアミノ酸配列
配列番号5:ヒトκ鎖分泌シグナルおよびヒトκ鎖定常領域をコードするヌクレオチド配列
配列番号6:ヒト重鎖分泌シグナルおよびヒトIgG1定常領域をコードするヌクレオチド配列
配列番号7:キメラM23抗体重鎖のヌクレオチド配列
配列番号8:キメラM23抗体重鎖のアミノ酸配列
配列番号9:キメラM23抗体軽鎖のヌクレオチド配列
配列番号10:キメラM23抗体軽鎖のアミノ酸配列
配列番号11:hM23-H1タイプ重鎖のヌクレオチド配列
配列番号12:hM23-H1タイプ重鎖のアミノ酸配列
配列番号13:hM23-H2タイプ重鎖のヌクレオチド配列
配列番号14:hM23-H2タイプ重鎖のアミノ酸配列
配列番号15:hM23-L1タイプ軽鎖のヌクレオチド配列
配列番号16:hM23-L1タイプ軽鎖のアミノ酸配列
配列番号17:hM23-L2タイプ軽鎖のヌクレオチド配列
配列番号18:hM23-L2タイプ軽鎖のアミノ酸配列
配列番号19:M23抗体のCDRH1のアミノ酸配列
配列番号20:M23抗体のCDRH2のアミノ酸配列
配列番号21:M23抗体のCDRH3のアミノ酸配列
配列番号22:M23抗体のCDRL1のアミノ酸配列
配列番号23:M23抗体のCDRL2のアミノ酸配列
配列番号24:M23抗体のCDRL3のアミノ酸配列
配列番号25:プライマーmG2aVR1のヌクレオチド配列
配列番号26:プライマーmKVR2のヌクレオチド配列
配列番号27:プライマー3.3-F1のヌクレオチド配列
配列番号28:プライマー3.3-R1のヌクレオチド配列
配列番号29:プライマーM23H-Fのヌクレオチド配列
配列番号30:プライマーM23H-Rのヌクレオチド配列
配列番号31:プライマーM23L-Fのヌクレオチド配列
配列番号32:プライマーM23L-Rのヌクレオチド配列
配列番号33:プライマーEG-Inf-Fのヌクレオチド配列
配列番号34:プライマーEG1-Inf-Rのヌクレオチド配列
配列番号35:プライマーCM-LKFのヌクレオチド配列
配列番号36:プライマーKCL-Inf-Rのヌクレオチド配列
配列番号37:ヒトCD98重鎖のヌクレオチド配列
配列番号38:ヒトCD98重鎖のアミノ酸配列

Claims (37)

  1.  抗CD98抗体、リンカーおよび薬物からなる抗CD98抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩であって、
     ここで、リンカーが次式:
    -(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-;
    -(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-;および
    -(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-;
    からなる群から選択されるリンカーであり、
     薬物が次式:
    Figure JPOXMLDOC01-appb-C000025
    で表される化合物であり、
     薬物の1位のアミノ基の窒素原子がリンカーのカルボニル部分と結合し、
     抗CD98抗体がリンカーのスクシンイミド部分と結合する、
    抗CD98抗体-薬物コンジュゲート。
  2.  1抗体あたりの薬物の平均結合数が2~8個の範囲である請求項1に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  3.  1抗体あたりの薬物の平均結合数が3~6個の範囲である請求項1に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  4.  1抗体あたりの薬物の平均結合数が逆層クロマトグラフィー(RPC)法により測定される請求項2または3に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  5.  1抗体あたりの薬物の結合数が2、4、6または8個である請求項1に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  6.  リンカーが、次式:
    -(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-
    である請求項1~5のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  7.  リンカーが、次式:
    -(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-
    である請求項1~5のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  8.  リンカーが、次式:
    -(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-
    である請求項1~5のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  9.  抗CD98抗体が、配列番号38の462~541番目のアミノ酸残基からなる部位に結合する請求項1~8のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  10.  抗CD98抗体が、
     配列番号19で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRH1;
     配列番号20で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRH2;
     配列番号21で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRH3;
     配列番号22で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRL1;
     配列番号23で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRL2;および
     配列番号24で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRL3;
    を含み、かつ、CD98重鎖に結合する、請求項1~9のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  11.  抗CD98抗体が、
     配列番号19で表されるアミノ酸配列からなるCDRH1;
     配列番号20で表されるアミノ酸配列からなるCDRH2;
     配列番号21で表されるアミノ酸配列からなるCDRH3;
     配列番号22で表されるアミノ酸配列からなるCDRL1;
     配列番号23で表されるアミノ酸配列からなるCDRL2;および
     配列番号24で表されるアミノ酸配列からなるCDRL3;
    を含み、かつ、CD98重鎖に結合する、請求項1~9のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  12.  抗CD98抗体が、配列番号8の20~135番目のアミノ酸残基からなるアミノ酸配列に対して少なくとも90%の同一性を持つ重鎖可変領域および/または配列番号10の21~135番目のアミノ酸残基からなるアミノ酸配列に対して少なくとも90%の同一性を持つ軽鎖可変領域を含む、請求項1~11のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  13.  抗CD98抗体が、
     (1)配列番号12または14の20~135番目のアミノ酸残基からなるアミノ酸配列;
     (2)(1)のアミノ酸配列に対して少なくとも95%以上の同一性を有するアミノ酸配列;および
     (3)(1)のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列;
    からなる群より選択される重鎖可変領域を含む重鎖;ならびに
     (4)配列番号16または18の21~135番目のアミノ酸残基からなるアミノ酸配列;
     (5)(4)のアミノ酸配列に対して少なくとも95%以上の同一性を有するアミノ酸配列;および
     (6)(4)のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列;
    からなる群より選択される軽鎖可変領域を含む軽鎖;
    を含む、請求項1~11のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  14.  抗CD98抗体が、配列番号12の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号16の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、請求項1~11のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  15.  抗CD98抗体が、配列番号12の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号18の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、請求項1~11のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  16.  抗CD98抗体が、配列番号14の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号18の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、請求項1~11のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  17.  抗CD98抗体が、配列番号12の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖および配列番号16の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなる、請求項1~11のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  18.  抗CD98抗体が、配列番号12の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖および配列番号18の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなる、請求項1~11のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  19.  抗CD98抗体が、配列番号14の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖および配列番号18の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖からなる、請求項1~11のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  20.  配列番号38の462~541番目のアミノ酸残基からなる部位に結合する、抗CD98抗体または該抗体の抗原結合断片。
  21.  配列番号19で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRH1;
     配列番号20で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRH2;
     配列番号21で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRH3;
     配列番号22で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRL1;
     配列番号23で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRL2;および
     配列番号24で表されるアミノ酸配列あるいは該アミノ酸配列において1または数個のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列からなるCDRL3;
    を含む、請求項20に記載の抗CD98抗体または該抗体の抗原結合断片。
  22.  配列番号19で表されるアミノ酸配列からなるCDRH1;
     配列番号20で表されるアミノ酸配列からなるCDRH2;
     配列番号21で表されるアミノ酸配列からなるCDRH3;
     配列番号22で表されるアミノ酸配列からなるCDRL1;
     配列番号23で表されるアミノ酸配列からなるCDRL2;および
     配列番号24で表されるアミノ酸配列からなるCDRL3;
    を含む、請求項20または21に記載の抗CD98抗体または該抗体の抗原結合断片。
  23.  配列番号8の20~135番目のアミノ酸残基からなるアミノ酸配列に対して少なくとも90%の同一性を持つ重鎖可変領域および/または配列番号10の21~135番目のアミノ酸残基からなるアミノ酸配列に対して少なくとも90%の同一性を持つ軽鎖可変領域を含む、請求項20~22のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片。
  24.  (1)配列番号12または14の20~135番目のアミノ酸残基からなるアミノ酸配列;
     (2)(1)のアミノ酸配列に対して少なくとも95%以上の同一性を有するアミノ酸配列;および
     (3)(1)のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列;
    からなる群より選択される重鎖可変領域を含む重鎖;ならびに
     (4)配列番号16または18の21~135番目のアミノ酸残基からなるアミノ酸配列;
     (5)(4)のアミノ酸配列に対して少なくとも95%以上の同一性を有するアミノ酸配列;および
     (6)(4)のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列;
    からなる群より選択される軽鎖可変領域を含む軽鎖;
    含む、請求項20~22のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片。
  25.  配列番号12の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号16の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、請求項20~22のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片。
  26.  配列番号12の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号18の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、請求項20~22のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片。
  27.  配列番号14の20~135番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号18の21~135番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、請求項20~22のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片。
  28.  配列番号12の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号16の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、請求項20~22のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片。
  29.  配列番号12の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号18の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、請求項20~22のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片。
  30.  配列番号14の20~465番目のアミノ酸残基からなるアミノ酸配列からなる重鎖可変領域を含む重鎖および配列番号18の21~240番目のアミノ酸残基からなるアミノ酸配列からなる軽鎖可変領域を含む軽鎖からなる、請求項20~22のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片。
  31.  請求項20~30のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片を含む抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩。
  32.  請求項1~19および31のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩あるいは請求項20~30のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片を活性成分として含有する医薬組成物。
  33.  抗腫瘍または抗癌のための請求項32に記載の医薬組成物。
  34.  腫瘍または癌が、肺癌、腎癌、尿路上皮癌、大腸癌、前立腺癌、多形神経膠芽腫、卵巣癌、膵癌、乳癌、メラノーマ、肝癌、膀胱癌、胃癌、子宮頸癌、頭頸部癌、食道癌、リンパ腫、急性骨髄性白血病、急性リンパ性白血病、慢性骨髄性白血病または多発性骨髄腫である、請求項33に記載の医薬組成物。
  35.  医薬組成物を製造するための、請求項1~19および31のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬学的に許容され得る塩、あるいは、請求項20~30のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片の使用。
  36.  腫瘍および/または癌の治療における使用のための、請求項1~19および31のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬学的に許容され得る塩、あるいは、請求項20~30のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片。
  37.  請求項1~19および31のいずれか1項に記載の抗体-薬物コンジュゲートまたはその薬理学的に許容され得る塩あるいは請求項20~30のいずれか1項に記載の抗CD98抗体または該抗体の抗原結合断片の治療有効量を哺乳動物に投与すること含む、腫瘍および/または癌の治療方法。

     
PCT/JP2015/001624 2014-03-26 2015-03-23 抗cd98抗体-薬物コンジュゲート WO2015146132A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-064591 2014-03-26
JP2014064591A JP2017114763A (ja) 2014-03-26 2014-03-26 抗cd98抗体−薬物コンジュゲート

Publications (1)

Publication Number Publication Date
WO2015146132A1 true WO2015146132A1 (ja) 2015-10-01

Family

ID=54194682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001624 WO2015146132A1 (ja) 2014-03-26 2015-03-23 抗cd98抗体-薬物コンジュゲート

Country Status (3)

Country Link
JP (1) JP2017114763A (ja)
TW (1) TW201620553A (ja)
WO (1) WO2015146132A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017214456A1 (en) * 2016-06-08 2017-12-14 Abbvie Inc. Anti-cd98 antibodies and antibody drug conjugates
WO2017214462A3 (en) * 2016-06-08 2018-01-18 Abbvie Inc. Anti-cd98 antibodies and antibody drug conjugates
WO2017214458A3 (en) * 2016-06-08 2018-02-08 Abbvie Inc. Anti-cd98 antibodies and antibody drug conjugates
WO2018110515A1 (ja) 2016-12-12 2018-06-21 第一三共株式会社 抗体-薬物コンジュゲートと免疫チェックポイント阻害剤の組み合わせ
WO2019039483A1 (ja) 2017-08-23 2019-02-28 第一三共株式会社 抗体-薬物コンジュゲートの製剤及びその凍結乾燥方法
WO2019044946A1 (ja) 2017-08-31 2019-03-07 第一三共株式会社 抗体-薬物コンジュゲートの新規製造方法
WO2019065964A1 (ja) 2017-09-29 2019-04-04 第一三共株式会社 抗体-ピロロベンゾジアゼピン誘導体コンジュゲート
WO2019157224A1 (en) 2018-02-07 2019-08-15 Regeneron Pharmaceuticals, Inc. Methods and compositions for therapeutic protein delivery
WO2020022475A1 (ja) 2018-07-27 2020-01-30 第一三共株式会社 抗体-薬物コンジュゲートの薬物部位を認識する蛋白質
WO2020031936A1 (ja) 2018-08-06 2020-02-13 第一三共株式会社 抗体-薬物コンジュゲートとチューブリン阻害剤の組み合わせ
WO2020040245A1 (ja) 2018-08-23 2020-02-27 第一三共株式会社 抗体薬物複合体の感受性マーカー
WO2020063676A1 (zh) * 2018-09-26 2020-04-02 江苏恒瑞医药股份有限公司 依喜替康类似物的配体-药物偶联物及其制备方法和应用
US10640563B2 (en) 2016-06-08 2020-05-05 Abbvie Inc. Anti-B7-H3 antibodies and antibody drug conjugates
WO2020122034A1 (ja) 2018-12-11 2020-06-18 第一三共株式会社 抗体-薬物コンジュゲートとparp阻害剤の組み合わせ
WO2020130125A1 (ja) 2018-12-21 2020-06-25 第一三共株式会社 抗体-薬物コンジュゲートとキナーゼ阻害剤の組み合わせ
WO2020154672A1 (en) * 2019-01-25 2020-07-30 Yale University Anticancer drugs and methods of making and using same
WO2020196474A1 (ja) 2019-03-25 2020-10-01 第一三共株式会社 抗体-ピロロベンゾジアゼピン誘導体コンジュゲート
WO2020259258A1 (zh) 2019-06-28 2020-12-30 上海复旦张江生物医药股份有限公司 一种抗体偶联药物、其中间体、制备方法及应用
US11173213B2 (en) 2015-06-29 2021-11-16 Daiichi Sankyo Company, Limited Method for selectively manufacturing antibody-drug conjugate
CN114456186A (zh) * 2020-10-12 2022-05-10 四川百利药业有限责任公司 一种喜树碱类衍生物及其配体-药物偶联物
WO2022102634A1 (ja) 2020-11-11 2022-05-19 第一三共株式会社 抗体-薬物コンジュゲートと抗SIRPα抗体の組み合わせ
WO2022116141A1 (zh) 2020-12-04 2022-06-09 上海复旦张江生物医药股份有限公司 抗体药物偶联物、其中间体、制备方法及应用
WO2022126593A1 (zh) 2020-12-18 2022-06-23 上海复旦张江生物医药股份有限公司 一种靶向trop2的抗体药物偶联物、其制备方法及应用
WO2022126569A1 (zh) 2020-12-18 2022-06-23 上海复旦张江生物医药股份有限公司 一种靶向b7-h3的抗体药物偶联物、其制备方法及应用
US11446292B2 (en) 2019-03-29 2022-09-20 Medimmune Limited Compounds and conjugates thereof
US11555019B2 (en) 2019-07-10 2023-01-17 Cybrexa 3, Inc. Peptide conjugates of microtubule-targeting agents as therapeutics
WO2023006084A1 (zh) 2021-07-30 2023-02-02 上海复旦张江生物医药股份有限公司 一种抗dll3抗体及其制备方法、其药物偶联物和应用
RU2793316C2 (ru) * 2018-09-26 2023-03-31 Цзянсу Хэнжуй Медицин Ко., Лтд. Конъюгат лиганд-лекарственное средство аналога экзатекана, способ его получения и его применение
US11634508B2 (en) 2019-07-10 2023-04-25 Cybrexa 2, Inc. Peptide conjugates of cytotoxins as therapeutics
WO2023100829A1 (ja) 2021-11-30 2023-06-08 第一三共株式会社 プロテアーゼ分解性マスク抗体
US11759527B2 (en) 2021-01-20 2023-09-19 Abbvie Inc. Anti-EGFR antibody-drug conjugates
WO2023209591A1 (en) 2022-04-27 2023-11-02 Daiichi Sankyo Company, Limited Combination of antibody-drug conjugate with ezh1 and/or ezh2 inhibitor
WO2023218378A1 (en) 2022-05-11 2023-11-16 Daiichi Sankyo Company, Limited Combination of an antibody specific for a tumor antigen and a cd47 inhibitor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130036A4 (en) * 2020-03-30 2024-05-15 National Cancer Center ANTIBODY-DRUG CONJUGATE
IL305818A (en) 2021-03-29 2023-11-01 Daiichi Sankyo Co Ltd Multispecific stable compound and its use

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095802A (ja) * 1995-12-28 1998-04-14 Tanabe Seiyaku Co Ltd カンプトテシン誘導体
JPH1192405A (ja) * 1997-09-19 1999-04-06 Dai Ichi Seiyaku Co Ltd 薬物複合体
WO2002000734A1 (fr) * 2000-06-29 2002-01-03 Daiichi Pharmaceutical Co., Ltd. Compose dds et son procede de preparation
JP2005511627A (ja) * 2001-11-20 2005-04-28 シアトル ジェネティクス,インコーポレーテッド 抗cd30抗体を使用する免疫学的疾患の治療
JP2008521828A (ja) * 2004-11-29 2008-06-26 シアトル ジェネティックス, インコーポレイテッド 操作された抗体およびイムノコンジュゲート
JP2009538629A (ja) * 2006-05-30 2009-11-12 ジェネンテック・インコーポレーテッド 抗体およびイムノコンジュゲートとこれらの使用方法
WO2012178173A1 (en) * 2011-06-24 2012-12-27 Centrose, Llc Extracellular targeted drug conjugates
WO2013078377A1 (en) * 2011-11-23 2013-05-30 Igenica, Inc. Anti-cd98 antibodies and methods of use thereof
WO2014057687A1 (ja) * 2012-10-11 2014-04-17 第一三共株式会社 抗体-薬物コンジュゲート
WO2014061277A1 (ja) * 2012-10-19 2014-04-24 第一三共株式会社 親水性構造を含むリンカーで結合させた抗体-薬物コンジュゲート

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095802A (ja) * 1995-12-28 1998-04-14 Tanabe Seiyaku Co Ltd カンプトテシン誘導体
JPH1192405A (ja) * 1997-09-19 1999-04-06 Dai Ichi Seiyaku Co Ltd 薬物複合体
WO2002000734A1 (fr) * 2000-06-29 2002-01-03 Daiichi Pharmaceutical Co., Ltd. Compose dds et son procede de preparation
JP2005511627A (ja) * 2001-11-20 2005-04-28 シアトル ジェネティクス,インコーポレーテッド 抗cd30抗体を使用する免疫学的疾患の治療
JP2008521828A (ja) * 2004-11-29 2008-06-26 シアトル ジェネティックス, インコーポレイテッド 操作された抗体およびイムノコンジュゲート
JP2009538629A (ja) * 2006-05-30 2009-11-12 ジェネンテック・インコーポレーテッド 抗体およびイムノコンジュゲートとこれらの使用方法
WO2012178173A1 (en) * 2011-06-24 2012-12-27 Centrose, Llc Extracellular targeted drug conjugates
WO2013078377A1 (en) * 2011-11-23 2013-05-30 Igenica, Inc. Anti-cd98 antibodies and methods of use thereof
WO2014057687A1 (ja) * 2012-10-11 2014-04-17 第一三共株式会社 抗体-薬物コンジュゲート
WO2014061277A1 (ja) * 2012-10-19 2014-04-24 第一三共株式会社 親水性構造を含むリンカーで結合させた抗体-薬物コンジュゲート

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11173213B2 (en) 2015-06-29 2021-11-16 Daiichi Sankyo Company, Limited Method for selectively manufacturing antibody-drug conjugate
JP2019522643A (ja) * 2016-06-08 2019-08-15 アッヴィ・インコーポレイテッド 抗cd98抗体及び抗体薬物コンジュゲート
CN109562170A (zh) * 2016-06-08 2019-04-02 艾伯维公司 抗cd98抗体及抗体药物偶联物
JP2019524649A (ja) * 2016-06-08 2019-09-05 アッヴィ・インコーポレイテッド 抗cd98抗体及び抗体薬物コンジュゲート
JP2019524651A (ja) * 2016-06-08 2019-09-05 アッヴィ・インコーポレイテッド 抗cd98抗体及び抗体薬物コンジュゲート
US10640563B2 (en) 2016-06-08 2020-05-05 Abbvie Inc. Anti-B7-H3 antibodies and antibody drug conjugates
CN109562169A (zh) * 2016-06-08 2019-04-02 艾伯维公司 抗cd98抗体及抗体药物偶联物
WO2017214458A3 (en) * 2016-06-08 2018-02-08 Abbvie Inc. Anti-cd98 antibodies and antibody drug conjugates
CN109562168A (zh) * 2016-06-08 2019-04-02 艾伯维公司 抗cd98抗体及抗体药物偶联物
WO2017214456A1 (en) * 2016-06-08 2017-12-14 Abbvie Inc. Anti-cd98 antibodies and antibody drug conjugates
WO2017214462A3 (en) * 2016-06-08 2018-01-18 Abbvie Inc. Anti-cd98 antibodies and antibody drug conjugates
CN109562170B (zh) * 2016-06-08 2023-01-13 艾伯维公司 抗cd98抗体及抗体药物偶联物
KR20190095280A (ko) 2016-12-12 2019-08-14 다이이찌 산쿄 가부시키가이샤 항체-약물 콘주게이트와 면역 체크 포인트 저해제의 조합
WO2018110515A1 (ja) 2016-12-12 2018-06-21 第一三共株式会社 抗体-薬物コンジュゲートと免疫チェックポイント阻害剤の組み合わせ
US11273155B2 (en) 2016-12-12 2022-03-15 Daiichi Sankyo Company, Limited Combination of antibody-drug conjugate and immune checkpoint inhibitor
WO2019039483A1 (ja) 2017-08-23 2019-02-28 第一三共株式会社 抗体-薬物コンジュゲートの製剤及びその凍結乾燥方法
KR20200044044A (ko) 2017-08-23 2020-04-28 다이이찌 산쿄 가부시키가이샤 항체-약물 콘주게이트의 제제 및 그 동결 건조 방법
WO2019044946A1 (ja) 2017-08-31 2019-03-07 第一三共株式会社 抗体-薬物コンジュゲートの新規製造方法
KR20200033949A (ko) 2017-08-31 2020-03-30 다이이찌 산쿄 가부시키가이샤 항체-약물 콘주게이트의 신규 제조 방법
KR20240018674A (ko) 2017-08-31 2024-02-13 다이이찌 산쿄 가부시키가이샤 항체-약물 콘주게이트의 신규 제조 방법
US11318212B2 (en) 2017-08-31 2022-05-03 Daiichi Sankyo Company, Limited Method for producing antibody-drug conjugate
KR20220104292A (ko) 2017-08-31 2022-07-26 다이이찌 산쿄 가부시키가이샤 항체-약물 콘주게이트의 신규 제조 방법
WO2019065964A1 (ja) 2017-09-29 2019-04-04 第一三共株式会社 抗体-ピロロベンゾジアゼピン誘導体コンジュゲート
WO2019157224A1 (en) 2018-02-07 2019-08-15 Regeneron Pharmaceuticals, Inc. Methods and compositions for therapeutic protein delivery
WO2020022475A1 (ja) 2018-07-27 2020-01-30 第一三共株式会社 抗体-薬物コンジュゲートの薬物部位を認識する蛋白質
KR20210040059A (ko) 2018-07-27 2021-04-12 다이이찌 산쿄 가부시키가이샤 항체-약물 콘주게이트의 약물 부위를 인식하는 단백질
WO2020031936A1 (ja) 2018-08-06 2020-02-13 第一三共株式会社 抗体-薬物コンジュゲートとチューブリン阻害剤の組み合わせ
KR20210042120A (ko) 2018-08-06 2021-04-16 다이이찌 산쿄 가부시키가이샤 항체-약물 콘주게이트와 튜불린 저해제의 조합
WO2020040245A1 (ja) 2018-08-23 2020-02-27 第一三共株式会社 抗体薬物複合体の感受性マーカー
WO2020063676A1 (zh) * 2018-09-26 2020-04-02 江苏恒瑞医药股份有限公司 依喜替康类似物的配体-药物偶联物及其制备方法和应用
RU2793316C2 (ru) * 2018-09-26 2023-03-31 Цзянсу Хэнжуй Медицин Ко., Лтд. Конъюгат лиганд-лекарственное средство аналога экзатекана, способ его получения и его применение
KR20210102341A (ko) 2018-12-11 2021-08-19 다이이찌 산쿄 가부시키가이샤 항체-약물 컨쥬게이트와 parp 저해제의 조합
WO2020122034A1 (ja) 2018-12-11 2020-06-18 第一三共株式会社 抗体-薬物コンジュゲートとparp阻害剤の組み合わせ
KR20210107069A (ko) 2018-12-21 2021-08-31 다이이찌 산쿄 가부시키가이샤 항체-약물 컨쥬게이트와 키나아제 저해제의 조합
WO2020130125A1 (ja) 2018-12-21 2020-06-25 第一三共株式会社 抗体-薬物コンジュゲートとキナーゼ阻害剤の組み合わせ
WO2020154672A1 (en) * 2019-01-25 2020-07-30 Yale University Anticancer drugs and methods of making and using same
WO2020196474A1 (ja) 2019-03-25 2020-10-01 第一三共株式会社 抗体-ピロロベンゾジアゼピン誘導体コンジュゲート
US11446292B2 (en) 2019-03-29 2022-09-20 Medimmune Limited Compounds and conjugates thereof
WO2020259258A1 (zh) 2019-06-28 2020-12-30 上海复旦张江生物医药股份有限公司 一种抗体偶联药物、其中间体、制备方法及应用
US11555019B2 (en) 2019-07-10 2023-01-17 Cybrexa 3, Inc. Peptide conjugates of microtubule-targeting agents as therapeutics
US11634508B2 (en) 2019-07-10 2023-04-25 Cybrexa 2, Inc. Peptide conjugates of cytotoxins as therapeutics
CN114456186B (zh) * 2020-10-12 2023-10-20 成都百利多特生物药业有限责任公司 一种喜树碱类衍生物及其配体-药物偶联物
CN114456186A (zh) * 2020-10-12 2022-05-10 四川百利药业有限责任公司 一种喜树碱类衍生物及其配体-药物偶联物
WO2022102634A1 (ja) 2020-11-11 2022-05-19 第一三共株式会社 抗体-薬物コンジュゲートと抗SIRPα抗体の組み合わせ
KR20230106645A (ko) 2020-11-11 2023-07-13 다이이찌 산쿄 가부시키가이샤 항체-약물 콘주게이트와 항 SIRPα 항체의 조합
WO2022116141A1 (zh) 2020-12-04 2022-06-09 上海复旦张江生物医药股份有限公司 抗体药物偶联物、其中间体、制备方法及应用
WO2022126593A1 (zh) 2020-12-18 2022-06-23 上海复旦张江生物医药股份有限公司 一种靶向trop2的抗体药物偶联物、其制备方法及应用
WO2022126569A1 (zh) 2020-12-18 2022-06-23 上海复旦张江生物医药股份有限公司 一种靶向b7-h3的抗体药物偶联物、其制备方法及应用
US11759527B2 (en) 2021-01-20 2023-09-19 Abbvie Inc. Anti-EGFR antibody-drug conjugates
WO2023006084A1 (zh) 2021-07-30 2023-02-02 上海复旦张江生物医药股份有限公司 一种抗dll3抗体及其制备方法、其药物偶联物和应用
WO2023100829A1 (ja) 2021-11-30 2023-06-08 第一三共株式会社 プロテアーゼ分解性マスク抗体
WO2023209591A1 (en) 2022-04-27 2023-11-02 Daiichi Sankyo Company, Limited Combination of antibody-drug conjugate with ezh1 and/or ezh2 inhibitor
WO2023218378A1 (en) 2022-05-11 2023-11-16 Daiichi Sankyo Company, Limited Combination of an antibody specific for a tumor antigen and a cd47 inhibitor

Also Published As

Publication number Publication date
TW201620553A (zh) 2016-06-16
JP2017114763A (ja) 2017-06-29

Similar Documents

Publication Publication Date Title
WO2015146132A1 (ja) 抗cd98抗体-薬物コンジュゲート
JP7259104B2 (ja) 抗trop2抗体-薬物コンジュゲート
JP7170812B2 (ja) 抗体-薬物コンジュゲート
JP7146031B2 (ja) 抗her2抗体-薬物コンジュゲート
JP6707696B2 (ja) 抗her3抗体−薬物コンジュゲート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP