WO2001086276A1 - Verfahren zur herstellung eines dreidimensionalen sensorelementes - Google Patents

Verfahren zur herstellung eines dreidimensionalen sensorelementes Download PDF

Info

Publication number
WO2001086276A1
WO2001086276A1 PCT/EP2001/005032 EP0105032W WO0186276A1 WO 2001086276 A1 WO2001086276 A1 WO 2001086276A1 EP 0105032 W EP0105032 W EP 0105032W WO 0186276 A1 WO0186276 A1 WO 0186276A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
dimensional
substances
primer
paste
Prior art date
Application number
PCT/EP2001/005032
Other languages
English (en)
French (fr)
Inventor
Michael Borchardt
Frank Wendzinski
Original Assignee
Institut für Chemo- und Biosensorik Münster E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut für Chemo- und Biosensorik Münster E.V. filed Critical Institut für Chemo- und Biosensorik Münster E.V.
Priority to AU2001263889A priority Critical patent/AU2001263889A1/en
Publication of WO2001086276A1 publication Critical patent/WO2001086276A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0347Overplating, e.g. for reinforcing conductors or bumps; Plating over filled vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0545Pattern for applying drops or paste; Applying a pattern made of drops or paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1327Moulding over PCB locally or completely
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/30Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
    • H05K2203/302Bending a rigid substrate; Breaking rigid substrates by bending
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/246Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating

Definitions

  • the invention relates to a method for producing a three-dimensional sensor element according to the preamble of the main claim.
  • Electrochemical sensors which usually have a planar structure and comprise a carrier, for example made of plastic or glass, on which electrodes are deposited, for example electrochemically. Depending on the intended use, additional layers are applied on which biological components are immobilized or which are designed as sensitive membranes.
  • the electrochemical sensors according to the prior art have the disadvantage that three-dimensional sensor structures cannot be implemented in many cases because A finely structured metallization on non-planar surfaces according to the prior art is only very complex or is not possible at all. Furthermore, the planar sensors often lack support for sensitive membranes and often biological components can be used
  • the invention is therefore based on the object of providing a method for producing a three-dimensional sensor element with which three-dimensional sensor structures for mass production can be produced simply and inexpensively.
  • a modelable primer paste for structuring the electrodes is applied to the carrier, the carrier provided with primer paste is then three-dimensionally deformed in accordance with the desired shape and then the primer paste defining the electrode surfaces is selectively metallized and substance-recognizing substances and / or converting substances If at least one molded part cavity is introduced, a simple, inexpensive and mass-production-compatible method for producing three-dimensional sensor arrangements is supplied.
  • the shaping, stabilization and contacting of the sensors is possible with only one workpiece, it being possible for a plurality of sensors or additional parts, such as fluidic parts, to be combined, for example in the injection molding process, to form sensor systems and to be joined together in one piece. Due to the cavities and cavities of the three-dimensional biological components and sensitive membranes can be mechanically fixed very well.
  • a variety of substance-recognizing and / or converting substances can be used, e.g. Microorganisms, metallic catalysts, antibodies, enzymes, DNA fragments or the like.
  • FIG. 4 shows a bottom view and a sectional view of a cup with a plurality of sensor arrangements.
  • FIG. 5 is a schematic sectional view of a sensor integrated into a flow measuring cell, and Fig. 6 process flow of the manufacture of a urea sensor.
  • FIG. 1 shows various manufacturing steps of an electrochemical sensor arrangement according to a first exemplary embodiment of the invention.
  • a means for structuring the electrodes used for the sensor arrangement and electrical feeds to the electrodes which are designed overall as conductor tracks and electrical contact areas, are applied to a carrier 1 for the production of an electrochemical sensor arrangement.
  • the electrodes can simultaneously represent sensor elements.
  • the carrier 1 has moldable properties and consists, for example, of plastic, preferably a thermoformed film made of polycarbonates, acrylnit ⁇ t-butadiene-styrene copolymers and polyethylene (PC, ABS, PE) is used.
  • the means for structuring the electrodes is a primer paste, which specifies the desired electrode shape with feeds.
  • the paste contains reducing agents for the chemical reductive deposition of e.g. Copper or nickel.
  • the structuring of the later three-dimensional sensor body already begins on the flat substrate or carrier 1.
  • the coating method is chosen so that after the later deformation there is a sufficient short-circuit-safe distance between the individual sensor surfaces or electrodes and feeds is available.
  • care must be taken to ensure that the surface applied is deformed.
  • the later three-dimensional structure must be calculated before application.
  • the carrier is coated exactly where the three-dimensional sensor body is later metallized. Suitable coating processes are, for example, spraying or printing, whereby the screen printing process enables a two-dimensional coating with the primer paste that is accurate to the millimeter. A largely automated coating process can be carried out in accordance with modern screen printing technology.
  • the arrangement is dried or conditioned, the paste hardening.
  • the carrier 1 is deformed three-dimensionally and forms a three-dimensional sensor body or a three-dimensional molded part.
  • a hot deformation is carried out, in which the support m heats the flexible state, is deformed under low force and then is cooled below the freezing area with continued deformation force.
  • Various heat sources such as infrared flat heaters, heat barriers, hot air and hot water can be used.
  • Several processes are conceivable for the deformation process, such as stamping, embossing,
  • the shaping of the sensor body or molded part is carried out by thermoforming.
  • the primer paste can also be deformed so that no cracks or the like can occur. In principle, care must be taken in the process control that the primer layer remains approximately the same thickness and homogeneity.
  • Electrode surfaces and conductor tracks are carried out.
  • All electrochemical sensors work with electrically conductive surfaces, whereby the common electrochemical determination methods often use a differential method, i.e. the change in an electrical effect between a working and a reference electrode is determined. This in turn means that the two electrodes must be spatially separated. The spatial separation in turn leads to the isolation of the electrodes.
  • the implementation of electrodes that are separate from one another is technically very complex.
  • the coating of the electrode space with electrically conductive material is only carried out after the formation of a three-dimensional structure.
  • the structuring metallization of hollow bodies e.g. worked with mask technologies, the use of masks requiring a high dimensional accuracy of the three-dimensional basic body. The mechanical reworking of the basic bodies is often also necessary.
  • the metallization can be started after the primer paste has been applied and the base body has been deformed.
  • Chemical metal deposition is used to make the plastic surface provided with the primer conductive.
  • the workpiece can be provided with a relatively thin, current-conducting layer. This in turn can be strengthened electrolytically by depositing further metal.
  • electrochemical metal deposition can take place directly on the paste.
  • thermoformable primer paste which contains catalytically active substances, was applied to activate the surface.
  • the reductive metallization can be described by the following equation:
  • Me the dissolved metal ion with the charge z +
  • This method basically allows all non-conductors to be metallized after application of the activation layer, ie the primer paste and the thermoforming.
  • the layer thickness of the metal is the same at every point that has been wetted by the electrolyte.
  • Nickel and copper baths are of greatest importance in chemical reductive metallization.
  • the composition of a chemical copper plating bath usually consists of ionic copper, a reducing agent, basic components and complexing agents. Formaldehyde, for example, serves as a reducing agent.
  • the main chemical reaction in metal deposition is as follows: Cu 2+ + 4 ⁇ H " + 2HCHO ⁇ Cu ° + 2HCOO " + H 2 + 2H 2 0
  • Phosphorus is created as a by-product and is incorporated into the Nikkei layer.
  • the optimal coating speed is between 2 and 10 ⁇ m / h.
  • further metals can now be deposited electrolytically thereon. The surface to be coated is used for the electrochemical
  • the cathodic reaction can be described as follows:
  • the coatings are cleaned.
  • copper, nickel, chrome, tin, brass, black chrome, etc. are used as metals for electrolytic metal deposition.
  • metals such as silver and gold are predominantly used and used platinum.
  • An alternative method for structuring electrodes is the so-called partial electroplating, as used e.g. is also used for the production of printed circuits.
  • the metallization or the electrode surfaces can be recognized by the hatching for the lines.
  • Fig. Ld shows two electrodes 2, 3, which belong to two different types of electrodes.
  • the electrodes 2, 3 are e.g. a Platm working electrode and an Ag / AgCl reference electrode.
  • an opening or a hole 4 is provided in the center, which enables contact with the measurement solution.
  • the sensor arrangement can be provided with a fluid part (not shown), which is, for example, a plastic part provided with one or more channels, which can be injection molded directly onto the deformed carrier 1 or onto the molded part. In this way, the sensor arrangement shown can be integrated into other systems.
  • the senor can be integrated into the flow measuring cells, flow projection analysis systems, sensor strips or other combinations.
  • injection molding there are other methods for linking the three-dimensional sensors with e.g. a fluidics. These processes can be summarized as "gluing and joining techniques".
  • Sensitive substances can be introduced into the molding cavity or biological components can be immobilized, for example enzyme membranes and / or ion-selective membranes are introduced, thereby realizing biosensors.
  • the components that determine the nature of the sensor must be introduced into the three-dimensional sensor structure after the thermoforming.
  • a modelable, dimensionally stable film was used as the carrier.
  • another material can also be used for the carrier, for example a conductive or non-conductive metal.
  • the carrier can have various physical properties that are important for the functionality of the sensor.
  • the carrier can thus act as an electrical insulator, be electrically conductive, be permeable to certain substances and have certain mechanical, optical or acoustic properties.
  • a material that is permeable to gas is, for example, Teflon.
  • Carriers designed as dialysis membranes are permeable to substances in solution.
  • FIG. 2 shows a method for producing an amperometric enzyme sensor in a three-electrode arrangement.
  • 2A shows a planar thermoformable plastic substrate 10 which is coated in FIG. 2B) with a primer paste 11 in accordance with the desired structure of the three electrodes.
  • FIG. 2C the entire arrangement is deformed, for example by stamping, in which the heated polymer-coated plastic 10, 11 is pressed between a stamp and a die. It cools under tension in the unheated tool.
  • step 2D the molded part 12 is machined, in the exemplary embodiment shown an opening 13 is machined by laser drilling.
  • step 2E) the molded part 12 is hermter-sp ⁇ tzt with plastic mass 15 in such a way that a channel 14 connected to the opening 13 m is formed.
  • the molded part 12 is metallized with the back-injected plastic compound 15 at the locations at which the primer 11 is located, then it is galvanized with the desired metal and a reference electrode is produced by chlorinating, for example an Ag / AgCl reagent from a silver surface. reference electrode formed.
  • step 2G the cavity of the molded part 12 is filled with an injection molded plastic mass 15 with an enzyme gel 16 and the enzyme layer 16 is then covered by a sealing layer 17, for example from a UV or RTV hardening silicone or acrylate adhesive
  • the component manufactured in accordance with FIG. 2 represents, for example, a component of a flow measuring cell.
  • a sensor with a flow measuring cell is shown by way of example in FIG. 5.
  • thermoformable plastic substrate 20 (A)) is coated with a primer paste 21 (B)) and corresponding to C) into one
  • Molded part 22 deformed.
  • the primer coating 21 extends over substantially the whole art ⁇ fabric substrate 20.
  • Fig. 3D is machined the mold part 22 by an opening 23 is formed by both the primer layer 21 as preferably incorporated also through the substrate 20 by laser drilling.
  • FIG. 3E the molded part 22 is back-injected with a plastic compound 25 and, in accordance with F), a metallization is carried out at the locations at which the primer is located, and then the metallization is galvanized with the desired metal.
  • the cavity is filled with an ion-selective membrane 26.
  • filling is carried out with Ag / AgCl, for example, to produce a reference electrode.
  • FIG. 4 shows the use of a three-dimensional sensor arrangement for a cup, both the underside and a section and an enlarged representation of the sensor being provided.
  • Four sensor arrangements 31 are formed in the underside of a cup 30, each of which is connected to the inside of the cup via an opening 32.
  • Such a cup 30 can be used for a single measurement.
  • the cup is manufactured using the thermoforming process and is e.g. provided with ion-selective electrodes and reference electrodes.
  • the use of such a cup is e.g. conceivable for medical examinations, for example, substances that require urine can be determined very quickly with a sensor-equipped urine beaker.
  • sensors for determining the pH value, the electrolytes and the metabolites are integrated in the beaker.
  • Another application is, for example, a yogurt cup, in which an integrated sensor arrangement, e.g. a pH sensor can provide information about the maturity or deterioration of the product.
  • an integrated sensor arrangement e.g. a pH sensor can provide information about the maturity or deterioration of the product.
  • the primer paste was used to produce a selective metal deposition, but it is also conceivable that it is used for the chemical or electrochemical absorption or absorption of polymers.
  • the primer paste was used to produce a selective metal deposition, but it is also conceivable that it is used for the chemical or electrochemical absorption or absorption of polymers.
  • the structures of the sensor are applied to a polycarbonate film 41 using the screen printing method.
  • the primer paste specifies the desired sensor shape with derivation (Fig. 6a).
  • the film with applied paste is thermoformed with vacuum.
  • a three-dimensional sensor body is obtained.
  • the sensor structures are chemically metallized with copper 42 (FIG. 6b) and only at the locations where the primer is located.
  • An opening 43 is drilled in the cavity 44 formed.
  • the encapsulated film with the metallized sensor structures is completely sealed under pressure and heat for encapsulation with a polyester hot-melt film with a laminating device.
  • an ammonium-sensitive PVC membrane 46 (FIG. 6c) and then a gel 47, which contains urease, are introduced through the bore (FIG. 6d).
  • ammonium-sensitive electrodes are used as transducers, which are coupled with a biologically active component.
  • the measuring principle of the one-way sensor is based on the enzymatic cleavage of the urea by immobilized urease.
  • the enzyme catalyzes the hydrolysis of urea to hydrogen carbonate ions and ammonium ions.
  • the ammonium ions are determined with the help of the biosensor produced.
  • composition of the PVC membrane cocktail for the production of ammonium-sensitive has sobacic acid b ⁇ s-2-ethylhexyl ester, polyvinyl chloride (PVC) and nonactin.
  • the components are weighed in a preparation glass and dissolved by swiveling organic solvents. Tetrahydrofuran and cyclohexanone in a ratio of 3: 1 are used as solvents. The cocktail is left to stand at room temperature overnight until the components are completely dissolved.
  • the homogeneous viscous membrane cocktail obtained in this way is manually dispensed into the cavity of the sensor blank using a dispenser.
  • the cavity is completely filled with cocktail.
  • the membrane has hardened after 24 hours.
  • the biological component is brought into the cavity in the form of a hydrogel solution.
  • the enzyme urease is previously dissolved in a gel material that has not yet polymerized.
  • the gel is then dispensed into the cavity and brought to polymerization.
  • the enzyme is immobilized in the gel.
  • the sensors produced are calibrated using a stock method and then used as Emweg urea sensors.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Es wird ein Verfahren zur Herstellung eines dreidimensionalen Sensorelementes mit einem Träger, auf den metallische Elektrodenflächen aufgebracht werden, vorgeschlagen. Dabei wird eine modellierbare Primerpaste auf den zunächst planaren Träger zur Strukturierung der Elektrodenflächen aufgebracht. Anschließend wird der mit Primerpaste versehene Träger dreidimensional verformt und die die Elektrodenflächen vorgebende Primerpaste metallisiert und in mindestens eine Kavität wird eine stofferkennende und/oder -umsetzende Substanz eingebracht.

Description

Verfahren zur Herstellung eines dreidimensionalen
Sensorelementes
Die Erfindung betrifft ein Verfahren zur Herstellung eines dreidimensionalen Sensorelementes nach dem Oberbegriff des Hauptanspruchs.
Als Sensoren sind z.B. elektrochemische Sensoren bekannt, die üblicherweise eine planare Struktur auf- weisen und einen Trager, beispielsweise aus Kunststoff oder Glas umfassen, auf den Elektroden, beispielsweise elektrochemisch abgeschieden werden. Je nach Verwendungszweck werden weitere Schichten aufgebracht, auf denen biologische Komponenten lmmobili- siert werden, oder die als sensitive Membranen ausgebildet sind.
Die elektrochemischen Sensoren nach dem Stand der Technik weisen den Nachteil auf, daß dreidimensionale Sensorstrukturen vielfach nicht realisierbar sind, da eine feinstrukturierte Metallisierung auf nichtplana- ren Flachen nach dem Stand der Technik nur sehr aufwendig oder gar nicht möglich ist. Weiterhin fehlt es den planaren Sensoren oft an Halt für sensitive Mem- branen und oft können biologische Komponenten zur
Herstellung von Biosensoren nicht ausreichend mechanisch stabilisiert werden.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Herstellung eines dreidimensionalen Sensorelementes zu schaffen, mit dem einfach und preiswert dreidimensionale Sensorstrukturen für die Massenproduktion herstellbar sind.
Diese Aufgabe wird erfmdungsgemäß durch die kennzeichnenden Merkmale des Hauptanspruchs m Verbindung mit den Merkmalen des Oberbegriffs gelost.
Dadurch, daß eine modellierbare Primerpaste zur Strukturierung der Elektroden auf den Trager aufgebracht wird, der mit Primerpaste versehene Trager anschließend dreidimensional entsprechend der gewünschten Form verformt wird und anschließend die die Elektrodenflachen vorgebende Primerpaste selektiv metal- lisiert wird und stofferkennende αnd/oder -umsetzende Substanzen m mindestens eine Formteilkavitat eingebracht werden, wird ein einfaches, preiswertes und massenproduktionstaugliches Verfahren zur Herstellung von dreidimensionalen Sensoranordnungen geliefert. Die Formgebung, Stabilisierung und Kontaktierung der Sensoren ist mit nur einem Werkstuck möglich, wobei mehrere Sensoren oder Zusatzteile, wie Fluidikteile, beispielsweise im Spritzgußverfahren zu Sensorsystemen kombiniert und miteinander emstuckig verbunden werden können. Durch die aufgrund der Formgebung gelieferten Hohlräume und Kavitaten des dreidimensiona- len Formteils können biologische Komponenten und sensitive Membrane sehr gut mechanisch fixiert werden.
Es können eine Vielzahl von stofferkennenden und/oder umsetzenden Substanzen verwendet werden, z.B. Mikroorganismen, metallische Katalysatoren, Antikörper, Enzyme, DNA-Fragmente oder dergleichen.
Durch die m den Unteranspruchen angegebenen Maßnah- en sind weitere vorteilhafte Weiterbildungen und Verbesserungen möglich.
Ein Ausfuhrungsbeispiel der Erfindung ist m der Zeichnung dargestellt und wird m der nachfolgenden Beschreibung naher erläutert. Es zeigen
Fig. 1 eine Ansicht auf und einen perspektivischen Schnitt durch eine Sensoranordnung m den verschiedenen Verfahrensabschnitten,
Fig. 2 mehrere Verfahrensschritte zur Herstellung eines ampero etrischen Enzymsensors,
Fig. 3 mehrere Verfahrensschritte zur Herstellung einer als potentiometπsche Elektrode ausgebildeten Sensoranordnung,
Fig. 4 eine Unteransicht und eine Schnittansicht eines Bechers mit mehreren Sensoranordnun- gen.
Fig. 5 eine schematische Schnittansicht eines m eine Durchflußmeßzelle integrierten Sensors, und Fig. 6 Verfahrensablauf der Herstellung eines Harnstoffsensors .
In Fig. 1 sind verschiedene Herstellungsschπtte ei- ner elektrochemischen Sensoranordnung nach einem ersten Ausfu rungsbeispiel der Erfindung dargestellt. Entsprechend Fig. la) wird f r die Herstellung einer elektrochemischen Sensoranordnung auf einen Trager 1 ein Mittel für die Strukturierung der für die Sen- soranordnung verwendeten Elektroden und elektrischen Zuf hrungen zu den Elektroden, die insgesamt als Leiterbahnen und elektrische Kontakt lachen ausgebildet sind, aufgebracht. Dabei können die Elektroden gleichzeitig Sensorelemente darstellen. Der Trager 1 weist formbare Eigenschaften auf und besteht beispielsweise aus Kunststoff, vorzugsweise wird eine tiefziehfahige Folie aus Polycarbonaten, Acrylnitπt- Butadien-Styrol-Copolymeren und Polyethylen (PC, ABS, PE) verwendet.
Das Mittel für die Strukturierung der Elektroden ist eine Primerpaste, die die gew nschte Elektrodenform mit Zufuhrungen vorgibt. Die Paste beinhaltet Reduktionsmittel zur chemisch reduktiven Abscheidung von z.B. Kupfer oder Nickel. Weiterhin muß der Primer nach dem Aufbringen und vor dem Metallisieren kondi- tioniert werden, z.B. 1 h bei T = 150°C, wobei die Paste dann auch durchgehartet ist. Sie laßt sich nach dem Konditionieren thermisch verformen.
Die Strukturierung des spateren dreidimensionalen Sensorkorpers beginnt bereits auf dem ebenen Substrat oder Trager 1. Das Beschichtungsverfahren wird so gewählt, daß nach der spateren Verformung ein ausrei- chender kurzschlußsicnerer Abstand zwischen den einzelnen Sensorflachen bzw. Elektroden und Zufuhrungen vorhanden ist. Bei der Beschichtung mit der Primerpa- ste muß bedacht werden, daß eine Verformung der aufgebrachten Flache erfolgt. Die spatere dreidimensionale Struktur muß vor dem Aufbringen berechnet wer- den. Der Trager wird genau dort beschichtet, wo spater die Metallisierung des dreidimensionalen Sensorkorpers vorgenommen wird. Als Beschichtungsverfahren eignen sich z.B. Besprühen oder Bedrucken, wobei das Siebdruckverfahren eine millimetergenaue zweidimen- sionale Beschichtung mit der Primerpaste ermöglicht. Dabei kann ein weitgehend automatisiertes Beschichtungsverfahren entsprechend der modernen Siebdrucktechnologie vorgenommen werden.
Nach dem Aufbringen der Paste wird die Anordnung getrocknet bzw. konditioniert, wobei die Paste aushärtet .
In einem weiteren Schritt, dessen Ergebnis m Fig. lb) gezeigt wird, wird der Trager 1 dreidimensional verformt und bildet einen dreidimensionalen Sensor- korper bzw. ein dreidimensionales Formteil. Dazu wird eine Warmverformung durchgeführt, bei der der Trager m den weichelastischen Zustand erwärmt, unter gerin- ger Kraft verformt und danach bei anhaltender Verformungskraft unter den Einfrierbereich abgekühlt wird. Dabei können verschiedene Wärmequellen, wie Infrarotflachenstrahler, Warmeschranke, Heißluft und Heißwasser verwendet werden. Für den Verformungsprozess sind mehrere Verfahren denkbar, wie Formstanzen, Prägen,
Druckluftverfahren oder Vakuumverfahren. Welches Verfahren letztendlich zur Anwendung kommt, hangt im Wesentlichen von den Abmessungen der Sensorik sowie von der Struktur des Sensors ab. Im Ausfuhrungsbeispiel wird das Formen des Sensorkorpers oder Formteils durch Thermoverformung durchgeführt. Die Primerpaste laßt sich gleichfalls verformen, so daß keine Risse oder dergleichen Beschädigungen auftreten können. Grundsatzlicn muß bei der Prozessfuhrung darauf geachtet werden, daß die Primerschicht m ungefähr gleicher Dicke und Homogenitat bestehen bleibt.
Nach dem dreidimensionalen Verformen wird eine chemische oder elektrochemische Metallisierung der Elektrodenflachen und Leiterbahnen vorgenommen. Alle elektrochemischen Sensoren arbeiten mit elektrisch leitenden Oberflachen, wobei die gangigen elektrochemischen Bestimmungsmethoden h ufig ein Differenzverfahren verwenden, d.h. es wird die Änderung eines elektrischen Effektes zwischen einer Arbeits- und ei- ner Referenzelektrode bestimmt. Dies wiederum bedingt, daß beide Elektroden räumlich getrennt sein müssen. Die räumliche Trennung wiederum fuhrt zur Isolation der Elektroden. In dreidimensionalen Sensorstrukturen ist die Realisierung voneinander ge- trennter Elektroden technisch sehr aufwendig. Bei den Technologien nach dem Stand der Technik wird die Beschichtung des Elektrodenraums mit elektrisch leitfa- higem Material erst nach der Ausformung einer dreidimensionalen Struktur durchgeführt. Bei der struktu- πerenden Metallisierung von Hohlkörpern wird z.B. mit Maskentechnologien gearbeitet, wobei die Anwendung von Masken eine hohe Maßhaltigkeit der dreidimensionalen Grundkorper erfordern. Häufig ist auch die mechanische Nachbearbeitung der Grundkorper not- wendig.
Bei dem erfmdungsgemaßen Verfahren kann nach Aufbringen der Primerpaste und der Verformung des Grund- korpers mit der Metallisierung begonnen werden. Die chemische Metallabscheidung dient dem Leitendmachen der mit dem Primer versehenen Kunststoffflache . Dazu kann das Werkstuck z.B. m reduktiven Chemisch- Kupfer- oder Chemisch-Nickel-Badern mit einer relativ dünnen, den Strom leitenden Schicht versehen werden. Diese wiederum kann elektrolytisch durch Abscheidung weiteren Metalls verstärkt werden. Im Falle, daß die Primerpaste elektrisch leitend ist, kann direkt auf der Paste eine elektrochemische Metallabscheidung stattfinden.
Zur Aktivierung der Oberflache wurde die thermover- formbare Primerpaste aufgebracht, die katalytisch wirkende Substanzen beinhaltet. Die reduktive Metallisierung laßt sich durch die folgende Gleichung beschreiben:
Me' + Ren+ - Meυ + Re (n+ z
Me = das gelöste Metallion mit der Ladung z+
Ren+ = das Reduktionsmittel mit der Ladung n+ Me° = das reduzierte, abgeschiedene Metall
Re (n+z)+ = ^as oxlcjιerte Reduktionsmittel
Durch dieses Verfahren lassen sich im Grunde alle Nichtleiter nach Aufbringen der Aktivierungsschicht, d.h. der Primerpaste und der Ther overformung metallisieren. Die Schichtdicke des Metalls ist dabei an jeder Stelle, die von dem Elektrolyten benetzt wurde, gleich. Die größte Bedeutung bei der chemisch reduktiven Metallisierung haben Nickel- und Kupferbader. Die Zusammensetzung eines chemischen Verkupferungsba- des besteht m der Regel aus ionischem Kupfer, einem Reduktionsmittel, basischen Komponenten und Komplexbildnern. Als Reduktionsmittel dient z.B. Formaldehyd. Im folgenden ist die chemische Hauptreaktion bei der Metallabscheidung aufgeführt: Cu2++4θH"+2HCHO→Cu°+2HCOO"+H2+2H20
Je nach Zusammensetzung des Bades wird eine Schichtdickenzunahme von 0,3 bis 10 μm/h erhalten. Bei der chemischen Vernickelung von Kunststoffen wird als Reduktionsmittel überwiegend Natriumhypophosphit (NaH2P02) verwendet. Das Redoxpotential liegt bei -1 4 V. Die chemische Hauptreaktion bei der Metallabscheidung läßt sich wie folgt beschreiben:
3NaH22+3H2θ+NiSθ4→3 aH2PO;+H2Sθ4+2H2+ i0
Als Nebenprodukt entsteht Phosphor, der in die Nikkeischicht mit eingebaut wird. Die optimale Beschich- tungsgeschwindigkeit liegt zwischen 2 und 10 μm/h. Um die bei der chemischen Metallabscheidung aufgebrachten Kupfer- oder Nickelschichten zu verstärken oder zu modifizieren, können nun weitere Metalle elektrolytisch darauf abgeschieden werden. Die zu be- schichtende Fläche dient bei der elektrochemischen
Reduktion als Kathode. Die kathodische Reaktion läßt sich wie folgt beschreiben:
Men+ + n*e"→Me°
Wenn mit löslichen Anoden gearbeitet wird, ist der elektrochemische Vorgang an dieser Elektrode wie folgt:
Me°→Men+ + n*e~
Nach der Beschichtung werden die Überzüge gereinigt. Als Metalle für die elektrolytische Metallabscheidung dienen z.B. Kupfer, Nickel, Chrom, Zinn, Messing, Schwarzchrom usw. Für die Entwicklung von chemischen Sensoren werden überwiegend Metalle wie Silber, Gold und Platin verwendet.
Ein alternatives Verfahren zur Strukturierung von Elektroden ist die sogenannte Partielle Galvanisie- rung, wie sie z.B. auch für die Herstellung gedruckter Schaltungen verwendet wird.
In Fig. lc) ist die Metallisierung bzw. sind die Elektrodenflachen durch die Linienschraffür zu erken- nen.
Fig. ld) stellt zwei Elektroden 2, 3 dar, die zwei unterschiedlichen Elektrodentypen angehören. Im Falle einer Ausbildung als amperometπscher Sensor sind die Elektroden 2, 3 z.B. eine Platm-Arbeitselektrode und eine Ag/AgCl-Referenzelektrode . In der Fig. lb) , lc) , ld) ist mittig eine Durchbrechung bzw. ein Loch 4 vorgesehen, das die Kontaktierung mit der Meßlosung ermöglicht. Die Sensoranordnung kann mit einem Flui- dikteil (nicht dargestellt) versehen sein, das beispielsweise ein mit einem oder mehreren Kanälen versehenes Kunststoffteil ist, das mit einem Spritzgußverfahren direkt an den verformten Trager 1 bzw. an das Formteil angespritzt werden kann. Auf diese Weise laßt sich die dargestellte Sensoranordnung in andere Systeme einbinden. Beispielsweise laßt sich der Sensor einbinden m die Durchflußmeßzellen, Fließmjek- tionsanalyse-Systeme, Sensorstreifen oder andere Kombinationen. Neben dem Spritzgießen gibt es weitere Verfahren zur Verknüpfung der dreidimensionalen Sensoren mit z.B. einer Fluidik. Diese Verfahren lassen sich als "Kleb- und Fugtechniken" zusammenfassen.
In die Formteilkavitat lassen sich sensitive Substan- zen einbringen oder biologische Komponenten immobilisieren, beispielsweise können Enzymmembranen und/oder lonenselektive Membranen eingebracht werden, wodurch Biosensoren realisiert werden. Grundsätzlich müssen die Komponenten, die das Wesen des Sensors bestimmen, nach der Thermoverfor ung m die dreidimensionale Sensorstruktur eingebracht werden.
In dem m Fig. 1 beschriebenen Ausf hrungsbeispiel wurde als Trager eine modellierbare, formstabile Folie verwendet. Selbstverständlich kann auch ein ande- res Material für den Trager eingesetzt werden, beispielsweise ein leitendes oder nicht leitendes Metall. Weiterhin kann der Trager verschiedene pyhsika- lische Eigenschaften aufweisen, die für αie Funktionalität des Sensors von Bedeutung sind. So kann der Trager als elektrischer Isolator wirken, elektrisch leitend sein, f r bestimmte Substanzen permeabel sein und bestimmte mechanische, optische oder akustische Eigenschaften besitzen. Ein für Gas permeables Material ist beispielsweise Teflon. Als Dialysemembrane ausgebildete Trager sind für m Losung befindliche Substanzen permeabel.
In Fig. 2 ist ein Verfahren zur Herstellung eines am- perometrichen Enzymsensors in einer Drei-Elektroden- anordnung dargestellt. In Fig. 2A) ist ein planares thermoverformbares Kunststoffsubstrat 10 zu erkennen, das m Fig. 2B) mit einer Primerpaste 11 entsprechend der gewünschten Struktur der drei Elektroden beschichtet wird. In Fig. 2C) wird die gesamte Anord- nung verformt, z.B. durch das Formstanzen, bei dem der erwärmte pπmerbeschichtete Kunststoff 10, 11 zwischen einem Stempel und ein Gesenk gepreßt wird. Er kühlt im ungeheizten Werkzeug unter Spannung ab. Im Schritt 2D) wird das Formteil 12 bearbeitet, im dargestellten Ausfuhrungsbeispiel wird durch Laserbohren eine Öffnung 13 eingearbeitet. Im Schritt 2E) wird das Formteil 12 mit Kunststoffmasse 15 hmter- spπtzt, derart, daß ein mit der Öffnung 13 m Verbindung stehender Kanal 14 gebildet wird. Anschließend wird entsprechend 2F) das Formteil 12 mit der hinterspritzten Kunststoffmasse 15 an den Stellen metallisiert, an denen sich der Primer 11 befindet, danach wird mit dem gewünschten Metall galvanisiert und durch Cnloπdisierungen eine Referenzelektrode hergestellt, z.B. aus einer Silberflache eine Ag/AgCl Re- ferenzelektrode gebildet. Entsprechenα Schritt 2G) wird die Kavitat des Formteils 12 mit angespritzter Kunststoffmasse 15 mit einem Enzymgel 16 befullt und die Enzymschicht 16 wird anschließend durch eine Ver- siegelungsschicht 17, z.B. aus einem UV- oder RTV- hartenden Silicon- oder Acrylatkleber abgedeckt
(Schritt 2H) ) . Das entsprechend Fig. 2 gefertigte Bauteil stellt beispielsweise einen Bestandteil einer Durchflußmeßzelle dar. Ein solcher Sensor mit Durchflußmeßzelle ist in Fig. 5 beispielhaft dargestellt.
In Fig. 3 ist die Herstellung eines potentiometπ- schen Sensors dargestellt, wobei die Schritte ahnlich zu denen nach Fig. 2 sind. Ein thermoverformbares KunststoffSubstrat 20 (A) ) wird mit einer Primerpaste 21 beschichtet (B) ) und entsprechend C) zu einem
Formteil 22 verformt. Die Primerbeschichtung 21 erstreckt sich im Wesentlichen über das ganze Kunst¬ stoffSubstrat 20. In Fig. 3D) wird das Formteil 22 bearbeitet, indem eine Öffnung 23 sowohl durch die Primerschicht 21 als auch durch das Substrat 20 vorzugsweise durch Laserbohren eingearbeitet wird. In Fig. 3E) wird das Formteil 22 mit Kunststoffmasse 25 hinterspritzt und entsprechend F) wird eine Metallisierung an den Stellen, an denen sich der Primer be- findet, vorgenommen, und anschließend wird die Metallisierung mit dem gewünschten Metall galvanisiert. Nach Schritt G) w rd die Kavitat mit einer lonense- lektiven Membrane 26 befullt. In einem anderen Aus- fuhrungsbeispiel findet eine Befullung mit beispielsweise Ag/AgCl zur Herstellung einer Referenzelektrode statt.
In Fig. 4 ist die Anwendung einer dreidimensionalen Sensoranordnung bei einem Becher dargestellt, wobei sowohl die Unterseite als auch ein Schnitt sowie eine vergrößerte Darstellung des Sensors vorgesehen sind. In die Unterseite eines Bechers 30 sind vier Sensoranordnungen 31 eingeformt, die jeweils über eine Öffnung 32 mit dem inneren des Bechers verbunden sind. Ein solcher Becher 30 kann zur einmaligen Mes- sung benutzt werden. Der Becher wird im Thermoform- verfahren hergestellt und ist z.B. mit lonenselekti- ven Elektroden sowie Referenzelektroden versehen. Die Verwendung eines solchen Bechers ist z.B. für medizinische Untersuchungen denkbar, beispielsweise können mit einem sensorbestuckten Urinbecher sehr schnell harnpflichtige Substanzen bestimmt werden. Dazu sind Sensoren zur Bestimmung des pH-Wertes, der Elektroly- te und der Metabolite im Becher integriert.
Eine weitere Anwendung ist beispielsweise ein Joghurtbecher, bei dem mit einer integrierten Sensoranordnung, z.B. einem pH-Sensor ein Aufschluß über die Reife oder den Verderb des Produktes erzielt werden kann.
In den obigen Ausfuhrungsbeispielen diente die Primerpaste zur Herstellung einer selektiven Metallabscheidung, es ist jedoch auch denkbar, daß sie zum chemischen oder elektrochemischen Auf- oder Einbnn- gen von Polymeren verwendet wird. Bei spiel :
Im folgenden wird als Beispiel die Herstellung und Anwendung eines dreidimensionalen Harnstoffsensors beschrieben (Fig. 6) .
Mit Hilfe der modellierbaren Primerpaste 40 f r die chemisch reduktive Abscheidung einer Metallschicht werden die Strukturen des Sensors im Siebdruckverfahren auf eine Polycarbonatfolie 41 gebracht. Die Primerpaste gibt die gewünschte Sensorform mit Ableitung vor (Fig. 6a) . Nach der thermischen Konditionierung wird die Folie mit aufgebrachter Paste mit Vakuum thermoverformt . Es wird ein dreidimensionaler Sensor- korper erhalten. Die Sensorstrukturen werden chemisch mit Kupfer 42 metallisiert (Fig. 6b) und zwar ausschließlich an den Stellen, an denen sich der Primer befindet. In die gebildete Kavitat 44 wird eine Off- nung 43 gebohrt. Die mit den metallisierten Sensorstrukturen bestuckte Folie wird zur Verkapselung mit einer Polyester-Heißklebefolie mit einem Laminierge- rat unter Druck und Warme vollständig verschlossen.
Die For teilkavitat 44 werden über die Bohrung zunächst eine ammoniumsensitive PVC-Membran 46 (Fig. 6c) und anschließend ein Gel 47, welches Urease enthalt, eingebracht (Fig. 6d) .
Für HarnstoffSensoren werden ammoniumsensitive Elektroden als Transducer eingesetzt, die mit einer biologisch aktiven Komponente gekoppelt werden. Das Meß- pnnzip des Einwegsensors basiert auf der enzymati- schen Spaltung des Harnstoffs durch immobilisierte Urease. Das Enzym katalysiert die Hydrolyse des Harnstoffs zu Hydrogencarbonationen und Ammoniumionen. Mit Hilfe des hergestellten Biosensors werden die Ammoniumionen bestimmt.
Die Zusammensetzung des PVC-Membrancocktails zur Her- Stellung ammoniumsensitiver weist Sobacmsaure-bιs-2- ethylhexylester, Polyvinylchlorid (PVC) und Nonactin auf.
Zur Herstellung der Membran werden die Komponenten m einem Praparateglas eingewogen und durch Schwenken m organischen Losungsmitteln gelost. Als Losungsmittel werden Tetrahydrofuran und Cyclohexanon im Verhältnis 3:1 verwendet. Bis zur vollständigen Losung der Komponenten wird der Cocktail bei Raumtemperatur über Nacht stehengelassen.
Der auf diese Art und Weise erhaltene homogene zähflüssige Membrancocktail wird mit einem Dispenser manuell m die Kavitat des Sensorrohlings emgeracht. Die Kavitat wird vollständig mit Cocktail befullt. Nach 24 h ist die Membran ausgehartet.
Die biologische Komponente wird m Form einer Hydro- gellosung m die Kavitat gebracht. Dazu wird vorher das Enzym Urease in einem noch nicht polymerisierten Gelmaterial gelost. Anschließend wird das Gel m die Kavitat dispensiert und zur Polymerisation gebracht. Das Enzym ist m dem Gel immobilisiert.
Die hergestellten Sensoren werden unter Verwendung eines AufStockverfahrens kalibriert und anschließend als Emweg-Harnstoffsensoren verwendet.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines dreidimensionalen Sensorelementes mit einem Trager, auf den metallische Elektrodenflachen aufgebracht werden, g e k e n n z e i c h n e t d u r c h folgende Schritte: Aufbringen einer modellierbaren Primerpaste auf den zunächst planaren Trager zur Strukturierung der Elektrodenflachen, dreidimensionales Formen des mit Primerpaste versehenen Tragers zu einem Formteil und Metallisieren der die Elektrodenflachen vorgebenden Primerpaste, Ein- oder Auf- bringen von stofferkennenden und/oder -umsetzenden Substanzen m mindestens eine Kavitat des dreidimensional verformten Tragers.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Primerpaste vor dem dreidimensiona- len Formen gehartet wird.
3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß das dreidimensionale Formen durch Thermoverfor ung realisiert wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, da- durch gekennzeichnet, daß die Metallisierung chemisch oder elektrochemisch auf die Primerpaste aufgebracht wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Primerpaste mit- tels Printverfahren, z.B. Siebdruck auf den Trager aufgebracht wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als Trager ein Elastomer, eine modellierbare, formstabile Folie oder leitendes oder nicht leitendes Metall verwendet wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Trager als Isolator ausgebildet ist und/oder für bestimmte Substanzen und/oder für in Losung befindliche Sub- stanzen und/oder für Gase permeabel ist.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die m mindestens eine durch das dreidimensionale Formen entstehende Formteilkavität eingebrachten Substanzen, sensi- tive Substanzen und/oder biologische Komponenten sind.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß eine Enzymmembran und/oder eine ionenselektive Membran eingebracht wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß als stofferkennende und/oder -umsetzenden Substanzen metallische Katalysatoren, Mikroorganismen, Enzyme, Antikörper und/oder DNA-Fragmente oder dergleichen in die mindestens eine Formteilkavität eingebracht werden.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der dreidimensionale Träger vor oder nach dem Metallisieren mit einem Fluidikteil verbunden wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Fluidikteil mit einem Spritzgußver- fahren an dem Trager angespritzt wird.
13. Elektrochemischer Sensor, hergestellt nach einem der Ansprüche 1 bis 12.
14. Biosensor, hergestellt nach einem der Ansprüche
Figure imgf000019_0001
PCT/EP2001/005032 2000-05-05 2001-05-04 Verfahren zur herstellung eines dreidimensionalen sensorelementes WO2001086276A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001263889A AU2001263889A1 (en) 2000-05-05 2001-05-04 Method for the production of a three-dimensional sensor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000123015 DE10023015A1 (de) 2000-05-05 2000-05-05 Verdahren zur Herstellung eines dreidimensionalen Sensorelementes
DE10023015.6 2000-05-05

Publications (1)

Publication Number Publication Date
WO2001086276A1 true WO2001086276A1 (de) 2001-11-15

Family

ID=7641608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/005032 WO2001086276A1 (de) 2000-05-05 2001-05-04 Verfahren zur herstellung eines dreidimensionalen sensorelementes

Country Status (3)

Country Link
AU (1) AU2001263889A1 (de)
DE (1) DE10023015A1 (de)
WO (1) WO2001086276A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071394A1 (fr) * 2004-01-21 2005-08-04 Csem Centre Suisse D'electronique Et De Microtechnique Sa - Recherche Et Developpement Systeme d'electrodes pour capteur electrochimique
US7262489B2 (en) 2003-11-12 2007-08-28 Polymatech Co., Ltd. Three-dimensionally formed circuit sheet, component and method for manufacturing the same
WO2010108759A1 (de) * 2009-03-25 2010-09-30 Siemens Aktiengesellschaft Helicobacter pylori-sensor
US20180284062A1 (en) * 2017-04-03 2018-10-04 Csem Centre Suisse D'electronique Et De Microtechnique Sa - Recherche Et Developpement Vessel for performing electrochemical measurements and method for manufacturing such vessel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015012018A1 (de) * 2015-09-21 2017-04-06 Erwin Quarder Systemtechnik Gmbh Elektronische Baugruppe sowie Verfahren zur Herstellung derselben
DE102018001208B3 (de) 2018-02-14 2019-07-11 INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH Verfahren zur Herstellung einer funktionsintegrierbaren elektrisch leitenden Kunststoffsubstrat-Struktur

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066372A (en) * 1986-05-02 1991-11-19 Ciba Corning Diagnostics Corp. Unitary multiple electrode sensor
WO1992021020A1 (de) * 1991-05-10 1992-11-26 Meinhard Knoll Verfahren zur herstellung von miniaturisierten chemo- und biosensorelementen mit ionenselektiver membran sowie von trägern für diese elemente
EP0598914A1 (de) * 1992-06-05 1994-06-01 MITSUI TOATSU CHEMICALS, Inc. Dreidimensionale leiterplatte, elektronische bauelementanordnung unter verwendung dieser leiterplatte und herstellungsverfahren zu dieser leiterplatte
DD301930A9 (de) * 1989-04-04 1994-07-21 Gerald Urban Mikro-Mehrelektrodenanordnung
DE19606862A1 (de) * 1995-02-23 1996-08-29 Hitachi Ltd Gedruckte Leiterplatten und Verfahren für ihre Herstellung
EP0730394A1 (de) * 1995-03-03 1996-09-04 International Business Machines Corporation Thermogeformter dreidimensionaler Leitermodul

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4408352C2 (de) * 1994-03-12 1996-02-08 Meinhard Prof Dr Knoll Miniaturisierter stofferkennender Durchflußsensor sowie Verfahren zu seiner Herstellung
JP2938754B2 (ja) * 1994-04-20 1999-08-25 株式会社ユニシアジェックス セラミックスヒータの製造方法
DE19712309A1 (de) * 1996-11-16 1998-05-20 Nmi Univ Tuebingen Mikroelementenanordnung, Verfahren zum Kontaktieren von in einer flüssigen Umgebung befindlichen Zellen und Verfahren zum Herstellen einer Mikroelementenanordnung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066372A (en) * 1986-05-02 1991-11-19 Ciba Corning Diagnostics Corp. Unitary multiple electrode sensor
DD301930A9 (de) * 1989-04-04 1994-07-21 Gerald Urban Mikro-Mehrelektrodenanordnung
WO1992021020A1 (de) * 1991-05-10 1992-11-26 Meinhard Knoll Verfahren zur herstellung von miniaturisierten chemo- und biosensorelementen mit ionenselektiver membran sowie von trägern für diese elemente
EP0598914A1 (de) * 1992-06-05 1994-06-01 MITSUI TOATSU CHEMICALS, Inc. Dreidimensionale leiterplatte, elektronische bauelementanordnung unter verwendung dieser leiterplatte und herstellungsverfahren zu dieser leiterplatte
DE19606862A1 (de) * 1995-02-23 1996-08-29 Hitachi Ltd Gedruckte Leiterplatten und Verfahren für ihre Herstellung
EP0730394A1 (de) * 1995-03-03 1996-09-04 International Business Machines Corporation Thermogeformter dreidimensionaler Leitermodul

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262489B2 (en) 2003-11-12 2007-08-28 Polymatech Co., Ltd. Three-dimensionally formed circuit sheet, component and method for manufacturing the same
WO2005071394A1 (fr) * 2004-01-21 2005-08-04 Csem Centre Suisse D'electronique Et De Microtechnique Sa - Recherche Et Developpement Systeme d'electrodes pour capteur electrochimique
US7833395B2 (en) 2004-01-21 2010-11-16 Adamant Technologies Sa Electrode system for an electrochemical sensor
WO2010108759A1 (de) * 2009-03-25 2010-09-30 Siemens Aktiengesellschaft Helicobacter pylori-sensor
US20180284062A1 (en) * 2017-04-03 2018-10-04 Csem Centre Suisse D'electronique Et De Microtechnique Sa - Recherche Et Developpement Vessel for performing electrochemical measurements and method for manufacturing such vessel
EP3384987A3 (de) * 2017-04-03 2018-10-24 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Gefäss zur durchführung elektrochemischer messungen und verfahren zur herstellung solch eines gefässes

Also Published As

Publication number Publication date
DE10023015A1 (de) 2002-01-24
AU2001263889A1 (en) 2001-11-20

Similar Documents

Publication Publication Date Title
EP0461449B1 (de) Messelektrode für eine elektrochemische Gassmesszelle
EP0750744B1 (de) Miniaturisierte durchflussmesskammer mit integrierten chemo- und/oder biosensorelementen
EP0702228B1 (de) Planarer Sensor zum Erfassen eines chemischen Parameters einer Probe
DE60105979T2 (de) Verfahren zur herstellung von mikrostrukturen mit verschiedenen oberflächeneigenschaften in einem multischichtkörper durch plasmaätzen
DE69628948T2 (de) Elektrochemische Zelle
DE60035981T2 (de) Elektrochemischer biosensor-teststreifen, verfahren zur herstellung und elektrochemischer biosensor
DE19822123C2 (de) Verfahren und Vorrichtung zum Nachweis von Analyten
DE102010002915B4 (de) Mikrofluidischer Sensor
DE202007018495U1 (de) Verbundformteil
DE19927533B4 (de) Miniaturisiertes Analysensystem
DE102016110856A1 (de) Elektrochemischer Sensor mit austauschbarer Elektrodenbaugruppe
WO2001086276A1 (de) Verfahren zur herstellung eines dreidimensionalen sensorelementes
DE19747875A1 (de) Verfahren zum Messen veränderlicher Größen und Vorrichtung zum Durchführen des Verfahrens
DE102017121914A1 (de) Sensorelement und Verfahren zum Herstellen eines Sensorelements
EP0546032B1 (de) Immobilisierung von organischen makromolekülen oder biopolymeren in einer polymermembran
DE102012111811A1 (de) Elektrochemischer Sensor zur Erfassung einer Analytkonzentration in einem Messmedium
EP1935604A2 (de) Verfahren zur Herstellung einer Kunststoffhaut mit Folienschaltung
EP0767257A2 (de) Verfahren zum Herstellen integrierter Elektroden in Kunststoff-Formen, Kunststoff-Formen mit integrierten Elektroden und deren Anwendung
DE19929264A1 (de) Universaltransducer
EP1987707B1 (de) Verfahren zur herstellung einer schicht auf einem formkörper
EP1422194B1 (de) Verfahren zur Herstellung eines Werkzeugeinsatzes zum Spritzgiessen eines mikrostrukturierten Teils
DE10238284A1 (de) Verfahren zum Herstellen einer schaumförmigen Metallstruktur, Metallschaum sowie Anordnung aus einem Trägersubstrat und einem Metallschaum
EP0394990B1 (de) Trockene, ionenselektive Elektrode
DE10123803C1 (de) Elektrochemische Messzelle
EP3385367B1 (de) Mikrofluidisches system zur kultivierung von oder der analyse an lebenden zellen oder biomolekülen sowie ein verfahren zu seiner herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP