WO2001083574A1 - Thermoplastische formmassen mit verbesserter schlagzähigkeit - Google Patents

Thermoplastische formmassen mit verbesserter schlagzähigkeit Download PDF

Info

Publication number
WO2001083574A1
WO2001083574A1 PCT/EP2001/004861 EP0104861W WO0183574A1 WO 2001083574 A1 WO2001083574 A1 WO 2001083574A1 EP 0104861 W EP0104861 W EP 0104861W WO 0183574 A1 WO0183574 A1 WO 0183574A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
component
graft
particle size
latex
Prior art date
Application number
PCT/EP2001/004861
Other languages
English (en)
French (fr)
Inventor
Michael Breulmann
Sabine Oepen
Norbert Niessner
Norbert Güntherberg
Wil Duijzings
Graham Edmund Mc Kee
Peter Rossmanith
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to KR1020027014743A priority Critical patent/KR100696329B1/ko
Priority to MXPA02010783A priority patent/MXPA02010783A/es
Priority to EP01938139A priority patent/EP1278788A1/de
Priority to US10/275,012 priority patent/US6835775B2/en
Publication of WO2001083574A1 publication Critical patent/WO2001083574A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • C08F291/02Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00 on to elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Definitions

  • the invention relates to particulate emulsion polymers, graft copolymers thereof and molding compositions containing them which have improved impact strength.
  • the invention also relates to a process for the preparation of the emulsion polymers and graft copolymers and to the use of the graft copolymers and thermoplastic molding compositions.
  • thermoplastic molding compositions such as acrylonitrile-butadiene-styrene (ABS) copolymers and acrylate-styrene-acrylonitrile (ASA) copolymers are used in a large number of applications because of their advantageous mechanical properties.
  • ABS acrylonitrile-butadiene-styrene
  • ASA acrylate-styrene-acrylonitrile
  • a rubber latex is generally first produced, which, for example, can be incorporated into a polymer matrix after grafting.
  • Chewable indices which are obtained in the homopolymerization or mixed polymerization of butadiene, often have particle diameters of the order of 50 to 150 nm. ABS polymers which are produced with such rubbers often have a relatively low toughness. For this reason, attempts are made to produce and use chewing indexes with larger particles.
  • the small-sized rubber latex used is therefore preferably used in agglomerated form in order to achieve improved mechanical properties.
  • DE-A-24 27 960 relates to a ner process for the production of impact-resistant thermoplastic molding compositions based on rubber-like polymers.
  • the rubber latex obtained is at least partially agglomerated by adding an agglomerating agent based on an acrylic ester polymer dispersion. It is then grafted with styrene, acrylonitrile and / or methyl methacrylate, and the graft rubber obtained is introduced into a polymer matrix.
  • the object of the present invention is to provide particulate emulsion polymers and graft copolymers and thermoplastic molding compositions obtainable therefrom which have improved notched impact strength compared to known molding compositions.
  • they should have an advantageous combination of mechanical properties such as toughness, penetration work, flowability and surface gloss.
  • a l l 70 to 100% by weight of butadiene or at least one C 1-8 alkyl ester of acrylic acid or mixtures thereof as component AI 1,
  • a l3 0 to 30% by weight of further copolymerizable monomers as component AI 3,
  • the graft copolymers are preferably incorporated into thermoplastic molding compositions.
  • thermoplastic molding composition comprising, based on the amount of components A and B and, if appropriate, C and / or D, which gives a total of 100% by weight,
  • component A a: 10 to 90% by weight of a graft copolymer as defined above as component A,
  • c 0 to 80% by weight of polycarbonates, polyamides, polyesters, polyether ketones,
  • d 0 to 50 wt .-% fibrous or particulate fillers or their
  • thermoplastic molding compositions with improved mechanical properties, in particular with increased impact strength are obtained if the graft copolymers used for their preparation have a polymodal particle size distribution in which less than 40% by weight, preferably in each particle size interval of 50 nm in width less than 37.5% by weight, more preferably less than 35% by weight, particularly preferably less than 32.5% by weight, in particular less than 30% by weight of the particles.
  • the mean particle diameter relates to the weight. In particular, it is the d 5 o of the cumulative mass distribution by means of an ultracentrifuge is determined.
  • the particle size distribution is also preferably determined using an ultracentrifuge, as explained in more detail below.
  • thermoplastic molding compositions It has been found according to the invention that such a broad particle size distribution leads to the advantageous thermoplastic molding compositions.
  • the integral is generally plotted over the mass or weight as a function of the particle size. If one chooses an arbitrary interval of the particle size with a width of 50 nm, then according to the invention the increase in weight or mass in the integral is less than 40% by weight, preferably less than 37.5% by weight, more preferably less than 35% by weight .-%, particularly preferably less than 32.5 wt .-%, in particular less than 30 wt .-%.
  • the particle sizes in an agglomerated latex are usually in the range of up to 1,000 nm. As a rule, therefore, the interval of 50 nm is within this particle size range of up to 1,000 nm. According to the invention, the above condition is for a particle size window of 50 nm in width to fulfill.
  • the ratio O ⁇ / O n of the weight average d 5 o to the number average d 5 o of the particle size is ⁇ 5, particularly preferably ⁇ 4, in particular ⁇ 3.
  • the weight average d of the particle size is determined by means of an analytical ultracentrifuge, the number average of Particle size, also using an analytical ultracentrifuge, compare W. Scholtan, H. Lange, Kolloid-Z. and Z. Polymer, 250 (1972), pages 782 to 796.
  • the ultracentrifuge measurement provides the integral mass distribution of the particle diameter of a sample. From this it can be seen what percentage by weight of the particles have a diameter equal to or smaller than a certain size.
  • the d t o value indicates the particle diameter at which 10% by weight of all particles have a smaller and 90% by weight a larger diameter. Conversely, for the dgo value indicates that 90 wt .-% of all particles have a smaller, and 10 wt .-% have a larger diameter than the diameter which corresponds to the d 9 o value.
  • the weight integral, plotted against the particle size is preferably a monotonically increasing function. This means that there is no plateau in the course of the function from 0 to 100% by weight, but a steadily increasing curve.
  • the graft copolymers according to the invention can be prepared by
  • 500 nm preferably 130 to 450 nm, in particular 130 to 400 nm
  • the production of the particulate emulsion polymers or graft copolymers can generally be carried out by a process as described in DE-A-24 27 960.
  • a rubber latex is produced in the basic level.
  • This base rubber preferably has a glass transition temperature of less than -20 ° C, particularly preferably less than -30 ° C.
  • a mixture of monomers is used
  • a l l 70 to 100% by weight, preferably 80 to 100% by weight of butadiene or at least one .s-alkyl ester of acrylic acid or mixtures thereof, as component AI 1,
  • butadiene, n-butyl acrylate and / or ethylhexyl acrylate are preferably used as component All.
  • crosslinking monomers can be used as component A 12.
  • Polyfunctional crosslinking monomers are, for example, divinylbenzene, diallyl maleate, diallyl fumarate, diallyl phthalate, diethyl phthalate, triallyl cyanurate, triallyl isocyanurate, tricyclodecenyl acrylate, dihydrodicyclopentadienyl acrylate,
  • DCPA Dicyclopentadienyl acrylate
  • Further copolymerizable monomers AI 3 are preferably monomers which are also contained in the matrix polymer of the molding composition.
  • Examples are vinyl aromatic monomers such as styrene, styrene derivatives of the general formula
  • R 1 and R 2 represent hydrogen or d- to C 8 -alkyl
  • N-substituted maleimides such as N-methyl, N-phenyl and N-cyclohexyl maleimide
  • aromatic and araliphatic esters of acrylic acid and methacrylic acid such as
  • unsaturated ethers such as vinyl methyl ether, and mixtures thereof.
  • Preferred examples are MMA, styrene, acrylonitrile, MA, glycidyl (meth) acrylate, acrylamide, methacrylamide, imides or vinyl ethers, as well as methylstyrene and methacrylonitrile.
  • Al 3 styrene is preferably used as component in an amount of 0 to 30% by weight, preferably 0 to 20% by weight, preferably 5 to 15% by weight if present.
  • the monomer mixture is emulsified in water in the presence of emulsifiers, for example alkali metal salts of alkyl or alkylaryl sulfonates, alkyl sulfates, fatty alcohol sulfonates or fatty acids with 10 to 30 carbon atoms.
  • emulsifiers for example alkali metal salts of alkyl or alkylaryl sulfonates, alkyl sulfates, fatty alcohol sulfonates or fatty acids with 10 to 30 carbon atoms.
  • Sodium salts of alkyl sulfonates or fatty acids with 12 to 18 carbon atoms are preferably used.
  • the emulsifiers are used in amounts of 0.3 to 5, particularly preferably 0.35 to 2.0% by weight, based on the monomers.
  • the usual buffer salts such as sodium bicarbonate, citrate buffer and systems such as sodium pyrophosphate can be used.
  • the polymerization is preferably carried out at temperatures from 30 to 90 ° C. in the presence of customary initiators.
  • customary initiators are persulfates or organic peroxides.
  • molecular weight regulators such as mercaptans or terpinols can optionally be added.
  • the solids content in the aqueous dispersion after the polymerization is preferably 25 to 50% by weight, particularly preferably 30 to 45% by weight.
  • the particle size obtained after the polymerization is generally below 150 nm.
  • the rubber latex obtained in the first step is agglomerated. This is preferably done by adding a dispersion of an acrylic ester polymer, as described, for example, in DE-A-24 27 960. Copolymers of ethyl acrylate and methacrylamide in which the proportion of methacrylamide is 0.1 to 20% by weight are particularly preferably used.
  • the concentration of the acrylic ester polymers in the agglomerating dispersion is preferably 3 to 40% by weight, particularly preferably 5 to 20% by weight.
  • the particle size is preferably approximately in the range of the particle size of the latex to be agglomerated.
  • the ratio of the average particle size of the agglomerating latex to the average particle size of the substrate latex is preferably 0.2 to 2, particularly preferably 0.5 to 1.5.
  • the agglomeration is preferably carried out at a temperature of 20 to 120 ° C, particularly preferably 30 to 100 ° C.
  • the agglomerating latex is preferably added in such a way that 1 to 1/100 of the total amount of the agglomerating latex to be added is introduced per minute.
  • the agglomeration time is preferably 1 minute to 2 hours, particularly preferably 10 to 60 minutes.
  • the amount of the agglomerating latex, based on the latex to be agglomerated, is preferably 0.1 to 20, preferably 0.5 to 10, in particular 1 to 5% by weight, based on fatty substances.
  • the agglomeration can improve the space-time yield and cycle time of the polymerization process.
  • the (partially) agglomerated latex obtained is grafted to produce the graft copolymers according to the invention.
  • the proportion of the graft shell in the graft copolymer is preferably 10 to 90% by weight.
  • the graft shell or graft is preferably composed of 65 to 83% by weight of styrene or a (meth) acrylic acid ester, in particular styrene as component A 21 and 17 to 35% by weight of acrylonitrile.
  • the grafting can be carried out with the addition of any regulator and initiator.
  • any regulator and initiator for example, peroxide or redox initiators can be used.
  • the grafting is also described in DE-A-24 27 960.
  • the graft copolymers according to the invention are preferably mixed with at least one matrix polymer and, if appropriate, further ingredients to produce thermoplastic molding compositions. These are described below:
  • Component B is an amorphous polymer.
  • SAN styrene-acrylonitrile
  • AMSAN ⁇ -methylstyrene-acrylonitrile
  • SMSAN styrene-maleic acid (anhydride) -acrylonitrile polymers
  • Component B is preferably a copolymer of
  • bl 60-100% by weight, preferably 65-80% by weight, units of a vinylaromatic monomer, preferably styrene, a substituted styrene or a (meth) acrylic acid ester or mixtures thereof, in particular styrene and / or ⁇ -methylstyrene as component B 1,
  • b2 0 to 40% by weight, preferably 20-35% by weight, of units of an ethylenically unsaturated monomer, preferably acrylonitrile or methacrylonitrile or methyl methacrylate (MMA), in particular acrylonitrile as component B2.
  • an ethylenically unsaturated monomer preferably acrylonitrile or methacrylonitrile or methyl methacrylate (MMA), in particular acrylonitrile as component B2.
  • it is composed of 60-99% by weight of vinyl aromatic monomers and 1-40% by weight of at least one of the other specified monomers.
  • Component B is preferably an amorphous polymer, as described above as graft A2.
  • component B is a copolymer of styrene and / or ⁇ -methylstyrene with acrylonitrile used.
  • the acrylonitrile content in these copolymers of component B is 0-40% by weight, preferably 20-35% by weight, based on the total weight of component B.
  • Component B also includes those formed in the graft copolymerization to prepare component A. free, non-grafted styrene / acrylonitrile copolymers.
  • component B has already been formed in the graft copolymerization. In general, however, it will be necessary to mix the products obtained in the graft copolymerization with additional, separately prepared component B.
  • This additional, separately produced component B can preferably be a styrene / acrylonitrile copolymer, an ⁇ -methylstyrene / acrylonitrile copolymer or an ⁇ -methylstyrene / styrene / acrylonitrile terpolymer.
  • These copolymers can be used individually or as a mixture for component B, so that the additional, separately prepared component B of the molding compositions used according to the invention is, for example, a mixture of a styrene / acrylonitrile copolymer and a methylstyrene / acrylonitrile copolymer can act.
  • component B of the molding compositions used according to the invention consists of a mixture of a styrene / acrylonitrile copolymer and an ⁇ -methylstyrene / acrylonitrile copolymer
  • the acrylonitrile content of the two copolymers should preferably not be more than 10% by weight, preferably not more than 5% by weight, based on the total weight of the copolymer. differ from each other.
  • Component B preferably has a viscosity number of 40 to 150, preferably 50 to 120, in particular 60 to 100. The viscosity number is determined in accordance with DIN 53 726, 0.5 g of material being dissolved in 100 ml of dimethylformamide.
  • Components A and B and optionally C, D can be mixed in any desired manner by all known methods. If components A and B have been prepared, for example, by emulsion polymerization, it is possible to mix the polymer dispersions obtained with one another, to precipitate the polymers together and to work up the polymer mixture. Preferably, however, components A and B are mixed by extruding, kneading or rolling the components together, e.g. B. at 180 - 400 ° C, wherein the components, if necessary, have previously been isolated from the solution obtained in the polymerization or aqueous dispersion.
  • the products of the graft copolymerization (component A) obtained in aqueous dispersion can also only be partially dewatered and as moist crumbs are mixed with component B, the complete drying of the graft copolymers then taking place during the mixing.
  • the masses contain, in addition to components A and B, additional components C and / or D, and, if appropriate, further additives, as described below.
  • the polymers of component C of the molding composition are preferably selected from at least one polymer made from polycarbonates, partially crystalline polyamides, partially aromatic copolyamides, polyesters, polyether ketones, polyoxyalkylenes and polyarylene sulfides. Polymer mixtures can also be used.
  • Partially crystalline, preferably linear, polyamides such as polyamide-6, polyamide-6,6, polyamide-4,6, polyamide-6,12 and partially crystalline copolyamides based on these components are suitable as component C of the molding composition according to the invention.
  • partially crystalline polyamides can be used, the acid component of which consists entirely or partially of adipic acid and / or terephthalic acid and / or isophthalic acid and / or suberic acid and / or sebacic acid and / or azelaic acid and / or dodecanedicarboxylic acid and / or a cyclohexanedicarboxylic acid, and the like
  • Diamine component wholly or partly in particular consists of m- and / or p-xylylenediamine and / or hexamethylenediamine and / or 2,2,4- and / or 2,4,4-trimemylhexamemylenediamine and / or isophoronediamine
  • polyester preferably aromatic-aliphatic polyester
  • polyalkylene terephthalates e.g. based on ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol and 1,4-bis-hydroxymethylcyclohexane, as well as polyalkylene naphthalates.
  • Aromatic polyether ketones can also be used as component C, as described, for example, in patent specifications GB 1 078 234, US Pat. No. 4,010,147, EP-A-0 135 938, EP-A-0 292 211, EP-A-0 275 035, EP-A-0 270 998, EP-A-0 165 406, and in the publication by CK Sham et. al., Polymer 29/6, 1016-1020 (1988).
  • polyoxyalkylenes e.g. Polyoxymethylene and oxymethylene polymers are used.
  • suitable components C are the polyarylene sulfides, especially the polyphenylene sulfide.
  • Suitable polycarbonates C are known per se. They preferably have a molecular weight (weight average M w , determined by means of gel permeation chromatography in tetrahydrofuran against polyslyrole standards) in the range from 10,000 to 60,000 g / mol. They can be obtained, for example, in accordance with the processes of DE-B-1 300 266 by interfacial polycondensation or in accordance with the process of DE-A-1 495 730 by reacting diphenyl carbonate with bisphenols.
  • Preferred bisphenol is 2,2-di (4-hydroxyphenyl) propane, generally - as also hereinafter - referred to as bisphenol A.
  • aromatic dihydroxy compounds can also be used, in particular 2,2-di (4-hydroxyphenyl) pentane, 2,6-dihydroxynaphthalene, 4,4'-dihydroxydiphenylsulfane, 4,4'-dihydroxydiphenyl ether, 4,4'- Dihydroxydiphenyl sulfite, 4,4'-dihydroxydiphenylmethane, l, l-di- (4-hydroxyphenyl) ethane, 4,4-dihydroxydiphenyl or dihydroxydiphenylcycloalkanes, preferably dihydroxydiphenylcyclohexanes or dihydroxylcyclopentanes, in particular l, l-bis (4-hydroxyphenyl) -3.3 , 5-trimethylcyclohexane and mixtures of the aforementioned dihydroxy compounds.
  • 2,2-di (4-hydroxyphenyl) pentane 2,6-dihydroxynaphthalene
  • Particularly preferred polycarbonates are those based on bisphenol A or bisphenol A together with up to 80 mol% of the aromatic dihydroxy compounds mentioned above.
  • Copolycarbonates according to US Pat. No. 3,737,409 can also be used; of particular interest are copolycarbonates based on bisphenol A and di- (3,5-dimethyl-dihydroxyphenyl) sulfone, which are characterized by a high heat resistance. It is also possible to use mixtures of different polycarbonates.
  • the average molecular weights (weight average M w , determined by means of gel permeation chromatography in tetrahydrofuran against polystyrene standards) of the polycarbonates C are in the range from 10,000 to 64,000 g / mol. They are preferably in the range from 15,000 to 63,000, in particular in the range from 15,000 to 60,000 g / mol. This means that the polycarbonates C have relative solution viscosities in the range from 1.1 to 1.3, measured in 0.5% strength by weight solution in dichloromethane at 25 ° C., preferably from 1.15 to 1.33. The relative solution viscosities of the polycarbonates used preferably differ by no more than 0.05, in particular no more than 0.04.
  • the polycarbonates C can be used both as regrind and in granular form. They are present as component C in amounts of 0-50% by weight, preferably 10-40% by weight, based in each case on the total molding composition.
  • the addition of polycarbonates leads, among other things, to higher thermal stability and improved crack resistance of the molding compositions.
  • component D contain preferred thermoplastic molding compositions of 0 - 50 wt .-%, preferably 0 - 40 wt .-%, in particular 0-30 wt .-% of fibrous or teilchenfb '-shaped fillers or mixtures thereof, in each case based on the total Foimmasse. These are preferably commercially available products.
  • Reinforcing agents such as carbon fibers and glass fibers are usually used in amounts of 5-50% by weight, based on the total molding composition.
  • the glass fibers used can be made of E, A or C glass and are preferably equipped with a size and an adhesion promoter. Their diameter is generally between 6 and 20 ⁇ m. Both continuous fibers (rovings) and chopped glass fibers (staples) with a length of 1-10 ⁇ m, preferably 3-6 ⁇ m, can be used.
  • fillers or reinforcing materials such as glass balls, mineral fibers, whiskers, aluminum oxide fibers, mica, quartz powder and wollastonite can be added.
  • metal flakes e.g. aluminum flakes from Transmet Corp.
  • metal powder e.g. aluminum flakes from Transmet Corp.
  • metal fibers e.g. nickel-coated glass fibers
  • metal-coated fillers e.g. nickel-coated glass fibers
  • other additives that shield electromagnetic waves are mixed into the molding compositions according to the invention.
  • Aluminum flakes K 102 from Transmet
  • EMI electro-magnetic interference
  • the masses can be mixed with additional carbon fibers, carbon black, in particular conductivity carbon black, or nickel-coated carbon fibers.
  • the molding compositions according to the invention may also contain other additives which are typical and customary for polycarbonates, SAN polymers and graft copolymers or mixtures thereof.
  • additives are: dyes, pigments, colorants, antistatic agents, antioxidants, stabilizers for improving the thermostability, for increasing the stability to light, for increasing the resistance to hydrolysis and the resistance to chemicals, agents against heat decomposition and in particular the lubricants / lubricants for the production of moldings or moldings are appropriate.
  • additives can be metered in at any stage of the production process, but preferably at an early point in time, in order to take advantage of the stabilizing effects (or other special effects) of the additive at an early stage.
  • Suitable stabilizers are the usual hindered phenols, but also vitamin E or analogue compounds, as well as butylated condensation products of p-cresol and dicyclopentadiene, e.g. B. Wingstay ® from Goodyear.
  • HALS stabilizers Hindered Amine Light Stabilizers
  • benzophenones such as Tinuvin ® 770 (HALS absorber, bis (2,2,6,6- tetramethyl-4-piperidyl) sebazate) or Tinuvin ® P (UV absorber - (2H-benzotriazol-2-yl) -4-methylphenol), Topanol ® ).
  • Tinuvin ® such as Tinuvin ® 770 (HALS absorber, bis (2,2,6,6- tetramethyl-4-piperidyl) sebazate) or Tinuvin ® P (UV absorber - (2H-benzotriazol-2-yl) -4-methylphenol
  • Topanol ® Tinuvin ®
  • Suitable lubricants and mold release agents are stearic acids, stearyl alcohol, stearic acid esters, amide wax (bisstearylamide), polyolefin waxes or generally higher fatty acids, their derivatives and corresponding fatty acid mixtures with 12-30 carbon atoms.
  • the amounts of these additives range from 0.05 to 5% by weight.
  • Silicone oils, oligomeric isobutylene or similar substances are also suitable as additives, the usual amounts being 0.001-5% by weight.
  • Pigments, dyes, color brighteners such as ultramarine blue, phthalocyanines, titanium dioxide, cadmium sulfides, derivatives of perylene tetracarboxylic acid can also be used.
  • Processing aids and stabilizers such as UV stabilizers, lubricants and antistatic agents are usually used in amounts of 0.01-5% by weight, based on the total molding composition.
  • the molding compounds can be processed into moldings, semi-finished products and foils.
  • thermoplastic molding compositions used in accordance with the known methods of thermoplastic processing.
  • the production can be carried out by thermoforming, extrusion, injection molding, calendering, blow molding, pressing, press sintering, deep drawing or sintering, preferably by injection molding.
  • polybutadiene Emulsion The polybutadiene latex is produced as described in Example 1.1, page 12 (graft base) of DE-A 19728 629.
  • 227 parts of the polybutadiene latex are diluted with 11 parts of water and heated to 65 ° C.
  • 20 parts of an aqueous dispersion of an ethyl acrylate copolymer are added, which contains 96% by weight of ethyl acrylate and 4% by weight of methacrylamide.
  • the solids content of this dispersion is 10% by weight, based on the dispersion.
  • the polybutadiene latex thus obtained is heated to 75 ° C. and 9.5 parts of a 10% strength by weight potassium stearate solution are added. 0.12 part of potassium peroxodisulfate and 10 parts of a mixture of styrene and acrylonitrile are added. The weight ratio of styrene to acrylonitrile in this mixture is 8: 2. 15 minutes after the start of the grafting reaction, a mixture of 41 parts of styrene and 10 parts of acrylonitrile is metered in within 3 hours. After the end of the feed, 0.12 part of potassium peroxide sulfate is again added and polymerization is continued at 80 ° C. for 90 minutes.
  • the particle size distribution obtained after agglomeration and grafting is shown in FIG. 1.
  • the particle diameter D in nm is plotted on the X axis, and the percentage by weight of the particles on the Y axis is plotted as x [m].
  • the resulting graft polymer is precipitated in a magnesium sulfate solution at 95 ° C. and suction filtered.
  • the moist graft rubber is worked into an SAN matrix using an extruder, which contained 24% acrylonitrile and 76% styrene.
  • the grafted polybutadiene is mixed with the SAN matrix in a weight ratio of 3: 7.
  • the particle size distributions in FIG. 1 correspond to Examples 1, 2 and 3 from top to bottom.
  • Test specimens were produced from the granules by injection molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Das Pfropfcopolymerisat aus a1: 10 bis 90 Gew.-% einer teilchenförmigen Pfropfgrundlage A1 aus einem teilchenförmigen Emulsionspolymerisat mit einer Glasübergangstemperatur von unterhalb 0 °C aus a 11: 70 bis 200 Gew.-% Butadien oder mindestens eines C1-8-Alkylesters der Acrylsäure oder Gemischen davon als Komponente A11, a 12: 0 bis 20 Gew.-% mindestens eines polyfunktionellen vernetzenden Monomeren als Komponente A12, a 13: 0 bis 30 Gew.-% weiteren copolymerisierbaren Monomeren als Komponente A13, deren Gesamtmenge 100 Gew.-% ergibt, a 2: 10 bis 90 Gew.-% einer Pfropfauflage A2 aus den Monomeren, bezogen, auf A2, a 21: 60 bis 100 Gew.-% mindestens eines vinylaromatischen Monomeren, eines (Meth)acrylsäureesters oder Gemischen davon, als Komponente A21 und a 22: 0 bis 40 Gew.-% mindestens eines ethylenisch ungesättigten Monomeren als Komponente A22, besitzt einen mittleren Teilchendurchmesser von 130 bis 500 nm und weist eine polymodale Teilchengrößenverteilung auf, in der in jedem Teilchengrößenintervall der Breite 50 nm weniger als 40 Gew.-% der Teilchen vorliegen.

Description

Thermoplastische Formmassen mit verbesserter Schlagzähigkeit
Die Erfindung betrifft teilchenförmige Emulsionspolymerisate, Pfropfcopolymerisate davon und diese enthaltende Formmassen, die eine verbesserte Schlagzähigkeit aufweisen. Zudem betrifft die Erfindung ein Nerfahren zur Herstellung der Emulsionspolymerisate und Pfropfcopolymerisate sowie die Verwendung der Pfropfcopolymerisate und thermoplastischen Formmassen.
Schlagzäh modifizierte thermoplastische Formmassen, wie Acrylnitril-Butadien-Styrol- (ABS)-Copolymere und Acrylat-Styrol-Acrylnitril- (ASA)-Copolymere werden aufgrund ihrer vorteilhaften mechanischen Eigenschaften in einer Vielzahl von Anwendungen eingesetzt.
Zu ihrer Herstellung wird in der Regel zunächst ein Kautschuklatex hergestellt, der beispielsweise nach Pfropfung in eine Polymermatrix eingebracht werden kann.
Kautschuldatizes, die bei der Homo- oder Mischpolymerisation von Butadien anfallen, haben häufig Teilchendurchmesser in der Größenordnung von 50 bis 150 nm. ABS- Polymerisate, die mit solchen Kautschuken hergestellt werden, haben häufig eine verhältnismäßig geringe Zähigkeit. Deshalb wird versucht, Kautschuldatizes mit größeren Teilchen herzustellen und einzusetzen. Der eingesetzte kleinteilige Kautschuklatex wird daher vorzugsweise in agglomerierter Form eingesetzt, um zu verbesserten mechanischen Eigenschaften zu gelangen. Die DE-A-24 27 960 betrifft ein Nerfahren zur Herstellung von schlagfesten thermoplastischen Formmassen auf Basis von kautschukartigen Polymerisaten. Nach einer anfänglichen Emulsionspolymerisation von Butadien oder Acrylestern wird der erhaltene Kautschuklatex durch Zugabe eines Agglomeriermittels auf Basis einer Acrylesterpolymerisat-Dispersion zumindest teilweise agglomeriert. Anschließend wird mit Styrol, Acrylnitril und/oder Methylmethacrylat gepfropft, und der erhaltene Pfropfkautschuk wird in eine Polymermatrix eingebracht.
Die Verwendung von Pfropfkautschuken mit einer bimodalen Teilchengrößenverteilung ist zudem beispielsweise in DE-A-196 30 061 beschrieben. Diese Schrift gibt auch einen Überblick über unterschiedliche Zusammensetzungen und Herstellverfahren für die thermoplastischen Formmassen.
In der DE-A 197 28 629 sind ABS-Formmassen mit zwei unterschiedlichen Matrixpolymeren beschrieben.
In „Die Angewandte Makromolekulare Chemie" 2, 1968, 1 - 25 (Nr. 20) ist die Agglomeration von Polymerlatices allgemein beschrieben.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung von teilchenformigen Emulsionspolymerisaten und daraus erhältlichen Pfropfcopolymerisaten und thermoplastischen Formmassen, die gegenüber bekannten Formmassen eine verbesserte Kerbschlagzähigkeit aufweisen. Zudem sollen sie eine vorteilhafte Kombination der mechanischen Eigenschaften, wie Zähigkeit, Durchstoßarbeit, Fließfahigkeit und Oberflächenglanz aufweisen.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Pfropfcopolymerisat aus
a l: 10 bis 90 Gew.-% einer teilchenformigen Pfropfgrundlage AI aus einem teilchenformigen Emulsionspolymerisat mit einer Glasübergangstemperatur von unterhalb 0°C aus
a l l: 70 bis 100 Gew.-% Butadien oder mindestens eines C^s-Alkylesters der Acrylsäure oder Gemischen davon als Komponente AI 1,
a 12: 0 bis 20 Gew.-% mindestens eines polyfunktionellen vernetzenden Monomeren als Komponente AI 2,
a l3: 0 bis 30 Gew.-% weiteren copolymerisierbaren Monomeren als Komponente AI 3,
deren Gesamtmenge 100 Gew.-% ergibt,
a 2: 10 bis 90 Gew.-% einer Pfropfauflage A2 aus den Monomeren, bezogen auf A2,
a 21: 60 bis 100 Gew.-% mindestens eines vinylaromatischen Monomeren, eines (Meth)acrylsäureesters oder Gemischen davon, als Komponente A21 und a 22: 0 bis 40 Gew.-% mindestens eines ethylenisch ungesättigten Monomeren als Komponente A22,
das einen mittleren Teilchendurchmesser von 130 bis 500 nm besitzt und eine polymodale Teilchengrößenverteilung aufweist, in der in jedem Teilchengrößenintervall der Breite 50 nm weniger als 40 Gew.-% der Teilchen vorliegen.
Die Pfropfcopolymerisate werden vorzugsweise in thermoplastische Formmassen eingearbeitet.
Die Aufgabe wird zudem gelöst durch eine thermoplastische Formmasse, enthaltend, bezogen auf die Menge der Komponenten A und B und gegebenenfalls C und/oder D, die insgesamt 100 Gew.-% ergibt,
a: 10 bis 90 Gew.-% eines Pfropf copolymerisats, wie es vorstehend definiert ist, als Komponente A,
b: 10 bis 90 Gew.-% mindestens eines amorphen Polymerisats als Komponente B,
c: 0 bis 80 Gew.-% Polycarbonate, Polyamide, Polyester, Polyetherketone,
Polyoxyalkylene oder Polyarylensulfide als Komponente C und
d: 0 bis 50 Gew.-% faser- oder teilchenförmige Füllstoffe oder deren
Gemische als Komponente D.
Es wurde erfindungsgemäß gefunden, daß thermoplastische Formmassen mit verbesserten mechanischen Eigenschaften, insbesondere mit erhöhter Kerbschlagzähigkeit erhalten werden, wenn die zu ihrer Herstellung verwendeten Pfropfcopolymerisate eine polymodale Teilchengrößenverteilung aufweisen, in der in jedem Teilchengrößenintervall der Breite 50 nm weniger als 40 Gew.-%, vorzugsweise weniger als 37,5 Gew.-%, bevorzugter weniger als 35 Gew.-%, besonders bevorzugt weniger als 32,5 Gew.-%, insbesondere weniger als 30 Gew.-% der Teilchen vorliegen. Der mittlere Teilchendurchmesser bezieht sich dabei, sofern nicht anders angegeben, auf das Gewicht. Insbesondere handelt es sich um den d5o-Wert der integralen Massenverteilung, die mit Hilfe einer Ultrazentrifuge bestimmt wird. Die Teilchengrößenverteilung wird ebenfalls vorzugsweise mit Hilfe einer Ultrazentrifuge bestimmt, wie es nachstehend näher erläutert ist.
Es wurde erfindungsgemäß gefunden, daß eine derart breite Teilchengrößenverteilung zu den vorteilhaften thermoplastischen Formmassen führt.
Bei der Bestimmung der Teilchengrößenverteilung wird in der Regel das Integral über die Masse bzw. das Gewicht in Abhängigkeit der Teilchengröße aufgetragen. Wählt man sich nun ein beliebiges Intervall der Teilchengröße mit einer Breite von 50 nm, so beträgt erfindungsgemäß der Gewichts- oder Massenzuwachs im Integral weniger als 40 Gew.-%, vorzugsweise weniger als 37,5 Gew.-%, bevorzugter weniger als 35 Gew.-%, besonders bevorzugt weniger als 32,5 Gew.-%, insbesondere weniger als 30 Gew.-%. Üblicherweise liegen die Teilchengrößen in einem agglomerierten Latex im Bereich von bis zu 1.000 nm. In der Regel befindet sich daher das Intervall von 50 nm innerhalb dieses Teilchengrößenbereichs von bis zu 1.000 nm. Für ein beliebig positioniertes Teilchengrößenfenster der Breite 50 nm ist erfindungsgemäß die vorstehende Bedingung zu erfüllen.
Vorzugsweise ist im teilchenformigen Emulsionspolymerisat das Verhältnis Oψ/On des Gewichtsmittels d5o zum Zahlenmittel d5o der Teilchengröße < 5, besonders bevorzugt < 4, insbesondere < 3. Das Gewichtsmittel d der Teilchengröße wird dabei mittels analytischer Ultrazentrifuge bestimmt, das Zahlenmittel der Teilchengröße ebenfalls mittels analytischer Ultrazentrifuge, vergleiche W. Scholtan, H. Lange, Kolloid-Z. und Z. Polymere, 250 (1972), Seiten 782 bis 796.
Die Ultrazentrifugenmessung liefert die integrale Massenverteilung des Teilchendurchmessers einer Probe. Hieraus läßt sich entnehmen, wieviel Gewichtsprozent der Teilchen einen Durchmesser gleich oder kleiner einer bestimmten Größe haben.
Der dto-Wert gibt denjenigen Teilchendurchmesser an, bei dem 10 Gew.-% aller Teilchen einen kleineren und 90 Gew.-% einen größeren Durchmesser haben. Umgekehrt gilt für den dgo-Wert, daß 90 Gew.-% aller Teilchen einen kleineren und 10 Gew.-% einen größeren Durchmesser haben als derjenige Durchmesser, der dem d9o-Wert entspricht. Der gewichtsmittlere Teilchendurchmesser d5o bzw. volumenmittleren Teilchendurchmesser d5o gibt denjenigen Teilchendurchmesser an, bei dem 50 Gew.% bzw. Vol.-% aller Teilchen einen größeren und 50 Gew.-% bzw. Vol.-% einen kleineren Teilchendurchmesser aufweisen, dio-, d5o- und d o-Wert charakterisieren die Breite Q der Teilchengrößenverteilung, wobei Q = (d9o- d1o)/d5o. Je kleiner Q ist, desto enger ist die Verteilung.
Vorzugsweise ist das Gewichtsintegral, aufgetragen gegen die Teilchengröße, eine monoton steigende Funktion. Dies bedeutet, daß im Verlauf der Funktion von 0 bis 100 Gew.-% kein Plateau vorliegt, sondern eine stetig ansteigende Kurve vorliegt.
Die erfindungsgemäßen Pfropfcopolymerisate können hergestellt werden durch
1) Polymerisieren der Monomeren Al l und gegebenenfalls A12 und AI 3 in wässriger Emulsion zu einem Kautschuklatex mit einem mittleren Teilchendurchmesser von maximal 150 nm,
2) Agglomerieren des Kautschuklatex, so daß der spätere agglomerierte gepfropfte Kautschuklatex einen mittleren Teilchendurchmesser von 130 bis
500 nm, vorzugsweise 130 bis 450 nm, insbesondere 130 bis 400 nm
(Gewichtsmittel) besitzt, durch Zugabe eines Agglomerierlatex auf Basis einer Acrylesterpolymerisat-Dispersion, und nachfolgend
3) Polymerisieren der Monomeren der Pfropfauflage in wässriger Emulsion in
Gegenwart des agglomerierten Latex, wobei, bezogen auf Feststoff, die Pfropfauflage 10 bis 90 Gew.-% und der agglomerierte Latex 10 bis 90 Gew.-% ausmachen.
Die Herstellung der teilchenformigen Emulsionspolymerisate oder Pfropfcopolymerisate kann allgemein nach einem Verfahren erfolgen, wie es in DE-A-24 27 960 beschrieben ist.
Zunächst wird in der Grundstufe ein Kautschuklatex hergestellt. Dieser Grundkautschuk hat vorzugsweise eine Glasübergangstemperatur von weniger als -20°C, besonders bevorzugt von weniger als -30°C. Es wird ein Monomerengemisch eingesetzt aus
a l l: 70 bis 100 Gew.-%, vorzugsweise 80 bis 100 Gew.-% Butadien oder mindestens eines .s-Alkylesters der Acrylsäure oder Gemischen davon, als Komponente AI 1,
a 12: 0 bis 20 Gew.-%, vorzugsweise 0 bis 10 Gew.-% mindestens eines polyfunktionellen vernetzenden Monomeren, als Komponente A12 und a l3: 0 bis 30 Gew.-%, vorzugsweise 0 bis 20 Gew.-% weiteren copolymerisierbaren Monomeren, als Komponente AI 3,
wobei die Gesamtmenge der Komponenten Al l, A12 und A13 100 Gew. -% ergibt.
Als Komponente All werden vorzugsweise Butadien, n-Butylacrylat und/oder Ethylhexylacrylat eingesetzt.
Als Komponente A 12 können prinzipiell alle vernetzend wirkenden Monomere eingesetzt werden. Polyfunktionelle vernetzende Monomere sind beispielsweise Divinylbenzol, Diallylmaleat, Diallylfumarat, Diallylphthalat, Diethylphthalat, Triallylcyanurat, Triallylisocyanurat, Tricyclodecenylacrylat, Dihydrodicyclopentadienylacrylat,
Triallylphosphat, Allylacrylat, Allylmeth-acrylat. Als besonders günstiges Vernetzungsmonomer hat sich Dicyclopentadienylacrylat (DCPA) erwiesen.
Weitere copolymerisierbare Monomere AI 3 sind vorzugsweise Monomere, die auch im Matrixpolymer der Formmasse enthalten sind. Beispiele sind vinylaromatische Monomere wie Styrol, Styrolderivate der allgemeinen Formel
Figure imgf000007_0001
in der R1 und R2 für Wasserstoff oder d- bis C8-Alkyl stehen;
Acrylnitril, Methacrylnitril;
C\- bis C -Alkylester der Methacrylsäure wie Methylmethacrylat, weiterhin auch die Glycidylester, Glycidylacrylat und-methacrylat;
N-substituierte Maleinimide wie N-Methyl-, N-Phenyl- und N-Cyclohexylmaleinimid;
Acrylsäure, Methacrylsäure, weiterhin Dicarbonsäuren wie Maleinsäure, Fumarsäure und Itaconsäure sowie deren Anhydride wie Maleinsäureanhydrid; Stickstoff-funktionelle Monomere wie Dimemylaminoethylacrylat,
Diethylaminoethylacrylat, Vinylimidazol, Vinylpyrrolidon, Vinylcaprolactam, Vinylcarbazol, Vinylanilin, Acrylamid und Methacrylamid;
aromatische und araliphatische Ester der Acrylsäure und Methacrylsäure wie
Phenylacrylat, Phenylmethacrylat, Benzylacrylat, Benzylmethacrylat, 2-
Phenylethylacrylat, 2-Phenylethylmethacrylat, 2-Phenoxyethylacrylat und 2- Phenoxyethylmethacrylat;
ungesättigte Ether wie Vinylmethylether, sowie Mischungen davon. Bevorzugte Beispiele sind MMA, Styrol, Acrylnitril, MSA, Glycidyl(meth)acrylat, Acrylamid, Methacrylamid, Imide oder Vinylether, wie auch Methylstyrol und Methacrylnitril.
Vorzugsweise wird als Komponente AI 3 Styrol in einer Menge von 0 bis 30 Gew.-%, vorzugsweise 0 bis 20 Gew.-%, bei Vorliegen vorzugsweise 5 bis 15 Gew.-% eingesetzt.
Das Monomerengemisch wird in Gegenwart von Emulgatoren, beispielsweise Alkalisalzen von Alkyl- oder Alkylarylsulfonaten, Alkylsulfaten, Fettalkoholsulfonaten oder Fettsäuren mit 10 bis 30 Kohlensoffatomen in Wasser emulgiert. Bevorzugt werden Natriumsalze von Alkylsulfonaten oder Fettsäuren mit 12 bis 18 Kohlenstoffatomen eingesetzt. Die Emulgatoren werden in Mengen von 0,3 bis 5, besonders bevorzugt 0,35 bis 2,0 Gew.-%, bezogen auf die Monomeren, eingesetzt. Zudem können die üblichen Puffersalze, wie Natriumbicarbonat, Citratpuffer sowie Systeme wie Natriumpyrophosphat eingesetzt werden.
Die Polymerisation wird vorzugsweise bei Temperaturen von 30 bis 90°C in Gegenwart von üblichen Initiatoren durchgeführt. Beispiele sind Persulfate oder organische Peroxide. Zudem können gegebenenfalls Molekulargewichtsregler wie Mercaptane oder Terpinole zugegeben werden.
Der Feststoffgehalt in der wässrigen Dispersion nach der Polymerisation beträgt vorzugsweise 25 bis 50 Gew.-%, besonders bevorzugt 30 bis 45 Gew.-%.
Die nach der Polymerisation erhaltene Teilchengröße liegt im allgemeinen unterhalb von 150 nm. Im zweiten Schritt wird der im ersten Schritt erhaltene Kautschuklatex agglomeriert. Dies geschieht vorzugsweise durch Zugabe einer Dispersion eines Acrylesterpolymerisates, wie es beispielsweise in DE-A-24 27 960 beschrieben ist. Besonders bevorzugt werden Copolymerisate aus Ethylacrylat und Methacrylamid eingesetzt, in denen der Anteil an Methacrylamid 0,1 bis 20 Gew.-% beträgt. Die Konzentration der Acrylesterpolymerisate in der Agglomerier-Dispersion beträgt vorzugsweise 3 bis 40 Gew.-%, besonders bevorzugt 5 bis 20 Gew.-%. Die Teilchengröße liegt vorzugsweise in etwa im Bereich der Teilchengröße des zu agglomerierenden Latex.
Das Verhältnis der mittleren Teilchengröße des Agglomerierlatex zur mittleren Teilchengröße des Substratlatex beträgt vorzugsweise 0,2 bis 2, besonders bevorzugt 0,5 bis 1,5.
Die Agglomeration wird vorzugsweise bei einer Temperatur von 20 bis 120°C, besonders bevorzugt 30 bis 100°C durchgeführt. Die Zugabe des Agglomerierlatex erfolgt vorzugsweise derart, daß pro Minute 1 bis 1/100 der Gesamtmenge des zuzufügenden Agglomerierlatex eingetragen werden. Die Agglomerierzeit beträgt vorzugsweise 1 Minute bis 2 Stunden, besonders bevorzugt 10 bis 60 Minuten.
Die Menge des Agglomerierlatex, bezogen auf den zu agglomerierenden Latex, beträgt vorzugsweise 0,1 bis 20, bevorzugt 0,5 bis 10, insbesondere 1 bis 5 Gew.-%, bezogen auf Fettstoffe.
Durch die Agglomeration können die Raum-Zeit-Ausbeute und Zykluszeit des Polymerisationsprozesses verbessert werden.
Zur Herstellung der erfindungsgemäßen Pfropfcopolymerisate wird der erhaltene (teil)agglomerierte Latex gepfropft. Der Anteil der Pfropfhülle am Pfropfcopolymerisat beträgt vorzugsweise 10 bis 90 Gew.-%. Die Pfropfhülle oder Pfropfauflage ist vorzugsweise aus 65 bis 83 Gew.-% Styrol oder einem (Meth)acrylsäureester, insbesondere Styrol als Komponente A 21 und 17 bis 35 Gew.-% Acrylnitril aufgebaut.
Die Pfropfung kann unter Zusatz beliebiger Regler und Initiatoren durchgeführt werden. Beispielsweise können Peroxid- oder Redoxinitiatoren eingesetzt werden. Die Pfropfung ist ebenfalls in DE-A- 24 27 960 beschrieben. Die erfindungsgemäßen Pfropfcopolymerisate werden vorzugsweise zur Herstellung von thermoplastischen Formmassen mit mindestens einem Matrixpolymer und gegebenenfalls weiteren Inhaltsstoffen gemischt. Diese sind im folgenden beschrieben:
Komponente B
Komponente B ist ein amorphes Polymerisat.
Beispielsweise kann es sich um SAN (Styrol-Acrylnitril)-, AMSAN (α-Methylstyrol- Acrylnitril)-, Styrol-Maleinimid-, SMSAN(Styrol-Malein-säure(anhydrid)-Acιylnitril- Polymerisate handeln.
Vorzugsweise handelt es sich bei Komponente B um ein Copolymerisat aus
bl: 60 - 100 Gew.-%, vorzugsweise 65 - 80 Gew.-%, Einheiten eines vinylaromatischen Monomeren, vorzugsweise des Styrols, eines substituierten Styrols oder eines (Meth)acrylsäureesters oder deren Gemische, insbesondere des Styrols und/oder α- Methylstyrols als Komponente B 1 ,
b2: 0 bis 40 Gew.-%, vorzugsweise 20 - 35 Gew.-%, Einheiten eines ethylenisch ungesättigten Monomers, vorzugsweise des Acrylnitrils oder Methacrylnitrils oder Methylmethacrylats (MMA), insbesondere des Acrylnitrils als Komponente B2.
Gemäß einer Ausführungsform der Erfindung ist sie dabei aus 60 - 99 Gew.-% vinylaromatischen Monomeren und 1 - 40 Gew.-% mindestens eines der anderen angegebenen Monomeren aufgebaut.
Vorzugsweise ist Komponente B ein amorphes Polymerisat, wie es vorstehend als Pfropfauflage A2 beschrieben ist. Gemäß einer Ausführungsform der Erfindung wird als Komponente B ein Copolymerisat von Styrol und/oder α-Methylstyrol mit Acrylnitril verwendet. Der Acrylnitnlgehalt in diesen Copolymerisaten der Komponente B beträgt dabei 0 - 40 Gew.-%, vorzugsweise 20 - 35 Gew.-%, bezogen auf das Gesamtgewicht der Komponente B. Zur Komponente B zählen auch die bei der Pfropfcopolymerisation zur Herstellung der Komponente A entstehenden freien, nicht gepfropften Styrol/Acrylnitril- Copolymerisate. Je nach den bei der Pfropfcopolymerisation für die Herstellung des Pfropfcopolymerisats A gewählten Bedingungen kann es möglich sein, daß bei der Pfropfcopolymerisation schon ein hinreichender Anteil an Komponente B gebildet worden ist. Im allgemeinen wird es jedoch erforderlich sein, die bei der Pfropfcopolymerisation erhaltenen Produkte mit zusätzlicher, separat hergestellter Komponente B abzumischen.
Bei dieser zusätzlichen, separat hergestellten Komponente B kann es sich vorzugsweise um ein Styrol/Acrylnitril-Copolymerisat, ein α-Methylstyrol/Acrylnitril-Copolymerisat oder ein α-Methylstyrol/Styrol/Acrylnitril-Terpolymerisat handeln. Diese Copolymerisate können einzeln oder auch als Gemisch für die Komponente B eingesetzt werden, so daß es sich bei der zusätzlichen, separat hergestellten Komponente B der erfindungsgemäß verwendeten Formmassen beispielsweise um ein Gemisch aus einem Styrol/Acrylnitril-Copolymerisat und einem -Methylstyrol/Acrylnitril-Copolymerisat handeln kann. In dem Fall, daß die Komponente B der erfindungsgemäß verwendeten Formmassen aus einem Gemisch aus einem Styrol/Acrylnitril-Copolymerisat und einem α-Methylstyrol/Acrylnitril-Copolymerisat besteht, sollte vorzugsweise der Acrylnitrilgehalt der beiden Copolymerisate um nicht mehr als 10 Gew.-%, vorzugsweise nicht mehr als 5 Gew.-%, bezogen auf das Gesamtgewicht des Copolymerisats. voneinander abweichen. Die Komponente B hat vorzugsweise eine Viskositätszahl von 40 bis 150, bevorzugt 50 bis 120, insbesondere 60 bis 100. Die Bestimmung des Viskositätszahl erfolgt dabei nach DIN 53 726, dabei werden 0,5 g Material in 100 ml Dimethylformamid gelöst.
Das Mischen der Komponenten A und B und gegebenenfalls C, D, kann nach jeder beliebigen Weise nach allen bekannten Methoden erfolgen. Wenn die Komponenten A und B beispielsweise durch Emulsionspolymerisation hergestellt worden sind, ist es möglich, die erhaltenen Polymerdispersionen miteinander zu vermischen, darauf die Polymerisate gemeinsam auszufallen und das Polymerisatgemisch aufzuarbeiten. Vorzugsweise erfolgt jedoch das Abmischen der Komponenten A und B durch gemeinsames Extrudieren, Kneten oder Verwalzen der Komponenten, z. B. bei 180 - 400°C, wobei die Komponenten, sofern erforderlich, zuvor aus der bei der Polymerisation erhaltenen Lösung oder wäßrigen Dispersion isoliert worden sind. Die in wäßriger Dispersion erhaltenen Produkte der Pfropfcopolymerisation (Komponente A) können auch nur teilweise entwässert werden und als feuchte Krümel mit der Komponente B vermischt werden, wobei dann während des Vermischens die vollständige Trocknung der Pfropfcopolymerisate erfolgt.
In einer bevorzugten Ausführungsform enthalten die Fortnmassen neben den Komponenten A und B zusätzliche Komponenten C und/oder D, sowie ggf. weitere Zusatzstoffe, wie im folgenden beschrieben.
Komponente C
Die Polymerisate der Komponente C der Formmasse, sind vorzugsweise aus mindestens einem Polymeren aus Polycarbonaten, teilkristallinen Polyamiden, teilaromatischen Copolyamiden, Polyeste n, Polyetherketonen, Polyoxyalkylenen und Polyarylensulfiden ausgewählt. Es können auch Polymerisatgemische verwendet werden.
Als Komponente C der erfindungsgemäßen Formmasse sind teilkristalline, bevorzugt lineare, Polyamide wie Polyamid-6, Polyamid-6,6, Polyamid-4,6, Polyamid-6,12 und teilkristalline Copolyamide auf Basis dieser Komponenten geeignet. Des weiteren können teilkristalline Polyamide eingesetzt werden, deren Säurekomponente ganz oder teilweise aus Adipinsäure und/oder Terephthalsäure und/oder Isophthalsäure und/oder Korksäure und/oder Sebacinsäure und/oder Azelainsäure und/oder Dodecandicarbonsäure und/oder einer Cyclohexandicar- bonsäure besteht, und deren Diaminkomponente ganz oder teilweise insbesondere aus m- und/oder p-Xylylendiamin und/oder Hexamethylendiamin und/oder 2,2,4- und/oder 2,4,4- Trimemylhexamemylendiamin und/oder Isophorondiamin besteht, und deren Zusammensetzungen im Prinzip aus dem Stand der Technik bekannt sind (vgl. Encyclopedia of Polymers, Vol. 11, S. 315 ff.).
Daneben können als Komponente C auch Polyester, vorzugsweise aromatischaliphatische Polyester eingesetzt werden. Beispiele sind Polyalkylenterephthalate, z.B. auf Basis von Ethylenglykol, Propandiol-1,3, Butandiol-1,4, Hexandiol-1,6 und 1,4-Bis-hydroxymethyl- cyclohexan, sowie Polyalkylennaphthalate.
Als Komponente C können weiterhin aromatische Polyetherketone eingesetzt werden, wie sie z.B. beschrieben sind in den Patentschriften GB 1 078 234, US 4,010,147, EP-A-0 135 938, EP-A-0 292 211, EP-A-0 275 035, EP-A-0 270 998, EP-A-0 165 406, und in der Publikation von C. K. Sham et. al., Polymer 29/6, 1016-1020 (1988).
Weiterhin können als Komponente C der Formmassen Polyoxyalkylene, z.B. Polyoxymethy- len, und Oxymethylenpolymerisate eingesetzt werden.
Weiterhin geeignete Komponenten C sind die Polyarylensulfide, insbesondere das Polyphenylensulfid.
Geeignete Polycarbonate C sind an sich bekannt. Sie haben vorzugsweise ein Molekulargewicht (Gewichtsmittelwert Mw, bestimmt mittels Gelpermeationschromatographie in Tetrahydrofuran gegen Polyslyrolstandards) im Bereich von 10 000 bis 60 000 g/mol. Sie sind z.B. entsprechend den Verfahren der DE-B-1 300 266 durch Grenzflächenpoly- kondensation oder gemäß dem Verfahren der DE-A-1 495 730 durch Umsetzung von Diphenylcarbonat mit Bisphenolen erhältlich. Bervorzugtes Bisphenol ist 2,2-Di(4-hydroxyphenyl)propan, im allgemeinen - wie auch im folgenden - als Bisphenol A bezeichnet.
Anstelle von Bisphenol A können auch andere aromatische Dihydroxyverbindungen verwendet werden, insbesondere 2,2-Di(4-hydroxyphenyl)pentan, 2,6-Dihydroxynaphthalin, 4,4'-Dihydroxydiphenylsulfan, 4,4'-Dihydroxydiphenylether, 4,4'-Dihydroxydiphenylsulfit, 4,4'-Dihydroxydiphenylmethan, l,l-Di-(4-hydroxyphenyl)ethan, 4,4-Dihydroxydiphenyl oder Dihydroxydiphenylcycloalkane, bevorzugt Dihydroxydiphenylcyclohexane oder Dihydroxylcyclopentane, insbesondere l,l-Bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan sowie Mischungen der vorgenannten Dihydroxyverbindungen.
Besonders bevorzugte Polycarbonate sind solche auf der Basis von Bisphenol A oder Bisphenol A zusammen mit bis zu 80 Mol-% der vorstehend genannten aromatischen Dihydroxyverbindungen.
Es können auch Copolycarbonate gemäß der US 3,737,409 verwendet werden; von besonderem Interesse sind dabei Copolycarbonate auf der Basis von Bisphenol A und Di- (3,5-dimethyl-dihydroxyphenyl)sulfon, die sich durch eine hohe Wärmeformbeständigkeit auszeichnen. Ferner ist es möglich, Mischungen unterschiedlicher Polycarbonate einzusetzen.
Die mittleren Molekulargewichte (Gewichtsmittelwert Mw, bestimmt mittels Gelpermea- tionschromatographie in Tetrahydrofuran gegen Polystyrolstandards) der Polycarbonate C liegen erfindungsgemäß im Bereich von 10 000 bis 64 000 g/mol. Bevorzugt liegen sie im Bereich von 15 000 bis 63 000, insbesondere im Bereich von 15 000 bis 60 000 g/mol. Dies bedeutet, daß die Polycarbonate C relative Lösungsviskositäten im Bereich von 1,1 bis 1,3, gemessen in 0,5 gew.-%iger Lösung in Dichlormethan bei 25°C, bevorzugt von 1,15 bis 1,33, haben. Vorzugsweise unterscheiden sich die relativen Lösungsviskositäten der eingesetzten Polycarbonate um nicht mehr als 0,05, insbesondere nicht mehr 0,04.
Die Polycarbonate C können sowohl als Mahlgut als auch in granulierter Form eingesetzt werden. Sie liegen als Komponente C in Mengen von 0 - 50 Gew.-%, bevorzugt von 10 - 40 Gew.-%, jeweils bezogen auf die gesamte Formmasse, vor.
Der Zusatz von Polycarbonaten führt gemäß einer Ausführungsform der Erfindung unter anderem zu höherer Thermostabilität und verbesserter Rißbeständigkeit der Formmassen.
Komponente D
Als Komponente D enthalten bevorzugten thermoplastischen Formmassen 0 - 50 Gew.-%, vorzugsweise 0 - 40 Gew.-%, insbesondere 0 - 30 Gew.-% faser- oder teilchenfb'rmige Füllstoffe oder deren Mischungen, jeweils bezogen auf die gesamte Foimmasse. Dabei handelt es sich vorzugsweise um kommerziell erhältliche Produkte.
Verstärkungsmittel wie Kohlenstoffasern und Glasfasern werden üblicherweise in Mengen von 5 - 50 Gew.-% verwendet, bezogen auf die gesamte Formmasse.
Die verwendeten Glasfasern können aus E-, A- oder C-Glas sein und sind vorzugsweise mit einer Schlichte und einem Haftvermittler ausgerüstet. Ihr Durchmesser hegt im allgemeinen zwischen 6 und 20 μm. Es können sowohl Endlosfasern (rovings) als auch Schnittglasfasern (staple) mit einer Länge von 1 - 10 μm, vorzugsweise 3 - 6 μm, eingesetzt werden.
Weitherhin können Füll- oder Verstärkungsstoffe, wie Glaskugeln, Mineralfasern, Whisker, AJuminiiimoxidfasern, Glimmer, Quarzmehl und Wollastonit zugesetzt werden.
Außerdem können Metallflocken (z.B. Alumimumfiocken der Fa. Transmet Corp.), Metallpulver, Metallfasern, metallbeschichtete Füllstoffe z.B. nickelbeschichtete Glasfasern sowie andere Zuschlagstoffe, die elektromagnetische Wellen abschirmen, den erfindungs- gemäßen Formmassen beigemischt werden. Insbesondere kommen Alumimumfiocken (K 102 der Fa. Transmet) für EMI-Zwecke (electro-magnetic interference) in Betracht. Ferner können die Massen mit zusätzlichen Kohlenstoffasern, Ruß, insbesondere Leitfahigkeitsruß, oder nickelbeschichteten C-Fasern vermischt werden.
Die erfindungsgemäßen Formmassen können ferner weitere Zusatzstoffe enthalten, die für Polycarbonate, SAN-Polymerisate und Pfropfcopolymerisate oder deren Mischungen typisch und gebräuchlich sind. Als solche Zusatzstoffe seien beispielsweise genannt: Farbstoffe, Pigmente, Färbemittel, Antistatika, Antioxidantien, Stabilisatoren zur Verbesserung der Thermostabilität, zur Erhöhung der Lichtstabilität, zum Anheben der Hydrolysebeständigkeit und der ChemikaKenbeständigkeit, Mittel gegen die Wärmezersetzung und insbesondere die Schmier-/Gleitmittel, die für die Herstellung von Formkörpern bzw. Formteilen zweckmäßig sind. Das Eindosieren dieser weiteren Zusatzstoffe kann in jedem Stadium des Herstellungsprozesses erfolgen, vorzugsweise jedoch zu einem frühen Zeitpunkt, um frühzeitig die Stabilisierungseffekte (oder anderen speziellen Effekte) des Zusatzstoffes auszunutzen.
Geeignete Stabilisatoren sind die üblichen gehinderten Phenole, aber auch Vitamin E bzw. analog aufgebaute Verbindungen, wie auch butylierte Kondensationsprodukte von p-Kresol und Dicyclopentadien, z. B. Wingstay® von Goodyear. Auch HALS-Stabilisatoren (Hindered Amine Light Stabilizers), Benzophenone, Resorcine, Salicylate, Benzotriazole und andere Verbindungen sind geeignet (beispielsweise Irganox®, Tinuvin®, wie Tinuvin® 770 (HALS- Absorber, Bis (2,2,6,6-tetramethyl-4-piperidyl)sebazat) oder Tinuvin®P (UV-Absorber - (2H-Benzotriazol-2-yl)-4-methylphenol), Topanol®). Diese werden üblicherweise in Mengen bis zu 2 Gew.-% (bezogen auf das Gesamtgemisch) verwendet. Geeignete Gleit- und Entformungsmittel sind Stearinsäuren, Stearylalkohol, Stearinsäureester, Amidwache (Bisstearylamid), Polyolefinwachse bzw. allgemein höhere Fettsäuren, deren Derivate und entsprechende Fettsäuregemische mit 12 - 30 Kohlenstoffatomen. Die Mengen dieser Zusätze hegen im Bereich von 0,05 - 5 Gew.-%.
Auch Siliconöle, oligomeres Isobutylen oder ähnliche Stoffe kommen als Zusatzstoffe in Frage, die üblichen Mengen betragen 0,001 - 5 Gew.-%. Pigmente, Farbstoffe, Farbaufheller, wie Ultramarinblau, Phthalocyanine, Titandioxid, Cadmiumsulfide, Derivate der Perylentetracarbonsäure sind ebenfalls verwendbar.
Verarbeitungshilfsmittel und Stabilisatoren wie UV-Stabilisatoren, Schmiermittel und Antistatika werden üblicherweise in Mengen von 0,01 - 5 Gew.-% verwendet, bezogen auf die gesamte Formmasse.
Die Formmassen können zu Formkörpern, Halbzeugen und Folien verarbeitet werden.-
Diese können gemäß einer Ausführungsform der Erfindung nach den bekannten Verfahren der Thermoplastverarbeitung aus den erfindungsgemäß verwendeten thermoplastischen Formmassen hergestellt werden. Insbesondere kann die Herstellung durch Thermoformen, Extrudieren, Spritzgießen, Kalandrieren, Hohlkörperblasen, Pressen, Preßsintern, Tiefziehen oder Sintern, vorzugsweise durch Spritzgießen, erfolgen.
Die Erfindung wird nachstehend anhand von Beispielen näher erläutert.
Beispiele
Polybutadien-Emulsion Die Herstellung des Polybutadien-Latex erfolgt, wie in Beispiel 1.1, Seite 12 (Pfropfgrundlage) der DE-A 19728 629 beschrieben. Der Latex hat folgende Eigenschaften: Feststoffgehalt: 44% D50 Masse: lOOnm D90-D10/D50 = 0,55
Agglomeration und Pfröpfling
227 Teile des Polybutadienlatex werden mit 11 Teilen Wasser verdünnt und auf 65°C aufgeheizt. Zur Agglomeration des Latex werden 20 Teile einer wässrigen Dispersion eines Ethylacrylat-Copolymeren hinzudosiert, das 96 Gew.-% Ethylacrylat und 4 Gew.-% Methacrylamid enthält. Der Feststoffgehalt dieser Dispersion beträgt 10 Gew.-%, bezogen auf die Dispersion.
Der so erhaltene Polybutadienlatex wird auf 75°C aufgeheizt und mit 9,5 Teilen einer 10 gew.-%igen Kaliumstearatlösung versetzt. Es werden 0,12 Teile Kaliumperoxodisulfat und 10 Teile eines Gemisches aus Styrol und Acrylnitril zugesetzt. Das Gewichtsverhältnis von Styrol zu Acrylnitril in diesem Gemisch beträgt 8 : 2. 15 Minuten nach Beginn der Pfropfreaktion wird innerhalb von 3 Stunden ein Gemisch aus 41 Teilen Styrol und 10 Teilen Acrylnitril hinzudosiert. Nach Zulaufende werden erneut 0,12 Teile Kaliumperoxidsulfat zugegeben, und 90 Minuten bei 80°C nachpolymerisiert.
Die nach der Agglomeration und Pfropfung erhaltende Teilchengrößenverteilung ist in Figur 1 wiedergegeben. Dabei ist auf der X-Achse der Teilchendurchmesser D in nm, und auf der Y-Achse der gewichtsprozentige Anteil der Teilchen als Aufsxraimierung Σ [m] aufgetragen.
Das entstandene Pfropf polymerisat wird in einer Magnesiumsulfatlösung bei 95°C gefällt und abgesaugt. Der feuchte Pfropfkautschuk wird mittels eines Extruders in eine SAN-Matrix eingearbeitet, welche 24% Acrylnitril und 76% Styrol enthielt. Das gepfropfte Polybutadien wird dabei mit der SAN-Matrix im Gewichtsverhältnis von 3 : 7 gemischt. Beispiell (Vergleichsbeispiel):
Agglomerationslatex bestehend aus 96 Gew.-% Ethylacrylat und 4 Gew.-% Methacrylamid, D5o = 85 nm (Gewicht)
Beispiel 2 (erfindungsgemäß):
Agglomerationslatex bestehend aus 94 Gew.-% Ethylacrylat und 6 Gew.-% Methacrylamid, D5o = 82 nm (Gewicht)
Beispiel 3 (erfindungsgemäß) Agglomerationslatex bestehend aus 92 Gew.-% Ethylacrylat und 8 Gew.-% Methacrylamid, D50 = 87 nm (Gewicht).
Die Teilchengrößenverteilungen in Figur 1 entsprechen von oben nach unten den Beispielen 1, 2 und 3.
Prüfmethoden
Herstellung der thermoplastischen Formmassen und der Probekörper
Die Komponenten wurden bei 240°C und 250 Upm auf einem Extruder Typ ZSK von Fa. Werner + Pfleiderer unter Aufschmelzen innig vermischt, ausgetragen und granuliert. Aus dem Granulat wurden durch Spritzguß Probekörper hergestellt.
Bestimmung der mechanischen Eigenschaften
Charpy-Kerbschlagzähigkeit
An Probekörpern 80 X 10 X 4 mm bei -40°C und 23°C nach ISO 179 leA MVR Fließfähigkeit
Am Granulat bei 220°C und 10 kg Belastung nach ISO 1133 B
Durchstoß Bestimmung der Durchstoßarbeit nach ISO 6603-2
Tabelle 1: Ergebnisse der mechanischen Untersuchung
Figure imgf000019_0001

Claims

Patentansprüche
Pfropfcopolymerisat aus
a 1: 10 bis 90 Gew.-% einer teilchenformigen Pfropfgrundlage AI aus einem teilchenformigen Emulsionspolymerisat mit einer Glasübergangstemperatur von unterhalb 0°C aus
a l l: 70 bis 100 Gew.-% Butadien oder mindestens eines Q-g-Alkylesters der Acrylsäure oder Gemischen davon als Komponente AI 1,
a 12: 0 bis 20 Gew.-% mindestens eines polyfunktionellen vernetzenden Monomeren als Komponente A 12,
a 13: 0 bis 30 Gew.-% weiteren copolymerisierbaren Monomeren als Komponente A 13 ,
deren Gesamtmenge 100 Gew.-% ergibt,
a 2: 10 bis 90 Gew.-% einer Pfropfauflage A2 aus den Monomeren, bezogen auf
A2,
a 21: 60 bis 100 Gew.-% mindestens eines vinylaromatischen Monomeren, eines
(Meth)acrylsäureesters oder Gemischen davon, als Komponente A21 und
a 22: 0 bis 40 Gew.-% mindestens eines ethylenisch ungesättigten Monomeren als Komponente A22,
das einen mittleren Teilchendurchmesser von 130 bis 500 nm besitzt und eine polymodale Teilchengrößenverteilung aufweist, in der in jedem Teilchengrößenintervall der Breite 50 nm weniger als 40 Gew.-% der Teilchen vorliegen.
2. Pfropfcopolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß in jedem Teilchengrößenintervall der Breite 50 nm weniger als 37,5 Gew.-% der Teilchen vorliegen.
3. Pfropfcopolymerisat nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Verhältnis Dw/D„ des Gewichtsmittels zum Zahlenmittel der Teilchengröße kleiner als 5 ist.
4. Pfropfcopolymerisat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Gewichtsintegral, aufgetragen gegen die Teilchengröße, eine monoton steigende Funktion ist.
5. Thermoplastische Formmasse, enthaltend, bezogen auf die Menge der Komponenten A und B und gegebenenfalls C und/oder D, die insgesamt 100 Gew.-% ergibt,
a: 10 bis 90 Gew.-% eines teilchenformigen Pfropfcopolymerisats, wie es in einem der Ansprüche 1 bis 4 definiert ist, als Komponente A,
b: 10 bis 90 Gew.-% mindestens eines amorphen Polymerisats als
Komponente B,
c: 0 bis 80 Gew.-% Polycarbonate, Polyamide, Polyester, Polyetherketone,
Polyoxyalkylene oder Polyarylensulfide als Komponente C und
d: 0 bis 50 Gew.-% faser- oder teilchenförmige Füllstoffe oder deren
Gemische als Komponente D.
6. Verfahren zur Herstellung von Pfropfcopolymerisaten nach einem der Ansprüche 1 bis 4 durch
1) Polymerisieren der Monomeren Al l und gegebenenfalls AI 2 und AI 3 in wässriger Emulsion zu einem Kautschuklatex mit einem mittleren Teilchendurchmesser von maximal 150 nm, 2) Agglomerieren des Kautschuklatex, so daß der spätere agglomerierte gepfropfte Kautschuklatex einen mittleren Teilchendurchmesser von 130 bis 500 nm besitzt, durch Zugabe eines Agglomerierlatex auf Basis einer Acrylesterpolymerisat-Dispersion, und nachfolgend
3) Polymerisieren der Monomeren der Pfropfauflage in wässriger Emulsion in Gegenwart des agglomerierten Latex, wobei, bezogen auf Feststoff, die Pfropfauflage 10 bis 90 Gew.-% und der agglomerierte Latex 10 bis 90 Gew.-% ausmachen.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß das Verhältnis der mittleren Teilchengröße des Agglomerierlatex zur mittleren Teilchengröße des Substratlatex 0,2 bis 2 beträgt.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Menge des Agglomerierlatex, bezogen auf den zu agglomerierenden Latex, 0,1 bis 20 Gew.-%, bezogen auf Feststoffe, beträgt.
9. Verwendung von Pfropfcopolymerisaten gemäß einem der Ansprüche 1 bis 4 oder Formmassen gemäß Anspruch 5 zur Herstellung von Formkörpern, Halbzeugen und
Folien.
10. Formkörper, Halbzeuge und Folien aus Pfropfcopolymerisaten gemäß einem der Ansprüche 1 bis 4.
PCT/EP2001/004861 2000-05-03 2001-04-30 Thermoplastische formmassen mit verbesserter schlagzähigkeit WO2001083574A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020027014743A KR100696329B1 (ko) 2000-05-03 2001-04-30 개선된 내충격성을 갖는 열가소성 성형 화합물
MXPA02010783A MXPA02010783A (es) 2000-05-03 2001-04-30 Compuesto de moldeo termoplastico con resistencia mejorada a los impactos.
EP01938139A EP1278788A1 (de) 2000-05-03 2001-04-30 Thermoplastische formmassen mit verbesserter schlagzähigkeit
US10/275,012 US6835775B2 (en) 2000-05-03 2001-04-30 Thermoplastic molding compounds with improved impact resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10021565.3 2000-05-03
DE10021565A DE10021565A1 (de) 2000-05-03 2000-05-03 Thermoplastische Formmassen mit verbesserter Schlagzähigkeit

Publications (1)

Publication Number Publication Date
WO2001083574A1 true WO2001083574A1 (de) 2001-11-08

Family

ID=7640666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/004861 WO2001083574A1 (de) 2000-05-03 2001-04-30 Thermoplastische formmassen mit verbesserter schlagzähigkeit

Country Status (6)

Country Link
US (1) US6835775B2 (de)
EP (1) EP1278788A1 (de)
KR (1) KR100696329B1 (de)
DE (1) DE10021565A1 (de)
MX (1) MXPA02010783A (de)
WO (1) WO2001083574A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020012A3 (de) * 2006-08-18 2011-05-05 Basf Se Thermoplastische formmassen auf basis von acrylnitril, styrol und butadien
US8168719B2 (en) 2007-05-07 2012-05-01 Styrolution GmbH Thermoplastic molding compound with processing-independent viscosity
US8501868B2 (en) 2010-03-26 2013-08-06 Styrolution GmbH Thermoplastic molding compositions with improved optical properties
WO2019219673A1 (de) 2018-05-18 2019-11-21 Ineos Styrolution Group Gmbh Extrusionsverfahren zur herstellung einer thermoplastischen formmasse, sowie vorrichtung zur durchführung des verfahrens

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228376A1 (de) * 2002-06-25 2004-01-15 Basf Ag Formteil umfassend eine Verbundschichtplatte oder -folie und eine Trägerschicht
DE10321081A1 (de) * 2003-05-09 2004-12-02 Basf Ag Mischungen enthaltend thermoplastisches Polyurethan und ASA
KR100509868B1 (ko) * 2003-06-09 2005-08-22 주식회사 엘지화학 내후성 및 외관특성이 우수한 열가소성 수지 조성물
EP1752478A1 (de) * 2005-08-08 2007-02-14 Basf Aktiengesellschaft Ein Verfahren zur Herstellung von Pfropfcopolymeren mit einer bimodalen Teilchendistribution.
DE102005047463A1 (de) * 2005-09-30 2007-04-05 Basf Ag Thermoplastische Formmassen mit verbesserten optischen Eigenschaften
US20120034478A1 (en) * 2010-08-09 2012-02-09 Basf Se Thermoplastic moulding composition with improved adhesion of electroplated metal layer
WO2014104485A1 (ko) * 2012-12-28 2014-07-03 제일모직 주식회사 열가소성 수지 조성물 및 이를 포함한 성형품
KR102464098B1 (ko) 2017-02-10 2022-11-07 이네오스 스티롤루션 그룹 게엠베하 높은 표면 에너지를 가진 아크릴로니트릴―부타디엔―스티렌 공중합체 조성물
CN112771083B (zh) * 2018-07-24 2023-02-17 英力士苯领集团股份公司 制备具有改良脱水性的接枝橡胶组合物的方法
GB2580910A (en) * 2019-01-28 2020-08-05 Synthomer Uk Ltd Self-supported elastomeric film having self-healing properties made from a polymer latex

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2441107A1 (de) * 1973-08-30 1975-03-27 Mitsubishi Rayon Co Verfahren zur herstellung von schlagfesten thermoplastischen pfropfcopolymeren
DE2427960B1 (de) * 1974-06-10 1975-06-19 Basf Ag Verfahren zur Herstellung von schlagfesten thermoplastischen Formmassen
EP0022200A1 (de) * 1979-07-07 1981-01-14 BASF Aktiengesellschaft Thermoplastische Formmassen und Formteile aus diesen
EP0058316A1 (de) * 1981-02-07 1982-08-25 BASF Aktiengesellschaft Schlagzähe thermoplastische Formmassen
US4487890A (en) * 1981-10-09 1984-12-11 Mitsubishi Rayon Co., Ltd. Process for producing impact resistant resins
WO1999001489A1 (de) * 1997-07-04 1999-01-14 Basf Aktiengesellschaft Thermoplastische formmassen mit geringer eigenfarbe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3114875A1 (de) * 1981-04-13 1982-11-04 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von schlagfesten thermoplastischen formmassen
EP0746576B1 (de) * 1994-02-22 1998-11-18 The Dow Chemical Company Verfahren zur herstellung von multimodalen abs-polymeren
DE19627423A1 (de) * 1996-07-08 1998-01-15 Bayer Ag Hochzähe ABS-Formmassen
DE19630061A1 (de) 1996-07-25 1998-01-29 Basf Ag Gehäuse für Gartengeräte

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2441107A1 (de) * 1973-08-30 1975-03-27 Mitsubishi Rayon Co Verfahren zur herstellung von schlagfesten thermoplastischen pfropfcopolymeren
DE2427960B1 (de) * 1974-06-10 1975-06-19 Basf Ag Verfahren zur Herstellung von schlagfesten thermoplastischen Formmassen
EP0022200A1 (de) * 1979-07-07 1981-01-14 BASF Aktiengesellschaft Thermoplastische Formmassen und Formteile aus diesen
EP0058316A1 (de) * 1981-02-07 1982-08-25 BASF Aktiengesellschaft Schlagzähe thermoplastische Formmassen
US4487890A (en) * 1981-10-09 1984-12-11 Mitsubishi Rayon Co., Ltd. Process for producing impact resistant resins
WO1999001489A1 (de) * 1997-07-04 1999-01-14 Basf Aktiengesellschaft Thermoplastische formmassen mit geringer eigenfarbe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020012A3 (de) * 2006-08-18 2011-05-05 Basf Se Thermoplastische formmassen auf basis von acrylnitril, styrol und butadien
EP2949699A1 (de) * 2006-08-18 2015-12-02 Styrolution Europe GmbH Verfahren zur herstellung thermoplastischer formmassen auf basis von acrylnitiril, styrol und butadien enthaltend ein thermoplastisches copolymer und ein pfropfcopolymer
US8168719B2 (en) 2007-05-07 2012-05-01 Styrolution GmbH Thermoplastic molding compound with processing-independent viscosity
US8501868B2 (en) 2010-03-26 2013-08-06 Styrolution GmbH Thermoplastic molding compositions with improved optical properties
WO2019219673A1 (de) 2018-05-18 2019-11-21 Ineos Styrolution Group Gmbh Extrusionsverfahren zur herstellung einer thermoplastischen formmasse, sowie vorrichtung zur durchführung des verfahrens

Also Published As

Publication number Publication date
EP1278788A1 (de) 2003-01-29
KR20030005316A (ko) 2003-01-17
MXPA02010783A (es) 2003-04-22
US6835775B2 (en) 2004-12-28
DE10021565A1 (de) 2001-11-22
US20030105225A1 (en) 2003-06-05
KR100696329B1 (ko) 2007-03-21

Similar Documents

Publication Publication Date Title
DE102005022632B4 (de) Teilchenförmiger Kautschuk, Verfahren zu dessen Herstellung und Verwendung, sowie Pfropfcopolymerisat, thermoplastische Formmasse und Verfahren zu deren Herstellung
EP0320836A2 (de) Halogenfreie flammfeste Formmassen, Verfahren zur Herstellung und ihre Verwendung
EP0522314A1 (de) Thermoplastische Formmassen auf der Basis von Polycarbonaten, Styrol/Acrylnitril-Polymerisaten und Polyolefinen
WO2001083574A1 (de) Thermoplastische formmassen mit verbesserter schlagzähigkeit
DE69827302T2 (de) Stossfeste thermoplastische harzzusammensetzung
EP0312929A2 (de) Thermoplastische Formmasse, Verfahren zu ihrer Herstellung und deren Verwendung
DE102005022635B4 (de) Thermoplastische Formmassen mit verbesserter Anfärbbarkeit
WO1998013420A1 (de) Thermoplastische formmassen
DE102010032624B4 (de) Kautschukverstärkte thermoplastische Harzzusammensetzung mit hoher Schlagfestigkeit und Einfärbbarkeit
EP1123353B1 (de) Formkörper für den bausektor im aussenbereich
EP0601473B1 (de) Thermoplastische Formmassen auf der Basis von Polycarbonaten, Pfropfpolymerisaten und Styrol/Acrylnitril-Copolymerisaten
EP0659196B1 (de) Formmasse
WO2000020504A1 (de) Gehäuse aus polycarbonatmischungen für geräte zur informationsverarbeitung und -übermitlung
EP0326024B1 (de) Formmasse und deren Verwendung
WO1997045484A1 (de) Thermoplastische formmassen auf basis von polycarbonaten und styrol/acrylnitrilpolymerisaten, die zur verbesserung ihrer eigenschaften copolymerisate auf alkyl(meth)acrylat-basis enthalten
DE10116819B4 (de) Verfahren zur Erhöhung der Bruchdehnung von Formkörpern sowie Verwendung von teilchenförmigen Emulsionspolymerisaten
EP1123352B1 (de) Gehäuse und abdeckungen für filter, pumpen und motoren
EP0356979A2 (de) Thermoplastische Formmasse, nämlich Mischung aus einem Polycarbonat, einem Styrol-Acrylnitrilcopoly-merisat und einem eine Pfropfhülle aufweisenden Kautschuk
DE10308506A1 (de) Acrylatkautschuke und Verfahren zu ihrer Herstellung
WO1998004422A1 (de) Radkappen
WO1998004630A1 (de) Gehäuse für geräte zur informationsverarbeitung und -übermittlung
EP0914383A1 (de) Abdeckgitter für lüfteröffnungen
WO2005103153A1 (de) Extrudierte folie oder platte mit verbesserter zähigkeit
DE102005022631A1 (de) Kaltfahrweise für die Herstellung von Kautschuken und ihre Verwendung als Impact Modifier für Thermoplaste
DE102005022630A1 (de) Thermoplastische Formmassen mit verbesserter Anfärbbarkeit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10275012

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/010783

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020027014743

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001938139

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027014743

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001938139

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP