WO2001094431A1 - Gel de caoutchouc de diene conjugue, compositions de caoutchouc contenant ce dernier et procede de production de caoutchouc de diene conjugue - Google Patents

Gel de caoutchouc de diene conjugue, compositions de caoutchouc contenant ce dernier et procede de production de caoutchouc de diene conjugue Download PDF

Info

Publication number
WO2001094431A1
WO2001094431A1 PCT/JP2001/004797 JP0104797W WO0194431A1 WO 2001094431 A1 WO2001094431 A1 WO 2001094431A1 JP 0104797 W JP0104797 W JP 0104797W WO 0194431 A1 WO0194431 A1 WO 0194431A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
rubber
conjugated
monomer
monomer unit
Prior art date
Application number
PCT/JP2001/004797
Other languages
English (en)
French (fr)
Inventor
Masao Nakamura
Koichi Endo
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000231156A external-priority patent/JP4150874B2/ja
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to EP01936888A priority Critical patent/EP1291369B1/en
Priority to US10/297,393 priority patent/US6649724B2/en
Priority to DE60118364T priority patent/DE60118364T8/de
Publication of WO2001094431A1 publication Critical patent/WO2001094431A1/ja
Priority to US10/651,042 priority patent/US6897279B2/en
Priority to US11/036,376 priority patent/US7094855B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a novel conjugated diene rubber gel, a rubber composition containing the same, and a method for producing a conjugated diene rubber. More specifically, a conjugated-gen-based rubber gel capable of providing a rubber composition excellent in wear resistance and low heat build-up for use in rubber, a rubber composition containing the conjugated-based rubber gel, and a conjugated-gen-based rubber The present invention relates to a method for producing a conjugated gen-based rubber capable of producing rubber with high productivity. Background art
  • Natural rubber is used in large quantities as tire rubber, but other rubbers are often used in combination to improve various performances.
  • polybutadiene rubber is mixed to improve abrasion resistance
  • styrene-butadiene copolymer rubber is mixed and used to improve mechanical properties.
  • various performances often have a trade-off relationship, such as a decrease in mechanical properties when the wear resistance is improved, and a decrease in low heat buildup when the mechanical properties are improved. It is difficult to do that.
  • rubber raw materials are generally required to have as little gel structure as possible in consideration of the kneading properties of rubber raw materials and reinforcing materials, but in order to improve heat resistance and abrasion resistance, It has been proposed to use a rubber gel having a gel structure.
  • Japanese Unexamined Patent Publication (Kokai) No. 3-372464 discloses a rubber composition containing a polychloroprene gel. It has been disclosed. This rubber composition is excellent in low heat build-up and abrasion resistance.However, since polychloroprene gel contains chlorine, considering that scrap tires are treated by incineration, it cannot be actually used as a rubber raw material for tires. Have difficulty.
  • Japanese Patent Application Laid-Open No. 6-57038 discloses a rubber composition containing a polybutadiene gel
  • Japanese Patent Application Laid-Open No. A rubber composition containing a styrene-butadiene copolymer rubber gel is disclosed. These rubber compositions are excellent in low heat build-up, but may have insufficient abrasion resistance or may have a low elongation at break, resulting in poor mechanical properties.
  • an emulsion polymerization method is widely adopted as a method for producing a conjugated rubber.
  • latex after emulsion polymerization to a predetermined polymer composition is coagulated with an inorganic salt to form a crumb having a size of about 2 to 10 mm, and water And the crumbs are washed and dried to obtain the desired rubber.
  • a styrene-styrene copolymer rubber having a styrene bond content as high as about 35 to 50% by weight is produced by an emulsion polymerization method, coagulation is inferior when coagulating the latex after polymerization.
  • the concentration of inorganic salt, the solid content of latex, the coagulation temperature and stirring conditions during coagulation should be adjusted, or the polymer coagulant or heat-sensitive coagulant should be used.
  • concentration of inorganic salt, the solid content of latex, the coagulation temperature and stirring conditions during coagulation should be adjusted, or the polymer coagulant or heat-sensitive coagulant should be used.
  • a first object of the present invention is to provide a wear-resistant material without impairing mechanical properties. It is an object of the present invention to provide a novel conjugated diene rubber gel capable of providing a rubber composition having excellent heat resistance and low heat build-up.
  • a second object of the present invention is to provide a rubber composition having excellent abrasion resistance and low heat generation without impairing mechanical properties.
  • a third object of the present invention is to provide a method for producing a conjugated diene rubber gel which can produce a conjugated diene rubber gel with high productivity.
  • a fourth object of the present invention is to provide a conjugated gen-aromatic vinyl copolymer having a high aromatic vinyl bond content, in which a crumb is hardly fixed and excellent in coagulability.
  • An object of the present invention is to provide a method for producing a copolymer rubber.
  • it is composed of 80 to 99% by weight of a conjugated diene monomer unit and 20 to 1% by weight of an aromatic vinyl monomer unit, and has a toluene swelling index of 16 to 7%. 0 is provided.
  • a conjugated diene rubber gel composed of 80 to 99% by weight of a conjugated gen monomer unit and 20 to 1% by weight of an aromatic vinyl monomer unit and having a toluene swelling index of 16 to 70%. And a rubber composition which can be crosslinked with sulfur.
  • 50 to 99.9% by weight of a conjugated diene monomer 0 to 30% by weight of an aromatic vinyl monomer, 0 to 20% by weight of other ethylenically unsaturated monomers, and crosslinking.
  • the conjugated diene rubber gel of the present invention comprises 80 to 99% by weight of a conjugated diene monomer unit, Preferably 83-95% by weight, more preferably 86-90% by weight, and 20-1% by weight of aromatic vinyl monomer units, preferably 17-5% by weight, more preferably 14-4% by weight. -10% by weight.
  • This conjugated-gen-based rubber gel can be produced with or without a crosslinkable monomer, but is preferably obtained by copolymerization with a crosslinkable monomer. Further, if desired, a copolymerizable copolymerizable ethylenically unsaturated monomer may be used.
  • the conjugated gen-based rubber gel of the present invention usually contains 80 to 99% by weight of a conjugated diene monomer unit, 1 to 20% of an aromatic vinyl monomer unit, and another ethylenically unsaturated monomer unit. 0 to 19% by weight, and 0 to 1.5% by weight of a crosslinkable monomer unit.
  • Preferred conjugated diene rubber gels are: 83 to 95% by weight of conjugated diene monomer units, 5 to 17% by weight of aromatic vinyl monomer units, and 0 to 5% by weight of other ethylenically unsaturated monomer units.
  • crosslinkable monomer unit More preferably 0 to 1% by weight of a crosslinkable monomer unit; and more preferably 86 to 90% by weight of a conjugated diene monomer unit and 10 to 1% by weight of an aromatic vinyl monomer unit. 4%, 0 to 1% by weight of other ethylenically unsaturated monomer units, and 0 to 0.5% by weight of crosslinkable monomer units.
  • the amount of the conjugated gen monomer unit in the conjugated gen-based rubber gel is small, the mechanical properties of the crosslinked rubber are inferior, and if it is large, the abrasion resistance of the crosslinked rubber is inferior. If the amount of the aromatic vinyl monomer unit is small, the abrasion resistance of the cross-linked rubber is poor, and if it is large, the low heat build-up of the cross-linked rubber is poor. If the amount of the other ethylenically unsaturated monomer unit as an optional component is large, it becomes difficult to obtain a rubber crosslinked product having both mechanical properties, abrasion resistance and low heat generation.
  • crosslinkable monomer is optional, but it is advantageous for the industrially advantageous production of a rubber crosslinked product having the desired mechanical properties, abrasion resistance and low heat build-up having the following range of toluene swelling index. It is preferred that 0.1 to 1.5% by weight of a crosslinkable monomer unit is present.
  • the conjugated diene rubber gel of the present invention is characterized in that the toluene swelling index is 16 to 70.
  • the toluene swelling index is preferably from 17 to 50, more preferably from 19 to 45, particularly preferably from 20 to 40.
  • the toluene swelling index is low, the viscosity of the rubber composition containing the reinforcing material increases, and the workability decreases, the elongation of the cross-linked rubber decreases, and the abrasion resistance decreases. . Also, if this index is large, the abrasion resistance of the crosslinked rubber Poor heat resistance and low heat build-up.
  • the toluene swelling index of a conjugated diene rubber gel is calculated from the weight of the gel containing toluene and the weight of the gel when dried, as (weight when the gel contains toluene) / (weight when dried). Specifically, the measurement is performed as follows.
  • the conjugated diene monomer is not particularly limited, but specific examples thereof are 1,3-butadiene, 2-methyl_1,3-butadiene, 1,3-pentadiene, 2-chloro-1,3-butadiene. And the like. Among them, 1,3-butadiene and 2-methyl_1,3-butadiene are preferred, and 1,3-butadiene is most preferred.
  • the conjugated diene monomers may be used alone or as a mixture of two or more.
  • the aromatic vinyl monomer is an aromatic monovinyl compound. Specific examples thereof include, but are not limited to, styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, and o-ethylstyrene.
  • ethylenically unsaturated monomers copolymerized with the conjugated diene monomer and the aromatic vinyl monomer are not particularly limited. Ester monomer,, / 3-ethylenically unsaturated nitrile monomer,, ⁇ -ethylenically unsaturated carboxylic acid monomer, ⁇ , -ethylenically unsaturated sulfonic acid amide monomer, and olefin Monomers.
  • a, ⁇ 3-ethylenically unsaturated carboxylic acid ester monomers include methylacrylate Alkyl esters such as methacrylate, methyl methacrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, lauryl methacrylate; methoxyethyl acrylate, methoxyethoxy acrylate Alkoxy substituted alkyl esters; cyano substituted alkyl esters such as cyanomethyl acrylate, 2-cyanoethyl acrylate, 2-ethyl-16-cyanohexyl acrylate; 2-hydroxyethyl acrylate; Hydroxy-substituted alkyl esters such as 2-hydroxyethyl methacrylate; epoxy-substituted alkyl esters such as daricidyl acrylate and daricidyl methacrylate; amino-substituted alkyl esters such as N, N, monodi
  • 3-ethylenically unsaturated nitrile monomer examples include acrylonitrile and methacrylonitrile.
  • Examples of / 3-ethylenically unsaturated carboxylic acid monomers include monocarboxylic acids such as acrylic acid and methacrylic acid; multivalent rubonic acids such as maleic acid, fumaric acid and itaconic acid; monobutyl ester fumarate And partial alkyl esters of polyvalent carboxylic acids such as monobutyl maleate and monoethyl citrate.
  • carboxylic amide monomers include acrylamide, methacrylamide, ⁇ , ⁇ '-dimethylacrylamide, ⁇ -butoxymethyl acrylamide, ⁇ -butoxymethyl methacrylamide, ⁇ -methylolacrylamide , ⁇ , ⁇ '—dimethylolacrylamide and the like.
  • olefin monomer examples include a linear or cyclic monoolefin compound containing 2 to 10 carbon atoms, such as ethylene, propylene, 1-butene, cyclopentene, and 2-norpolene.
  • monomers such as vinyl chloride, vinylidene chloride, and vinyl pyridine are exemplified.
  • the above ethylenically unsaturated monomers may be used alone or as a mixture of two or more.
  • the crosslinkable monomer used to efficiently form the gel structure is a compound having at least 2, preferably 2 to 4, carbon-carbon double bonds capable of copolymerizing with a conjugated diene monomer. It is. Specific examples thereof include polyvinyl aromatic compounds such as diisopropenyl benzene, divinyl benzene, triisopropenyl benzene, and trivinyl benzene; and tertiary / 3-ethylenic compounds such as vinyl acrylate, vinyl methacrylate, and acryl methacrylate.
  • Unsaturated ester compounds of unsaturated carboxylic acids unsaturated ester compounds of polycarboxylic acids such as diaryl phthalate, triaryl cyanurate, triallyl isocyanurate, triallyl trimellitate; ethylene glycol diacrylate, ethylene glycol dimethacrylate, Unsaturated ester compounds of polyhydric alcohols such as propylene glycol-dimethacrylate; 1,2-polybutadiene, divinyl ether, divinyl sulfone, ⁇ , ⁇ ′—m-phenylene maleimide and the like.
  • Aliphatic or aromatic diols such as ethylene glycol, propylene glycol, butanediol, hexanediol, neopentyl diol, and bisphenol A; 2 to 20, preferably 2 to 8 oxyethylene; Polyglycols having units; polyhydric alcohols such as glycerin, trimethylolpropane, phenol erythritol, and sorbitol; and unsaturated polycarboxylic acids such as maleic acid, fumaric acid, and itaconic acid.
  • the unsaturated polyester compound to be produced is exemplified.
  • divinylbenzene is preferred. There are ortho, meta and para forms of divinyl benzene, but they may be used alone or in a mixture thereof.
  • the particle diameter of the conjugated rubber rubber of the present invention is preferably 5 to 100 nm, more preferably 20 to 400 nm, and particularly preferably 50 to 200 nm.
  • the particle diameter can be obtained by dyeing and fixing the conjugated rubber gel with osmium tetroxide, etc., and then observing it with a transmission electron microscope and measuring the diameter of about 100 rubber gel particles. Weight average particle size.
  • the method for producing the conjugated rubber rubber of the present invention is not particularly limited, (1) Direct production by cross-linking monomer by milk polymerization, (2) By continuing the emulsion polymerization reaction to a high conversion rate, for example, a conversion rate of about 90% by weight or more, in latex particles. Generate gel structure, (3)? Gen-type rubber latex particles having no gel structure produced by chemical polymerization are treated with a compound having a cross-linking effect and then cross-linked. (4) The organic solvent solution of the rubber polymer obtained by solution polymerization is used.
  • the emulsion can be produced by emulsification in water in the presence of an emulsifier, and post-crosslinking the obtained emulsion with a compound having a crosslinking action before or after removing the organic solvent.
  • the above methods (1), (2) and (3) may be employed alone or in combination. .
  • a method of directly producing the conjugated rubber gel by emulsion polymerization using a crosslinkable monomer is preferable.
  • the amount of the crosslinkable monomer used, the amount of the chain transfer agent used, and the conversion at the termination of the polymerization may be adjusted so that the toluene swelling index becomes a desired index. .
  • the amount of the crosslinkable monomer used is usually 0.1 to 1.5 wt. %, Preferably 0.1 to 1% by weight, more preferably 0.2 to 0.5% by weight.
  • the resulting conjugated gen-based rubber gel has a conjugated gen monomer unit content of 80 to 98.9% by weight, preferably 83 to 94.9% by weight, and more preferably.
  • aromatic vinyl monomer unit 19.9 to 1% by weight, preferably 16.9 to 5% by weight, more preferably 13.8 to 10% by weight, and other ethylenically unsaturated monomer units 0 to 8%. 19% by weight, preferably 0 to 5% by weight, more preferably 0 to 1% by weight, and 0.1 to 1.5% by weight, preferably 0.1 to 1% by weight, more preferably 0.2 to 0.5% by weight of a crosslinkable monomer unit %.
  • Compounds having a cross-linking effect used when post-crosslinking the gen-based rubber latex particles include, for example, dicumyl peroxide, t-butylcumyl peroxide, bis- (t-butyl-peroxy-isopropyl) benzene, and peroxide.
  • dicumyl peroxide t-butylcumyl peroxide
  • bis- (t-butyl-peroxy-isopropyl) benzene and peroxide.
  • G-t-butyl benzoyl peroxide, peroxydani 2,4-dichlorobenzoyl and t-butyl perbenzoate Organic peracid stilts, etc .;
  • Organic azo compounds such as sannitrile; dimercapto compounds or polymercapto compounds such as dimercaptoethane, 1,6-dimercaptohexane, and 1,3,5-trimercaptotriazine; Of these, organic peroxides are preferred.
  • the reaction conditions for post-crosslinking depend on the reactivity and addition amount of these compounds having a cross-linking action.
  • the reaction pressure ranges from normal pressure to high pressure (about IMPa), and room temperature to 170 ° C. Reaction temperature and a reaction time of about 1 minute to 24 hours are appropriately selected.
  • the type of the compound having a cross-linking action, the amount of the compound added, and the reaction conditions are adjusted so as to obtain a desired toluene swelling index.
  • the method for producing a conjugated gen-based rubber of the present invention comprises the following steps: (1) a method for producing a conjugated gen-based rubber gel by carrying out emulsion copolymerization without using an aromatic vinyl monomer or using a small amount thereof; 50 to 99.9% by weight, aromatic vinyl monomer 0 to 30% by weight, other ethylenically unsaturated monomer 0 to 20% by weight, and crosslinkable monomer 0.1 (1) a method of obtaining a conjugated diene rubber gel having a toluene swelling index of 70 or less by emulsifying and copolymerizing a monomer mixture consisting of -20% by weight (hereinafter referred to as a first production method); A method for obtaining a conjugated diene rubber by emulsification copolymerization using a very large amount of an aromatic vinyl monomer; that is, 15 to 69.8% by weight of a conjugated diene monomer, an aromatic butyl monomer 0.1 to 65% by weight
  • the monomer composition in the first production method is 50 to 99 ⁇ 9% by weight, preferably 70 to 94.9% by weight, and more preferably 74 to 89.9% by weight. %, Particularly preferably 79.5 to 85.8% by weight, aromatic vinyl monomer 0 to 30% by weight, preferably 5 to 28% by weight, more preferably 10 to 2% by weight. 5% by weight, particularly preferably 14 to 20% by weight, other ethylenically unsaturated monomers 0 to 20% by weight, preferably 0 to 5% % By weight, more preferably 0 to 1% by weight, and the crosslinkable monomer 0.1 to 20% by weight, preferably 0.1 to 2% by weight, more preferably 0.1 to 1% by weight, particularly preferably. Consists of 0.2-0.5% by weight.
  • the mechanical properties of the cross-linked rubber are inferior. If the amount is large, the abrasion resistance of the cross-linked rubber is inferior. If the amount of the aromatic vinyl monomer is small, the abrasion resistance of the cross-linked rubber is poor, and if it is large, the low heat build-up of the cross-linked rubber is poor. If the amount of other optional ethylenically unsaturated monomers is large, it becomes difficult to obtain a crosslinked rubber product having both mechanical properties, abrasion resistance and low heat generation.
  • the amount of the crosslinkable monomer is small, the abrasion resistance and low heat build-up of the rubber crosslinked product are inferior. If the amount is large, the rubber composition containing the reinforcing material increases the Mooney viscosity and decreases the processability. However, the abrasion resistance of the cross-linked rubber is reduced.
  • conjugated diene monomer aromatic pinyl monomer, other ethylenically unsaturated monomer, and crosslinkable monomer are the same as those described above.
  • the method and conditions are not particularly limited, but emulsifiers, polymerization initiators, chain transfer agents, polymerization terminators, antioxidants, and the like conventionally used in emulsion polymerization can be used.
  • fatty acid soap is a long-chain aliphatic carboxylic acid having 12 to 18 carbon atoms, for example, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid and the like, and a mixed aliphatic carboxylic acid thereof.
  • the acid is selected from the sodium or potassium salt.
  • the rosin acid soap is selected from a sodium salt or a potassium salt obtained by disproportionating or hydrogenating a natural rosin such as a gum rosin, a wood mouth gin, or a cellulose rosin.
  • the amount of the emulsifier used is not particularly limited, but is usually 0.05 to 15 parts by weight, preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight per 100 parts by weight of the monomer. Parts by weight.
  • polymerization initiator examples include hydrogen peroxide, organic peroxides, persulfates, organic azo compounds, and redox-based polymerization initiators composed of these compounds, ferric sulfate, and sodium, formaldehyde, and sulfoxylate. .
  • organic peroxides include dicumyl peroxide, t-butylcumyl peroxide, bis- (t-butyl-peroxy-isopropyl) benzene, and di-t-butyl peroxide. Butyl, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide and t-butyl perbenzoate.
  • the persulfate include ammonium persulfate, sodium persulfate, and persulfate-bearing realm.
  • organic azo compound include azobisisobutyronitrile and azobiscyclohexane nitrile.
  • the amount of the polymerization initiator to be used is usually about 0.001 to 1 part by weight per 100 parts by weight of the monomer, and a desired reaction rate can be obtained at a desired reaction temperature. It may be appropriately adjusted as follows.
  • chain transfer agent examples include 2,4,4-trimethylpentane_2-thiol, 2,2,4,6,6-pentamethyl-heptane-1-thiol, 2,2,4,6,6,8,8— Mercaptans such as methyl-nonane-4-thiol, t-dodecylmercaptan, and t-tetradecylmercaptan; dimethylxanthogendisulfite
  • Thiuram disulfides such as tetraethyl thiuram disulfide and tetrabutyl thiuram disulfide; halogenated hydrocarbons such as carbon tetrachloride and brominated titanium
  • chain transfer agents can be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is usually 3 parts by weight or less, preferably 0.05 to 1 part by weight, more preferably 0.1 to 0.6 S based on 100 parts by weight of the monomer mixture. Department.
  • the polymerization terminator is not particularly limited, and has an amine structure such as conventionally used hydroxylamine, dimethyldithiol sodium rubamate, getylhydroxyamine, hydroxyaminesulfonic acid and an alkali metal salt thereof.
  • Polymerization terminator aromatic amines such as hydroxydimethylbenzenedithiocarboxylic acid, hydroxyethylbenzenedithiocarboxylic acid, hydroxydibutylbenzenedithiocarboxylic acid, and the like.
  • -Free polymerization terminators hydroquinone derivatives and catechol derivatives And the like. These polymerization terminators can be used alone or in combination of two or more.
  • the amount of the polymerization terminator used is not particularly limited, but is usually 0.1 to 10 parts by weight based on 100 parts by weight of the monomer.
  • anti-aging agents examples include hindered phenol compounds such as 2,6-di-tert-butyl-4-methylphenol and 2,6-di-tert-butyl-4-ethylphenol; diphenyl p-phenylenediamine, N-isopropyl Hindered amine compounds such as 1N '1 phenyl-2-amine and p-phenylenediamine.
  • the amount of the antioxidant used is usually about 0.05 to 5 parts by weight based on 100 parts by weight of the polymer produced by emulsion polymerization.
  • the ratio of the monomer to water during the emulsion polymerization (the weight ratio of the monomer Z water) is usually 5/95 to 5050, preferably 10Z90 to 4060, more preferably 20/80 to 50/50. 35/65. If the ratio of the monomer is high, a coagulated product is generated, and it is difficult to remove the heat of reaction. If the ratio is low, the productivity is poor.
  • the polymerization temperature is usually from 5 to 80 ° C, preferably from 0 to 60 ° (:, more preferably from 3 to 30 ° C, particularly preferably from 5 to 15 ° C. Inferior in productivity. Higher is inferior in abrasion resistance and low heat generation of rubber crosslinked product.
  • the conversion when terminating the polymerization reaction is preferably 50 to 90%, more preferably 60 to 85%, and particularly preferably 65 to 80%. If the conversion is low, the productivity is poor, and if the conversion is high, the abrasion resistance and low heat build-up of the crosslinked rubber are poor.
  • the polymerization temperature is 3 to 30 ° C., and that the conversion when stopping the polymerization reaction is 60 to 85%.
  • a conjugated gen-based rubber gel is produced by emulsion copolymerization
  • polymerization is carried out by a usual emulsion polymerization method, and when a predetermined conversion rate is reached, a polymerization terminator is added to stop the polymerization reaction. Then, if desired, after adding an antioxidant, the remaining monomers are removed by heating or steam distillation, etc., and a coagulant comprising inorganic salts such as calcium chloride, sodium chloride, and aluminum sulfate, a polymer flocculant Alternatively, a coagulant used in ordinary emulsion polymerization such as a thermocoagulant is added to coagulate and collect the latex. The recovered copolymer is washed with water and dried to obtain a desired conjugated diene rubber gel.
  • a rubber latex having substantially no gel structure or a rubber gel latex other than the conjugated genomic gel in the present invention may be mixed, if desired.
  • the rubber composition obtained by coagulating, collecting and drying the latex mixture contains a predetermined amount of a conjugated diene rubber gel.
  • composition of the polymer obtained by the method for producing a conjugated gen-based rubber gel of the present invention varies depending on the composition of the charged monomer mixture and the conversion at the time of stopping the polymerization reaction. This is because each monomer usually has different reactivity in emulsion copolymerization. 'However, the polymer composition can be adjusted in advance by determining the charged monomer mixture composition and the conversion at the time of stopping the polymerization reaction.
  • the polymer composition of the obtained conjugated rubber rubber can be determined by NMR analysis, infrared absorption spectrum analysis, ultraviolet absorption spectrum analysis, elemental analysis and analysis by refractive index measurement alone or in combination. It can be determined by adoption. However, in the case of a styrene-butene benzene copolymer rubber gel having a small amount of divinylbenzene bonding units, it is very difficult to determine the amount of divinylbenzene bonding units. The amount can be determined by measuring the amount of the reactive monomer and calculating from the value and the amount of the charged monomer.
  • the particle size of the conjugated diene rubber gel can be adjusted by the ratio of monomer-water, the type and amount of the emulsifier, the type and amount of the polymerization initiator, the polymerization temperature, and the like in the emulsion copolymerization.
  • the toluene swelling index of the conjugated diene rubber gel can be adjusted by the amount of the crosslinkable monomer, the amount of the chain transfer agent, the conversion at the time of terminating the polymerization, and the like. According to the first production method, a conjugated diene rubber gel having a toluene swelling index of 70 or less can be easily produced with high productivity.
  • the monomer composition in the second production method is 15 to 69.8% by weight, preferably 33 to 64.9% by weight, more preferably 39 to 54.8% by weight. %, Particularly preferably 41.4 to 51.7% by weight, aromatic vinyl monomer 30.1 to 65% by weight, It is preferably 35 to 62% by weight, more preferably 45 to 60% by weight, particularly preferably 48 to 58% by weight, and other ethylenically unsaturated monomers 0 to 20% by weight, preferably 0 to 5% by weight, more preferably 0 to 1% by weight, and the crosslinkable monomer 0.1 to 20% by weight, preferably 0.1 to 5% by weight, more preferably 0.2 to 1% by weight. % By weight, particularly preferably from 0.3 to 0.6% by weight.
  • the amount of the conjugated diene monomer used is small or the amount of the aromatic pinyl monomer used is large, the glass transition temperature of the obtained copolymer rubber increases, which is not preferable as a rubber.
  • polymerized rubber is used as a constituent material for tires, the effect of improving the drip performance is poor, or the hardness of the crosslinked rubber becomes too high.
  • the amount of the other ethylenically unsaturated monomer is large, it is difficult to obtain a rubber having preferable various properties.
  • the amount of the crosslinkable monomer used is small, the coagulability is poor and the crumbs are liable to stick.On the other hand, if the amount is large, the crosslinkable monomer often has a high boiling point, so that the unreacted crosslinking remains It is extremely difficult to remove the reactive monomer.
  • the conjugated diene monomer, aromatic vinyl monomer, other ethylenically unsaturated monomer, and crosslinkable monomer are not particularly limited, and are the same as those in the first production method. .
  • the emulsifier, polymerization initiator, chain transfer agent, polymerization terminator and antioxidant used in the emulsion copolymerization, and the method and conditions of the emulsion copolymerization are the same as those described for the first production method. Good.
  • the polymerization temperature is ⁇ 5 to 80 ° C., and the conversion at the time of stopping the polymerization reaction is 50 to 90%.
  • the desired latex can be obtained. Care must be taken because coarse aggregates larger than the particle size may be generated and the mechanical strength of the rubber crosslinked product using the obtained copolymer rubber may be reduced.
  • Inorganic metal salts include, for example, sodium chloride, chloride Monovalent metal salts such as potassium, sodium nitrate, sodium sulfate, and sodium carbonate; divalent metal salts such as calcium chloride, magnesium chloride, calcium sulfate, and magnesium sulfate; trivalent metal salts such as aluminum chloride, aluminum nitrate, and aluminum sulfate Metal salts; and the like.
  • calcium chloride is preferred.
  • the amount used is usually 1 to 100 parts by weight, preferably 1 to 50 parts by weight, more preferably 2 to 10 parts by weight, based on 100 parts by weight of the copolymer rubber component in the latex. is there.
  • polymer flocculant examples include nonionic, anionic or cationic acrylamide polymers, alkali metal salts of anionic acrylic polymers, and cationic condensation resins. Among them, cationic condensation resins are preferred.
  • the amount used is usually 0.05 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0.4 to 100 parts by weight of the copolymer rubber component in the latex. ⁇ 2 parts by weight.
  • heat-sensitive coagulant examples include polyoxyethylene adducts, polyoxypropylene adducts, and poly (oxyshylene-oxypropylene) adducts of alkylphenol-formalin condensates; polyoxyethylene alkyl ethers, polyoxyethylene fatty acid esters, Polyoxyethylene sorbitan fatty acid ester,
  • (Oxyethylene-l-oxypropylene) Block polymers and the like are preferred. Of these, a poly (oxyethylene-oxypropylene) adduct of an alkylphenol-formalin condensate is preferred. The amount used is usually 0.01 to 5 parts by weight, preferably 0.05 to 2 parts by weight, based on 100 parts by weight of the copolymer rubber component in the latex.
  • coagulants may be used alone or in combination.
  • a heat-sensitive coagulant it is preferable to use an inorganic metal salt in combination.
  • an inorganic acid such as hydrochloric acid, nitric acid and sulfuric acid, and an organic acid such as acetic acid and alkyl sulfuric acid, in addition to the above coagulant.
  • sulfuric acid is more preferred.
  • the addition of these acids to adjust the pH to preferably acidic, more preferably to pH 2 to 5, is preferable in that coagulability is further improved.
  • the above coagulant or acid is preferably used in an amount of 1 to 20 times, more preferably 100 to 100 parts by weight of the latex used for coagulation. It is preferably used in a state of being dissolved in 2 to 15 times, particularly preferably 3 to 10 times, of water. If the amount of water is small, uncoagulated latex may remain inside the crumb, and if it is large, coagulation may be difficult.
  • the solid content of the latex at the time of coagulation is preferably 1 to 30% by weight, more preferably 3 to 20% by weight, and particularly preferably 5 to 15% by weight. If the concentration is too low, the productivity will be poor, and if it is too high, unsolidified latex may remain inside the crumbs.
  • the temperature at the time of solidification is usually from 10 to 100 ° C, preferably from 40 to 90 ° C, more preferably from 50 to 80 ° C.
  • the coagulation method usually employs a method in which a predetermined concentration of latex is added to an aqueous solution in which a predetermined concentration of a coagulant or an acid is dissolved, and may be a batch type or a continuous type.
  • the aromatic vinyl monomer unit amount is preferably in the range of 35 to 55% by weight, more preferably 40 to 50% by weight, and the Mooney viscosity is preferably Conjugated gen-monoaromatic vinyl copolymer rubbers having 30 to 300, more preferably 40 to 250, particularly preferably 50 to 200 are easily produced.
  • This conjugated diene aromatic vinyl copolymer rubber is used as a raw material for tires, cable covering agents, hoses, transmission belts, conveyor belts, roll covers, shoe soles, sealing rings, and vibration-proof rubber. It can be used as a modifier for impact strength of resin, an additive for adhesives and a binder for abrasives in machine tools.
  • the rubber composition of the present invention comprises the aforementioned conjugated-gen-based rubber gel, that is, 80 to 99% by weight of a conjugated diene monomer unit and 20 to 1% by weight of an aromatic vinyl monomer unit, and a toluene swelling index. It is a composition containing a conjugated gen-based rubber gel of 16 to 70 and a rubber which can be crosslinked with sulfur.
  • the preferred monomer composition and toluene swelling index of the conjugated diene rubber gel are as described above.
  • the rubber which can be crosslinked with sulfur is not particularly limited, but usually one containing a double bond corresponding to an iodine value of at least 2, preferably 5 to 470 is used.
  • the iodine value is generally determined by adding iodine chloride in glacial acetic acid and expressed as the number of grams of iodine chemically bonded to 10.0 g of a substance. It can also crosslink with sulfur
  • the viscosity of the rubber (ML 1 +4 , 100 ° C.) is usually from 10 to 150, preferably from 20 to 120.
  • the rubber that can be crosslinked with sulfur include natural rubber, synthetic polyisoprene, polybutadiene, alkyl acrylate-butadiene copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, and styrene-isoprene.
  • (I) Butadiene copolymer, acrylonitrile-butadiene copolymer, partially hydrogenated acrylonitrile-butene diene copolymer, isobutylene-isoprene copolymer, ethylene-propylene-diene copolymer, and mixtures thereof Are mentioned. These rubbers may be oil-extended with an extension oil in advance.
  • Styrene-butadiene copolymer containing from about 60% by weight, preferably from 20 to 55% by weight, more preferably from 25 to 50% by weight, having a high cis-1,4 bond content, e.g. Polybutadienes having 0% by weight or more and mixtures thereof are preferred, and natural rubber, synthetic polyisoprene, styrene-butadiene copolymer and mixtures thereof are particularly preferred.
  • the ratio between the conjugated rubber rubber and the rubber which can be crosslinked with sulfur is preferably 1 to 99 to 50/50 by weight, more preferably 5 to 95 to 40. Z60, particularly preferably 10/90 to 300. If the ratio of the conjugated gen-based rubber is small, the abrasion resistance of the cross-linked rubber is inferior. If the ratio is high, the elongation of the cross-linked rubber is reduced and the low heat build-up of the cross-linked rubber is inferior.
  • the rubber composition of the present invention can contain a reinforcing material and, if necessary, other compounding agents.
  • a reinforcing material it is preferable to mix carbon black, silica, or the like.
  • Furnace black, acetylene black, thermal black, channel black, graphite, and the like can be used as ribbon black. These carbon blacks can be used alone or in combination of two or more.
  • the specific surface area of carbon black is not particularly limited, the specific surface area of nitrogen adsorption (N The lower limit of 2 SA) is preferably 5 m 2 / g, more preferably 50 m 2 Zg, the upper limit is good Mashiku is 200 meters 2 Zg, more preferably 10 Om 2 Zg. It is preferable that the nitrogen adsorption specific surface area is in this range because the mechanical properties and wear resistance are excellent.
  • the lower limit of the adsorption amount of dibutyl phthalate (DBP) of the power pump rack is preferably 5 m 1/100 g, more preferably 5 Om 1 Zl 00 g, and the upper limit is preferably 40 Om 1Z100 g, more preferably 20 Om1 / 100 g. It is preferable that the DBP adsorption amount be in this range because the mechanical properties and wear resistance are excellent.
  • silica examples include, but are not particularly limited to, dry-process white carbon, wet-process white carbon, colloidal silica, and precipitated silica disclosed in JP-A-62-62838. Among them, wet-process white carbon containing hydrous gay acid as a main component is preferable. These silicas can be used alone or in combination of two or more.
  • the specific surface area of silica is usually less than 400 m 2 / g by nitrogen adsorption specific surface area (BET method).
  • the nitrogen adsorption specific surface area is a value measured by the BET method according to ASTM D3037-81.
  • the pH of the silica is preferably less than pH 7.0, and more preferably pH 5.0 to 6.9.
  • the rubber composition of the present invention contains a sili force as a reinforcing material, it is preferable to add a silane force printing agent since the low heat build-up and abrasion resistance are further improved.
  • silane coupling agent examples include, but are not limited to, vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ — (monoaminoethyl) monoaminopropyltrimethoxysilane , Bis (3- (triethoxysilyl) propyl) tetrasulfide, bis (3- (triethoxysilyl) propyl) disulfide, etc., and JP-A-6-248116.
  • the agent contains 4 or less sulfur in one molecule. No.
  • silane coupling agents can be used alone or in combination of two or more.
  • the lower limit of the amount of the silane coupling agent to 100 parts by weight of silica is preferably 0.1 part by weight, more preferably 1 part by weight, particularly preferably 2 parts by weight, and the upper limit is preferably 30 parts by weight. It is preferably 20 parts by weight, particularly preferably 10 parts by weight.
  • the lower limit of the amount of the reinforcing material is preferably 10 parts by weight, more preferably 2 parts by weight, based on 100 parts by weight of the total of the conjugated rubber rubber and the rubber crosslinkable with sulfur (total rubber component). 0 parts by weight, particularly preferably 30 parts by weight, and the upper limit is preferably 200 parts by weight, more preferably 150 parts by weight, particularly preferably 100 parts by weight.
  • the mixing ratio thereof is appropriately selected according to the application and purpose. 0: 90 to 99: 1 is preferred, 20: 80 to 95: 5 is more preferred, and 30: 70 to 90: 10 is particularly preferred.
  • the rubber composition of the present invention may be reinforced according to a conventional method, such as a crosslinking agent, a crosslinking accelerator, a crosslinking activator, an aging inhibitor, an activator, a process oil, a plasticizer, a lubricant, a filler, and the like.
  • a crosslinking agent such as a crosslinking agent, a crosslinking accelerator, a crosslinking activator, an aging inhibitor, an activator, a process oil, a plasticizer, a lubricant, a filler, and the like.
  • crosslinking agent examples include, but are not particularly limited to, sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur; sulfur halides such as sulfur monochloride and sulfur dichloride; dicumyl peroxide, and zirconium.
  • Organic peroxides such as shaributyl peroxide; quinone dioximes such as P-quinone dioxime and ⁇ , ⁇ '-dibenzoylquinone dioxime; triethylenetetramine, hexamethylene diamine potassium salt, 4, 4 Organic polyvalent amine compounds such as 1,1-methylenebis-10-chloroaniline; alkylphenol resins having a methylol group; among them, sulfur is preferred, and powdered sulfur is particularly preferred.
  • These crosslinking agents are used alone or in combination of two or more.
  • the lower limit of the amount of the crosslinking agent to 100 parts by weight of the total rubber component is preferably 0.1 part by weight, more preferably 0.3 part by weight, particularly preferably 0.5 part by weight, and the upper limit is preferably It is 15 parts by weight, more preferably 10 parts by weight, particularly preferably 5 parts by weight.
  • Crosslinking accelerators include N-cyclohexyl-2-benzothiazolsulfenamide, N_t-butyl-2-benzothiazolesulfenamide, and N-cyclohexylethylene-2-benzothiazolesulfenamide , N-oxyethylene-2-benzothiazolsulfenamide, N, N, diisopropyl-2-benzothiazolsulfenamide, etc .; sulfenamide-based cross-linking accelerators; diphenyldananidin, diortotriluguanidine, orthotri Guanidine-based crosslinking accelerators such as rubiguanidine; thiourea-based crosslinking accelerators such as getylthioperia; 2-mercaptobenzothiazole, dibenzothiazyl disulphide, zinc salt of 2-mercaptobenzothiazole, etc.
  • Thiazole-based crosslinking accelerators tetramethylthiuram monosulfide, tetrame Thiuram-based cross-linking accelerators such as tilthiuram disulfide; dithio-powered rubamate-based cross-linking accelerators such as dimethyl dithi-potent sodium rubamate and getyl diti-potent zinc rubamate; sodium isopropyl xanthate, zinc isopropyl xanthate and zinc butyl xanthate And a crosslinking accelerator such as a xanthate-based crosslinking accelerator.
  • crosslinking accelerators can be used alone or in combination of two or more, but those containing a sulfenamide-based crosslinking accelerator are particularly preferred.
  • the lower limit of the amount of the crosslinking accelerator to 100 parts by weight of the total rubber component is preferably 0.1 part by weight, more preferably 0.3 part by weight, particularly preferably 0.5 part by weight, and the upper limit is preferably 15 parts by weight. Parts by weight, more preferably 10 parts by weight, particularly preferably 5 parts by weight.
  • the crosslinking activator is not particularly limited, but higher fatty acids such as stearic acid and zinc oxide can be used. It is preferable to use zinc oxide having a high surface activity and a particle size of 5 or less, and examples thereof include active zinc white having a particle size of 0.05 to 0.2 m and zinc white having a particle size of 0.3 to 1 m. Can be. Further, as the zinc oxide, a zinc oxide surface-treated with an amine-based dispersant or wetting agent can be used.
  • crosslinking activators can be used alone or in combination of two or more.
  • the mixing ratio of the crosslinking activator is appropriately selected depending on the type of the crosslinking activator. Selected.
  • the lower limit of the amount of the higher fatty acid to 100 parts by weight of the total rubber component is preferably 0.05 part by weight, more preferably 0.1 part by weight, particularly preferably 5 parts by weight, and the upper limit is preferably 15 parts by weight. Parts, more preferably 10 parts by weight, particularly preferably 5 parts by weight.
  • the lower limit of the amount of zinc oxide to 100 parts by weight of the total rubber component is preferably 0.05 part by weight, more preferably 0.1 part by weight, particularly preferably 0.5 part by weight, and the upper limit is preferably Is 10 parts by weight, more preferably 5 parts by weight, particularly preferably 2 parts by weight.
  • the amount of the cross-linking activator is within this range, the unvulcanized rubber composition is excellent in processability, mechanical properties, abrasion resistance, and the like, which is preferable.
  • active agents such as diethylene glycol, polyethylene glycol, and silicone oil having a functional group such as an epoxy group or an alkoxysilyl group
  • fillers such as calcium carbonate, talc, and clay
  • waxes such as waxes.
  • the rubber composition of the present invention has at least one selected from the group consisting of epichlorohydrin, ethylene oxide, propylene oxide, and arydaricidyl ether having no conjugated gen unit as long as the effects of the present invention are not impaired. It may include a homopolymer or copolymer of one monomer, acrylic rubber, fluoro rubber, silicon rubber, ethylene-propylene rubber, urethane rubber and the like.
  • the rubber composition of the present invention can be obtained by kneading the components according to a conventional method.
  • a rubber composition can be obtained by kneading a compounding agent excluding a crosslinking agent and a crosslinking accelerator and a rubber component, and then mixing the kneaded product with a crosslinking agent and a crosslinking accelerator.
  • the lower limit of the kneading temperature of the compounding agent excluding the crosslinking agent and the crosslinking accelerator and the rubber component is preferably 80 ° C, more preferably 100 ° C, particularly preferably 120 ° C, and the upper limit is preferably 2 ° C. C., more preferably 190.degree. C. (: particularly preferably 180.degree ..
  • the lower limit of the kneading time of the compounding agent and the rubber component excluding the crosslinking agent and the crosslinking accelerator is preferably 30.degree. Seconds, more preferably 1 minute, and the upper limit is preferably 30 minutes
  • the mixing of the crosslinking agent and the crosslinking accelerator is usually carried out after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
  • the rubber composition of the present invention is usually used as a rubber crosslinked product.
  • the crosslinking method is not particularly limited, and may be selected according to the shape, size, etc. of the crosslinked product.
  • the mold is filled with the crosslinkable rubber composition and heated to form The bridge may be bridged by heating a preformed uncrosslinked rubber composition.
  • the crosslinking temperature is preferably from 120 to 200 ° C, more preferably from 140 to 180 ° C, and the crosslinking time is usually from 1 to about 120 minutes.
  • the characteristics of the rubber raw material component, the rubber composition and the crosslinked rubber were measured as follows.
  • Coagulability 100 parts of latex prepared to a solid concentration of 10% by adding water is treated under ordinary conditions with 0.06 parts of calcium chloride and a polymer flocculant (force-condensation type).
  • Resin Hiset CA, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • the mixture was gradually added to a coagulation tank containing 300 parts of an aqueous solution in which 0.006 parts of a solution was dissolved with stirring and coagulated.
  • the temperature in the coagulation bath was controlled in the range of 55 to 65 ° C, and the pH in the coagulation bath was controlled in the range of 2 to 3 by appropriately adding a 5% aqueous sulfuric acid solution.
  • the coagulability is indicated by the following index by observing the state of coagulation. The higher the index, the better the solidification.
  • the crumb size is good and there is almost no turbidity even when coagulation is performed by reducing the amount of the Shii-Dani calcium and the polymer flocculant to 0.7 times.
  • Particle size of rubber gel particles A conjugated rubber rubber latex diluted with water so that the solid concentration becomes about 0.01% is dropped on a mesh for observation with a transmission electron microscope, and then oxidized with tetraoxide. It was stained and fixed with osmium vapor, and then water was evaporated to obtain an observation sample. The observation sample was observed with a transmission electron microscope at a magnification of 20,000 to 50,000 times, the diameter (unit: nm) of 100 particles was measured, and the weight average particle diameter was determined from the value.
  • Styrene unit amount The styrene unit amount bound in the copolymer was measured according to JIS K 6383. However, in a copolymer obtained by copolymerizing bieerbenzene, the bound divinylbenzene unit is also included in the styrene unit amount when measured.
  • Toluene JJ Pengjun Index 25 Omg of sample rubber is shaken in 25 ml of toluene for 24 hours to swell. By the swollen gel centrifuge and centrifuged under the conditions 430, 0 0 centrifugal force of Om / sec 2 is applied, the swollen gel is weighed in the wet state and then dried to constant weight at 70 ° C, The gel after drying was weighed again. Gel weight in wet state Z Toluene swelling index was determined as the weight of gel after drying.
  • Mooney viscosity The raw material rubber viscosity (ML 1 + 4 , 100 ° C) was measured according to JISK 6300.
  • Abrasion resistance index Pico abrasion test was conducted in accordance with JIS 6264, and each was represented by an index with Comparative Example 1 being 100. The higher the abrasion resistance index, the better the abrasion resistance.
  • Example 1 Production of conjugated rubber rubber I
  • 200 parts of water, 4.5 parts of disproportionated potassium rosinate and sodium fatty acid as emulsifiers in total, 0.1 part of potassium chloride, and the monomer mixture shown in Table 1 and A chain transfer agent (t-dodecyl mercaptan) was charged, the internal temperature was adjusted to 12 ° C with stirring, and 0.1 part of cumene hydroperoxide as a radical polymerization initiator, sodium formaldehyde sulfoxylate.
  • the polymerization reaction was started by adding 0.2 part and 0.01 part of ferric sulfate.
  • the obtained latex was added to a sodium diammunosulfate solution to coagulate.
  • the generated crumb was taken out, washed sufficiently with water, and dried under reduced pressure at 50 ° C. to obtain a conjugated diene rubber gel I.
  • Table 1 shows the styrene unit amount and the toluene swelling index of the conjugated rubber rubber I.
  • a conjugated diene rubber I was obtained in the same manner as in Example 1, except that a monomer mixture having the composition shown in Table 1 was used. Table 1 shows the amount of styrene unit and the viscosity of this rubber. The toluene swelling index of the conjugated diene rubber I was not measured as a significant value because it did not substantially contain a gel.
  • a conjugated rubber gel having a desired polymer composition and a toluene swelling index is easily produced with good productivity. Is obtained.
  • a conjugated gen-based rubber gel having a desired toluene swelling index from the conjugated gen-based rubber latex having no gel structure shown in Comparative Production Example 1 a residual monomer was used from the latex after the polymerization was stopped. After removing the body, it is necessary to perform a heat treatment by adding a peroxide.
  • the rubber crosslinked product using the conjugated gen-based rubber gel having a small amount of styrene unit in Comparative Example 2 is inferior in abrasion resistance.
  • the rubber crosslinked product using the conjugated diene rubber gel having a large amount of styrene unit in Comparative Example 3 is inferior in low heat generation.
  • the rubber cross-linked product using the conjugated diene rubber gel having a small toluene swelling index of Comparative Example 4 has a remarkably low elongation and poor abrasion resistance.
  • Example 9 shows that the rubber crosslinked product of Example 9 using a conjugated gen-based rubber gel produced by emulsion polymerization at a lower temperature and stopping the polymerization reaction at a conversion of 70% was obtained. Better.
  • Example Comparative example Polymerization was carried out in the same manner as in Example 1 except that the monomer mixture and the chain transfer agent shown in Table 3 were changed to obtain conjugated gen-based copolymer rubbers VIII to IX.
  • Table 3 shows the coagulation property, crumb fixation property, styrene unit amount and Mooney viscosity.
  • the weight average particle diameter of the latex of the conjugated gen-based copolymer rubbers I to IX was in the range of 80 to 100 nm.
  • Comparative Examples 5 and 6 in the case of a copolymer rubber having a high styrene unit content (45%), the coagulation property and the crumb sticking property were remarkably poor, and it was found that the production was extremely difficult. Even the copolymer rubber having a styrene unit content of 35% in Comparative Example 7 is inferior in coagulation property and crumb fixability. In the case of the copolymer rubber having a styrene unit content of 24% shown in Reference Example 1, it has excellent coagulability and crumb fixability, but does not use a crosslinkable monomer. % Copolymer rubber has relatively good coagulability and crumb fixability, and is not observed as a remarkable effect.
  • novel conjugated rubber rubber of the present invention provides a rubber composition having excellent wear resistance and low heat build-up without impairing mechanical properties.
  • a crosslinked product of the rubber composition containing the conjugated gen-based rubber gel and a crosslinked product of the rubber composition containing the conjugated gen-based rubber gel and a rubber capable of being crosslinked with sulfur are, for example, tires and cable coating agents. It can be widely used as components such as hoses, transmission belts, conveyor belts, mouth covers, shoe soles, sealing rings and vibration isolating rubber.
  • the crosslinked product of the rubber composition containing the conjugated gen-based rubber gel and the crosslinked product of the rubber composition containing the conjugated gen-based rubber gel and a rubber that can be cross-linked with sulfur retain good mechanical properties. As it is, it exhibits excellent wear resistance and low heat build-up, and is therefore suitable as a component of tires, especially sidewalls, beads and under-treads.
  • the above-mentioned conjugated diene rubber gel is used.
  • a conjugated diene rubber gel having a toluene swelling index of 70 or less can be easily obtained with high productivity.
  • the second production method of the present invention in which emulsion copolymerization is carried out using a relatively large amount of an aromatic vinyl monomer to obtain a conjugated diene rubber, the crumbs are hardly fixed and are hardened. A conjugated di-aromatic vinyl copolymer rubber having excellent properties is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Tires In General (AREA)

Description

明細書 共役ジェン系ゴムゲル、 それを含むゴム組成物、 および共役ジェン系ゴムの製 造方法 技術分野 本発明は新規な共役ジェン系ゴムゲル、 それを含むゴム組成物および共役ジェ ン系ゴムの製造方法に関し、 さらに詳しくは耐摩耗性および低発熱性に優れた夕 ィャ用に好適なゴム組成物を与え得る共役ジェン系ゴムゲル、 該共役ジェン系ゴ ムゲルを含有するゴム組成物、 および共役ジェン系ゴムを生産性よく製造し得る 共役ジェン系ゴムの製造方法に関する。 背景技術
近年、 自動車などのタイヤ用ゴム組成物に対しては、 各種性能の改善が求めら れており、 特にサイドウォール用およびビ一ド用のゴム組成物においては、 機械 的特性、 耐摩耗性、 およびタイヤを形成した場合の転動抵抗の低さ加減 (低発熱 性) に優れるものが求められている。
タイヤ用ゴムとしては天然ゴムが大量に使用されているが、 各種性能の改善の ために、 その他のゴムを混合して使用する場合が多い。 例えば、 耐摩耗性を向上 するためにポリブタジエンゴムを混合したり、 機械的特性を向上するためにスチ レン—ブタジエン共重合ゴムを混合して使用している。 しかしながら、 耐摩耗性 を向上させると機械的特性が低下したり、 機械的特性を向上させると低発熱性が 低下するなど、 各種性能は二律背反の関係に有ることが多く、 すべての性能を向 上させることは困難である。
一方、 ゴム原料としては、 通常、 ゴム原料と補強材などとの混練性を考慮して 極力ゲル構造を有さないものが求められるが、 低発熱性ゃ耐摩耗性を改善するた めに、 ゲル構造を有するゴムゲルを使用することが提案されている。 例えば、 特 開平 3— 3 7 2 4 6号公報には、 ポリクロ口プレンゲルを含有するゴム組成物が 開示されている。 このゴム組成物は、 低発熱性および耐摩耗性に優れるが、 ポリ クロロプレンゲルが塩素を含有するため、 スクラップタイヤを焼却によって処理 することを考慮すると、 タイヤのゴム原料として実際に使用することは困難であ る。
また、 共役ジェン系ゴムに関しては、 特開平 6— 5 7 0 3 8号公報には、 ポリ ブタジエンゲルを含有するゴム組成物が、特開平 1 0— 2 0 4 2 1 7号公報には、 スチレン一ブタジエン共重合ゴムゲルを含有するゴム組成物が開示されている。 これらのゴム組成物は、 低発熱性に優れるが、 耐摩耗性が不十分だったり、 破断 伸びが低下して機械的特性を低下させる場合がある。
一方、 共役ジェン系ゴムの製造方法として乳化重合法が広く採られている。 そ の乳化重合法による製造プロセスにおいては、 所定の重合体組成になるように乳 化重合した後のラテックスを無機塩によって凝固させて、 2〜1 0 mm程度の大 きさのクラムとし、 水と分離し、クラムを洗浄した後、 乾燥させて目的のゴムを 得ている。 しかしながら、 特に、 スチレン結合含量が約 3 5〜 5 0重量%と高い ブ夕ジェンースチレン共重合ゴムを乳化重合法により製造する場合、 重合後のラ テックスを凝固させる際に、 凝固性に劣ることに起因して、 一部のラテックスが 未凝固の状態となったり、 クラム同士が互着してクラムの大きさが異常に大きく なったりする不具合が発生しやすい。 クラム同士が互着すると、 水を分離した後 のクラム内部に水が残りやすぐ乾燥時間が長くなつたり、部分的な乾燥不良(ゥ エツトスポット) が発生したりする。 また、 クラムが固着しやすいために、 凝固 槽の壁面や攪拌羽根に付着堆積して不具合を発生する場合がある。
このような不具合の発生を防止するために、 凝固する際の、 無機塩の濃度、 ラ テックスの固形分濃度、 凝固温度および攪拌条件を調整したり、 高分子凝集剤ま たは感熱凝固剤を併用する方法が挙げられるが、 これらの方法を用いても、 不十 分であり、 不具合が発生しやすいのが実状である。 発明の開示
上記の事情に鑑み、 本発明の第 1の目的は、 機械的特性を損なわずに、 耐摩耗 性および低発熱性に優れるゴム組成物を与え得る新規な共役ジェン系ゴムゲルを 提供することにある。
本発明の第 2の目的は、 機械的特性を損なわずに、 耐摩耗性および低発熱性に 優れるゴム組成物を提供することにある。
本発明の第 3の目的は、 共役ジェン系ゴムゲルを生産性よく製造し得る共役ジ ェン系ゴムゲルの製造方法を提供することにある。
さらに、 本発明の第 4の目的は、 芳香族ビニル結合含量が高い共役ジェン一芳 香族ビニル共重合ゴムを製造するにあたり、 クラムが固着し難く、 凝固性に優れ た共役ジェン一芳香族ビニル共重合ゴムを製造する方法を提供することにある。 かくして、 本発明によれば、 第 1に、 共役ジェン単量体単位 8 0〜9 9重量% および芳香族ビニル単量体単位 2 0〜1重量%からなり、 トルエン膨潤指数が 1 6〜 7 0である共役ジェン系ゴムゲルが提供される。
第 2に、 共役ジェン単量体単位 8 0〜 9 9重量%および芳香族ビニル単量体単 位 2 0〜1重量%からなり、 トルエン膨潤指数が 1 6〜7 0である共役ジェン系 ゴムゲルと、 硫黄で架橋し得るゴムとを含有するゴム組成物が提供される。 第 3に、 共役ジェン単量体 5 0〜 9 9 . 9重量%、 芳香族ビニル単量体 0〜 3 0重量%、 その他のェチレン性不飽和単量体 0〜 2 0重量%、 および架橋性単量 体 0 . 1〜2 0重量%からなる単量体混合物を乳化共重合することを特徴とする トルエン膨潤指数が 7 0以下である共役ジェン系ゴムゲルの製造方法が提供され る。
第 4に、 共役ジェン単量体 1 5〜6 9 . 8重量%、 芳香族ビニル単量体 3 0 . 1 〜6 5重量%、 その他のエチレン性不飽和単量体単位 0〜 2 0重量%、 および架 橋性単量体 0 . 1〜2 0重量%からなる単量体混合物を乳化共重合することを特 徵とする共役ジェン一芳香族ビニル共重合ゴムの製造方法が提供される。 発明を実施するための最良の形態
共役ジェン系ゴムゲル
本発明の共役ジェン系ゴムゲルは、 共役ジェン単量体単位 8 0〜9 9重量%、 好ましくは 8 3〜9 5重量%、 より好ましくは 8 6〜9 0重量%、 および芳香族 ビニル単量体単位 2 0〜 1重量%、 好ましくは 1 7〜 5重量%、 より好ましくは 1 4〜1 0重量%からなることを特徴としている。 この共役ジェン系ゴムゲル は、 架橋性単量体を用い、 または、 用いずに製造できるが、 架橋性単量体を用い て共重合して得られたものであることが好ましい。 さらに、 所望により、 共重合 可能なェチレン性不飽和単量体を共重合したものであってもよい。
従って、 本発明の共役ジェン系ゴムゲルは、 通常、 共役ジェン単量体単位 8 0 〜9 9重量%、 芳香族ビニル単量体単位 1〜2 0 %、 その他のエチレン性不飽和 単量体単位 0〜1 9重量%、および架橋性単量体単位 0〜; 1 . 5重量%からなる。 好ましい共役ジェン系ゴムゲルは、 共役ジェン単量体単位 8 3〜9 5重量%、 芳 香族ビニル単量体単位 5〜 1 7 %、 その他のェチレン性不飽和単量体単位 0〜 5 重量%、 および架橋性単量体単位 0〜1重量%からなり ;より好ましい共役ジェ ン系ゴムゲルは、 共役ジェン単量体単位 8 6〜9 0重量%、 芳香族ビニル単量体 単位 1 0〜1 4 %、 その他のェチレン性不飽和単量体単位 0〜 1重量%、 および 架橋性単量体単位 0〜 0 . 5重量%からなる。
共役ジェン系ゴムゲル中の共役ジェン単量体単位量が少ないとゴム架橋物の機 械的特性に劣り、 多いとゴム架橋物の耐摩耗性に劣る。 芳香族ビニル単量体単位 量が少ないとゴム架橋物の耐摩耗性に劣り、多いとゴム架橋物の低発熱性に劣る。 任意成分であるその他のェチレン性不飽和単量体単位量が多いと機械的特性、 耐 摩耗性および低発熱性を兼備したゴム架橋物が得難くなる。 架橋性単量体の使用 は任意であるが、 下記範囲のトルエン膨潤指数を有し、 所望の機械的特性、 耐摩 耗性および低発熱性を兼備したゴム架橋物を工業的有利に製造するには 0 . 1〜 1 . 5重量%の架橋性単量体単位が存在することが好ましい。
さらに、 本発明の共役ジェン系ゴムゲルは、 トルエン膨潤指数が 1 6〜7 0で あることを特徴としている。 トルエン膨潤指数は、 好ましくは 1 7〜5 0、 より 好ましくは 1 9〜4 5、 特に好ましくは 2 0〜4 0である。
トルエン膨潤指数が小さいと、 補強材を配合したゴム組成物においてム一二一 粘度が上昇して加工性が低下したり、 ゴム架橋物における伸びが低下したり、 耐 摩耗性が低下したりする。 また、 この指数が大きいとゴム架橋物における耐摩耗 性や低発熱性に劣る。
共役ジェン系ゴムゲルにおけるトルエン膨潤指数は、 ゲルのトルエン含有時の 重量と乾燥時の重量から、 (ゲルのトルエン含有時の重量) / (乾燥時の重量) として計算される。 具体的には、 以下のように測定する。
共役ジェン系ゴムゲル 2 5 0 m gをトルエン 2 5 m l中で 2 4時間振とうして 膨潤させる。 U彭潤したゲルを遠心分離機により、 4 0 0 , 0 0 O mZsec 2以上の 遠心力がかかる条件で遠心分離し、 膨潤したゲルを湿潤状態で抨量し、 次いで 7 0 °Cで恒量になるまで乾燥し、 乾燥後のゲルを再秤量する。 (湿潤状態でのゲル 重量) Z (乾燥後のゲルの重量) としてトルエン膨潤指数を測定する。
共役ジェン単量体としては、 特に限定されないが、 その具体例としては 1, 3 —ブタジエン、 2—メチル _ 1, 3—ブタジエン、 1, 3—ペンタジェン、 2—ク ロロ一 1, 3—ブタジエンなどが挙げられる。 中でも、 1, 3—ブタジエンおよび 2 _メチル_ 1 , 3—ブタジエンが好ましく、 1 , 3—ブタジエンが最も好ましい。 共役ジェン単量体は、 単独で使用しても、 また、 2種類以上を混合して使用して もよい。
芳香族ビニル単量体は芳香族モノビニル化合物であり、 その具体例としては、 特に限定されないが、 スチレン、 o—メチルスチレン、 m—メチルスチレン、 p ーメチルスチレン、 2, 4一ジメチルスチレン、 o—ェチルスチレン、 m—ェチ ルスチレン、 p _ェチルスチレン、 p— t—ブチルスチレン、 α—メチルスチレ ン、 α—メチルー ρ—メチルスチレン、 0—クロルスチレン、 m_クロルスチレ ン、 p—クロルスチレン、 p—ブロモスチレン、 2—メチル—4, 6—ジクロル スチレン、 2 , 4—ジブ口モスチレン、 ビニルナフタレンなどが挙げられる。 な かでも、 スチレンが好ましい。
所望により、 共役ジェン単量体および芳香族ビニル単量体と共重合されるその 他のエチレン性不飽和単量体は、 特に限定されないが、 ひ, /3—エチレン性不飽 和力ルポン酸エステル単量体、 , /3—ェチレン性不飽和二トリル単量体、 , β 一エチレン性不飽和カルボン酸単量体、 α, —エチレン性不飽和力ルポン酸ァ ミド単量体、 およびォレフィン単量体などが挙げられる。
a , ι3—エチレン性不飽和カルボン酸エステル単量体としては、 メチルァクリ レート、 メチルメタクリレート、 ェチルァクリレート、 プチルァクリレート、 2 一ェチルへキシルァクリレート、 ラウリルメタクリレートなどのアルキルエステ ル類;メトキシェチルァクリレート、 メトキエトキシェチルァクリレートなどの アルコキシ置換アルキルエステル類; シァノメチルァクリレート、 2—シァノ ェチルァクリレ一ト、 2—ェチル一 6—シァノへキシルァクリレートなどのシァ ノ置換アルキルエステル類; 2—ヒドロキシェチルァクリレート、 2—ヒドロキ シェチルメ夕ァクリレートなどのヒドロキシ置換アルキルエステル類;ダリシジ ルァクリレート、 ダリシジルメタクリレートなどのエポキシ置換アルキルエステ ル類; N, N, 一ジメチルアミノエチルァクリレートなどのアミノ置換アルキル エステル類; 1, 1 , 1—トリフルォロェチルァクリレ一トなどのハロゲン置換ァ ルキルエステル類;マレイン酸ジェチルエステル、 フマル酸ジブチルエステル、 ィタコン酸ジブチルエステルなどの多価カルボン酸の完全アルキルエステル類; などが挙げられる。
, |3—エチレン性不飽和二トリル単量体の具体例としては、 ァクリロ二トリ ル、 メタクリロニトリルなどが挙げられる。
ひ, /3—エチレン性不飽和カルボン酸単量体としては、 アクリル酸、 メタクリ ル酸などのモノカルボン酸類;マレイン酸、 フマル酸、 ィタコン酸などの多価力 ルボン酸類;フマル酸モノブチルエステル、 マレイン酸モノブチルエステル、 ィ 夕コン酸モノェチルエステルなどの多価カルボン酸の部分アルキルエステル類; が挙げられる。
ひ, /3—エチレン性不飽和カルボン酸アミド単量体としては、アクリルアミド、 メタクリルアミド、 Ν, Ν ' —ジメチルアクリルアミド、 Ν—ブトキシメチル アクリルアミド、 Ν—ブトキシメチルメタクリルアミド、 Ν—メチロールァクリ ルアミド、 Ν, Ν ' —ジメチロールアクリルアミドなどが挙げられる。
ォレフィン単量体としては、 好ましくは、 炭素数 2〜 1 0を含有する鎖状また は環状のモノォレフィン化合物、 例えば、 エチレン、 プロピレン、 1ーブテン、 シクロペンテン、 2—ノルポルネンなどが例示される。
上記の他、 塩化ビニル、 塩化ビニリデン、 ビニルピリジンなどの単量体が挙げ られる。 上記エチレン性不飽和単量体は、 単独で使用しても、 また、 2種類以上を混合 して使用してもよい。
ゲル構造を効率よく形成するために用いられる架橋性単量体は、 少なくとも 2 個、 好ましくは 2〜4個の、 共役ジェン単量体と共重合し得る炭素一炭素 2重結 合をもつ化合物である。 その具体例として、 ジイソプロぺニルベンゼン、 ジビ ニルベンゼン、 トリイソプロぺニルベンゼン、 トリビニルベンゼンなどの多価ビ ニル芳香族化合物; ァクリル酸ビニル、 メタクリル酸ビニル、 メタクリル酸ァ リルなどのひ, /3—エチレン性不飽和カルボン酸の不飽和エステル化合物;フタ ル酸ジァリル、 シァヌル酸トリァリル、 ィソシァヌル酸トリァリル、トリメリッ ト酸トリアリルなどの多価カルボン酸の不飽和エステル化合物;エチレングリコ —ルジァクリレート、 エチレングリコールジメ夕クリレート、 プロピレングリコ —ルジメタクリレートなどの多価アルコールの不飽和エステル化合物; 1 , 2— ポリブタジエン、 ジビニルエーテル、 ジビニルスルフォン、 Ν, Ν ' — m—フエ 二レンマレイミドなどが挙げられる。
また、 エチレングリコール、 プロピレングリコ一ル、 ブタンジオール、 へキサ ンジオール、 ネオペンチルダリコ一ル、 ビスフエノール Aなどの脂肪族または芳 香族ジオール; 2〜2 0の、 好ましくは 2〜 8のォキシエチレン単位をもつポ リエチレングリコール;グリセリン、 トリメチロールプロパン、 ペン夕エリスリ トール、 ソルビトールなどのポリオ一ル;などの多価アルコールと、 マレイン酸、 フマル酸、 ィタコン酸などの不飽和多価カルボン酸とから製造される不飽和ポリ エステル化合物が挙げられる。 なかでも、 ジビニルベンゼンが好ましい。 ジビニ ルベンゼンには、 オルト体、 メタ体およびパラ体があるが、 単独で使用しても、 これらの混合物を使用してもよい。
本発明の共役ジェン系ゴムゲルの粒子径は、 好ましくは 5〜 1, 0 0 0 nm、 より好ましくは 2 0〜4 0 0 nm、 特に好ましくは 5 0〜 2 0 0 nmである。 因 みに、 この粒子径は、 共役ジェン系ゴムゲルを、 四酸化オスミウムなどで染色固 定した後、 透過型電子顕微鏡などで観察し、 1 0 0個程度のゴムゲル粒子の直径 を計測して得られる重量平均粒子径である。
本発明の共役ジェン系ゴムゲルの製造方法は、 特に限定されるものではなく、 (1) 架橋性単量体を用いて乳ィヒ重合により直接製造する、 (2) 乳化重合反応 を高転化率、 例えば、 転化率 90重量%程度以上まで継続することによりラテツ クス粒子中でゲル構造を生成せしめる、 (3) ?し化重合で製造されたゲル構造を もたないジェン系ゴムラテックス粒子を架橋作用を有する化合物で処理して後架 橋させる、 (4) 溶液重合で得られたゴム重合体の有機溶剤溶液を水中で乳化剤 の存在下に乳化し、 得られた乳化物を、 有機溶剤を除去する前または除去した後 に、 架橋作用を有する化合物で後架橋させるなどの方法によって製造できる。 上 記 (1) 、 (2) および (3) の方法は、 それぞれ単独で採用しても、 また、 組 み合わせて採用してもよい。.
しかしながら、 本発明の共役ジェン系ゴムゲルを効率よく製造するには、 架橋 性単量体を用いて乳化重合により直接製造する方法が好ましい。 乳化重合により 直接製造する場合、 そのトルエン膨潤指数が所望の指数になるように、 架橋性単 量体の使用量、 連鎖移動剤の使用量、 および重合停止時の転化率などを調整すれ ばよい。
架橋性単量体を用いて乳化重合により本発明の共役ジェン系ゴムゲルを製造す る場合、 架橋性単量体の使用量は、 全単量体 100重量%に対して、 通常 0.1 〜1.5重量%、好ましくは 0.1〜1重量%、より好ましくは 0.2〜0.5重量% である。 架橋性単量体を併用して共役ジェン系ゴムゲルを製造する場合、 得られ る共役ジェン系ゴムゲルは、 共役ジェン単量体単位 80〜 98.9重量%、 好ま しくは 83〜94.9重量%、 より好ましくは 86〜89.8重量%、 芳香族ビニ ル単量体単位 19.9〜1重量%、 好ましくは 16.9〜5重量%、 より好ましく は 13.8〜10重量%、その他のエチレン性不飽和単量体単位 0〜19重量%、 好ましくは 0〜5重量%、 より好ましくは 0〜1重量%、 および、 架橋性単量体 単位 0.1〜1.5重量%、 好ましくは 0.1〜1重量%、 より好ましくは 0.2〜 0.5重量%からなる。
ジェン系ゴムラテックス粒子を後架橋させる際に使用する架橋作用を有する化 合物としては、 例えば、 過酸化ジクミル、 過酸化 t—プチルクミル、 ビス一 (t 一ブチル—ペルォキシ一イソプロピル) ベンゼン、 過酸化ジー t_プチル、 過酸 化ベンゾィル、 過酸ィ匕 2, 4—ジクロルベンゾィルおよび過安息香酸 t -ブチル などの有機過酸ィ匕物; ァゾビスィソプチ口二
サン二トリルなどの有機ァゾィヒ合物;ジメルカプトェタン, 1, 6—ジメルカプ トへキサン、 1 , 3, 5—トリメルカプトトリアジンなどのジメルカプト化合物ま たはポリメルカプト化合物;などが挙げられる。 なかでも、 有機過酸化物が好ま しい。
後架橋させる際の反応条件は、 これらの架橋作用を有する化合物の反応性およ び添加量に依存するが、 常圧〜高圧 (約 I M P a程度) の反応圧力、 室温〜 1 7 0 °C程度の反応温度、 および 1分〜 2 4時間程度の反応時間が適宜選択される。 所望のトルエン膨潤指数が得られるよう、 架橋作用を有する化合物の種類、 その 添加量および反応条件などを調整する。
共役ジェン系ゴムの製造方法
本発明の共役ジェン系ゴムの製造方法は、 (1 ) 芳香族ビニル単量体を用いな いか、 または少量用いて乳化共重合を行ない、 共役ジェン系ゴムゲルを製造する 方法; すなわち、 共役ジェン単量体 5 0〜 9 9 . 9重量%、 芳香族ビニル単量体 0〜3 0重量%、 その他のエチレン性不飽和単量体 0〜 2 0重量%、 および架橋 性単量体 0 . 1〜2 0重量%からなる単量体混合物を乳化共重合して、 トルエン 膨潤指数が 7 0以下である共役ジェン系ゴムゲルを得る方法 (以下、 第 1の製造 方法という) 、 および (2 ) 比較的多量の芳香族ビニル単量体を用いて乳化共重 合を行ない、 共役ジェン系ゴムを得る方法;すなわち、 共役ジェン単量体 1 5〜 6 9 . 8重量%、 芳香族ビュル単量体 3 0 . 1〜6 5重量%、 その他のエチレン性 不飽和単量体 0〜2 0重量%、 および架橋性単量体 0 . 1〜2 0重量%からなる 単量体混合物を乳化共重合して共役ジェン一芳香族ビエル共重合ゴムを製造する 方法 (以下、 第 2の製造方法という) を含む。
先ず、 第 1の製造方法について詳細に説明する。
第 1の製造方法おける単量体組成は、共役ジェン単量体 5 0〜 9 9 · 9重量%、 好ましくは 7 0 - 9 4. 9重量%、 より好ましくは 7 4〜8 9 . 9重量%、 特に好 ましくは 7 9 . 5〜8 5 . 8重量%、 芳香族ビニル単量体 0〜3 0重量%、 好まし くは 5〜2 8重量%、 より好ましくは 1 0〜2 5重量、 特に好ましくは 1 4〜2 0重量%、 その他のエチレン性不飽和単量体 0〜 2 0重量%、 好ましくは 0〜 5 重量%、より好ましくは 0〜1重量%、および架橋性単量体 0 . 1〜2 0重量%、 好ましくは 0 . 1〜2重量%、 より好ましくは 0 . 1〜1重量%、 特に好ましくは 0 . 2 - 0 . 5重量%からなる。
共役ジェン単量体の量が少ないとゴム架橋物の機械的特性に劣り、 多いとゴム 架橋物の耐摩耗性に劣る。 芳香族ビニル単量体の量が少ないとゴム架橋物の耐摩 耗性に劣り、 多いとゴム架橋物の低発熱性に劣る。 任意成分であるその他のェチ レン性不飽和単量体の量が多いと機械的特性、 耐摩耗性および低発熱性を兼備し たゴム架橋物が得難くなる。 架橋性単量体の量が少ないとゴム架橋物の耐摩耗性 および低発熱性に劣り、 多いと補強材を配合したゴム組成物においてム一ニー粘 度が上昇して加工性が低下したり、 ゴム架橋物の耐摩耗性が低下する。
共役ジェン単量体、 芳香族ピニル単量体、 その他のエチレン性不飽和単量体お よび架橋性単量体は、 それぞれ、 前述のものと同様である。
乳化共重合を行う場合、 その手法および条件は特に限定されないが、 従来か ら乳化重合において使用されている乳化剤、 重合開始剤、 連鎖移動剤、 重合停止 剤および老化防止剤などが使用できる。
乳化剤としては、 特に限定されないが、 脂肪酸石けんおよびロジン酸石けんな どが用いられる。 具体例としては、 脂肪酸石けんは、 炭素数 1 2〜1 8個の長鎖 状脂肪族カルボン酸、 例えばラウリン酸、 ミリスチン酸、 パルミチン酸、 ステア リン酸、 ォレイン酸などおよびこれらの混合脂肪族カルボン酸のナトリウム塩ま たはカリウム塩から選択される。 また、 ロジン酸石けんはガムロジン、 ウッド口 ジンまたは] ^一ル油ロジンなどの天然ロジンを不均化または水添したもののナト リゥム塩または力リゥム塩から選択される。 乳化剤の使用量は特に制限されない が、 通常は、 単量体 1 0 0重量部当り、 0 . 0 5〜1 5重量部、 好ましくは 0 . 5 〜1 0重量部、 より好ましくは 1〜5重量部である。
重合開始剤としては、 過酸化水素、 有機過酸化物、 過硫酸塩、 有機ァゾ化合物 およびこれらと硫酸第 2鉄とソジゥム ·ホルムアルデヒド ·スルホキシレートと からなるレドックス系重合開始剤などが挙げられる。
有機過酸化物の具体例としては、 過酸化ジクミル、 過酸化 t一プチルクミル、 ビス— (t一プチルーペルォキシ一イソプロピル) ベンゼン、 過酸化ジー t—ブ チル、 過酸化べンゾィル、 過酸化 2, 4ージクロルベンゾィルおよび過安息香酸 t一ブチルなどが挙げられる。 過硫酸塩としては、 過硫酸アンモニゥム、 過硫酸 ナトリゥムおよび過硫酸力リゥムなどが挙げられる。 有機ァゾ化合物の具体例と しては、 ァゾビスィソブチロニトリルおよびァゾビスシク口へキサン二トリルな どが挙げられる。 重合開始剤の使用量は、 通常、 単量体 1 0 0重量部に対して、 0 . 0 0 1〜1重量部程度であり、 所望の反応温度において、 所望の反応速度な どが得られるよう適宜調整すればよい。
連鎖移動剤としては、 2, 4 , 4—トリメチルペンタン _ 2—チオール、 2 , 2 , 4 , 6 , 6—ペンタメチル—ヘプタン一 4ーチオール、 2 , 2 , 4 , 6, 6, 8, 8—へ プ夕メチル—ノナン— 4—チオール、 t—ドデシルメルカブタン、 tーテトラ デシルメルカブタンなどのメルカブタン類; ジメチルキサントゲンジスルフィ
テトラェチルチウラムジスルフィド、 テトラプチルチウラムジスルフィドなどの チウラムジスルフィド類;四塩化炭素、 臭化工チレンなどのハロゲン化炭化水素
S;ペン夕フエニルェタンなどの炭化水素類;および夕一ピノーレン、 α—テ ルピネン、 了一テルピネン、 ジペンテン、 α—メチルスチレンダイマ一 ( 2 - 4 —ジフエ二ルー 4ーメチル— 1一ペンテンが 5 0重量%以上のものが好ましい)、 2 , 5—ジヒドロフランなどを挙げることができる。 これらの連鎖移動剤は、 単 独でまたは 2種類以上を組み合せて使用することができる。 連鎖移動剤の使用量 は、 通常、 単量体混合物 1 0 0重量部に対し、 3重量部以下、 好ましくは 0 . 0 5〜1重量部、 より好ましくは 0 . 1〜0 . 6 S量部である。
重合停止剤は、 特に限定されないが、 従来から常用されているヒドロキシルァ ミン、 ジメチルジチ才力ルバミン酸ナトリウム、 ジェチルヒドロキシァミン、 ヒ ドロキシァミンスルホン酸およびそのアルカリ金属塩などのアミン構造を有する 重合停止剤; ヒドロキシジメチルベンゼンジチォカルボン酸、 ヒドロキシジェチ ルベンゼンジチォカルボン酸、 ヒドロキシジブチルベンゼンジチォカルボン酸な どの芳香族ヒドロキシジチ才力ルボン酸およびこれらのアルカリ金属塩などのァ ミン構造を有さない重合停止剤;ハイドロキノン誘導体およびカテコール誘導体 などが挙げられる。 これらの重合停止剤は、 単独でまたは 2種類以上を組み合せ て使用することができる。重合停止剤の使用量は、特に限定されないが、通常は、 単量体 100重量部に対して 0.1〜10重量部である。
老化防止剤としては、 2, 6—ジー t e r t—ブチルー 4 _メチルフエノール、 2, 6ージ一 t e r t—プチルー 4一ェチルフエノールなどのヒンダートフエノ —ル化合物;ジフエ二ルー p—フエ二レンジァミン、 N—イソプロピル一N' 一 フエ二ルー p—フエ二レンジアミンなどのヒンダートアミン化合物などが挙げら れる。 老化防止剤の使用量は、 通常、 乳化重合により生成した重合体 100重量 部に対して、 0.05〜5重量部程度である。
乳化重合する際の単量体と水との比 (単量体 Z水の重量比) は、 通常、 5/9 5〜50 50、 好ましくは 10Z90〜40 60、 より好ましくは 20/8 0〜35/65である。 単量体の比率が高いと、 凝固物が発生したり、 反応熱の 除熱が困難になり、 低いと生産性に劣る。
重合温度は、 通常、 — 5〜80°C、 好ましくは 0〜60° (:、 より好ましくは 3 〜30°C、 特に好ましくは 5〜15°Cである。 重合温度が低いと経済性および生 産性に劣り、 高いとゴム架橋物の耐摩耗性および低発熱性に劣る。
重合反応を停止する際の転化率は、 好ましくは 50〜90%、 より好ましくは 60〜85%、 特に好ましくは 65〜80%である。 この転化率が低いと生産性 に劣り、 高いとゴム架橋物の耐摩耗性および低発熱性に劣る。 特に、 重合温度が 3〜30°Cであり、 かつ、 重合反応を停止する際の転化率が 60〜 85%である ことが好ましい。
乳化共重合により共役ジェン系ゴムゲルを製造する場合、 通常の乳化重合の手 法により重合を行い、 所定の転ィヒ率に達した時点で重合停止剤を添加して重合反 応を停止する。 次いで、 所望により、 老化防止剤を添加した後、 残存単量体を加 熱や水蒸気蒸留などによって除去し、 塩化カルシウム、 塩化ナトリウム、 硫酸ァ ルミニゥムなどの無機塩からなる凝固剤、 高分子凝集剤あるいは感熱凝固剤など の通常の乳化重合で使用される凝固剤を加え、 ラテックスを凝固、 回収する。 回 収された共重合体を水洗、 乾燥し、 目的とする共役ジェン系ゴムゲルを得る。 ラ
,を凝固する際に伸展油を添加して、油展されたものとして得ることもで" きる。
この共役ジェン系ゴムゲルからなるラテックスを凝固する前に、 所望により、 ゲル構造を実質的にもたないゴムラテックスまたは本発明における共役ジェンゴ ムゲル以外のゴムゲルラテックスを混合してもよい。 このラテックス混合物を凝 固、 回収、 そして乾燥して得られるゴム組成物は、 所定量の共役ジェン系ゴムゲ ルを含有する。
本発明の共役ジェン系ゴムゲルの製造方法によって得られる重合体の組成は、 仕込み単量体混合物組成および重合反応を停止する際の転化率に依存して変動す る。 これは、 通常、 各単量体の乳化共重合における反応性が異なるためである。 'しかしながら、 その重合体組成は、 予め、 仕込み単量体混合物組成および重合反 応を停止する際の転化率を決定することで調整できる。
また、 得られた共役ジェン系ゴムゲルの重合体組成は、 NMR分析、 赤外吸収 スぺクトル分析、 紫外吸収スぺクトル分析、 元素分析および屈折率測定による分 析などを単独で、 または組み合わせて採用することにより決定できる。 ただし、 少量のジビニルベンゼン結合単位を有するスチレン—ブ夕ジェン共重合ゴムゲル である場合は、ジビニルベンゼン結合単位量を決定するのが非常に困難であるが、 重合停止後の重合反応系内における未反応単量体量を測定し、 その値と仕込みの 単量体量から計算して求めることができる。
共役ジェン系ゴムゲルの粒子径は、 乳化共重合を行う際の単量体ノ水の比、 乳 化剤の種類と量、 および重合開始剤の種類と量、 および重合温度などで調整でき る。
共役ジェン系ゴムゲルのトルエン膨潤指数は、 架橋性単量体量、 連鎖移動剤量 および重合停止を行う際の転化率などで調整できる。 第 1の製造方法によれば、 7 0以下のトルエン膨潤指数を有する共役ジェン系ゴムゲルが容易に、 生産性よ く製造できる。
次に、 第 2の製造方法について説明する。
第 2の製造方法おける単量体組成は、共役ジェン単量体 1 5〜6 9 . 8重量%、 好ましくは 3 3〜6 4. 9重量%、 より好ましくは 3 9〜5 4. 8重量%、 特に好 ましくは 4 1 . 4〜5 1 · 7重量%、 芳香族ビニル単量体 3 0 . 1 - 6 5重量%、 好ましくは 3 5 ~ 6 2重量%、 より好ましくは 4 5〜6 0重量%、 特に好ましく は 4 8〜5 8重量%、 その他のエチレン性不飽和単量体 0〜 2 0重量%、 好まし くは 0〜5重量%、 より好ましくは 0〜1重量%、 および架橋性単量体 0 . 1〜 2 0重量%、 好ましくは 0 . 1〜5重量%、 より好ましくは 0 . 2〜1重量%、 特 に好ましくは 0 . 3〜0 . 6重量%である。
共役ジェン単量体の使用量が少ないか、 または芳香族ピニル単量体の使用量が 多いと得られる共重合ゴムのガラス転移温度が高くなりゴムとして好ましくなく、 逆の場合は、 得られる共重合ゴムをタイヤの構成材料として使用した際にダリッ プ性能を向上させる効果に劣つたり、 架橋ゴムの硬さが高くなりすぎたりする。 その他のェチレン性不飽和単量体の使用量が多いと、 好ましい諸特性を兼備した ゴムが得難い。 架橋性単量体の使用量が少ないと、 凝固性に劣り、 またクラムが 固着しやすく、 逆に多いと、 架橋性単量体はその沸点が高い場合が多いので、 未 反応で残留する架橋性単量体を除去することが極めて困難となる。
共役ジェン単量体、 芳香族ビニル単量体、 その他のエチレン性不飽和単量体お よび架橋性単量体は、 特に限定されることはなく、 第 1の製造方法におけると同 様である。
乳化共重合に際し使用する乳化剤、 重合開始剤、 連鎖移動剤、 重合停止剤およ び老化防止剤など、 ならびに、 乳化共重合の手法および条件も第 1の製造方法に ついて説明したものと同様でよい。
第 2の製造方法においては、 特に、 重合温度が— 5〜8 0 °Cであり、 かつ、 重 合反応を停止する際の転化率が 5 0〜9 0 %であることが好ましい。
なお、 クラムが固着し難く、 凝固性に優れた共重合ゴムを製造するという第 2 の製造方法の目的からみると、 重合温度および重合反応を停止する際の転化率が 高いと、 所望のラテックス粒子径よりも大きな粗大凝集物が発生し、 得られた共 重合ゴムを用いたゴム架橋物の機械的強度を低下させる場合があるので注意を要 する。
次に、 第 2の製造方法における凝固の手法について説明する。
凝固剤としては、 通常使用されている、 無機金属塩、 高分子凝集剤および感熱 凝固剤などが使用できる。 無機金属塩としては、 例えば、 塩化ナトリウム、 塩化 カリウム、 硝酸ナトリウム、 硫酸ナトリウム、 炭酸ナトリウムなどの一価の金属 塩;塩化カルシウム、 塩化マグネシウム、 硫酸カルシウム、 硫酸マグネシウムな どの二価の金属塩;塩化アルミニウム、 硝酸アルミニウム、 硫酸アルミニウムな どの三価の金属塩;などが挙げられる。 なかでも、 塩化カルシウムが好ましい。 その使用量は、 ラテックス中の共重合体ゴム成分 1 0 0重量部に対して、通常 1〜1 0 0重量部、 好ましくは 1〜5 0重量部、 より好ましくは 2〜1 0重量部 である。
高分子凝集剤としては、 例えば、 非イオン性、 ァニオン性またはカチオン性の アクリルアミド系重合体、 ァニオン性のアクリル酸系重合体のアルカリ金属塩、 カチオン性の縮合型樹脂などが挙げられる。 なかでも、 カチオン性の縮合型樹脂 が好ましい。 その使用量は、 ラテックス中の共重合体ゴム成分 1 0 0重量部に対 して、 通常 0 . 0 5〜1 0重量部、 好ましくは 0 . 2〜5重量部、 より好ましくは 0 . 4〜 2重量部である。
感熱凝固剤としては、 例えば、 アルキルフエノールーホルマリン縮合物のポリ ォキシエチレン付加物、 ポリオキシプロピレン付加物およびポリ (ォキシェチレ ン—ォキシプロピレン) 付加物;ポリオキシエチレンアルキルエーテル、 ポリオ キシエチレン脂肪酸エステル、 ポリオキシエチレンソルビタン脂肪酸エステル、
(ォキシエチレン一ォキシプロピレン) ブロック重合体などが挙げられる。 なか でも、 アルキルフエノールーホルマリン縮合物のポリ (ォキシエチレン—ォキシ プロピレン) 付加物が好ましい。 その使用量は、 ラテックス中の共重合体ゴム成 分 1 0 0重量部に対して、 通常 0 . 0 1〜5重量部、 好ましくは 0 . 0 5〜2重量 部である。
これらの凝固剤は、 単独で使用しても、 併用して使用してもよく、 感熱凝固剤 を使用する場合は、 無機金属塩を併用することが好ましい。
凝固の際には、 上記の凝固剤に加えて、 塩酸、 硝酸、 硫酸などの無機酸、 酢酸、 アルキル硫酸などの有機酸を添加することが好ましい。 なかでも硫酸がより好ま しい。 これらの酸を添加して、 p Hを好ましくは酸性、 より好ましくは p H 2〜 5に調製すると、 凝固性がより改善される点で好ましい。 上記の凝固剤や酸は、 凝固する際のラテックス 1 0 0重量部に対して、 好ましくは 1〜2 0倍量、 より 好ましくは 2〜 1 5倍量、 特に好ましくは 3〜 1 0倍量の水に溶解した状態で使 用することが好ましい。 この水の量が少ないとクラム内部に未凝固のラテックス が残留する場合があり、 逆に多いと凝固し難くなる場合がある。
凝固する際のラテックス固形分濃度は、 好ましくは 1〜3 0重量%、 より好ま しくは 3〜2 0重量%、 特に好ましくは 5〜1 5重量%である。 この濃度が低す ぎると生産性に劣り、 逆に高すぎるとクラム内部に未凝固のラテックスが残留す る不具合が発生する場合がある。 凝固する際の温度は、 通常、 1 0〜1 0 0 °C、 好ましくは 4 0〜9 0 °C、 より好ましくは 5 0〜8 0 °Cである。 凝固方法は、 通 常、 所定濃度の凝固剤や酸を溶解した水溶液に、 所定濃度のラテックスを添加す る方法が採用され、 回分式でも連続式であってもよい。
第 2の製造方法によつて、 芳香族ビニル単量体単位量が好ましくは 3 5〜 5 5重量%、 より好ましくは 4 0〜 5 0重量%の範囲にあり、 かつ、 ムーニー粘度 が好ましくは 3 0〜3 0 0、 より好ましくは 4 0〜2 5 0、 特に好ましくは 5 0 〜2 0 0である共役ジェン一芳香族ビニル共重合体ゴムが容易に製造される。 この共役ジェン一芳香族ビニル共重合体ゴムは、 例えば、 タイヤ、 ケーブル被 覆剤、 ホース、 トランスミッションベルト、 コンベアベルト、 ロールカバ一、 靴 底、 シール用リング よび防振ゴムのゴム原料として、 また、 樹脂の衝撃強度改 良剤、 接着剤の添加剤および工作用具における研磨材の粘結剤などとして使用で きる。
ゴム組成物
本発明のゴム組成物は、 前述の共役ジェン系ゴムゲル、 すなわち、 共役ジェン 単量体単位 8 0〜 9 9重量%および芳香族ビニル単量体単位 2 0〜 1重量%から なり、 トルエン膨潤指数 1 6〜 7 0である共役ジェン系ゴムゲルと、 硫黄で架橋 し得るゴムとを含有する組成物である。 共役ジェン系ゴムゲルの好ましい単量体 組成およびトルエン膨潤指数は、 前述のとおりである。
硫黄で架橋し得るゴムは、 特に限定されないが、 通常、 少なくとも 2、 好まし くは 5〜4 7 0のヨウ素価に相当する二重結合を含有するものが用いられる。 ョ ゥ素価は、 一般的に、 氷酢酸中で塩化沃素を添加して定量し、 ある物質 1 0. 0 g に対して化学結合したヨウ素のグラム数で表わされる。 また、 硫黄で架橋し得る ゴムのム一二一粘度 (ML 1 + 4, 1 0 0 °C) は、 通常 1 0〜1 5 0、 好ましく は 2 0〜1 2 0である。
硫黄で架橋し得るゴムの具体例としては、 天然ゴム、 合成ポリイソプレン、 ポ リブタジエン、 アクリル酸アルキルエステル一ブタジエン共重合体、 スチレン— ブタジエン共重合体、 スチレン一イソプレン共重合体、 スチレン一イソプレン一 ブタジエン共重合体、 アクリロニトリル—ブタジエン共重合体、 ァクリロ二トリ ル一ブ夕ジェン共重合体の部分水素添加物、 イソブチレン一イソプレン共重合体 ならびにエチレン一プロピレン—ジェン共重合体、 およびそれらの混合物が挙げ られる。 また、 これらのゴムは予め伸展油によって油展されたものであってもよ い。
なかでも、 天然ゴム、 合成ポリイソプレン、 乳化重合または溶液重合によって 製造されるスチレン単位:!〜 6 0重量%、 好ましくは 2 0〜5 5重量%、 より好 ましくは 2 5〜5 0重量%を含有するスチレン—ブタジエン共重合体、 高いシス - 1 , 4結合含量、 例えば、 9 0重量%以上を有するポリブタジエンおよびそれ らの混合物が好ましく、 天然ゴム、 合成ポリイソプレン、 スチレン一ブタジエン 共重合体およびそれらの混合物が特に好ましい。
本発明のゴム組成物における共役ジェン系ゴムゲルと硫黄で架橋し得るゴムと の比は、 重量比で、 1ノ9 9〜5 0 / 5 0が好ましく、 より好ましくは 5ノ9 5 〜4 0 Z 6 0、 特に好ましくは 1 0 / 9 0〜3 0 7 0である。 共役ジェン系ゴ ムゲルの比率が少ないとゴム架橋物の耐摩耗性に劣り、 多いとゴム架橋物の伸び が低下したり、 ゴム架橋物の低発熱性に劣る。
本発明のゴム組成物は、 補強材および必要に応じてその他の配合剤を含有する ことができる。 補強材としては、 カーボンブラックやシリカなどを配合すること が好ましい。
力一ボンブラックとしては、 ファーネスブラック、 アセチレンブラック、 サ一 マルブラック、 チャンネルブラック、 グラフアイトなどを用いることができる。 これらのカーボンブラックは、 それぞれ単独で、 あるいは 2種以上を組み合わせ て用いることができる。
カーボンブラックの比表面積は、 特に限定されないが、 窒素吸着比表面積 (N 2SA) の下限は好ましくは 5m2/g、 より好ましくは 50m2Zg、 上限は好 ましくは 200m2Zg、 より好ましくは 10 Om2Zgである。 窒素吸着比表面 積がこの範囲であると、 機械的特性および耐摩耗性に優れるので好適である。 ま た、 力一ポンプラックのジブチルフ夕レート (DBP) 吸着量は、 その下限は好 ましくは 5m 1/100 g、 より好ましくは 5 Om 1 Zl 00 g、 上限は好まし くは 40 Om 1Z100 g、 より好ましくは 20 Om 1 / 100 gである。 DB P吸着量がこの範囲である場合には、 機械的特性および耐摩耗性に優れるので好 適であ 。
シリカとしては、 特に限定されないが、 乾式法ホワイトカーボン、 湿式法ホヮ イトカーボン、 コロイダルシリカ、 および特開昭 62— 62838号公報に開示 されている沈降シリカなどが挙げられる。 これらの中でも、 含水ゲイ酸を主成分 とする湿式法ホワイトカ一ボンが好ましい。 これらのシリカは、それぞれ単独で、 あるいは 2種以上を組み合わせて用いることができる。
シリカの比表面積は、 窒素吸着比表面積 (BET法) で、 通常、 400m2/ g以下のものが使用される。 なお、 窒素吸着比表面積は、 ASTMD3037— 81に準じ BET法で測定される値である。 シリカの pHは、 pH7.0未満で あることが好ましく、 pH5.0〜6.9であることがより好ましい。
本発明のゴム組成物が補強材としてシリ力を含有する場合は、 シラン力ップリ ング剤を添加すると、 低発熱性および耐摩耗性がさらに改善されるので好適であ る。
シランカップリング剤は、 特に限定されないが、 ビニルトリエトキシシラン、 β— (3, 4一エポキシシクロへキシル) ェチルトリメトキシシラン、 Ν— ( 一アミノエチル) 一ァ—アミノプロビルトリメトキシシラン、 ビス (3— (トリ エトキシシリル) プロピル) テトラスルフイド、 ビス (3— (トリエトキシシリ ル) プロピル) ジスルフィドなどや、 特開平 6— 248116号公報に記載され
スルフィド類などを挙げることができる。 混練時のスコーチを避けられる点で、 剤は、 一分子中に含有される硫黄が 4個以下のものが好まし い。
これらのシランカップリング剤は、 それぞれ単独で、 あるいは 2種以上を組み 合わせて使用することができる。 シリカ 1 0 0重量部に対するシランカツプリン グ剤の配合量の下限は好ましくは 0 . 1重量部、 より好ましくは 1重量部、 特に 好ましくは 2重量部、 上限は好ましくは 3 0重量部、 より好ましくは 2 0重量 部、 特に好ましくは 1 0重量部である。
補強材の配合量の下限は、 共役ジェン系ゴムゲルと硫黄で架橋し得るゴムとの 合計 (全ゴム成分) 1 0 0重量部に対して、 好ましくは 1 0重量部、 より好まし くは 2 0重量部、特に好ましくは 3 0重量部、上限は好ましくは 2 0 0重量部、 より好ましくは 1 5 0重量部、 特に好ましくは 1 0 0重量部である。
本発明のゴム組成物において、 補強材としてシリカとカーボンブラックとを併 する場合、 その混合割合は、 用途や目的に応じて適宜選択されるが、 シリカ:力 —ボンブラックの重量比で、 1 0 : 9 0〜9 9 : 1が好ましく、 2 0 : 8 0〜9 5 : 5がより好ましく、 3 0 : 7 0〜 9 0 : 1 0が特に好ましい。
本発明のゴム組成物には、 上記成分以外に、 常法に従って、 架橋剤、 架橋促進 剤、 架橋活性化剤、 老化防止剤、 活性剤、 プロセスオイル、 可塑剤、 滑剤、 充填 剤などの補強材以外の配合剤をそれぞれ必要量含量することができる。
架橋剤としては、 特に限定されないが、 粉末硫黄、 沈降硫黄、 コロイド硫黄、 不溶性硫黄、 高分散性硫黄などの硫黄;一塩化硫黄、 二塩化硫黄などのハロゲン 化硫黄;ジクミルパーォキシド、 ジターシャリブチルパーォキシドなどの有機過 酸化物; P—キノンジォキシム、 Ρ , Ρ ' —ジベンゾィルキノンジォキシムなど のキノンジォキシム; トリエチレンテトラミン、 へキサメチレンジァミン力ルバ メ一ト、 4 , 4, 一メチレンビス一 0 _クロロア二リンなどの有機多価アミン化 合物;メチロール基をもったアルキルフエノール樹脂;などが挙げられ、 これら の中でも、 硫黄が好ましく、 粉末硫黄が特に好ましい。 これらの架橋剤は、 それ ぞれ単独で、 あるいは 2種以上を組み合わせて用いられる。
全ゴム成分 1 0 0重量部に対する架橋剤の配合量の下限は好ましくは 0 . 1重 量部、 より好ましくは 0 . 3重量部、 特に好ましくは 0 . 5重量部、 上限は好まし くは 1 5重量部、 より好ましくは 1 0重量部、 特に好ましくは 5重量部である。 架橋剤の配合量がこの範囲にある時に、 低発熱性、 機械的特性および耐摩耗性に 優れる。
架橋促進剤としては、 N—シクロへキシル— 2—べンゾチアゾ一ルスルフェン アミド、 N _ t—ブチルー 2一べンゾチアゾールスルフェンアミド、 N—才キシ エチレン一 2一べンゾチアゾールスルフェンアミド、 N—ォキシエチレン— 2— ベンゾチアゾ一ルスルフェンアミド、 N, N, ージイソプロピル— 2 _ベンゾチ ァゾ一ルスルフェンアミドなどのスルフェンアミド系架橋促進剤;ジフエニルダ ァニジン、 ジオルトトリルグァニジン、 オルトトリルビグァニジンなどのグァニ ジン系架橋促進剤;ジェチルチオゥレアなどのチォゥレア系架橋促進剤; 2—メ ルカプトべンゾチアゾ一ル、 ジベンゾチアジルジスルフイド、 2—メルカプトべ ンゾチアゾール亜鉛塩などのチアゾール系架橋促進剤;テトラメチルチウラムモ ノスルフィド、 テトラメチルチウラムジスルフィドなどのチウラム系架橋促進 剤;ジメチルジチ才力ルバミン酸ナトリウム、 ジェチルジチ才力ルバミン酸亜鉛 などのジチォ力ルバミン酸系架橋促進剤;イソプロピルキサントゲン酸ナトリウ ム、 イソプロピルキサントゲン酸亜鉛、 プチルキサントゲン酸亜鉛などのキサン トゲン酸系架橋促進剤;などの架橋促進剤が挙げられる。
これらの架橋促進剤は、 それぞれ単独で、 あるいは 2種以上を組み合わせて用 いられるが、 スルフェンアミド系架橋促進剤を含むものが特に好ましい。 全ゴム 成分 1 0 0重量部に対する架橋促進剤の配合量の下限は好ましくは 0 . 1重量部、 より好ましくは 0 . 3重量部、 特に好ましくは 0 . 5重量部、 上限は好ましくは 1 5重量部、 より好ましくは 1 0重量部、 特に好ましくは 5重量部である。
架橋活性化剤としては、特に限定されないが、ステアリン酸などの高級脂肪酸、 および酸化亜鉛などを用いることができる。 酸化亜鉛としては、 表面活性の高い 粒度 5 以下のものを用いることが好ましく、 粒度が 0 . 0 5〜0 . 2 mの活 性亜鉛華および 0 . 3〜1 mの亜鉛華などを挙げることができる。 また、 酸化 亜鉛は、 ァミン系の分散剤または湿潤剤で表面処理したものなどを用いることが できる。
これらの架橋活性化剤は、 それぞれ単独で、 あるいは 2種以上を併用して用い ることができる。 架橋活性化剤の配合割合は、 架橋活性化剤の種類により適宜選 択される。 全ゴム成分 1 0 0重量部に対する高級脂肪酸の添加量の下限は好ま しくは 0 . 0 5重量部、 より好ましくは 0 . 1重量部、 特に好ましくは 5重量部、 上限は好ましくは 1 5重量部、 より好ましくは 1 0重量部、 特に好ましくは 5 重量部である。 全ゴム成分 1 0 0重量部に対する酸化亜鉛の添加量の下限は好 ましくは 0 . 0 5重量部、 より好ましくは 0 . 1重量部、 特に好ましくは 0 . 5重 量部、 上限は好ましくは 1 0重量部、 より好ましくは 5重量部、 特に好ましくは 2重量部である。 架橋活性化剤の配合量がこの範囲にある時に、 未加硫ゴム組成 物の加工性、 機械的特性および耐摩耗性などに優れるので好適である。
さらに、 例えば、 ジエチレングリコール、 ポリエチレングリコール、 およびェ ポキシ基やアルコキシシリル基などの官能基を有するシリコーンオイルなどの活 性剤;炭酸カルシウム、 タルク、 クレーなどの充填剤;ワックスなどが挙げられ る。
本発明のゴム組成物は、 本発明の効果を損なわない範囲において、 共役ジェン 単位を有さない、 ェピクロロヒドリン、 エチレンオキサイド、 プロピレンォキサ ィドおよびァリルダリシジルエーテルから選ばれる少なくとも 1つの単量体の単 独重合体または共重合体、 アクリルゴム、 フッ素ゴム、 シリコンゴム、 エチレン —プロピレンゴムおよびウレタンゴムなどを含んでもよい。
本発明のゴム組成物は、 常法に従って各成分を混練することにより得ることが できる。 例えば、 架橋剤と架橋促進剤を除く配合剤とゴム成分を混練後、 その混 練物に架橋剤と架橋促進剤を混合してゴム組成物を得ることができる。 架橋剤と 架橋促進剤と除く配合剤とゴム成分の混練温度の下限は好ましくは 8 0 °C, よ り好ましくは 1 0 0 °C、特に好ましくは 1 2 0 °C,上限は好ましくは 2 0 0 °C、 より好ましくは 1 9 0 ° (:、 特に好ましくは 1 8 0 である。 架橋剤と架橋促進剤 とを除く配合剤とゴム成分との混練時間の下限は、 好ましくは 3 0秒、 より好ま しくは 1分、 上限は好ましくは 3 0分である。 架橋剤と架橋促進剤の混合は、 通常 1 0 0 °C以下、 好ましくは 8 0 °C以下まで冷却後に行われる。
本発明のゴム組成物は、 通常、 ゴム架橋物として使用される。
架橋方法は、 特に限定されず、 架橋物の形状、 大きさなどに応じて選択すれば よい。 金型中に架橋性ゴム組成物を充填して加熱することにより成形と同時に架 橋してもよ 予め成形しておいた未架橋ゴム組成物を加熱して架橋してもよい。 架橋温度は、 好ましくは 1 2 0〜2 0 0 °C、 より好ましくは 1 4 0〜1 8 0 °Cで あり、 架橋時間は、 通常、 1〜: 1 2 0分程度である。
以下に実施例をあげて、 本発明を具体的に説明する。 なお、 製造例、 実施例お よび比較例における部および%は、 特に断りのない限り、 重量基準である。
ゴム原料成分、 ゴム組成物およびゴム架橋物の特性は以下のように測定した。
( 1 ) 凝固性: 水を加えて固形分濃度 1 0 %に調製したラテックス 1 0 0部 を、 通常の条件として、 塩化カルシウム 0 . 0 6部および高分子凝集剤 (力チォ ン性縮合型樹脂:ハイセット C A, 第一工業製薬 (株) 製) 0 . 0 0 6部を溶解 した水溶液 3 0 0部を入れた凝固槽に、 攪拌混合しながら、 徐々に加えて凝固し た。 なお、 凝固槽内の温度は、 5 5〜6 5 °Cの範囲で制御し、 5 %の硫酸水溶液 を適宜添加することで、 凝固槽内の p Hを 2〜3の範囲で制御した。 凝固性は、 凝固の状態を観察して、 以下の指数で示す。 指数が高いほど凝固性に優れる。
1:塩化カルシウムおよび高分子凝集剤を 1 . 5倍量に増量して凝固しても、 クラムサイズが大きくなり、 白濁も激しい。
2 :クラムサイズが大きく、 少し白濁している。
3 :クラムサイズが良好で、 白濁は徐々になくなる。
4 :塩ィ匕カルシウムおよび高分子凝集剤を 0 . 7倍量に減量して凝固しても、 クラムサイズが良好で、 白濁もほとんどない。
5 :塩ィ匕カルシウムを使用しなくても、 クラムサイズが良好で、 白濁もほ とんどない。
( 2 ) クラム固着性: 凝固性の判定における通常の条件で凝固し、 クラム固 着性は、 凝固の状態を観察し、 以下の指数で示す。 指数が高いほど、 クラム固着 性に優れる。
1 :クラムが攪拌回転部分および槽壁に固着堆積し、 また、 肥大化したク ラムが沈殿し槽底部に溜まる。
2 :クラムが攪拌回転部分および槽壁に若千固着し、 やや肥大化したクラ ムが多数存在する。
3 :やや肥大化したクラムが存在するが、 攪拌回転部分および槽壁への固 着はほとんどない。
4:クラムサイズも良好で、攪拌回転部分および槽壁への固着は全くない。
(3) ゴムゲル粒子の粒子径: 固形分濃度が 0.01 %程度になるように水 で希釈した共役ジェン系ゴムゲルのラテックスを透過型電子顕微鏡で観察するた めのメッシュ上に滴下した後、四酸化オスミウム蒸気により染色固定し、次いで、 水分を蒸発させて観察サンカレとした。 観察サンプルを透過型電子顕微鏡にて 2 〜 5万倍の倍率で観察し、 100個の粒子の直径 (単位: nm) を計測し、 その 値から重量平均粒子径を求めた。
(4) スチレン単位量: 共重合体中に結合しているスチレン単位量は、 J I S K 6383に準じて測定した。 ただし、 ジビエルベンゼンを共重合した共重 合体においては、 結合したジビニルベンゼン単位も測定上スチレン単位量に含ま れる。
(5) トルエン JJ彭潤指数: サンプルゴム 25 Omgをトルエン 25m 1中で 24時間振とうして膨潤させる。 膨潤したゲルを遠心分離機により、 430, 0 0 Om/sec2の遠心力がかかる条件で遠心分離し、 膨潤したゲルを湿潤状態で 秤量し、 次いで 70°Cで恒量になるまで乾燥し、 乾燥後のゲルを再秤量した。 湿 潤状態でのゲル重量 Z乾燥後のゲルの重量としてトルエン膨潤指数を求めた。
(6) ムーニー粘度: 原料ゴムのム一二一粘度 (ML1+4, 100°C) は、 J I S K 6300に準じて測定した。
(7) ゴム架橋物の機械的特性: ゴム架橋物の引張強さおよび伸びは、 J I S Κ 6301に準じて測定した。
(8) 耐摩耗指数: J I S Κ 6264に準じて、 ピコ摩耗試験を行い、 そ れぞれ比較例 1を 100とする指数で表わす。 耐摩耗指数が大きいほど、 耐摩耗 性に優れる。
(9) 低発熱性: レオメトリックス社製造 RDA— I Iを用い、 0.5%ねじ れ、 20Hzの条件で 60°Cにおける t a η δを測定した。 この t an δ (6 0°C) 値が小さいと低発熱性に優れることを示す。 なお、 比較例 1を 100とす る指数で示し、 この指数が大きいと低発熱性に優れることを示す。
実施例 1 共役ジェン系ゴムゲル Iの製造 耐圧反応容器中に、 水 2 0 0部、 乳化剤として不均化ロジン酸カリウムおよび 脂肪酸ナトリゥムを合計で 4. 5部、 塩化力リウム 0 . 1部、 表 1に示す単量体混 合物および連鎖移動剤 ( t—ドデシルメルカブタン) を仕込み、 攪拌しながら 内温を 1 2 °Cとした後、 ラジカル重合開始剤としてクメンハイドロパーォキサイ ド 0 . 1部、 ソジゥム ·ホルムアルデヒド ·スルホキシレート 0 . 2部および硫酸 第二鉄 0 . 0 1部を添加して重合反応を開始した。
重合転化率が 7 0 %になるまで 1 2 °Cで反応を継続した後、 ジェチルヒドロ キシルァミン 0 . 1部を添加して重合を停止させた。 重合停止後のラテックスを 一部採取し、 ガスクロマト分析し、 予め作成した検量線に基づき未反応の各単量 体量を求めた。 上記で求めた未反応の各単量体量と仕込みの各単量体量とから、 共重合体を構成する単量体単位量を決定した。 結果を表 1に示す。
次いで、 加温し、 減圧下で約 7 0 °Cにて水蒸気蒸留により残存単量体を回収し た後、 生成共重合体 1 0 0部に対して、 2部相当の老化防止剤 (2, 6—ジー t e r tーブチルー 4—メチルフエノール) を添加した。 得られたラテックスの一 部を抜き出して、 その重量平均粒子径を測定した。 結果を表 1に示す。
次いで、 得られたラテックスを塩化ナトリゥムノ硫酸溶液中に加え凝固した。 生成したクラムを取り出し、 十分に水洗した後、 5 0 °C減圧下で乾燥し、 共役ジ ェン系ゴムゲル Iを得た。 共役ジェン系ゴムゲル Iのスチレン単位量およびトル ェン膨潤指数を表 1に示す。
実施例 2〜 6 共役ジェン系ゴムゲル I I〜V Iの製造
表 1に示す組成の単量体混合物および連鎖移動剤を使用して、実施例 1と同様に して共役ジェン系ゴムゲル I I〜V Iを得た。 それぞれの特性値を表 1に示す。
実施例 7 共役ジェン系ゴムゲル V I Iの製造
表 1に示す組成の単量体混合物を使用して、 反応温度を 5 0 °Cに、 ラジカル重 合開始剤を過硫酸カリウム 0 . 2部に変更し、 重合反応を停止する際の転化率を 9 2 %にした他は実施例 1と同様にして共役ジェン系ゴムゲル V I Iを得た。 そ れぞれの特性値を表 1に示す。
なお、 実施例 1〜 7に示す共役ジェン系ゴムゲル I〜V I Iは、 トルエンに可 溶なゴム成分をほとんど有していなかった。 比較製造例 1 共役ジェン系ゴム Iの製造
表 1に示す組成の単量体混合物を使用した他は、 実施例 1と同様にして共役ジ ェン系ゴム Iを得た。 このゴムのスチレン単位量およびム一二一粘度を表 1に示 す。 なお、 共役ジェン系ゴム Iのトルエン膨潤指数は、 実質的にゲルを含有しな いため、 有意な数値として測定されなかった。
Figure imgf000027_0001
表 1の実施例 1〜 7に示すように、 本発明の共役ジェン系ゴムゲルの製造方法 によれば、 容易に生産性よく、 所望の重合体組成およびトルエン膨潤指数を有す る共役ジェン系ゴムゲルが得られることがわかる。 これに対して、 比較製造例 1 に示すゲル構造を有さない共役ジェン系ゴムラテックスから所望のトルエン膨潤 指数を有する共役ジェン系ゴムゲルを製造するには、 重合停止後のラテックスか ら残存単量体を除去した後、 さらに過酸化物を添加して加熱処理をする工程が必 要である。
実施例 8〜1 1、 比較例 1〜4 ゴム架橋物の製造および評価
表 2に示すゴム成分の合計 1 0 0部、 力一ポンプラック (シースト S〇, 東海 力一ボン株式会社製) 4 0部、 酸化亜鉛 3部, ステアリン酸 2部および老ィヒ防止 剤として N— (1 , 3—ジメチルブチル) 一 N, —フエ二ルー p—フエ二レンジ ァミン 2部をバンバリ一ミキサ一により 1 2 0 ° (、 6分間混練した。 次いで、 得 られた混練物と、 硫黄 1 . 1部および架橋促進剤としての N— t—プチルー 2― ベンゾチアジルスルフェンアミド 0 . 9部とを 5 0 °Cのオープンロールにより混 練してゴム組成物を得た。 このゴム組成物を 1 6 0 °C, 1 2分間プレス架橋し、 ゴム架橋物を得た。 このゴム架橋物の物性測定結果を表 2に示す。
表 2に示されるように、 比較例 2のスチレン単位量が少ない共役ジェン系ゴム ゲルを用いたゴム架橋物は、 耐摩耗性に劣る。 比較例 3のスチレン単位量が多い 共役ジェン系ゴムゲルを用いたゴム架橋物は、 低発熱性に劣る。 比較例 4のトル ェン膨潤指数が小さい共役ジェン系ゴムゲルを用いたゴム架橋物は、 伸びが著し く低下し、 耐摩耗性にも劣る。
これらに比べて、 本発明の実施例 8〜1 1のゴム架橋物は、 機械的特性を損な わずに、 耐摩耗性および低発熱性に優れている。 実施例 9と実施例 1 1とを比較 すると、 より低温で乳化重合し、 7 0 %の転化率で重合反応を停止して製造した 共役ジェン系ゴムゲルを用いた実施例 9のゴム架橋物がより優れている。
CO
Figure imgf000029_0001
実施例 1 2 共役ジェン系共重合ゴム Iの製造
耐圧反応容器中に、 水 2 0 0部、 乳化剤として不均化ロジン酸カリウムおよび 脂肪酸ナトリウムを合計で 4 . 5部、 塩化カリウム 0 . 1部、 表 1に示す単量体混 合物および連鎖移動剤 ( tードデシルメルカブタン) を仕込み、 攪拌しながら 内温を 1 0 °Cとした後、 ラジカル重合開始剤としてクメンハイドロパーォキサイ ド 0 . 1部、 ソジゥム ·ホルムアルデヒド ·スルホキシレート 0 . 2部および硫酸 第二鉄 0 . 0 1部を添加して重合反応を開始した。
重合転化率が 7 0 %になるまで 1 0 °Cで反応を継続した後、 ジェチルヒドロキ シルァミン 0 . 1部を添加して重合を停止させた。 次いで、 加温し、 減圧下で約 7 0 °Cにて水蒸気蒸留により残存単量体を回収した後、 生成共重合体 1 0 0部に 対して、 2部相当の老化防止剤 ( 2 , 6—ジー t e r t—プチルー 4ーメチルフ エノ一ル) を添加した。
次いで、 得られたラテックスに水を加えて固形分濃度 1 0 %に調製し、 前述の 方法に従い、 凝固性およびクラム固着性を判定した。 得られたクラムは、 6 0 °C の温水で十分水洗し、 水切りした後、 8 0 °Cの温風乾燥機にて乾燥した。 乾燥後 の共役ジェン系共重合ゴム Iのスチレン単位量およびム一二一粘度を表 3に示す。
実施例 1 3〜 1 5 共役ジェン系共重合ゴム I I〜 I Vの製造
表 3に示す単量体混合物および連鎖移動剤に変更した他は、 実施例 1と同様に 重合を行い、 共役ジェン系共重合ゴム I I〜I Vを得た。 それぞれの凝固性、 ク ラム固着性、 スチレン単位量およびムーニー粘度を表 3に示す。
比較例 5〜 7 共役ジェン系共重合ゴム V〜V I Iの製造
表 3に示す単量体混合物および連鎖移動剤に変更した他は、 実施例 1 2と同様 に重合を行い、 共役ジェン系共重合ゴム V〜V I Iを得た。 それぞれの凝固性、 クラム固着性、 スチレン単位量およびムーニー粘度を表 3に示す。
参考例 1および 2 共役ジェン系共重合ゴム V I I I〜 I Xの製造
表 3に示す単量体混合物および連鎖移動剤に変更した他は、 実施例 1と同様に 重合を行い、共役ジェン系共重合ゴム V I I I〜 I Xを得た。それぞれの凝固性、 クラム固着性、 スチレン単位量およびムーニー粘度を表 3に示す。 実施例 比較例
1 2 1 3 1 4 1 5 5 6 7 1 2
共重合ゴム 1 II III IV V VI VII VIII IX
単量体混合物 (部)
ブタジエン 45 45 45 62 45 45 62 70 70
スチレン 54.7 54.9 53 37.7 55 55 38 29.7 30
CO
ジビニルベンゼン 0,3 0.1 2 0.3 0.3
連鎖移動剤
tードデシルメルカブタン 0.3 0.5 0.3 0.3 0.3 0.06 0.3 0.3 0.3 凝固性 (指数) 5 4 5 4 1 1 3 4 3
クラム固着性 (指数) 4 3 4 4 1 2 2 4 4
スチレン単位量 (%) 45 45 45 35 45 45 35 24 24
ムーニー粘度 105 163 53 122 46 120 44 82 41
なお、 共役ジェン系共重合ゴム I〜 I Xのラテックスの重量平均粒子径は 8 0 〜 1 0 0 nmの範囲内であった。
比較例 5および 6に示すように、 スチレン単位量が高い (4 5 %) 共重合ゴム の場合、 凝固性およびクラム固着性に著しく劣り、 製造が非常に難しいことがわ かる。 比較例 7の、 スチレン単位量が 3 5 %の共重合ゴムにおいても凝固性およ びクラム固着性に劣る。 参考例 1に示す、 スチレン単位量 2 4 %の共重合ゴムの 場合、 凝固性およびクラム固着性に優れているが、 架橋性単量体を使用しない参 考例 2に示すスチレン単位量 2 4 %の共重合ゴムが凝固性およびクラム固着性に 比較的優れているため、 それほど顕著な効果として観測されない。
これらに比べ、 本発明の第 2の製造方法によれば、 凝固性およびクラム固着性 に優れたスチレン単位量が高いブタジエン—スチレン共重合ゴムが容易に得られ ることがわかる。 (実施例 1 2〜: L 5 )
クラム乾燥性の評価
クラムの乾燥性を評価するため以下の試験を行った。
水切り後の含水凝固クラム 1 0 0 gをメッシュ付きのカゴにとり、 8 0 °Cの温 風乾燥機に入れて、 3時間乾燥した。 乾燥後の共役ジェン系共重合ゴムの含水率 ( 1 2 5 °C, 3 0分真空乾燥を行なった際の重量の減少率:重量%) を測定した。 共重合ゴム I (実施例 1 ) では、 含水率が 0 . 2重量%であつたのに対し、 共重 合ゴム V (比較例 1 ) では 2 . 2重量%であり、 ウエットスポットが発生してい た。 このように本発明の第 2の製造方法によって得られる共役ジェン系共重合ゴ ムは、 乾燥性にも優れていることがわかる。
産業上の利用可能性 本発明の新規な共役ジェン系ゴムゲルは、 機械的特性を損なわずに、 耐摩耗性 および低発熱性に優れるゴム組成物を与える。
この共役ジェン系ゴムゲルを含むゴム組成物の架橋物、 および、 この共役ジェ ン系ゴムゲルと、 硫黄で架橋し得るゴムとを含有するゴム組成物の架橋物は、 例 えば、 タイヤ、 ケーブル被覆剤、 ホース、 トランスミッションベルト、 コンベア ベルト、 口一ルカバー、 靴底、 シール用リングおよび防振ゴムなどの構成部品と して広く使用できる。 しかしながら、 上記共役ジェン系ゴムゲルを含むゴム組成 物の架橋物、 および、 上記共役ジェン系ゴムゲルと、 硫黄で架橋し得るゴムとを 含有するゴム組成物の架橋物は、 良好な機械的特性を保持したまま、 優れた耐摩 耗性と低発熱性を示すので、 タイヤ、 特にサイドウォール、 ビードおよびアンダ ートレツドの構成部材として好適である。
芳香族ビニル単量体を用いないか、 または少量用いて乳化共重合を行ない、 共 役ジェン系ゴムゲルを製造する、 本発明の第 1の製造方法によれば、 上記共役ジ ェン系ゴムゲルを含む、 トルエン膨潤指数が 7 0以下である共役ジェン系ゴムゲ ルが容易に生産性よく得られる。
また、 比較的多量の芳香族ビニル単量体を用いて乳化共重合を行ない、 共役ジ ェン系ゴムを得る、 本発明の第 2の製造方法によれば、 クラムが固着し難く、 凝 固性に優れた共役ジェン一芳香族ビニル共重合ゴムが得られる。

Claims

請求 の範囲
1. 共役ジェン単量体単位 80〜 99重量%および芳香族ビニル単量体単位 20〜 1重量%からなり、 トルエン膨潤指数が 16〜 70である共役ジェン系ゴ ムゲル。
2. 架橋性単量体を用いて共重合して得られたものである請求の範囲 1記載 の共役ジェン系ゴムゲル。
3. 架橋性単量体の使用量が、 全単量体 100重量%に対して、 0.1〜 1 重量%である請求の範囲 2記載の共役ジェン系ゴムゲル。
4. 共役ジェン単量体単位 80〜 99重量%、 芳香族ビニル単量体単位 1〜 20%、 その他のェチレン性不飽和単量体単位 0〜 19重量%、 および架橋性単 量体単位 0-1.5重量%からなり、 トルエン膨潤指数が 16〜 70である共役 ジェン系ゴムゲル。
5. 共役ジェン単量体単位 80〜98.9重量%、 芳香族ビエル単量体単位 :!〜 19.9%、 その他のエチレン性不飽和単量体単位 0〜19重量%、 および 架橋性単量体単位 0.1〜1.5重量%からなる請求の範囲 4記載の共役ジェン系 ゴムゲル。
6. 共役ジェン単量体単位 δ 6〜 89.8重量%、 芳香族ビニル単量体単位 10〜13.8%、 その他のエチレン性不飽和単量体単位 0〜1重量%、 および 架橋性単量体単位 0.2〜0.5重量%からなり、 トルエン膨潤指数が 20〜40 である共役ジェン系ゴムゲル。
7. 共役ジェン単量体単位 80〜 99重量%および芳香族ビニル単量体単位 20〜 1重量%からなり、 トルエン膨潤指数が 16〜 70である共役ジェン系ゴ ムゲルと、 硫黄で架橋し得るゴムとを含有するゴム組成物。
8. 共役ジェン単量体単位 80〜 99重量%、 芳香族ビニル単量体単位 1〜 20%、 その他のエチレン性不飽和単量体単位 0〜19重量%、 および架橋性単 量体単位 0〜: L.5重量%からなり、 トルエン膨潤指数が 16〜70である共役 ジェン系ゴムゲルと、 硫黄で架橋し得るゴムとを含有するゴム組成物。
9. 共役ジェン系ゴムゲルと、 硫黄で架橋し得るゴムとの重量比が 1/99 〜5 0 / 5 0の範囲である請求の範囲 7または 8記載のゴム組成物。
1 0 . さらに、 補強材を含有する請求の範囲 7または 8記載のゴム組成物。
1 1 . 補強材の配合量が、 共役ジェン系ゴムゲルと、 硫黄で架橋し得るゴム とを含む全ゴム成分 1 0 0重量部に対して、 1 0〜2 0 0重量部である請求の範 囲 1 0記載のゴム組成物。
1 2 . 共役ジェン単量体 5 0〜 9 9 . 9重量%、 芳香族ビニル単量体 0〜 3 0重量%、 その他のェチレン性不飽和単量体 0〜 2 0重量%、 および架橋性単量 体 0 . 1〜2 0重量%からなる単量体混合物を乳化共重合することを特徴とする トルエン膨潤指数が 7 0以下である共役ジェン系ゴムゲルの製造方法。
1 3 . 乳化共重合するに際して、 重合反応を停止する際の転化率が 5 0〜9 0 %である請求の範囲 1 2記載の共役ジェン系ゴムゲルの製造方法。
1 4. 乳ィヒ共重合するに際して、 重合温度が 3〜3 0 °Cであり、 かつ、 重合 反応を停止する際の転化率が 6 0〜8 5 %である請求の範囲 1 2記載の共役ジェ ン系ゴムゲルの製造方法。
1 5 . 共役ジェン単量体 1 5〜 6 9 . 8重量%、 芳香族ビエル単量体 3 0 . 1 〜 6 5重量%、 その他のェチレン性不飽和単量体単位 0〜 2 0重量%、 および架 橋性単量体 0 . 1〜2 0重量%からなる単量体混合物を乳化共重合することを特 徵とする共役ジェン一芳香族ビニル共重合ゴムの製造方法。
1 6 . 乳化共重合するに際して、 重合温度が一 5〜8 0でであり、 かつ、 重 合反応を停止する際の転化率が 5 0〜9 0 %である請求の範囲 1 5記載の共役ジ ェン—芳香族ビニル共重合ゴムの製造方法。
PCT/JP2001/004797 2000-06-07 2001-06-07 Gel de caoutchouc de diene conjugue, compositions de caoutchouc contenant ce dernier et procede de production de caoutchouc de diene conjugue WO2001094431A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01936888A EP1291369B1 (en) 2000-06-07 2001-06-07 Conjugated diene rubber gel, rubber compositions containing the same and process for production of conjugated diene rubber
US10/297,393 US6649724B2 (en) 2000-06-07 2001-06-07 Conjugated diene rubber gel, rubber compositions containing the same and process for production of conjugated diene rubber
DE60118364T DE60118364T8 (de) 2000-06-07 2001-06-07 Konjugiertes dienkautschukgel, kautschukzusammensetzungen die dieses enthalten und verfahren zur herstellung von konjugiertem dienkautschuk
US10/651,042 US6897279B2 (en) 2000-06-07 2003-08-29 Conjugated diene rubber gel, rubber compositions containing the same and process for production of conjugated diene rubber
US11/036,376 US7094855B2 (en) 2000-06-07 2005-01-18 Conjugated diene rubber gel, rubber compositions containing the same and process for production of conjugated diene rubber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000171336 2000-06-07
JP2000-171336 2000-06-07
JP2000231156A JP4150874B2 (ja) 2000-07-31 2000-07-31 共役ジエン−芳香族ビニル共重合ゴムの製造方法
JP2000-231156 2000-07-31

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/297,393 A-371-Of-International US6649724B2 (en) 2000-06-07 2001-06-07 Conjugated diene rubber gel, rubber compositions containing the same and process for production of conjugated diene rubber
US10297393 A-371-Of-International 2001-06-07
US10/651,042 Division US6897279B2 (en) 2000-06-07 2003-08-29 Conjugated diene rubber gel, rubber compositions containing the same and process for production of conjugated diene rubber

Publications (1)

Publication Number Publication Date
WO2001094431A1 true WO2001094431A1 (fr) 2001-12-13

Family

ID=26593522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004797 WO2001094431A1 (fr) 2000-06-07 2001-06-07 Gel de caoutchouc de diene conjugue, compositions de caoutchouc contenant ce dernier et procede de production de caoutchouc de diene conjugue

Country Status (4)

Country Link
US (3) US6649724B2 (ja)
EP (3) EP1291369B1 (ja)
DE (3) DE60118364T8 (ja)
WO (1) WO2001094431A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6644312B2 (en) * 2000-03-07 2003-11-11 Resmed Limited Determining suitable ventilator settings for patients with alveolar hypoventilation during sleep
AU2002365606A1 (en) * 2001-12-05 2003-06-17 Isola Laminate Systems Corp. Thermosetting resin composition for high performance laminates
KR20070015133A (ko) * 2004-02-27 2007-02-01 요코하마 고무 가부시키가이샤 고무 조성물 및 그것을 이용한 공기 주입 타이어
US7681260B2 (en) * 2006-09-18 2010-03-23 Sleep Safe Beds, Llc Safety bed having elevating mattress
WO2008102459A1 (ja) * 2007-02-23 2008-08-28 Gates Unitta Asia Company 摩擦伝動ベルト
DE102007020451A1 (de) 2007-04-27 2008-10-30 Lanxess Deutschland Gmbh Verfahren zur Herstellung von Kautschukmischungen
US9732178B1 (en) 2008-07-24 2017-08-15 Bridgestone Corporation Block copolymers including high vinyl segments
DE102008056975A1 (de) * 2008-11-13 2010-05-20 Lanxess Deutschland Gmbh Lagerstabile, hydroxylmodifizierte Mikrogellatices
CN103153646B (zh) * 2010-09-30 2016-01-20 米其林集团总公司 具有低表面积炭黑的橡胶组合物
US20160185890A1 (en) * 2013-09-30 2016-06-30 Zeon Corporation Nitrile copolymer rubber and method of production thereof
KR101695070B1 (ko) * 2014-12-16 2017-01-10 주식회사 엘지화학 디엔계 고무 중합체의 제조방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
EP3124508A1 (de) * 2015-07-27 2017-02-01 ARLANXEO Deutschland GmbH Versiegelungsgele, verfahren zu deren herstellung sowie ihrer verwendung in versiegelungsmassen für selbstversiegelnde reifen
US10501610B2 (en) 2015-12-28 2019-12-10 Lg Chem, Ltd. Method for preparing styrene-butadiene rubber and styrene-butadiene rubber
WO2017116145A1 (ko) * 2015-12-28 2017-07-06 주식회사 엘지화학 스티렌-부타디엔 고무의 제조방법 및 스티렌-부타디엔 고무
KR101950707B1 (ko) * 2016-11-10 2019-02-21 주식회사 엘지화학 스티렌-부타디엔 고무 컴파운드 및 이를 포함하는 타이어 비드 필러용 고무 조성물
EP3354481A1 (en) 2017-01-26 2018-08-01 ARLANXEO Deutschland GmbH Foamed sealing compounds
EP3354704A1 (en) 2017-01-26 2018-08-01 ARLANXEO Deutschland GmbH Extended sealing gels, process for production thereof and use thereof in sealing compounds for self-sealing tyres
EP3354702A1 (en) 2017-01-26 2018-08-01 ARLANXEO Deutschland GmbH Sealing compounds
EP3354703A1 (en) 2017-01-26 2018-08-01 ARLANXEO Deutschland GmbH Delayed sealing compounds for self-sealing tyres
KR102167527B1 (ko) * 2017-12-19 2020-10-19 주식회사 엘지화학 공액디엔계 공중합체 조성물, 이의 제조방법 및 이를 포함하는 고무 조성물
KR102465200B1 (ko) * 2018-10-02 2022-11-09 주식회사 엘지화학 그라프트 공중합체의 제조방법 및 이를 포함하는 열가소성 수지 조성물의 제조방법
CN114369297B (zh) * 2020-10-16 2023-12-08 旭化成株式会社 交联用橡胶组合物、交联橡胶的制造方法、以及轮胎用胎面

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154711A (ja) * 1982-03-11 1983-09-14 Mitsubishi Chem Ind Ltd スチレン−共役ジエンゴム
JPH08319327A (ja) * 1995-03-17 1996-12-03 Mitsubishi Rayon Co Ltd ゴム状重合体およびそれを用いたabs系樹脂
EP0854170A1 (de) * 1997-01-17 1998-07-22 Bayer Ag SBR-Kautschukgele enthaltende Kautschukmischungen
EP1063259A1 (de) * 1999-06-26 2000-12-27 Bayer Ag Mikrogelhaltige Kautschukcompounds mit schwefelhaltigen Organosiliciumverbindungen
EP1083200A2 (de) * 1999-09-07 2001-03-14 Bayer Aktiengesellschaft Mikrogelhaltige Kautschukmischungen mit verkappten bifunktionellen Mercaptanen und hieraus hergestellte Vulkanisate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576910A (en) * 1967-10-23 1971-04-27 Monsanto Co A-b-s polyblend
DE2057935A1 (de) * 1970-11-25 1972-06-15 Cities Service Co Pfropfpolymere mit hoher Schlagfestigkeit
US3959895A (en) * 1974-06-27 1976-06-01 Monsanto Company Polyvinyl chloride polyblend molding
FR2589871B1 (fr) 1985-09-13 1987-12-11 Rhone Poulenc Chim Base Charge renforcante pour elastomere a base de silice
GB2196011A (en) * 1986-10-17 1988-04-20 Zygmunt Kromolicki Improvements in the production of graft copolymers
US5017660A (en) * 1987-08-04 1991-05-21 Asahi Kasei Kogyo Kabushiki Kaisha Selectively, partially hydrogenated polymer and rubber composition and impact resistant styrenic resin containing the same
DE3920745A1 (de) 1989-06-24 1991-01-03 Bayer Ag Kautschukmischungen enthaltend schwefel-modifizierte polychloroprengel
DE4220563A1 (de) 1992-06-24 1994-01-13 Bayer Ag Kautschukmischungen enthaltend Polybutadien-Gel
JP3403747B2 (ja) 1993-02-23 2003-05-06 株式会社ブリヂストン タイヤ用ゴム組成物
DE19701489A1 (de) * 1997-01-17 1998-07-23 Bayer Ag Modifizierte Kautschukgele enthaltende Kautschukmischungen
KR100559930B1 (ko) * 1997-05-28 2006-03-13 레이크홀드 인코포레이티드 고무 물품용 엘라스토머 재료
SG165133A1 (en) * 1998-03-11 2010-10-28 Goodyear Tire & Rubber Emulsion styrene-butadiene rubber
JP2001139729A (ja) * 1999-08-31 2001-05-22 Yokohama Rubber Co Ltd:The ゴム組成物及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154711A (ja) * 1982-03-11 1983-09-14 Mitsubishi Chem Ind Ltd スチレン−共役ジエンゴム
JPH08319327A (ja) * 1995-03-17 1996-12-03 Mitsubishi Rayon Co Ltd ゴム状重合体およびそれを用いたabs系樹脂
EP0854170A1 (de) * 1997-01-17 1998-07-22 Bayer Ag SBR-Kautschukgele enthaltende Kautschukmischungen
EP1063259A1 (de) * 1999-06-26 2000-12-27 Bayer Ag Mikrogelhaltige Kautschukcompounds mit schwefelhaltigen Organosiliciumverbindungen
EP1083200A2 (de) * 1999-09-07 2001-03-14 Bayer Aktiengesellschaft Mikrogelhaltige Kautschukmischungen mit verkappten bifunktionellen Mercaptanen und hieraus hergestellte Vulkanisate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1291369A4 *

Also Published As

Publication number Publication date
EP1634899B1 (en) 2009-07-29
DE60118364T2 (de) 2006-12-07
DE60136397D1 (de) 2008-12-11
US6649724B2 (en) 2003-11-18
EP1645575B1 (en) 2008-10-29
US6897279B2 (en) 2005-05-24
EP1291369A1 (en) 2003-03-12
US20030139523A1 (en) 2003-07-24
DE60139428D1 (de) 2009-09-10
DE60118364T8 (de) 2007-05-10
EP1645575A1 (en) 2006-04-12
EP1291369A4 (en) 2004-04-28
DE60118364D1 (de) 2006-05-18
US20050124760A1 (en) 2005-06-09
EP1634899A1 (en) 2006-03-15
US20040077814A1 (en) 2004-04-22
US7094855B2 (en) 2006-08-22
EP1291369B1 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
US7094855B2 (en) Conjugated diene rubber gel, rubber compositions containing the same and process for production of conjugated diene rubber
JP3606860B2 (ja) ゴム組成物及びゴム架橋物
JP3736577B2 (ja) ゴム組成物及びその製造方法
US6562929B2 (en) Conjugated diene-based rubber and method of producing the same, oil extended rubber and rubber composition containing the same
WO1996006868A1 (fr) Copolymere de dienes insature conjugue a du nitrile, son procede de production et composition de caoutchouc vulcanisable
WO1999050309A1 (fr) Caoutchouc diene conjugue, procede de production et composition a base de caoutchouc
JP3763334B2 (ja) ゴム組成物の製造方法およびゴム組成物
JP2002212344A (ja) ゴム状重合体組成物
JP2002012703A (ja) ゴム組成物
JP4396058B2 (ja) 共役ジエン系ゴムゲル、それを含むゴム組成物、および共役ジエン系ゴムゲルの製造方法
JP4302547B2 (ja) 変性天然ゴムラテックス、変性天然ゴム及びそれらの製造方法
JP2002145965A (ja) 共役ジエン系ゴム及び油展ゴム並びにこれらを含むゴム組成物
JP4774654B2 (ja) 油展ゴム及びゴム組成物
JP4150874B2 (ja) 共役ジエン−芳香族ビニル共重合ゴムの製造方法
JPH08100080A (ja) 不飽和ニトリル−共役ジエン共重合体と非黒色補強性充填剤とからなるゴム組成物
JP2008285555A (ja) ゴム組成物及びそれを用いた空気入りタイヤ
JP4588176B2 (ja) 共役ジエン系重合体及びそれを用いたゴム組成物
JP4670132B2 (ja) 共役ジエン系重合体及びその製法
JP3970631B2 (ja) ゴム組成物及びそれを用いた空気入りタイヤ
JP3216267B2 (ja) 加硫性ゴム組成物
TW202231668A (zh) 部分氫化之二烯聚合物
JPH0873661A (ja) 不飽和ニトリル−共役ジエン共重合体と塩化ビニル樹脂とからなるゴム組成物
JPS5914056B2 (ja) ゴム組成物
WO2003070797A1 (fr) Caoutchouc dienique conjugue, caoutchouc etendu a l'huile et composition de caoutchouc
JPS6042247B2 (ja) ゴム状三元共重合体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001936888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10297393

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001936888

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001936888

Country of ref document: EP