WO2001086745A2 - Verfahren zum kaltstart von brennstoffzellen einer brennstoffzellenanlage und zugehörige brennstoffzellenanlage - Google Patents

Verfahren zum kaltstart von brennstoffzellen einer brennstoffzellenanlage und zugehörige brennstoffzellenanlage Download PDF

Info

Publication number
WO2001086745A2
WO2001086745A2 PCT/DE2001/001790 DE0101790W WO0186745A2 WO 2001086745 A2 WO2001086745 A2 WO 2001086745A2 DE 0101790 W DE0101790 W DE 0101790W WO 0186745 A2 WO0186745 A2 WO 0186745A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
heating
cell stack
cell system
cells
Prior art date
Application number
PCT/DE2001/001790
Other languages
English (en)
French (fr)
Other versions
WO2001086745A3 (de
Inventor
Ulrich Gebhardt
Konrad Mund
Manfred Waidhas
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2001582862A priority Critical patent/JP2003533002A/ja
Priority to EP01943059A priority patent/EP1301959A2/de
Priority to CA002408565A priority patent/CA2408565A1/en
Publication of WO2001086745A2 publication Critical patent/WO2001086745A2/de
Priority to US10/292,332 priority patent/US20030091875A1/en
Publication of WO2001086745A3 publication Critical patent/WO2001086745A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for cold starting fuel cells of a fuel cell system, in which individual fuel cells form at least one fuel cell stack.
  • the invention also relates to a fuel cell system with the associated means for performing the specified method.
  • a fuel cell system has one electrolyte per fuel cell unit, such as an ion exchange membrane in the PEM fuel cell.
  • This ion exchange membrane is proton-conducting in membrane fuel cells, the proton conductivity in membranes based on sulfonated compounds being ensured by liquid water in the membrane.
  • the proton conductivity is realized by the phosphoric acid.
  • the fuel cell types mentioned have the disadvantage that at low temperatures the electrolyte, i.e. Water below 0 ° C or phosphoric acid below 42 ° C, crystallized.
  • Membrane resistance jumps by at least two to three powers of ten. Autothermal heating of the fuel cells is then no longer possible without additional measures.
  • P- is fd 3 ⁇ PJ ⁇ ON 3 ⁇ P- OH rt P 1 d Hl T3: ⁇ ⁇ PJ Tl ⁇ ⁇ d cn is P> lJ ⁇ H- I iJ lJ ⁇ ⁇ pj: d Hi ii lJ N d Hl P, H ff d • qd PJ H d ⁇ rt cn P * P- i rt rt P "> lJ H li ⁇ P * ⁇ ⁇ N P-: lJ ⁇ rt Hi
  • the overall result of the invention is that no additional liquid circuit and / or heat exchanger from external heating sources to the fuel cell is necessary for heat transfer.
  • FIG. 1 shows a first arrangement of separate heating and cooling units in a fuel cell stack shown in longitudinal section
  • FIG. 2 shows a heating element from FIG. 1 in a sectional view
  • FIG. 3 shows a modification of FIG. 1 with combined heating and cooling elements
  • FIG. 4 shows a heating / cooling element 3 shows a sectional view
  • FIG. 5 shows a top view of the heating area according to FIG. 2 or FIG. 4.
  • Fuel cell stacks are to heat up and electrochemically operate by integrating them into the fuel cell stack. te heating cells are separated. This ensures that the heat from the catalytic combustion can be used to heat up the fuel cell system without loss.
  • FIG. 1 and FIG. 3 show a fuel cell stack 10 or 30 of a fuel cell system, which is also generally referred to as “stack *” in the technical field.
  • stacks consist, for example, of up to 100 individual fuel cells, whereby practical fuel cell systems can have several stacks that have a common periphery.
  • 10 is such a fuel cell stack of individual membrane-electrode assemblies (MEA) 1, 1 ', ..., each alternately arranged adjacent heating units 2, 2 ⁇ ... and cooling units 3, 3, ..., each MEA 1, for example, being adjacent to a heating unit 2 and a cooling unit 3, which are sealed off laterally by seals 5.
  • MAA membrane-electrode assemblies
  • the heating units 2, 2 ⁇ , ... have a gas distribution layer and a catalyst, which will be explained further below.
  • a separate element 2 as a heating cell is alternately provided with a cooling unit 3 after every second membrane electrode unit 1, 1.
  • Arrangements with different orders of heating elements and cooling units can also be useful, for example heating units being present after every nth cell of the fuel cell stack 10.
  • N can be between 2 and 10.
  • FIG. 2 shows a single heating cell 20, which is used for the fuel cell stack 10 in FIG. 1 and works according to the catalytic combustion process, as a single component.
  • FIG. 5 The top view of a component for heating is shown in FIG. 5. It can be seen that the gas inlet channel 42 branches into the parallel distribution channels 43 and that there is a common outlet channel 46. The entire surface 53 of the cooling / heating element 40 is thus covered with the cooling / heating medium 44 by the distribution channels 43.
  • catalyst material 45 is introduced in the gas distribution channels 43 over the entire surface 53.
  • the recombination process of hydrogen and air is used to generate heat. It is advantageously achieved that the heat is generated evenly during the catalytic combustion. It is therefore possible to use the heat for heating fuel cell stacks largely without loss and to improve their cold start performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

Der Kaltstart wird dadurch bewirkt, dass Prozessgas durch eine katalytische Reaktion direkt in thermische Energie umgesetzt wird und dass die thermische Energie zur Aufheizen des Brennstoffzellenstapels benutzt wird, wobei der Prozess des Aufheizens der Brennstoffzellenstapels getrennt vom Betrieb der Brennstoffzellenanlage erfolgt. Dazu bilden im Brennstoffzellenstapel (10) Heizelemente (2) separate Bauteile, die in vorbestimmter Reihenfolge im Brennstoffzellenstapel (10) angeordnet sind.

Description

Beschreibung
Verfahren zum Kaltstart von Brennstoffzellen einer Brennstoffzellenanlage und zugehörige Brennstoffzellenanlage
Die Erfindung bezieht sich auf ein Verfahren zum Kaltstart von Brennstoffzellen einer Brennstoffzellenanlage, bei der einzelne Brennstoffzellen wenigstens einen Brennstoffzellen- stapel bilden. Daneben bezieht sich die Erfindung auch auf eine Brennstoffzellenanlage mit den zugehörigen Mitteln zur Durchführung des angegebenen Verfahrens .
Eine Brennstoffzellenanlage besitzt pro Brennstoffzellenein- heit einen Elektrolyten, wie beispielsweise bei der PEM- Brennstoffzelle eine Ionenaustauschermembran. Diese Ionenaustauschermembran ist bei Membran-Brennstoffzellen protonenleitend, wobei die Protonenleitfähigkeit bei Membranen auf der Basis sulfonierter Verbindungen durch flüssiges Wasser in der Membran gewährleistet wird. Bei Membrantypen bzw. Matrizen, die mit Phosphorsäure getränkt sind, wird dagegen die Protonenleitfähigkeit durch die Phosphorsäure realisiert.
Die genannten Brennstofzellentypen haben den Nachteil, dass bei niedrigen Temperaturen der Elektrolyt, d.h. Wasser unter 0°C bzw. Phosphorsäure unter 42°C, auskristallisiert. Der
Membranwiderstand steigt dabei sprunghaft um wenigstens zwei bis drei Zehnerpotenzen an. Ein autothermes Aufheizen der Brennstoffzellen ist dann ohne zusätzliche Maßnahmen nicht mehr möglich.
Um letztere Problematik zu umgehen, wurde bereits vorgeschlagen, den Brennstoffzellenstapel bei minimaler Last kontinuierlich zu betreiben, so dass die Temperatur in den einzelnen Brennstoffzellen nicht unter die jeweilige Kristallisations- temperatur fällt. Um einen solchen Temperaturabfall zu vermeiden, ist es auch möglich, den Brennstoffzellenstapel jeweils vor Erreichen des Kristallisationspunktes, d.h. des Ge- ω ω N) M P1 P> π o cπ O tπ o Cπ cn <J σ *Ö ff K Cd α P* s: s 3 yi ff 3 φ ff l-J td φ α öd a s: Ω < CΛ ö rt Hi
Φ o P- φ Φ Φ ι-J P> P- P- o Φ pj: 0 P- Φ d φ P- P> l-S Φ Φ ff Φ rt P- Φ l-S
H ff d Φ P- d P- φ cn iQ l-J rt P) H d P- d rt d 3 φ H l-J P- Φ l-S P- Φ d P- cn P- σ ^ N d Φ d rt 3 N ιQ ι-J •ö d rt d ff P* φ r+ d ω s: PJ d d TJ α* rt d P> y rt cn P-
H cn > Hl d H yj Φ l-S P1 ff l-J fu cn l-J d cn l-S <! Φ φ o P- P1 o H Φ d l-i cn •n Φ ι-i y> P> cn Φ ϋ
0 cn Φ P- o ιQ rt P- o P- ι-J Φ l-J cn ff ff s: Φ ff Hl φ rt Hi Φ Φ d rt ^ d ff d rt P- O 3 l-J d P- φ P1 Φ P> cn ff Hi O o o cn Hl Ω PJ PJ d
(D d Φ cn α* d Hi pj: •-Q OB d PJ ff rt φ l-J •ü Φ o Hi l-J o ff d d ?r
P- rr cn H rt P- d Hi l-J Φ <! P" φ d φ ι-J d α* rt ff P- H Hl t£> 3 3 l-J rt α* d rt ω y rt- ff • cn N 1 cn φ rt l-J cn l-J P- s: Φ O P) N 3 N ) φ O: 3 rt Φ cn P- O P- cn Φ o l-J φ rt Φ φ P) d l-J cn < P- φ l-i KQ φ s: td Φ cn
Φ Hl d P1 d ff Hl ι-J " i-J P- ff cn φ o φ P* h-1 l-J P- ι-s d
H tr Hi P* d I-* P> φ P Φ rt cn d o* H l-J P-* P1 P> P- cn ι-i φ
P* N ff P- 3 φ PJ ff d rt rt Φ φ Φ d d s ιQ d φ Ti d Ω d « Φ φ 0) φ φ φ d \ l-J P- Φ rt ι-J H l-J Φ P> d d ω Hl ff P- d O l-J
? d P- Ϊ td cn O φ φ P1 d ff cn Ω d d ιQ cn cn d rr cn P*
• J S3 H rt C-, d d d -i Φ d pi: << d O: rt P- ff P- tQ ff öd rt H rt N S l Φ P> Φ P- rt Φ d ff O d KQ P) φ M φ d O Φ Φ o d d d Ό H N Ω P- α rt Hi & ω l-J w rt P) α cn Hi 13 s ö r+ 3 d Φ ff d ff cn ω Φ Hi Φ P- rt d ff J P- l-i Φ ff Hi rt ff
" H- ιQ Φ φ cn P* α> Φ 3 rt Ω rt α* 3 1 P- Φ φ H Φ d cn P- •Ö i-J Φ Φ l-J ri- Φ φ d rt cn φ P- ff O Φ \ d d Ω P- d rt Φ P) cn isi PJ
Φ cn ff P) O ?v « < Φ Hi 3 r S! Φ ? cn ff rt rt ff l-i P- O d ff d
0 Φ φ <1 d Hi KQ d P) O d Hi O PJ l-J PJ iQ Φ •^ cn cn P- d d H P- Hl d Φ cn H! Φ d Φ - l-J ιq ΪO ff cn rt Φ rt J rt P1 rt ff P*
I-* <l H N d α 3 rt <! ω Φ Φ P* cn N P) φ Hi φ φ Φ φ K Φ =
P- φ d= Hi Φ = P): cn φ l-J 3 P> φ φ s: P- l-S y PJ N 3 Φ H H O d cn
3 H ff P- Φ rt l-J rt l-J Φ P- X d i-J Φ ff cn P- •ö P1 3 φ 3 cn
P- Hl P* ff l-J I-* N ff P- P> O: d cn rt s: P- rt < 1^ o φ φ p- ti P- rt SD P- H Φ rt l-J φ i-J Hi d Ω O P> P> rt P- φ rt ff P- P1 l-J N rt ff Φ Φ Q
P- ff Φ w d Φ rt Hi Φ ff i-i cn 3 Φ Cß 1-5 Φ d P* ) d rt φ d d φ l-J ff d φ cn s; d s Φ Φ l-J cn Ό d Ω α s; P- rt ι-i P- P- cn Φ
H Φ Φ P- rr P- d d d Φ s: N Φ Hl ff J P- y φ d Φ P) ≥! p- rr y P> N N P> 1-5 cn s: rt P- P- d l-S 1 td Φ g H ff o P- l-J td i-S <! rt PJ rt
• s; d d Ό O- rt P): Φ P1 d l-J ιQ cn Ω Φ •p α Φ 3 d l-J Φ φ P- Ω cn Φ 3 d Φ • O H P- P- l-J Φ rt Φ rt öd Hi *^ P- ff i-Q φ d l-S O ff
P- P- i-Q Hi 3 d O P- Hi O 3 ι-S l-J φ 3 P- dö Φ d Q. s: d rt Hl
0 cn PJ σ Hi Φ Φ ff Ω α* d= Hi P- P- Φ l-J ff d φ ff d Φ Φ Φ y
O* φ d P- Φ P> φ ι-J rt ff P> ff Hi cn Φ d Φ « P) rt i-i cn d P- i-s rr d P- ff cn P> Φ rt er l-J 1 Ω ff d d P- P> rt ι-J P) rt td Φ P1 l-J. < o d Φ d Cd d d Φ rt ^^ ff cn Φ d P1 P- P- Ω O φ d cn
Φ O rt P- φ P- N cn ι-S d P- S! tJ l-S α rt O φ ff Hl rt d d α d ff φ d Φ σ uq s: PJ 3 ff φ Φ cn d ff rt Hl ι-S ιQ 33 i-i
O Φ d d- P- ι-J α d t?d d= P- cn P- P) P- 3 rt cn N P- P>: PJ N
O α l-i Φ cn Φ d N ff 1-5 cn rt cn d Φ P> 3 <i *> φ φ Φ l-i cn φ ff Φ 3 Ul P- rt ω l-J cn P* d φ Φ Φ l-J l-J H- l-i P- Φ Φ P* ff P- 3 cn
Ü Φ rt rt Φ rt to tQ l-J i-J KQ P- d rt rt l-J l-i P1 d Φ ISI
Φ d P) d N ff < O to Φ Φ P- Ω *) Hi L φ d Φ < P) φ d 3 13 d s: Φ Φ Hi Hi Ü P- KQ 3 ff Φ Φ & P* P> φ d P- cn Φ d P-
H K φ ιQ P- P- l-S Hi P- 0 P) P) 3 Φ rt Hi P- Φ Φ ff d P) Ω l-S Ω rt
O « o p* cn N ff N o ff cn cn •Ö d <J d o d H l-J l-J d ff N ff ff d o <! O d H φ l-i Hl d- Φ d l-i Φ Φ 3 P1 rt d d N l-i ff PJ O ff d Φ ω rt S P> 1 ff l-J tQ 3 l-J d d PJ cn cn P- d
N ff d 1-5 Φ u3 d P" c» • Φ d <! Φ & P- & P> ω vQ O P>: rt 3
Φ 1 φ cn KQ, d d φ -j »3 cn φ l-J P) P) φ φ P1 cn Hi Cß φ ff r Φ cn d P- W Φ d d ff i-i 3 d 1 l-J PJ cn d= • d N cn rt
N o cn Φ d P> ι-J 1 P- ö Hl cn tQ φ H PJ Φ P1 )
53 Φ Ό Φ Φ cn --Q d P1 P) φ Φ Hl iQ rt Φ i-J > d P- H
P- d 1 1 l-S 1 d 3 3 Φ Φ Φ 1 y Ω 1 1 1 1 l-J 1 d cn ff
LO > f-J p • 1
Cπ o Cπ o Cπ o cπ
y td S. P) t W rt rt tt) rt td ff d < d P1 öd tn cn cn Φ ü P. N rt P* ff P* ö cn ff INI >
Φ l-J Φ y Φ P> φ i-J φ P- I-J Φ d Φ 3 Φ P- φ Ω P- P- l-J o l-J d cn PJ P- < φ P- rt i-i d i P" P> φ Φ Φ P- O: d P- Φ Φ Φ d d φ - d Ω P- ff d φ l-S P- φ l-J ι-s φ l-S P- P* Hi d P- ff P* d rt φ d 3 N P> Φ rt rt ff d Φ Φ P1 cn P- Ω d P* *q w d Φ Φ • P- P* d rt d cn s: φ H PJ Φ ff φ *q ff > d Φ d P- O Φ Ω cn Φ • cn Φ P- 9 Φ PJ
O: cn d P- d d P* H ff d PJ cn Φ y 3 d ff d rt P- ü φ d H φ rt i-J rt rt i-s d φ P- Hi ff PJ Hi Hi ιQ φ d O d d P cn cn O Hi H Hi N P* II Φ d P- ff ι-J P- PJ. d rt <5 öd P- •q Φ rt Hl s: Φ d 3 ? M rt Hi P- 3 H rt 3 Φ Φ φ d d P* Φ φ l-J Φ PJ ff P- P-
Φ» Hi o Φ p- PJ I-J i-J PJ Hi d Φ P* M Φ P- P- q PJ l-J φ ff d d φ
N P* Ό l-J rt rt PJ Hl P-* N P* Ω P- d P- α ff M N rt d P- iQ Sl Hl d S φ d cn l-J
Φ d 0 *£ PJ P* P- rt Φ d Φ d cn ff P- l Φ d d -q Φ Φ PJ d Φ vq ff
< I-* l-J l-S d: P" P- d d P* d ιQ N P* P- Φ P- d P- iQ φ P- ff cn l-i ≤, cn φ t*.
Φ P* Ω O: d P- Φ P* d P* ιQ Φ P td cn P- N iQ 3 d N rt l-S rt !*r P- rt cn H
Ü Φ ff Cn cn ι-s rt d d <q Φ cn d 3 P* H d 3 N P" d Φ φ O 3 H Φ O Hi
3 Φ Ω P* p- rt d iQ cn p- φ P> PJ Φ td O: i-s l-S d Hl J P* 3 d P-
P- Φ ff cn Φ vq P* d Φ PJ > Φ d o Ω Ω P" ö l-S cn d ff cn Hi P1 *o α d
Φ P* P- cn rt p. Ω d Φ d 3 rt d d ff φ PJ φ rt rt ö P- N φ ff Φ Φ P*
P- d rt Φ P- ff P- l-J Ω. pi: N Hl tQ Q Φ N d Φ d P1 P- φ Φ l-S n d
Φ Φ Φ i-J Φ Φ P- cn E ff PJ P> P> 1_I. Φ d d d J i-S l-J cn P* P* P- J d y Sl d rt Φ ff Φ N Φ ff cn d Φ d cn P1 PJ Ω d rt P1 φ 3 rt *q
N P1 PJ* Hl ϊö P- φ d d P- Φ IQ P- cn ff ? rt cn d ff d Φ cn d Φ s: d o rt l-J ι-s Φ α < d P- l-S N P- P* Φ Φ ) P- O: O O tn Hl •q Ω d <! l-i P- p-
P- i-s f d 3 φ PJ Φ O N 3 Φ P- O H rt P1 d Hl T3 : φ Φ PJ Tl Φ φ d cn i-s P> l-J Φ H- I i-J l-J Φ Φ pj: d Hi i-i l-J N d Hl P, H ff d q d PJ H d φ rt cn P* P- i rt rt P" > l-J H l-i Φ P* Φ Φ N P- : l-J Φ rt Hi
• O φ φ Φ s; P- π Φ d d Hi rt P* φ K d O N d d Φ φ Ω d P* d J φ PJ d Φ ff ι-s l-J φ o P> P- Φ Hl J Φ φ P- rt Φ P^ d ff d Φ cn •q d ff d τι cn
PJ* s rt P1 l-S d rt P* d ff ff l-S cn rt φ 3 <i J Φ •-q ω rt φ rt l-S rt O
P* ff Φ d P* P> ff Φ H Φ s: P> l-i öd O Φ d . PJ PJ Φ Φ
P- φ cn φ Hi P* PJ td P- Φ d ω Φ d cn c Φ l-J d iQ P- <! d 3 d d H l< P- l-J <J rt d *< Hi PJ N d i-J n Φ PJ rt p- N cn Φ φ φ P. P- cn Φ d ff Φ Φ p. P): cn rt d Φ ü φ Φ P- d P) d rt cn cn l-S rt 13 P- φ d d P- l-J Φ Ω PJ •*, rt d P. t? d Φ P- d O d P* ιq PJ •Ö Hl P* i-S Φ φ i rt rt 3 ff rt Φ P- d d d ff a P- cn T3 ι-S < J φ S d H 3 3 ^
N Φ P- si Φ O P- iQ Φ P- cn P* φ Φ s: Φ O Φ ff cn P- Ω Φ PJ
P* d P- d PJ: H ι-J P) P1 Φ I ) rt Φ 3 O: d & cn φ P1 Ω i-J l-S rt ff Φ Ω ä P1
Φ d P* P- l-S >ΞΪ ff cn φ rt T) to O d P> φ Φ P- ff Hi φ •n rt Φ P- φ ff* rt
>q Φ 3 3 pi: Φ cn i-J l-J Hi Sl U5 d Ω d ω P- Φ J d J Φ cn d Hi l-J cn l-J p- Φ & 3 Φ O P1 Hi pi: Φ Φ ff φ d d ff cn rt <q i-J PJ rt öd φ Cn Φ P- Φ P* O: d N o N l-S Φ d H K rt Φ H Φ d P- J P- d PJ i-s P- O l-J o ιQ d tQ d φ Φ 3 P- • t_l. Φ Φ M Φ Φ ff d d φ 1 l-S φ d ff rt ö d H P" rt tn Cü P1 Φ ιQ Φ Ω p- P1 iQ d d N rt INI vq •q l-J öd rt d φ P- • rt O d Ω P- cn CD P1 d H P* ff N Φ l-J i-S cn s: J d φ cn •ö l-J d l-J Ω P- *Ö iQ ff Ω φ O Φ s: Φ d Φ d N 3 P- O d l-J d φ <1 cn ff <! 3 rt ff d P- rt i-s P- Φ φ Φ ff cn cn O: q d d O rt φ rt o PJ P- Φ P) P- > cn l-S Φ n w d 1- P1 P- O ö cn φ ? d d
O P- l-S M 3 Φ P- 3 ω 3 P» rt d O d rr rt φ d Φ H d rt d rt cn
Hl d < rt P- cn d J J H 1 g Φ Φ Φ 3 i-J d i-s • J rt öd
Hi N O Φ ιQ Φ φ Ω Φ td cn •Ö Ό O rt p d J Ω Ω d N O ι-s
N Φ l-J P- Φ l-S K d ff P- Φ P- Φ y ) ff Φ <i P? rt Ω öd ff ff t?d d d Hl Φ φ P* < P* d rt φ rt d rt d J rt φ d cn ff o PJ P- φ l-S φ Hi P- rt Hi d
P* d Φ ff d P- w • Φ ι-J P* cn ? P- d φ PJ l-J rt f •q Φ cn d* d Φ <! N d
P1 Φ cn P) rt s: N O P- rt INI T3 d ff P) φ d ff φ d φ φ cn
Φ d Φ Hi N Φ Φ d Φ Φ d ff P- !<; td Φ PJ P* J P1 P^ d d cπ l-S l-J P" rt ff rt rt l-J P" N Hl ff d Φ ω cn PJ P* 1^ Φ d d cn cn . d N ff P" O
Hi Φ P* Φ Φ Hi d l Ω PJ d P* J P* rt l-S rt rt d d l-S φ φ H d* d K d φ 3 d Φ P* 3 ff rt rt φ rt rt φ P- Ω PJ O < • 5 ιq rt cn Hi ff P> d d Φ 1 Φ Φ O φ Φ d I ff d Hl O φ 1 1 1 d o* d 1 ι-J ff H P- Φ Hi l-J 1 d 1 1-5 1 cn 1 1
Mit der Erfindung ergibt sich auch die Möglichkeit, die Heizzellen direkt in den üblicherweise vorhandenen Kühlkreislauf zu integrieren. Bei dieser Anordnung ist neben der direkten Wärmeübertragung vorteilhafterweise eine gleichmäßige Verteilung der Wärme mittels des Kühlkreislaufes über den Stapel bzw. über definierte Segmente des Zellenstapels gegeben.
Bei der Erfindung wird insgesamt erreicht, dass zur Wär e- Übertragung kein zusätzlicher Flüssigkeitskreislauf und/oder Wärmetauscher von externen Heizquellen zur Brennstoffzelle notwendig ist.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbei- spielen anhand der Zeichnung. Es zeigen jeweils in schemati- scher Darstellung
Figur 1 eine erste Anordnung von separaten Heiz- und Kühlein- heiten in einem im Längsschnitt dargestellten Brennstoffzellenstapel, Figur 2 eine Heizelement aus Figur 1 in Schnittdarstellung, Figur 3 eine Abwandlung von Figur 1 mit kombinierten Heiz- Kühlelementen, Figur 4 ein Heiz-/Kühlelement aus Figur 3 in Schnittdarstellung und Figur 5 eine Draufsicht auf den Heizbereich gemäß Figur 2 oder Figur 4.
In den Figuren sind gleichwirkende Elemente mit gleichen bzw. sich entsprechenden Bezugszeichen versehen. Die Figuren werden teilweise gemeinsam beschrieben.
Bei den nachfolgend beschriebenen Einrichtungen als Teil ei- ner Brennstoffzellenanlage mit jeweils wenigstens einem
Brennstoffzellenstapel soll das Aufheizen und der elektrochemische Betrieb durch in den Brennstoffzellenstapel integrier- te Heizzellen separiert werden. Damit wird erreicht, dass die Wärme der katalytischen Verbrennung zum Aufheizen der Brennstoffzellenanlage verlustfrei genutzt werden kann.
In Figur 1 und Figur 3 ist ein Brennstoffzellenstapel 10 bzw. 30 einer Brennstoffzellenanlage dargestellt, welcher in der Fachwelt auch allgemein als „Stack* bezeichnet wird. Derartige Stacks bestehen beispielsweise aus bis zu 100 einzelnen Brennstoffzellen, wobei praxisgerechte Brennstoffzellenanla- gen mehrere Stacks aufweisen können, die eine gemeinsame Peripherie haben.
In Figur 1 besteht ein solcher Brennstoffzellenstapel 10 aus einzelnen Membran-Elektroden-Einheiten (MEA) 1, 1', ... mit jeweils benachbarten wechselweise angeordneten Heizeinheiten 2, 2Λ, ... und Kühleinheiten 3, 3 , ..., wobei beispielhaft jede MEA 1 von einer Heizeinheit 2 und einer Kühleinheit 3 benachbart ist, die seitlich über Dichtungen 5 abgeschlossen sind. Dies bedeutet, dass zwischen einzelnen Membran-Elek- troden-Einheiten 1, 1', ... alternierend Heizeinheiten 2, 2 zum selektiven Heizen und Kühleinheiten 3, 3λ zur Kühlung des Brennstoffzellenstapels angeordnet sind. Die Heizeinheiten 2, 2λ, ... haben eine Gasverteilungsschicht und einen Katalysator, was weiter unten noch erläutert wird.
In der Anordnung gemäß Figur 1 ist also nach jeder zweiten Membranelektrodeneinheit 1, 1 ... ein separates Element 2 als Heizzelle abwechselnd mit einer Kühleinheit 3 vorgesehen. Es können auch Anordnungen mit anderen Reihenfolgen von Hei- zelementen und Kühleinheiten nützlich sein, wobei beispielsweise Heizeinheiten nach jeder n-ten Zelle des Brennstoffzellenstapels 10 vorhanden sind. Dabei kann n zwischen 2 und 10 liegen.
In Figur 2 ist eine einzige Heizzelle 20, die für den Brennstoffzellenstapel 10 in Figur 1 dient und nach dem Katalyt- brennverfahren arbeitet, als einzelnes Bauelement darge- co o t- to P» P»
Cn o Cπ o Cπ o Cπ
<s cn ^ cn Q cn l-J J fd cn H P, N Hi α l-J r| P. PI cn cn Hi ff ff N P* to φ H S α. P* cn φ P- J rt d Ω φ P* P- P- d d φ , PJ P- Φ d: φ d ff ff i-i Φ P) Φ < t P- p- Ω PJ ff l-S Ω rt J d ff tn d d d d φ cn φ P- l-J H PJ P> φ P- P1 d cn s d Φ ff ff l-S Φ
P* ff PJ d ι P1 D P* •q J. Ω cn ff P* l-S •P P- ff PJ cn ff ff p- φ 1
Φ ff P* P, cn P- P1 Φ ff cn φ P- ff PJ cn α ff Φ ff φ •q a cn l-J ff a rf ff φ Ω d P" d P* φ 1 φ PJ P- o d ff P* cn p * d P- o i-J I-* φ Φ PJ P- O P- H i-J ff ff rt P- Cn rt EP rt d Q d J Φ ff PJ: cn < φ !=j P. cn i-s ff φ ι-J φ O: o a ff τ)
P- Ω J d Φ rt N ff a d l-S EP t 0 O ff Φ -1 Φ O l-J 3 3 a Φ H
P- ff rt Φ d d Φ Φ P- PJ: P- 0 d l-S TJ P- P- I-S o ff 21 l-J ff J « Φ Φ l-S [V> J ö
Ω O P- a • d P* d *> P" r q ff tn ff l-S d •q N PJ: cn rt P> d d tv> ff P- ff d ι-( d d P- Φ Φ y φ φ ff PJ PJ P- d öd Φ l-S d Φ ff tu ff φ rt d 3 N H d-- Φ φ P- ff i-J P- φ d X φ ι-< ι-s ff 3 ff d l-J J ff tv> Φ P) φ
• a J Φ Φ 3 P> cn i-J rt <l P* s: d P* P- H Φ φ S Φ O a P- P1 PJ P> P- P1 d tn rt P* ff Φ o 1 φ φ Φ cn ff co d i-J pj: 3 PJ •< d N cn Φ s: Φ d rt td <l td Φ H l-S ^ P- P- •q d Φ d ff l-J Hi p a P1 tn d φ IM to P-
P- H Φ Φ PJ o PJ cn ff K cn d φ Φ ff P- ω ι-J 3 H ff d J P- Φ Ω P» N l-S P- P- d l-J d d J Φ φ φ rt d φ W cn ff J Φ Φ i-J IV) ff d d P-* P) N
P* PJ Ω P* Φ ff φ PS d d p- n a d: ff o •q P- Φ o ^ O d P1 cn Φ
P* PJ d P" PJ P1 d= ff N d P* Φ t^ Φ ff Hl φ cn ff
Φ ff Φ Φ Φ PJ φ d d: d P1 φ Hi d a a Ω φ <! a P* a cn d Φ d P- , P- 3 J φ P- P1
O Ji- ff •q 3 P* 3 P1 d d P- O l-S d ff rt 1 P- N H P- P- -n cn PJ cn to i-s φ φ i-i Cπ PJ cn Φ Φ φ I d ff PJ ff P* Φ ^ d Φ d α H 3 d ff ff O <! o ff ff d ff d d d \ P- ff l-S Φ ff ff M P* d
**• a d φ d Φ Φ φ to
PJ PJ: J ff rt tn 3 Φ l_l. ff d I-S φ öd P* P* td ff PJ l-J i-i <! P- P- o
PJ ff P* d φ P- P- φ P- Φ α p- H φ Φ ι-S rt 3 P- a ff Φ P1 d
P1 •q Φ P> j-- a P- M Φ rt P* •q « P- P- N φ d P. l-J ö φ φ J O Φ l-S d φ ff tn φ H o P- o N P- φ φ d: ω φ Φ d PJ P- H P- d y> P1 l-J P- P1 d φ ff .{-. Φ Φ d 3 ^ l-J ff P1 cn P- d d φ d φ d PJ J rt P1 P): ιq •P cn s φ O J-*. <! P* P* N P- r P1 PJ d cn P* d cn ιq d d φ d d cn o ff
PJ d [O Φ Φ PJ Φ Φ rt cn td y- I d ff rf PJ rt ff a PJ *q a d cn d Hi cn i-i φ ff • 3 H P- l-J 3 P" P- l-S ff Hi P- Φ O q Hi d cn Φ ff Φ iQ ff Ω O: ff
Φ P- P* d ιq φ d « d Φ H d J P- Hl φ N l-J i-i a < ff P- tn ff cn ff ι-J ff ff < pj: Φ d Φ PJ P- d 1 d P- tn ff Hi • d φ Ω N φ o J: rt ff Ü P- φ
P- φ o d ^ ω ff d rt d \ P- d tn Φ N P- ff d d l-J P1 PJ PJ Ω P- J rt : d Hi d rt PJ P- cn M rt d Φ p. rt ff P- d l-S ff 3
P1 N ff ff ff Φ PJ ff P1 d ff φ tn φ P. P1 Φ PJ a φ Φ a Ω PJ PJ ff φ ff rt Φ P* P* P* d Φ K, O P- Φ •q P- •^ P- cn d P> P- rt Φ ff P1 P1 P- td
O Φ l-S φ P* 1 P- cn cn cn IO Hi N P- i-i φ ^« Φ cn Hl cn d • <! P* Φ φ P- d i-S 3 P): rt Ω PJ d Hi φ N P- d Φ φ Φ P- IV) φ P- ff d
N Φ a d K • ^ ff ff Φ N P- Φ Φ tn cn d a rK ι-J ff H d co P" d ff N
Φ cn P- P- •q φ P- l-S O l-J Φ d P1 ι-J Φ ff Φ PJ P- ff cn i-i Φ d φ d cn P- w •q P- ι-s H P* ff Φ ff P- *^ PJ f d ff φ rt •ö Φ a N Ω P- P1 rt P- N cn d Φ 3 P- P* φ 3 N "P i-J PJ X Φ 0 P- Φ P- d ff cn d ι-s cn ^ φ 1 i-s ff PJ Ω Φ P- Φ ≤ N « Φ ≤ öd ' O l-J l-J d P1 Ω Φ
PJ ff P1 d P- g cn Φ ff ff d rf d P- Φ • P1 pj: l-J ^ ff PJ rt a P- ff d ff PJ: Φ d Φ P- co d φ ff Φ ff ι-J P* • H φ ff ff fd H •Ö a Φ φ
P- PJ Ω H a d i-i d P- φ P1 co 3 d ff φ P- Φ o Φ d EP P1 PJ
O d ff H Ω P- a P- s: P- d d Φ ff o d d l-J H d d P- l-J d φ φ d d cn Φ P- PJ d cn Φ PJ q ff N Φ d cn φ 3 Hi ι-J O: ff d P- cn cn Ω cn P N ff H P* Φ J^ d Ü P- P- P- •q ff d φ P* -X) a cn öd P- • ff
O ^ <! ff s, P- Ω P- cn PJ d d PJ O d d d P" Φ i-s •d φ N d P- Φ rt Φ φ P- Φ <l J ff *. P> 3 ff i-S ff Hi cn PJ d φ o H d s: d *q l-i d l-J α**» P- d d φ cn H P- P- J •q φ Hi φ ?d cn ff ö d P1 d a φ ff d ff d cn . l-S <1 <l . p rt φ P" φ P- IN l-S Φ ff PJ CΛ d PJ Φ P- rt ι-J Φ O d ff ^d cn Φ ' o • Φ d ff cn 3 Φ Hi J a φ cn Ω •q i-s a
Φ P- ι-J p P- P- φ ι-J H • d cn φ ff P" PJ ff Φ d ff J Φ φ ff
Cπ p* ff 1 1 Ό vq ff ff ff ιQ P- ff rt Φ ff rt cn y P- cn d l-S p-
J-- ff φ o d φ Φ J Φ d φ • P* PJ Φ i-J P- ff PJ Ω •ö
Cπ φ φ PJ P1 ι-J d P- d 1 1 d Φ O o ff ff O l-J d ff P) 1 1 ff ff 1 d d PJ d PJ ff 1 1 1 1 I l 1 1
Die Bauelemente 20 und 40 der Figuren 2 und 4 werden jeweils durch Dichtungen 25 und 50 abgeschlossen.
Die Draufsicht auf ein Bauelement zum Heizen ist in Figur 5 dargestellt. Es ist ersichtlich, dass der Gaseinlasskanal 42 sich in die parallelen Verteilungskanäle 43 verzweigt und dass ein gemeinsamer Auslaufkanal 46 vorhanden ist. Somit wird die gesamte Fläche 53 des Kühl-/Heiz-Elementes 40 mit dem Kühl-/Heiz-Medium 44 von den Verteilungskanälen 43 abge- deckt.
Angedeutet ist, dass über der gesamten Fläche 53 in den Gasverteilungskanälen 43 Katalysatormaterial 45 eingebracht ist.
Wie in Figur 5 aus der bildlichen Punktdarstellung des Katalysatormaterials 45 und insbesondere aus der zugehörigen Graphik in Figur 5 unten deutlich wird, ist in der Konzentration c des Katalysatormaterials 45 ein Gradient vorhanden, d.h. in der Nähe des Gaseinlasskanales 42 ist die Konzentration c des Katalysatormaterials 45 höher als in der Nähe des Auslasskanals 46. Die Konzentration c des Katalysatormaterials 45 kann insbesondere linear über der Weglänge 1 abfallen. Auch andere Abhängigkeiten sind möglich.
In anderen Anordnungen können radial verlaufende Gasverteilungskanäle vorhanden sein und dementsprechend radiale Konzentrationsgradienten des Katalysatormaterials 45 beinhalten. In jedem Fall wird erreicht, dass die Reaktion des Brenngases flächenhaft von innen nach außen verläuft.
Bei den beschriebenen Anordnungen wird der Rekombinationspro- zess von Wasserstoff und Luft zur Wärmeerzeugung ausgenutzt. Vorteilhafterweise wird erreicht, dass die Wärme bei der ka- talytischen Verbrennung gleichmäßig anfällt. Somit ist es möglich, die Wärme zum Aufheizen von BrennstoffZellenstapeln weitestgehend verlustfrei zu nutzen und deren Kaltstartperformance zu verbessern.

Claims

Patentansprüche
1. Verfahren zum Kaltstart von Brennstoffzellen einer Brennstoffzellenanlage, bei der einzelne Brennstoffzellen wenig- stens einen Brennstoffzellenstapel bilden, d a d u r c h g e k e n n z e i c h n e t , dass Prozessgas in einer ka- talytischen Reaktion an einem geeigneten Katalysator direkt in thermische Energie umgesetzt wird und dass die thermische Energie zum Aufheizen des Brennstoffzellenstapels benutzt wird, wobei der Prozess des Aufheizens des Brennstoffzellenstapels getrennt vom Betrieb der Brennstoffzellenanlage erfolgt.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n - z e i c h n e t , dass die katalytische Reaktion durch Ausbildung eines Konzentrationsgradienten in der Katalysatorbelegung des Heizelementes optimiert wird.
3. Verfahren nach Anspruch 1, d a d u r c h g e k e n n - z e i c h n e t , dass die mit der Heizzelle erzeugte Wärme mittels des Kühlkreislaufes über den Brennstoffzellenstapel bzw. über definierte Segmente des Brennstoffzellenstapels gleichmäßig verteilt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die durch die katalytische Verbrennung im in der Heizzelle erzeugte Wärme verlustfrei zum Aufheizen des Brennstoffzellenstapels genutzt wird.
5. Brennstoffzellenanlage mit Mitteln zur Durchführung des Verfahrens nach Anspruch 1 oder einem der Ansprüche 2 bis 4, mit wenigstens einem Brennstoffzellenstapel und zugeordneten katalytischen Heizeinheiten, d a d u r c h g e k e n n - z e i c h n e t , dass die Heizeinheiten separate Bauteile (20, 40) bilden, die in vorbestimmter Reihenfolge im Brennstoffzellenstapel (10, 30) angeordnet sind.
6. Brennstoffzellenanlage nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , dass die Heizzellen (20, 40) nach jeder Zelle des Brennstoffzellenstapels (10, 30) angeordnet sind.
7. Brennstoffzellenanlage nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , dass die Heizzellen (20, 40) nach jeder n-ten Zelle (n = 2 bis 10) im Brennstoffzellenstapel (10, 30) angeordnet sind.
8. Brennstoffzellenanlage nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , dass das Heizelement (20, 40) eine poröse strukturierte Verteilerschicht (22, 44) enthält.
9. Brennstoffzellenanlage nach einem der Ansprüche 5 bis 8, wobei Bauelemente für einen Kühlkreislauf vorhanden sind, d a d u r c h g e k e n n z e i c h n e t , dass die Heizzellen und der Kühlkreislauf in einem gemeinsamen Bauelement (40) integriert sind.
10. Brennstoffzellenanlage nach einem der Ansprüche 5 bis 9, d a d u r c h g e k e n n z e i c h n e t , dass die Katalysatorbelegung im Heizelement (20, 40) einen Konzentrationsgradienten (dc/dl) aufweist, wobei c die Konzentration am Katalysatormaterial (24, 45) und 1 den Abstand vom zentralen Verteilerkanal (22, 43) bedeuten.
PCT/DE2001/001790 2000-05-11 2001-05-10 Verfahren zum kaltstart von brennstoffzellen einer brennstoffzellenanlage und zugehörige brennstoffzellenanlage WO2001086745A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001582862A JP2003533002A (ja) 2000-05-11 2001-05-10 燃料電池の低温始動方法と燃料電池設備
EP01943059A EP1301959A2 (de) 2000-05-11 2001-05-10 Verfahren zum kaltstart von brennstoffzellen einer brennstoffzellenanlage und zugehörige brennstoffzellenanlage
CA002408565A CA2408565A1 (en) 2000-05-11 2001-05-10 Method for cold starting fuel cells of a fuel cell facility and corresponding fuel cell facility
US10/292,332 US20030091875A1 (en) 2000-05-11 2002-11-12 Method for cold starting fuel cells of a fuel cell facility, and corresponding fuel cell facility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10023036A DE10023036A1 (de) 2000-05-11 2000-05-11 Verfahren zum Kaltstart von Brennstoffzellen einer Brennstoffzellenanlage und zugehörige Brennstoffzellenanlage
DE10023036.9 2000-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/292,332 Continuation US20030091875A1 (en) 2000-05-11 2002-11-12 Method for cold starting fuel cells of a fuel cell facility, and corresponding fuel cell facility

Publications (2)

Publication Number Publication Date
WO2001086745A2 true WO2001086745A2 (de) 2001-11-15
WO2001086745A3 WO2001086745A3 (de) 2003-02-13

Family

ID=7641622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/001790 WO2001086745A2 (de) 2000-05-11 2001-05-10 Verfahren zum kaltstart von brennstoffzellen einer brennstoffzellenanlage und zugehörige brennstoffzellenanlage

Country Status (7)

Country Link
US (1) US20030091875A1 (de)
EP (1) EP1301959A2 (de)
JP (1) JP2003533002A (de)
CN (1) CN1441974A (de)
CA (1) CA2408565A1 (de)
DE (1) DE10023036A1 (de)
WO (1) WO2001086745A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1579519A2 (de) * 2002-01-11 2005-09-28 UTC Fuel Cells, LLC Verfahren und vorrichtung zur verhinderung des frierens von wasser in brennstoffzellen-energieanlagen während der lagerung
DE102004023057A1 (de) * 2004-05-11 2005-12-01 Bayerische Motoren Werke Ag Brennstoffzellen-Stack
JP2006521675A (ja) * 2003-03-25 2006-09-21 ユーティーシー フューエル セルズ,エルエルシー 氷点より低い温度で燃料電池スタックアッセンブリを始動するためのシステムおよび方法
US7157169B2 (en) * 2001-10-30 2007-01-02 Nissan Motor Co., Ltd. Fuel cell
US8163428B2 (en) 2007-11-19 2012-04-24 Enymotion Gmbh Fuel cell system and method for operating the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10107596B4 (de) * 2001-02-17 2005-11-03 Man Nutzfahrzeuge Ag Niedertemperatur-Brennstoffzelleneinrichtung für Fahrzeuge, insbesondere PEM (Proton-Exchange Membrane)-Brennstoffzelleneinrichtung
JP2002324563A (ja) 2001-04-24 2002-11-08 Toyota Motor Corp 燃料電池システム及び燃料電池システムの制御方法
JP4929571B2 (ja) * 2004-09-07 2012-05-09 カシオ計算機株式会社 燃料電池のセパレータ及び燃料電池装置
US8603654B2 (en) * 2006-11-22 2013-12-10 GM Global Technology Operations LLC Supplemental coolant heating for fuel cells with metal plates
EP2123786A1 (de) * 2008-05-21 2009-11-25 ArcelorMittal France Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche
JP4986930B2 (ja) * 2008-05-26 2012-07-25 京セラ株式会社 燃料電池およびその運転方法
CN104716364B (zh) * 2013-12-15 2018-03-27 中国科学院大连化学物理研究所 一种锌/空气电池低温启动方法
CN110021768B (zh) * 2018-01-09 2021-03-30 上海汽车集团股份有限公司 一种燃料电池的冷启动控制方法、装置及系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054178A (ja) * 1983-09-02 1985-03-28 Matsushita Electric Ind Co Ltd 燃料電池装置
JPS61158672A (ja) * 1984-12-28 1986-07-18 Fuji Electric Co Ltd 空冷式燃料電池の昇温方法
JPS62136774A (ja) * 1985-12-10 1987-06-19 Fuji Electric Co Ltd 燃料電池スタツクの保温方法
JPS62268066A (ja) * 1986-05-15 1987-11-20 Mitsubishi Heavy Ind Ltd 燃料電池の起動方法
JPS63205058A (ja) * 1987-02-20 1988-08-24 Mitsubishi Electric Corp 燃料電池装置
JPH01124962A (ja) * 1987-11-10 1989-05-17 Fuji Electric Co Ltd アルカリ電解質型燃料電池装置
JPH04106877A (ja) * 1990-08-28 1992-04-08 Mitsubishi Electric Corp 燃料電池発電装置
US5316870A (en) * 1991-05-27 1994-05-31 Fuji Electric Co., Ltd. Heat supply and electric power-generating fuel cell
JPH07169476A (ja) * 1993-12-17 1995-07-04 Toshiba Corp 燃料電池の保温方法
WO2000054356A1 (de) * 1999-03-09 2000-09-14 Siemens Aktiengesellschaft Brennstoffzellenbatterie mit verbesserter kaltstartperformance und verfahren zum kaltstarten einer brennstoffzellenbatterie
DE19910387A1 (de) * 1999-03-09 2000-09-21 Siemens Ag Brennstoffzellenbatterie mit Heizung und verbesserter Kaltstartperformance und Verfahren zum Kaltstarten einer Brennstoffzellenbatterie
US6127056A (en) * 1998-10-09 2000-10-03 International Fuel Cells, Llc Start up of proton exchange membrane fuel cell
DE19931061A1 (de) * 1999-07-01 2001-01-11 Mannesmann Ag Anordnung zum Beheizen/Kühlen einer Brennstoffzelle und Brennstoffzellensystem
WO2001048846A1 (en) * 1999-12-28 2001-07-05 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell stack

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994331A (en) * 1989-08-28 1991-02-19 International Fuel Cells Corporation Fuel cell evaporative cooling using fuel as a carrier gas
JPH06260189A (ja) * 1993-03-01 1994-09-16 Matsushita Electric Ind Co Ltd 燃料電池

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054178A (ja) * 1983-09-02 1985-03-28 Matsushita Electric Ind Co Ltd 燃料電池装置
JPS61158672A (ja) * 1984-12-28 1986-07-18 Fuji Electric Co Ltd 空冷式燃料電池の昇温方法
JPS62136774A (ja) * 1985-12-10 1987-06-19 Fuji Electric Co Ltd 燃料電池スタツクの保温方法
JPS62268066A (ja) * 1986-05-15 1987-11-20 Mitsubishi Heavy Ind Ltd 燃料電池の起動方法
JPS63205058A (ja) * 1987-02-20 1988-08-24 Mitsubishi Electric Corp 燃料電池装置
JPH01124962A (ja) * 1987-11-10 1989-05-17 Fuji Electric Co Ltd アルカリ電解質型燃料電池装置
JPH04106877A (ja) * 1990-08-28 1992-04-08 Mitsubishi Electric Corp 燃料電池発電装置
US5316870A (en) * 1991-05-27 1994-05-31 Fuji Electric Co., Ltd. Heat supply and electric power-generating fuel cell
JPH07169476A (ja) * 1993-12-17 1995-07-04 Toshiba Corp 燃料電池の保温方法
US6127056A (en) * 1998-10-09 2000-10-03 International Fuel Cells, Llc Start up of proton exchange membrane fuel cell
WO2000054356A1 (de) * 1999-03-09 2000-09-14 Siemens Aktiengesellschaft Brennstoffzellenbatterie mit verbesserter kaltstartperformance und verfahren zum kaltstarten einer brennstoffzellenbatterie
DE19910387A1 (de) * 1999-03-09 2000-09-21 Siemens Ag Brennstoffzellenbatterie mit Heizung und verbesserter Kaltstartperformance und Verfahren zum Kaltstarten einer Brennstoffzellenbatterie
DE19931061A1 (de) * 1999-07-01 2001-01-11 Mannesmann Ag Anordnung zum Beheizen/Kühlen einer Brennstoffzelle und Brennstoffzellensystem
WO2001048846A1 (en) * 1999-12-28 2001-07-05 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell stack

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 009, no. 185 (E-332), 31. Juli 1985 (1985-07-31) -& JP 60 054178 A (MATSUSHITA DENKI SANGYO KK), 28. März 1985 (1985-03-28) *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 363 (E-461), 5. Dezember 1986 (1986-12-05) -& JP 61 158672 A (FUJI ELECTRIC CO LTD), 18. Juli 1986 (1986-07-18) *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 363 (E-560), 26. November 1987 (1987-11-26) -& JP 62 136774 A (FUJI ELECTRIC CO LTD), 19. Juni 1987 (1987-06-19) *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 153 (E-607), 11. Mai 1988 (1988-05-11) -& JP 62 268066 A (MITSUBISHI HEAVY IND LTD), 20. November 1987 (1987-11-20) *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 493 (E-697), 22. Dezember 1988 (1988-12-22) -& JP 63 205058 A (MITSUBISHI ELECTRIC CORP), 24. August 1988 (1988-08-24) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 371 (E-807), 17. August 1989 (1989-08-17) -& JP 01 124962 A (FUJI ELECTRIC CO LTD), 17. Mai 1989 (1989-05-17) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 347 (E-1240), 27. Juli 1992 (1992-07-27) -& JP 04 106877 A (MITSUBISHI ELECTRIC CORP), 8. April 1992 (1992-04-08) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 10, 30. November 1995 (1995-11-30) -& JP 07 169476 A (TOSHIBA CORP), 4. Juli 1995 (1995-07-04) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157169B2 (en) * 2001-10-30 2007-01-02 Nissan Motor Co., Ltd. Fuel cell
EP1579519A2 (de) * 2002-01-11 2005-09-28 UTC Fuel Cells, LLC Verfahren und vorrichtung zur verhinderung des frierens von wasser in brennstoffzellen-energieanlagen während der lagerung
EP1579519A4 (de) * 2002-01-11 2008-05-14 Utc Fuel Cells Llc Verfahren und vorrichtung zur verhinderung des frierens von wasser in brennstoffzellen-energieanlagen während der lagerung
JP2006521675A (ja) * 2003-03-25 2006-09-21 ユーティーシー フューエル セルズ,エルエルシー 氷点より低い温度で燃料電池スタックアッセンブリを始動するためのシステムおよび方法
JP4903557B2 (ja) * 2003-03-25 2012-03-28 ユーティーシー パワー コーポレイション 氷点より低い温度で燃料電池スタックアッセンブリを始動するためのシステムおよび方法
DE102004023057A1 (de) * 2004-05-11 2005-12-01 Bayerische Motoren Werke Ag Brennstoffzellen-Stack
US8163428B2 (en) 2007-11-19 2012-04-24 Enymotion Gmbh Fuel cell system and method for operating the same

Also Published As

Publication number Publication date
EP1301959A2 (de) 2003-04-16
US20030091875A1 (en) 2003-05-15
CA2408565A1 (en) 2002-11-08
CN1441974A (zh) 2003-09-10
JP2003533002A (ja) 2003-11-05
WO2001086745A3 (de) 2003-02-13
DE10023036A1 (de) 2001-11-22

Similar Documents

Publication Publication Date Title
WO2001086745A2 (de) Verfahren zum kaltstart von brennstoffzellen einer brennstoffzellenanlage und zugehörige brennstoffzellenanlage
DE102011015739B4 (de) Verfahren und System zum Ermitteln, wann Wasserstoffgas in eine Anode eines Brennstoffzellensystems zu injizieren ist
DE112006000867B4 (de) Verfahren zum Beginn einer Kühlmittelzirkulation, um eine MEA-Überhitzung beim Kaltstart zu verhindern und Brennstoffzellenstapel dazu
DE10322537B4 (de) Stapelstruktur einer Brennstoffzelle
DE102007024838B4 (de) Brennstoffzellensystem und Verfahren zum Steuern des Kathodendrucks eines Brennstoffzellenstapels
DE10328856A1 (de) Steuerung und Diagnose von Abgasemissionen
DE102008047393B4 (de) Verfahren zum schnellen und zuverlässigen Starten von Brennstoffzellensystemen
DE10392693T5 (de) Kühlsystem für einen Brennstoffzellenstapel
DE102016213057A1 (de) Verfahren zur Herstellung einer Bipolarplatte für eine Brennstoffzelle und Brennstoffzelle
EP1333517A2 (de) Brennstoffzellenvorrichtung und System mir derartiger Brennstoffzellenvorrichtung
DE102011007378A1 (de) Brennstoffzellenstapel mit einer Wasserablaufanordnung
DE102016110964A1 (de) Brennstoffzellen-Kühlsystem mit zwei Kühlkreisen und Verfahren zum Abschalten einer Brennstoffzelle
DE102006017942A1 (de) Strömungsverschiebung in jeder einzelnen Zelle eines Brennstoffzellenstapels
WO2001003212A2 (de) Hochtemperatur-polymer-elektrolyt-membran (htm)-brennstoffzelle, htm-brennstoffzellenanlage, verfahren zum betreiben einer htm-brennstoffzelle und/oder einer htm-brennstroffzellenanlage
DE102009056034A1 (de) Abschaltstrategie zur Vermeidung von Kohlenstoffkorrosion aufgrund langsamer Wasserstoff/Luft-Eindringraten
DE102009043381A1 (de) In einem Bipolarplatten-Verteiler/Sammler gebildete Merkmale
DE102015223040A1 (de) Brennstoffzelle sowie Brennstoffzellensystem mit einer solchen
WO2015155125A1 (de) Bipolarplatte und brennstoffzelle
EP1186068A2 (de) Hochtemperatur-membran-brennstoffzelle, verfahren zum betreiben einer htm-brennstoffzellenbatterie und htm-brennstoffzellenbatterie
DE102011010607A1 (de) Plattenverbindungsverfahren für einen eingebetteten brennstoffzellensensor
DE102017215507A1 (de) Verfahren zur Herstellung eines Verbunds aus einer Bipolarplatte und einer Membran-Elektroden-Einheit sowie verfahrensgemäß hergestellter Verbund
EP1240043A1 (de) Brennstoffzellenanlage für den antrieb eines fahrzeugs
DE102016200398A1 (de) Bipolarplatte für Brennstoffzellen mit drei Einzelplatten, Brennstoffzellenstapel mit solchen Bipolarplatten sowie Fahrzeug mit einem solchen Brennstoffzellenstapel
DE10234821A1 (de) Elektrochemische Zelle
DE102014208948A1 (de) Bipolarplatte, Brennstoffzelle, Stapel aus Brennstoffzellen und Vorrichtung zur Ausrichtung von Bipolarplatten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001943059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2408565

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 018093140

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10292332

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001943059

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001943059

Country of ref document: EP