WO2001091130A1 - Memoire rom de taille reduite - Google Patents
Memoire rom de taille reduite Download PDFInfo
- Publication number
- WO2001091130A1 WO2001091130A1 PCT/FR2001/001608 FR0101608W WO0191130A1 WO 2001091130 A1 WO2001091130 A1 WO 2001091130A1 FR 0101608 W FR0101608 W FR 0101608W WO 0191130 A1 WO0191130 A1 WO 0191130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- column
- group
- columns
- memory
- line
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/06—Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
- G11C7/067—Single-ended amplifiers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/08—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements
- G11C17/10—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements in which contents are determined during manufacturing by a predetermined arrangement of coupling elements, e.g. mask-programmable ROM
- G11C17/12—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements in which contents are determined during manufacturing by a predetermined arrangement of coupling elements, e.g. mask-programmable ROM using field-effect devices
- G11C17/123—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements in which contents are determined during manufacturing by a predetermined arrangement of coupling elements, e.g. mask-programmable ROM using field-effect devices comprising cells having several storage transistors connected in series
Definitions
- the present invention relates to the field of non-volatile memories, also called read-only memories or ROM memories.
- a ROM memory In a ROM memory, the information is stored once and for all during the production of the memory. Such a memory comprises several blocks of memory cells organized in columns and in rows, and can only be used in reading.
- a block of a ROM memory 10 comprises memory cells 1 forming two columns A and j_ + ⁇ , connected respectively to bit lines BLj_ and BLj_ + ] _.
- the memory cells 1 of the block shown are also arranged in sixteen rows, a memory cell being located at each intersection of a column and a row.
- Each memory cell 1 may or may not have a transistor 2.
- the three electrodes of each transistor 2, gate, drain and source, are respectively connected to a word line WL Q to L15, to a bit line BL-j_, BLj_ + ⁇ and to ground (GD).
- GD ground
- Each column also includes a selection transistor 5 controlled by an activation line BS ("Block Select" -
- Block selection common to all the columns of the block.
- each column has one end connected to a bit line. The other end of each column is connected to ground, either via the source of the transistor of the last memory cell, if the latter has one (case of column A-j_), or directly, if the last cell has no transistor (case of column ⁇ - ⁇ + ⁇ ).
- bit lines BLj_, BLj_ + ⁇ continue beyond the block shown for connection to other columns of other blocks of memory 10.
- bit lines For reading a row of a block from memory 10, the bit lines are first preloaded at a high voltage, in general the supply voltage VDD, and the activation line BS of the block is brought to "1" (VDD). Then the word line of the selected row is set to "1", the other word lines being "0" (GND). All the transistors of the unselected rows, receiving zero voltage on their gates, will be blocked and will have no influence on the information read. On the other hand, all the transistors of the selected row will be conducting, which has the effect of discharging the bit line to which they are connected. Thus, if the selected cell 1 has a transistor 2, the bit line is discharged and a "0" is read by the amplifier 6.
- FIG. 2A illustrates another type of ROM memory 20.
- the columns of memory cells are formed by a set of transistors in series.
- Each column A-j_, Aj_ + _ comprises a selection transistor 5 enabling the column to which it belongs to be activated and transistors 10 corresponding to the memory cells.
- each column is connected to a bit line BL ⁇ , BLj_ + ] _, and the other end of the column is connected to ground (GND).
- ground To represent a "0”, the transistor 10 is short-circuited by a conductive link 11 between its source and its drain. To represent a "1", the transistor 10 is not short-circuited.
- Each selection transistor 5 is controlled by an activation line BS common to all the columns of the block, and each bit line is connected to a read amplifier 6. The bit lines continue, beyond the block shown, towards other blocks of memory.
- bit lines are first preloaded at a high voltage, in general VDD, and the activation line BS of the block is brought to "1" ( VDD). All the transistors 5 of the block considered are then on. Then, a row is selected by carrying the word line corresponding to a low potential, in general the ground potential, corresponding to the logical "0". All other word lines are brought to high potential. All the transistors of the rows not selected are therefore pass-through and present no obstacle to the passage of a current in the column. The transistors of the selected row, having their gate at potential 0, are all blocked. If the transistor is not short-circuited, as is the case of transistor 10 located at the intersection of the bit line BL ⁇ and the word line
- the transistor is blocked and it will prevent the discharge of the bit line.
- the corresponding bit line will therefore remain at high potential and the corresponding sense amplifier 6 will provide a "1".
- the transistor is short-circuited, as is the case of transistor 10 located at the intersection of the bit line BLi + ] _ and of the word line WL 5, the fact that this transistor is blocked does not disturb the conduction of current in the column connected to the bit line BLj_ + ] _ which will discharge to ground through all the other transistors, passers-by, in the column.
- the corresponding amplifier 6 will therefore read a "0".
- the circuit of FIG. 2A is often preferred because it is simple to implement in integrated technology.
- FIG. 2B represents a schematic top view of the memory 20 of FIG. 2A, produced in the form of an integrated circuit.
- the memory 20 is produced on a substrate 21 comprising two elongated active zones 22 and 22 '.
- the zones 22, 22 ′ for example N-doped, are isolated from each other and correspond respectively to the drains and to the sources of the transistors 10 in series of the columns A ⁇ , ⁇ . ⁇ + of FIG. 2A.
- Polycrystalline silicon bands 24 pass over the active areas 22 and 22 'while being isolated from them.
- the bands 24 constitute the word lines WL Q to WL .5. They form, at each of their intersection with the zones 22, 22 ', the gate of a transistor 10.
- a series of transistors 10 in series along the zones 22, 22'.
- a particular strip 24 ' constitutes the activation line BS and forms the selection transistors 5.
- Each column comprises, at one end, a contact point 25 ⁇ , 25j_ + ⁇ for the corresponding bit line and, at the other end, a contact point M for connection to ground. If a conductive connection must be made to short-circuit a transistor, as is the case for transistor 10 located at the intersection of word lines WL15 and active area 22 ', contact sockets 26 and 26' are provided on either side of the gate of the transistor considered for connection to a higher metallization level.
- ROM memories as illustrated in FIGS. 1, 2A and 2B have drawbacks.
- An object of the present invention is to provide a ROM type memory of reduced size.
- Another object of the present invention is to provide a ROM memory comprising improved reading amplifiers and with reduced consumption.
- the present invention provides a ROM memory circuit comprising columns of memory cells, each column being connected to a bit line, in which the columns are arranged in groups of two adjacent columns, each column of a group being selectively activatable or inactive relative to the other column of the group by means of an activation line, characterized in that each column of a group is connected by one end to the activation line in the other column of the group.
- the activation line of a column is brought to ground potential to inactivate said column.
- a column comprises several memory cells in series, each memory cell comprising an MOS transistor whose drain, respectively the source, is coupled either to the source, respectively the drain, of a memory cell adjacent to either end of the column.
- each column of a group has its own selection means selectively activating / inactivating said column, controlled by the column activation line.
- the means for selecting a column from a group is formed by an MOS transistor in series with the memory cells of the column and disposed at the end of the column not connected to the activation line of the other column of the group.
- the circuit comprises an amplifier connected to the bit lines connected to the two columns of the same group.
- the amplifier has means for invalidating the information present on the bit line connected to the inactivated column of the group.
- the amplifier comprises means for lowering the voltage present on the bit line connected to the inactive column of the group.
- FIG. 1 previously described , schematically represents a first example of conventional ROM memory
- Figures 2A and 2B previously described, schematically represent, respectively, the electrical diagram and a top view in integrated form of a second example of memory Classic ROM
- Figure 3 schematically illustrates a first embodiment of the present invention
- Figure 4 schematically illustrates a second embodiment of the present invention.
- the columns of a ROM memory circuit are arranged in groups of two columns adjacent to one another. Centes.
- Each of the columns of a group includes a selection means, controllable by a specific activation line.
- the activation line makes it possible to select either all the columns of even rank, or all the columns of odd rank of a block of the memory. Depending on the rank of the selected columns, information will be obtained in reading either from all the bit lines of even rank, or from all the bit lines of odd rank.
- a ROM memory 30 is represented with two adjacent columns A-j_, A ⁇ + ⁇ connected respectively to bit lines BL ⁇ and BL-j_ + ] _.
- Each column includes transistors 10, short-circuited or not, corresponding to the memory cells.
- Column A-j_ further includes, at one end, a selection transistor 35, controlled by an activation line BSj.
- the column Aj_ is connected to the bit line BLj_ by the end comprising the transistor 35.
- the column Aj_ +; ⁇ _ comprises, at one end, a selection transistor 36, controlled by an activation line BSi + i.
- the column A ⁇ + ⁇ is connected to the bit line _ + ⁇ by the end comprising the transistor 36.
- the end of the column Aj_ not including the transistor 35 is connected to the activation line BS -j_ + 3_ and the end of the column Aj_ + ⁇ not comprising the transistor 36 is connected to the activation line BSj_.
- the two columns Aj_, Aj_ + ] _ form a group of two adjacent columns selectively activated, that is to say that, when one column of the group is activated, the other is deactivated, and vice versa.
- the transistors 35 and 36 are selectively controlled, that is to say that the activation lines BSi and BSi + ⁇ receive complementary signals. So when the activation line BS ⁇ is at
- the activation line BSj_ + ⁇ is at "0" and the transistors 35 and 36 are respectively on and off. Only the Aj_ column is then activated. Indeed, the passing transistor 35 puts in communication the memory cells of the column Aj_ with the bit line BL-j_ and the end of the column A- ⁇ opposite the transistor 35 is at ground potential, since it is connected to BSj_ + ⁇ , then to "0". Conversely, when the activation line BSj_ + ⁇ is at "1", the line BSj is at "0" and only column A. ⁇ + ⁇ is activated. Thus, in the memory of FIG.
- the end of the columns is brought to zero potential by connecting the end of one column of a group to the activation line of the other column of the group .
- This is possible according to the invention because, when a column of a group is activated, the voltage on the corresponding activation line is at VDD and the voltage on the activation line of the other column of the group is equal to zero. Consequently, the connection of the source of the last transistor of a column of a group to the activation line of the selection means of the other column of the group does not modify the operation of the memory. The connection to the ground of the columns has become useless. This can avoid an additional metallization layer and make the memory more compact by reducing its manufacturing costs.
- the means for selecting the second column of a group will preferably be located on the opposite side by means of selection of the first column, as illustrated in FIG. 3.
- FIG. 4 illustrates a second embodiment of the present invention.
- a ROM memory 40 shows the main elements of the memory 30.
- an amplifier 41 replaces the two sense amplifiers 6 of the FIG. 3.
- the amplifier 41 has two inputs, connected respectively to the bit lines BL- ⁇ and BLi + ⁇ .
- Replacement by amplifier 41 is made possible by grouping by two of the adjacent columns. Indeed, in reading, only one of the two columns of a group is activated and therefore only one reading amplifier is necessary per group.
- the read amplifier 41 can thus occupy up to twice as much space as each of the amplifiers 6 of the prior art. In practice, it will be overall a little smaller than two amplifiers 6, which saves space. Its design can be more careful and in particular, the frequency response of the amplifier can be faster, which, decreasing its response time, makes it possible to increase the maximum frequency of use of the memory 40. Being faster, the amplifier 41 can moreover be activated for a shorter duration in reading and it will consume less. As there are many sense amplifiers in a memory, for example 512 or 1024 per block, the present invention also allows a significant reduction in memory consumption.
- the amplifier 41 can operate in various ways. For example, the entry corresponding to the inactivated column can be invalidated, the amplifier effectively receiving only the information to be read. Also, the amplifier 41 can include differential stages coupled to the two bit lines BL-j_ and BL-j_ + ] _, which then play a complementary role, a bit like in the case of a DRAM memory. In a read operation, the bit lines are first preloaded at any voltage, for example VDD. Then, the selected column of the group provides a "1" or a "0", and, as the case may be, the corresponding bit line remains preloaded at VDD or discharges at 0.
- the high voltage has been described as the supply voltage VDD, but another value can be used.
- the low potential has been described as being the ground potential, but it may be a virtual ground associated with the memory, distinct from the ground of other circuits linked to the memory.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Read Only Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
L'invention concerne un circuit de mémoire ROM (40) comportant des colonnes de cellules mémoire, chaque colonne étant reliée à une ligne de bit (BLi, BLi+1), dans lequel les colonnes sont agencées en groupes de deux colonnes adjacentes, chaque colonne d'un groupe étant activable sélectivement par rapport à l'autre colonne du groupe. Cela permet la suppression d'une connexion à la masse des colonnes et la conception d'amplificateurs de lecture performants.
Description
MEMOIRE ROM DE TAILLE REDUITE
La présente invention concerne le domaine des mémoires non volatiles, aussi appelées mémoires mortes ou mémoires ROM.
Dans une mémoire ROM, 1 ' information est stockée une fois pour toutes lors de la fabrication de la mémoire. Une telle mémoire comporte plusieurs blocs de cellules mémoires organisées en colonnes et en rangées, et ne peut être utilisée qu'en lecture.
En figure 1, un bloc d'une mémoire ROM 10 comporte des cellules mémoire 1 formant deux colonnes A et j_+ι, reliées respectivement à des lignes de bit BLj_ et BLj_+]_. Les cellules mémoires 1 du bloc représenté sont aussi disposées selon seize rangées, une cellule mémoire se trouvant à chaque intersection d'une colonne et d'une rangée. Chaque cellule mémoire 1 comporte ou non un transistor 2. Les trois électrodes de chaque transistor 2, grille, drain et source, sont respectivement reliées à une ligne de mot WLQ à L15, à une ligne de bit BL-j_, BLj_+ι et à la masse (GD) . Lorsque la cellule 1 ne comporte pas de transistor 2, la ligne de mot correspondante traverse simplement la colonne sans aucune action sur celle-ci.
Chaque colonne comprend aussi un transistor de sélec- tion 5 commandé par une ligne d'activation BS ("Block Select" -
"Sélection de bloc") commune à toutes les colonnes du bloc.
Lorsque la ligne d'activation reçoit une tension haute, en général
la tension d'alimentation VDD, correspondant aussi à un "l" logique, tous les transistors 5 des colonnes du bloc sont passants, ce qui met en communication chaque colonne du bloc avec sa ligne de bit respective. Un amplificateur 6 relié à chaque ligne de bit BLj_, permet la lecture de l'information stockée.
Notons que le terme "colonne" désigne ici l'ensemble formé d'un transistor de sélection 5 et de toutes les cellules mémoires couplées à ce transistor de sélection. Chaque colonne a une extrémité reliée à une ligne de bit. L'autre extrémité de chaque colonne est reliée à la masse, soit par l'intermédiaire de la source du transistor de la dernière cellule mémoire, si celle- ci en comporte un (cas de la colonne A-j_) , soit directement, si la dernière cellule n'a pas de transistor (cas de la colonne Α-±+±) . Notons aussi que les lignes de bit BLj_, BLj_+ι se poursuivent au- delà du bloc représenté pour connexion à d'autres colonnes d'autres blocs de la mémoire 10.
Pour la lecture d'une rangée d'un bloc de la mémoire 10, les lignes de bit sont d'abord préchargées à une tension haute, en général la tension d'alimentation VDD, et la ligne d'activation BS du bloc est portée à "1" (VDD) . Ensuite, la ligne de mot de la rangée choisie est mise à "1", les autres lignes de mot étant à "0" (GND) . Tous les transistors des rangées non sélectionnées, recevant une tension nulle sur leurs grilles, seront bloqués et n'auront aucune influence sur l'information lue. Par contre, tous les transistors de la rangée sélectionnée seront passants, ce qui a pour effet de décharger la ligne de bit à laquelle ils sont reliés. Ainsi, si la cellule 1 sélectionnée comporte un transistor 2, la ligne de bit est déchargée et un "0" est lu par l'amplificateur 6. Si la cellule ne comporte pas de transistor 2, la ligne de bit ne sera pas déchargée et un "l" sera lu en sortie de l'amplificateur 6. Par exemple, si la ligne WL15 est sélectionnée, l'amplificateur 6 de la ligne de bit BLj_ fournira un "0" et celui de la ligne de bit BL-^i fournira un
La figure 2A illustre un autre type de mémoire ROM 20. Dans la mémoire 20, les colonnes de cellules mémoire sont formées d'un ensemble de transistors en série. Chaque colonne A-j_, Aj_+_ comporte un transistor de sélection 5 permettant d'activer la colonne à laquelle il appartient et des transistors 10 correspondant aux cellules mémoire. Une extrémité de chaque colonne est reliée à une ligne de bit BL^, BLj_+]_, et l'autre extrémité de la colonne est reliée à la masse (GND) . Pour représenter un "0", le transistor 10 est court-circuité par une liaison conductrice 11 entre sa source et son drain. Pour représenter un "1", le transistor 10 n'est pas court-circuité. Chaque transistor de sélection 5 est commandé par une ligne d'activation BS commune à toutes les colonnes du bloc, et chaque ligne de bit est reliée à un amplificateur de lecture 6. Les lignes de bit se poursuivent, au-delà du bloc représenté, en direction d'autres blocs de la mémoire.
Pour la lecture d'une rangée d'un bloc de la mémoire 20, les lignes de bit sont d'abord préchargées à une tension haute, en général VDD, et la ligne d'activation BS du bloc est portée à "1" (VDD) . Tous les transistors 5 du bloc considéré sont alors passants. Ensuite, une rangée est sélectionnée en portant la ligne de mot correspondante à un potentiel bas, en général le potentiel de la masse, correspondant au "0" logique. Toutes les autres lignes de mot sont portées à un potentiel haut. Tous les transistors des rangées non sélectionnées sont donc alors passants et ne présentent aucun obstacle au passage d'un courant dans la colonne. Les transistors de la rangée sélectionnée, ayant leur grille au potentiel 0, sont tous bloqués. Si le transistor n'est pas court-circuité, comme c'est le cas du transistor 10 situé à l'intersection de la ligne de bit BL^ et de la ligne de mot
WL15 , le transistor est bloqué et il va empêcher la décharge de la ligne de bit. La ligne de bit correspondante restera donc au potentiel haut et l'amplificateur de lecture 6 correspondant fournira un "1". Par contre, si le transistor est court-circuité, comme c'est le cas du transistor 10 situé à l'intersection de la
ligne de bit BLi+]_ et de la ligne de mot WL 5 , le fait que ce transistor soit bloqué ne perturbe pas la conduction du courant dans la colonne reliée à la ligne de bit BLj_+]_ qui va se décharger à la masse par l'intermédiaire de tous les autres transistors, passants, de la colonne. L'amplificateur 6 correspondant va donc lire un "0" .
Le circuit de la figure 2A est souvent préféré car il est simple à mettre en oeuvre en technologie intégrée.
La figure 2B représente une vue schématique de dessus de la mémoire 20 de la figure 2A, réalisée sous forme de circuit intégré. La mémoire 20 est réalisée sur un substrat 21 comportant deux zones actives allongées 22 et 22'. Les zones 22, 22', par exemple dopées N, sont isolées entre elles et correspondent respectivement aux drains et aux sources des transistors 10 en série des colonnes A^, Α.±+ de la figure 2A. Des bandes de silicium polycristallin 24 passent sur les zones actives 22 et 22 ' tout en étant isolées de celles-ci. Les bandes 24 constituent les lignes de mots WLQ à WL .5. Elles forment, à chacune de leur intersection avec les zones 22, 22', la grille d'un transistor 10. Il en résulte la formation d'une suite de transistors 10 en série, le long des zones 22, 22'. Pour chaque bloc, une bande particulière 24' constitue la ligne d'activation BS et forme les transistors de sélection 5. Chaque colonne comporte, à une extrémité, une prise de contact 25^, 25j_+ι pour la ligne de bit correspondante et, à l'autre extrémité, une prise de contact M pour connexion à la masse. Si une liaison conductrice doit être réalisée pour court-circuiter un transistor, comme c'est le cas pour le transistor 10 situé à l'intersection des lignes de mot WL15 et de la zone active 22', des prises de contact 26 et 26' sont prévues de part et d'autre de la grille du transistor considéré pour connexion à un niveau de métallisation supérieur.
Les mémoires ROM telles qu'illustrées en figures 1, 2A et 2B présentent des inconvénients.
Par exemple, la prise de masse qui se trouve à une extrémité de la zone active nécessite en général un niveau de
métallisation supplémentaire, ce qui accroît la taille, les temps de fabrication et les coûts.
Aussi, la qualité des amplificateurs de lecture est médiocre. Situés à l'extrémité des lignes de bit, les amplificateurs de lecture ne peuvent en effet occuper que la largeur de celles-ci. Ils sont en conséquence petits et ne peuvent être conçus de manière très élaborée. Par exemple, leur temps de réponse est faible, ce qui limite la fréquence maximale d'utilisation de la mémoire, et ils consomment beaucoup. Un objet de la présente invention est de prévoir une mémoire de type ROM de taille réduite.
Un autre objet de la présente invention est de prévoir une mémoire ROM comportant des amplificateurs de lecture perfectionnés et à consommation réduite. Pour atteindre ces objets ainsi que d'autres, la présente invention prévoit un circuit de mémoire ROM comportant des colonnes de cellules mémoire, chaque colonne étant reliée à une ligne de bit, dans lequel les colonnes sont agencées en groupes de deux colonnes adjacentes, chaque colonne d'un groupe étant activable ou inactivable sélectivement par rapport à l'autre colonne du groupe au moyen d'une ligne d'activation, caractérisé en ce que chaque colonne d'un groupe est reliée par une extrémité à la ligne d'activation de l'autre colonne du groupe.
Selon un mode de réalisation de la présente invention, la ligne d'activation d'une colonne est portée au potentiel de la masse pour inactiver ladite colonne.
Selon un mode de réalisation de la présente invention, une colonne comporte plusieurs cellules mémoire en série, chaque cellule mémoire comportant un transistor MOS dont le drain, respectivement la source, est couplé soit à la source, respectivement le drain, d'une cellule mémoire adjacente, soit à une extrémité de la colonne.
Selon un mode de réalisation de la présente invention, chaque colonne d'un groupe comporte un moyen de sélection propre
à activer/inactiver sélectivement ladite colonne, commandé par la ligne d'activation de la colonne.
Selon un mode de réalisation de la présente invention, le moyen de sélection d'une colonne d'un groupe est formé d'un transistor MOS en série avec les cellules mémoire de la colonne et disposé à l'extrémité de la colonne non reliée à la ligne d'activation de l'autre colonne du groupe.
Selon un mode de réalisation de la présente invention, le circuit comprend un amplificateur connecté aux lignes de bit reliées aux deux colonnes d'un même groupe.
Selon un mode de réalisation de la présente invention, l'amplificateur cαrporte un moyen pour invalider l'information présente sur la ligne de bit reliée à la colonne inactivée du groupe.
Selon un mode de réalisation de la présente invention, l'amplificateur comporte un moyen pour abaisser la tension présente sur la ligne de bit reliée à la colonne inactivêe du groupe.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1, précédemment décrite, représente schémati- quement un premier exemple de mémoire ROM classique ,- les figures 2A et 2B, précédemment décrites, représen- tent de manière schématique, respectivement, le schéma électrique et une vue de dessus sous forme intégrée d'un deuxième exemple de mémoire ROM classique ; la figure 3 illustre schématiquement un premier mode de réalisation de la présente invention ; et la figure 4 illustre schématiquement un deuxième mode de réalisation de la présente invention.
Les mêmes éléments ont été désignés par les mêmes références aux différentes figures.
Selon la présente invention, les colonnes d'un circuit de mémoire ROM sont agencées en groupes de deux colonnes adja-
centes. Chacune des colonnes d'un groupe comporte un moyen de sélection, commandable par une ligne d'activation spécifique. La ligne d'activation permet de sélectionner soit toutes les colonnes de rang pair, soit toutes les colonnes de rang impair d'un bloc de la mémoire. Selon le rang des colonnes sélectionnées, on obtiendra en lecture une information provenant soit de toutes les lignes de bit de rang pair, soit de toutes les lignes de bit de rang impair.
En figure 3, une mémoire ROM 30 est représentée avec deux colonnes adjacentes A-j_, A±+χ reliées respectivement à des lignes de bit BL^ et BL-j_+]_. Chaque colonne comporte des transistors 10, court-circuités ou non, correspondant aux cellules mémoire. La colonne A-j_ comporte en outre, à une extrémité, un transistor de sélection 35, commandé par une ligne d'activation BSj. La colonne Aj_ est reliée à la ligne de bit BLj_ par l'extrémité comportant le transistor 35. De même, la colonne Aj_+;ι_ comporte, à une extrémité, un transistor de sélection 36, commandé par une ligne d'activation BSi+i. La colonne A±+± est reliée à la ligne de bit _+ι par l'extrémité comportant le transistor 36. En outre, l'extrémité de la colonne Aj_ ne comportant pas le transistor 35 est reliée à la ligne d'activation BS-j_+3_ et l'extrémité de la colonne Aj_+ι ne comportant pas le transistor 36 est reliée à la ligne d'activation BSj_.
Selon la présente invention, les deux colonnes Aj_, Aj_+]_ forment un groupe de deux colonnes adjacentes activées sélectivement, c'est-à-dire que, lorsqu'une colonne du groupe est activée, l'autre est désactivée, et vice versa. Pour ce faire, les transistors 35 et 36 sont commandés sélectivement, c'est-à-dire que les lignes d'activation BSi et BSi+ι reçoivent des signaux complémentaires. Ainsi, lorsque la ligne d'activation BS^ est à
"1", la ligne d'activation BSj_+ι est à "0" et les transistors 35 et 36 sont respectivement passant et bloqué. Seule la colonne Aj_ est alors activée. En effet, le transistor 35 passant met en communication les cellules mémoire de la colonne Aj_ avec la ligne de bit BL-j_ et l'extrémité de la colonne A-^ opposée au transistor
35 est au potentiel de la masse, puisqu'elle est reliée à BSj_+ι, alors à "0". Inversement, lorsque la ligne d'activation BSj_+ι est à "1", la ligne BSj est à "0" et seule la colonne A.±+± est activée. Ainsi, dans la mémoire de la figure 3, la mise à un potentiel nul de l'extrémité des colonnes est réalisée en connectant l'extrémité d'une colonne d'un groupe à la ligne d'activation de l'autre colonne du groupe. Cela est possible selon l'invention car, lorsqu'une colonne d'un groupe est activée, la tension sur la ligne d'activation correspondante est à VDD et la tension sur la ligne d'activation de l'autre colonne du groupe est égale à zéro. Par conséquent, la liaison de la source du dernier transistor d'une colonne d'un groupe à la ligne d'activation du moyen de sélection de l'autre colonne du groupe ne modifie pas le fonctionnement de la mémoire. La connexion à la masse des colonnes est devenue inutile. Cela peut éviter une couche de métallisation supplémentaire et rendre la mémoire plus compacte en diminuant ses coûts de fabrication.
Pour pouvoir réaliser sans difficulté la connexion du dernier transistor d'une colonne à la ligne d'activation de l'autre colonne du groupe, le moyen de sélection de la deuxième colonne d'un groupe sera de préférence situé du côté opposé au moyen de sélection de la première colonne, comme cela est illustré en figure 3. Cependant, à titre de variante, il est possible de s'affranchir d'une connexion à la masse en disposant les deux lignes d'activation BS^ et BSj_+ι côte à côte, l'homme de l'art définissant les modifications à apporter au schéma de la figure 3.
Le fait de prévoir le groupement par deux des colonnes adjacentes et de les activer sélectivement permet aussi d'avoir des amplificateurs de lecture plus performants.
La figure 4 illustre un deuxième mode de réalisation de la présente invention. En figure 4, une mémoire ROM 40 reprend les principaux éléments de la mémoire 30. En outre, un amplifica- teur 41 remplace les deux amplificateurs de lecture 6 de la
figure 3. L'amplificateur 41 a deux entrées, reliées respectivement aux lignes de bit BL-^ et BLi+ι.
Le remplacement par l'amplificateur 41 est rendu possible par le groupement par deux des colonnes adjacentes. En effet, en lecture, une seule des deux colonnes d'un groupe est activée et par conséquent un seul amplificateur de lecture est nécessaire par groupe.
L'amplificateur de lecture 41 peut ainsi occuper jusqu'à deux fois plus de place que chacun des amplificateurs 6 de l'art antérieur. En pratique, il sera globalement un peu plus petit que deux amplificateurs 6, d'où un gain de place. Sa conception peut être plus soignée et notamment, la réponse en fréquence de l'amplificateur peut être plus rapide, ce qui, diminuant son temps de réponse, permet d'augmenter la fréquence maximale d'utilisation de la mémoire 40. Étant plus rapide, l'amplificateur 41 peut en outre être activé pendant une durée plus courte en lecture et il consommera moins. Comme les amplificateurs de lecture sont nombreux dans une mémoire, par exemple 512 ou 1024 par bloc, la présente invention permet aussi une diminution significative de la consommation de la mémoire.
L'amplificateur 41 peut fonctionner de diverses manières. Par exemple, l'entrée correspondant à la colonne inactivée peut être invalidée, l'amplificateur ne recevant effectivement que l'information à lire. Aussi, l'amplificateur 41 peut comprendre des étages différentiels couplés aux deux lignes de bits BL-j_ et BL-j_+]_, qui jouent alors un rôle complémentaire, un peu comme dans le cas d'une mémoire DRAM. Dans une opération de lecture, les lignes de bit sont d'abord préchargées à une tension quelconque, par exemple VDD. Ensuite, la colonne sélectionnée du groupe fournit un "1" ou un "0", et, selon le cas, la ligne de bit correspondante reste préchargée à VDD ou se décharge à 0. Pour que les étages différentiels de l'amplificateur 41 discriminent correctement un 1, il faudra réaliser une baisse de tension sur la ligne de bit de la colonne inactivée, par exemple en la faisant passer
à VDD/2. Une telle modification est à la portée de l'homme de l'art et ne sera pas décrite plus avant.
Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art.
Ainsi, la tension haute a été décrite comme étant la tension d'alimentation VDD, mais une valeur autre peut être utilisée. De même, le potentiel bas a été décrit comme étant le potentiel de la masse, mais il peut s'agir d'une masse virtuelle associée à la mémoire, distincte de la masse d'autres circuits liés à la mémoire.
Aussi, les rôles des tensions haute et basse, et des »1" et "0" logiques peuvent être inversés sans sortir du domaine de l'invention. Également, bien que les modes de réalisation décrits proposent l'agencement des colonnes des blocs d'une mémoire ROM en groupes de deux colonnes adjacentes, il est à la portée de l'homme de l'art d'agencer les colonnes en groupes d'un nombre n quelconque de colonnes adjacentes, n moyens de sélection permet- tant alors d'activer une seule colonne à la fois.
Claims
1. Circuit de mémoire ROM (30, 40) comportant des colonnes de cellules mémoire, chaque colonne étant reliée à une ligne de bit (BLj_, BL-j_+;ι_) , dans lequel les colonnes sont agencées en groupes de deux colonnes adjacentes (A-j_, Aj_+_) , chaque colonne d'un groupe étant activable ou inactivable sélectivement par rapport à l'autre colonne du groupe au moyen d'une ligne d'activation (BS , BSi+τ_) , caractérisé en ce que chaque colonne d'un groupe est reliée par une extrémité à la ligne d'activation (BSi, Bsi+l) ^e l'autre colonne du groupe.
2. Circuit de mémoire selon la revendication 1, dans lequel la ligne d'activation d'une colonne est portée au potentiel de la masse pour inactiver ladite colonne.
3. Circuit de mémoire selon la revendication 1 ou 2, dans lequel une colonne comporte plusieurs cellules mémoire en série, chaque cellule mémoire comportant un transistor MOS dont le drain, respectivement la source, est couplé soit à la source, respectivement le drain, d'une cellule mémoire adjacente, soit à une extrémité de la colonne.
4. Circuit de mémoire selon la revendication 3, dans lequel chaque colonne d'un groupe comporte un moyen de sélection
(35, 36) propre à activer/inactiver sélectivement ladite colonne, commandé par la ligne d'activation de la colonne.
5. Circuit de mémoire selon la revendication 4, dans lequel le moyen de sélection (BSj_, Bs-j_+τ_) d'une colonne d'un groupe est formé d'un transistor MOS en série avec les cellules mémoire de la colonne et disposé à l'extrémité de la colonne non reliée à la ligne d'activation de l'autre colonne du groupe.
6. Circuit de mémoire selon l'une quelconque des revendications 1 à 5, comprenant un amplificateur (41, 51) connecté aux lignes de bit reliées aux deux colonnes d'un même groupe.
7. Circuit de mémoire selon la revendication 6, dans lequel l'amplificateur (41, 51) comporte un moyen pour invalider l'information présente sur la ligne de bit reliée à la colonne inactivée du groupe.
8. Circuit de mémoire selon la revendication 6, dans lequel l'amplificateur (41, 51) comporte un moyen pour abaisser la tension présente sur la ligne de bit reliée à la colonne inactivée du groupe.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0006645A FR2809526B1 (fr) | 2000-05-24 | 2000-05-24 | Memoire rom de taille reduite |
FR00/06645 | 2000-05-24 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10296421 A-371-Of-International | 2001-05-23 | ||
US10/717,223 Continuation US7057916B2 (en) | 2000-05-24 | 2003-11-19 | Small size ROM |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001091130A1 true WO2001091130A1 (fr) | 2001-11-29 |
Family
ID=8850571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2001/001608 WO2001091130A1 (fr) | 2000-05-24 | 2001-05-23 | Memoire rom de taille reduite |
Country Status (3)
Country | Link |
---|---|
US (1) | US7057916B2 (fr) |
FR (1) | FR2809526B1 (fr) |
WO (1) | WO2001091130A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2881565B1 (fr) * | 2005-02-03 | 2007-08-24 | Atmel Corp | Circuits de selection de ligne binaire pour memoires non volatiles |
FR2888388A1 (fr) * | 2005-07-05 | 2007-01-12 | St Microelectronics Sa | Memoire a lecture seule |
US8605480B2 (en) * | 2010-12-28 | 2013-12-10 | Stmicroelectronics International N.V. | Read only memory device with complemenary bit line pair |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4651305A (en) * | 1985-02-11 | 1987-03-17 | Thomson Components-Mostek Corporation | Sense amplifier bit line isolation scheme |
EP0424962A2 (fr) * | 1989-10-27 | 1991-05-02 | Nec Corporation | Dispositif de mémoire à semi-conducteurs |
EP0526427A2 (fr) * | 1991-07-25 | 1993-02-03 | STMicroelectronics S.r.l. | Amplificateur de détection pour mémoires programmables avec une source virtuelle améliorée de signal |
JPH07130165A (ja) * | 1993-11-02 | 1995-05-19 | Nippon Steel Corp | Dram型記憶装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4495602A (en) * | 1981-12-28 | 1985-01-22 | Mostek Corporation | Multi-bit read only memory circuit |
US5448517A (en) * | 1987-06-29 | 1995-09-05 | Kabushiki Kaisha Toshiba | Electrically programmable nonvolatile semiconductor memory device with NAND cell structure |
US5200922A (en) * | 1990-10-24 | 1993-04-06 | Rao Kameswara K | Redundancy circuit for high speed EPROM and flash memory devices |
JP3397427B2 (ja) * | 1994-02-02 | 2003-04-14 | 株式会社東芝 | 半導体記憶装置 |
JP3273582B2 (ja) * | 1994-05-13 | 2002-04-08 | キヤノン株式会社 | 記憶装置 |
KR100272037B1 (ko) * | 1997-02-27 | 2000-12-01 | 니시무로 타이죠 | 불휘발성 반도체 기억 장치 |
FR2794277B1 (fr) * | 1999-05-25 | 2001-08-10 | St Microelectronics Sa | Memoire morte a faible consommation |
-
2000
- 2000-05-24 FR FR0006645A patent/FR2809526B1/fr not_active Expired - Fee Related
-
2001
- 2001-05-23 WO PCT/FR2001/001608 patent/WO2001091130A1/fr active Application Filing
-
2003
- 2003-11-19 US US10/717,223 patent/US7057916B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4651305A (en) * | 1985-02-11 | 1987-03-17 | Thomson Components-Mostek Corporation | Sense amplifier bit line isolation scheme |
EP0424962A2 (fr) * | 1989-10-27 | 1991-05-02 | Nec Corporation | Dispositif de mémoire à semi-conducteurs |
EP0526427A2 (fr) * | 1991-07-25 | 1993-02-03 | STMicroelectronics S.r.l. | Amplificateur de détection pour mémoires programmables avec une source virtuelle améliorée de signal |
JPH07130165A (ja) * | 1993-11-02 | 1995-05-19 | Nippon Steel Corp | Dram型記憶装置 |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 08 29 September 1995 (1995-09-29) * |
Also Published As
Publication number | Publication date |
---|---|
FR2809526B1 (fr) | 2003-07-25 |
FR2809526A1 (fr) | 2001-11-30 |
US7057916B2 (en) | 2006-06-06 |
US20040264228A1 (en) | 2004-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2842229B1 (fr) | Dispositif logique reprogrammable resistant aux rayonnements | |
FR2610135A1 (fr) | Memoire a semiconducteurs a lignes de donnees differentielles | |
FR2957449A1 (fr) | Micro-amplificateur de lecture pour memoire | |
FR2774209A1 (fr) | Procede de controle du circuit de lecture d'un plan memoire et dispositif de memoire correspondant | |
FR2799874A1 (fr) | Dispositif de memoire a semiconducteur | |
FR2974666A1 (fr) | Amplificateur de detection differentiel sans transistor de precharge dedie | |
FR2974656A1 (fr) | Amplificateur de detection differentiel sans transistor a grille de passage dedie | |
FR2972838A1 (fr) | Memoire a semi-conducteurs comportant des amplificateurs de lecture decales associes a un decodeur de colonne local | |
FR3074604A1 (fr) | Memoire sram a effacement rapide | |
EP2073212B1 (fr) | Dispositif de lecture d'une mémoire non volatile à basse consommation, et son procédé de mise en action | |
FR2793591A1 (fr) | Memoire morte a consommation statique reduite | |
FR2729782A1 (fr) | Cellule de memoire a cinq transistors comportant une ligne d'alimentation en energie partagee | |
FR2979738A1 (fr) | Memoire sram a circuits d'acces en lecture et en ecriture separes | |
WO2001091130A1 (fr) | Memoire rom de taille reduite | |
EP2003650B1 (fr) | Cellule mémoire SRAM asymétrique à 4 transistors double grille | |
EP3382709B1 (fr) | Cellule mémoire sram | |
FR2751778A1 (fr) | Memoire accessible en lecture seulement | |
EP1168179B1 (fr) | Circuit de mémoire dynamique comportant des cellules de secours | |
FR2794277A1 (fr) | Memoire morte a faible consommation | |
FR2878068A1 (fr) | Memoire a cellule de memorisation polarisee par groupe | |
FR2830973A1 (fr) | Dispositif de memoire a contenu adressable | |
EP2977988B1 (fr) | Mémoire non volatile à résistance programmable | |
EP1650806B1 (fr) | Cellule de mémoire volatile préenregistrée. | |
FR2982700A1 (fr) | Amplificateur de lecture avec transistors de precharge et de decodage a grille double | |
EP1624460B1 (fr) | Mémoire comprenant un point mémoire de type SRAM, procédé de lecture et procédé d'écriture associés. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |