WO2001078478A1 - Kühlvorrichtung zur kühlung von bauelementen der leistungselektronik mit einem mikrowärmeübertrager - Google Patents

Kühlvorrichtung zur kühlung von bauelementen der leistungselektronik mit einem mikrowärmeübertrager Download PDF

Info

Publication number
WO2001078478A1
WO2001078478A1 PCT/DE2001/000498 DE0100498W WO0178478A1 WO 2001078478 A1 WO2001078478 A1 WO 2001078478A1 DE 0100498 W DE0100498 W DE 0100498W WO 0178478 A1 WO0178478 A1 WO 0178478A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
component
cooling device
refrigerant
micro
Prior art date
Application number
PCT/DE2001/000498
Other languages
English (en)
French (fr)
Inventor
Norbert Breuer
Stephan Leuthner
Reiner Hohl
Peter Satzger
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2001575793A priority Critical patent/JP2004509450A/ja
Priority to EP01913609A priority patent/EP1275278A1/de
Priority to KR1020027013507A priority patent/KR20020093897A/ko
Publication of WO2001078478A1 publication Critical patent/WO2001078478A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to a cooling device, in particular for cooling components of the power electronics by means of a refrigerant flowing through a microwave heat exchanger that is in good thermal contact with the component.
  • Such a cooling device is in INT. J. Heat Mass Transfer, Volume 37, No. 2, pages 321-332, 1994, by MP Bowers and I. Mudawar with the title "High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks ".
  • components or assemblies of power electronics such as. B. pulse inverters, mainly cooled with the help of massive heat sinks made of aluminum or copper. The heat is dissipated with coolant, which is passed through holes in the heat sinks.
  • heat dissipation by boiling bath cooling is known in power electronics components.
  • the heat from evaporation does not become electrical conductive liquid, which is in direct contact with the components.
  • the essence of the invention is the combination of the phase transition, e.g. B. in evaporative cooling, for cooling the power electronics components with the use of a micro heat exchanger.
  • Microwave heat exchangers are structures in which there are channel arrangements with very small dimensions in the submillimeter range.
  • Heat is usually dissipated in microwaves by heat transfer to a liquid flowing through.
  • Decisive advantages result from the flow through the micro heat exchanger with a suitable refrigerant, which evaporates at the desired component temperature.
  • micro heat exchangers Because of the large number of channels through which they flow, micro heat exchangers have a large heat transfer area and are therefore able, when they are flowed through by a suitable refrigerant, to dissipate very large amounts of heat at the desired temperature.
  • the temperature difference along the cooling channels is smaller than with single-phase convective heat transfer, since a large part of the heat is transferred at the phase transition temperature. This results in uniform temperature distributions in the area of the components to be cooled. Due to their small channel diameter, micro heat exchangers are suitable for use at high pressures. In addition, sealing problems are easier to solve than with boiling bath cooling.
  • Figure 1 shows schematically in section a first exemplary embodiment of a cooling device according to the invention
  • Figure 2 shows schematically in section a second exemplary embodiment of a cooling device according to the invention
  • Figure 3 shows schematically in section a third exemplary embodiment of a cooling device according to the invention.
  • FIGS. 1 to 3 show three variants of a cooling device according to the invention for cooling components of the power electronics.
  • a micro heat exchanger 10 is arranged on the back of an insulating circuit board substrate 2 opposite a component 1 to be cooled, which on the front side of the substrate 2 via an electrical and thermal contact 6 and a solder layer 5 with the circuit board substrate 2 connected is.
  • a heat current is released in the power electronics component 1, which is emitted to the micro heat exchanger 10 via the solder 5, the electrical and thermal contacts 6 and the circuit board substrate 2 (in short, circuit board).
  • Liquid refrigerant which is slightly supercooled, is supplied to the micro heat exchanger 10.
  • the refrigerant first warms up to the boiling state and then begins to boil in the channels of the micro heat exchanger 10. This is also referred to as flow boiling of a saturated liquid.
  • An alternative is flow boiling of a supercooled liquid serving as a refrigerant.
  • the supercooled liquid enters the micro heat exchanger 10 and bubbles form which, however, in contrast to the flow boiling of saturated liquids, either collapse on the wall or in the immediate vicinity of the wall.
  • the improved heat transfer that occurs here is due to simultaneous evaporation and condensation and to increased turbulence in the liquid near the wall downstream of the point of bubble formation.
  • FIG. 2 shows a second embodiment of the cooling device according to the invention, in which a micro heat exchanger 11 is arranged directly on and above the component to be cooled (e.g. chip) 1.
  • This component 1 is also connected to an insulating board 2 via a solder layer 5 and an electrical and thermal contact 6.
  • FIG. 3 A further exemplary embodiment is shown in FIG. 3.
  • a micro heat exchanger 12 is integrated directly in the circuit board substrate 3, specifically in such a way that the microchannels of the microwave heat exchanger 3 run in the substrate plane and run adjacent to the component 1 to be cooled or its electrical and thermal contact 6.
  • micro heat exchanger can then be divided into individual sections, which can then each have the structure and position shown in FIGS. 1 to 3.
  • the refrigerant and the system pressure at which the corresponding evaporation process occurs are selected so that the heat flow is removed from the electrical components and the maximum permissible temperature in the region of the component or chip is not exceeded.
  • a condenser (not shown), which serves to condense the evaporated refrigerant emerging from the micro heat exchanger, can be microstructured or conventionally constructed, and is arranged centrally or decentrally.
  • the refrigerant condensed in the condenser can be returned to the microwave heat exchanger actively via a pump (not shown) or passively via gravity or via capillary lines.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Die Erfindung betrifft eine Kühlvorrichtung, insbesondere zur Kühlung von Bauelementen der Leistungselektronik mittels eines durch einen in gutem Wärmekontakt mit dem Bauelement (1) stehenden Mikrowärmeübertrager (10) strömenden Kältemittels, und ist dadurch gekennzeichnet, dass das Kältemittel so gewählt ist, dass es bei der gewünschten Bauelementetemperatur im Mikrowärmeübertrager (10) verdampft.

Description

KÜHLVORRICHTUNG ZUR KÜHLUNG VON BAUELEMENTEN DER LEISTUNGSELEKTRONIK MIT EINEM MIKROWÄRMEÜBERTRAGER
Stand der Technik
Die Erfindung betrifft eine Kühlvorrichtung, insbesondere zur Kühlung von Bauelementen der Leistungselektronik mittels eines durch einen in gutem Wärmekontakt mit dem Bauelement stehenden Mikrowarmeubertrager strömenden Kältemittels .
Eine derartige Kühlvorrichtung ist in INT. J. Heat Mass Transfer, Band 37, Nr. 2, Seiten 321-332, 1994, von M. P. Bowers und I. Mudawar mit dem Titel "High flux boiling in low flow rate, low pressure drop mini-channel and micro- channel heat sinks" beschrieben worden.
Allgemein werden derzeit Bauelemente oder Baugruppen der Leistungselektronik, wie z. B. Pulswechselrichter, vorwiegend mit Hilfe von massiven Kühlkörpern aus Aluminium oder Kupfer gekühlt. Dabei erfolgt die Wärmeabfuhr mit Kühlflüssigkeit, die durch Bohrungen in den Kühlkörpern geleitet wird.
Alternativ dazu ist bei Leistungselektronikbauelementen die Wärmeabfuhr durch Siedebadkühlung bekannt. Dabei wird die Wärme durch Verdampfung einer elektrisch nicht leitenden Flüssigkeit abgeführt, die jeweils in direktem Kontakt mit den Bauteilen steht.
Die bisher eingesetzten Verfahren zur Kühlung von Leistungselektronikbauelementen haben Nachteile, die bei den massiven Kühlkörpern, die z. B. 30 mm dick sind, durch eine großes Bauvolumen und Gewicht bedingt sind. Aufgrund der begrenzten Kühlwirkung solcher massiver Kühlkörper führen große Verlustwärmeströmungen der Leis- tungselektronikbauteile zu einem deutlichen Anstieg der Bauteiltemperaturen. Hohe Bauteiltemperaturen bewirken einen schlechteren Wirkungsgrad der elektronischen Bauteile und können zur Zerstörung derselben führen.
Bei der Siedebadkühlung stehen die Bauteile in direktem Kontakt mit der wärmeübertragenden Flüssigkeit. Dabei werden üblicherweise Fluor-Kohlenwasserstoffe eingesetzt. Die Verwendung dieser Kältemittel macht umfangreiche Abdichtungsmaßnahmen notwendig, da mit der Änderung der Temperatur auch der Dampfdruck der Flüssigkeit in mehreren Bar variiert. Weiterhin werden die Komponenten der Leistungselektronik im Kraftfahrzeug aufgrund der hohen mechanischen Belastungen zur besseren Stabilität mit Materialien, wie Silikonkautschukmasse, vergossen. Dies ist beim Einsatz der Siedebadkühlung nur eingeschränkt möglich. Aufgabe und Vorteile der Erfindung
Es ist Aufgabe der Erfindung, eine Kuhlvorrichtung insbesondere zur Kühlung von Bauelementen der Leistungs- elektronik so anzugeben, dass große Warmestrome auf einer kleinen Flache bei niedrigen Temperaturen und geringem Gewicht des eingesetzten Wärmeübertragers unter Einsatz kleiner Kalremittelmengen abfuhrbar sind, wobei kein Kontakt zwischen Kältemittel und Elektronikbauteilen besteht.
Kern der Erfindung ist die Kombination des Phasenübergangs, z. B. bei der Verdampfungskühlung, zur Kühlung der Leistungselektronikbauelemente mit dem Einsatz eines Mikrowarmeubertragers. Mikrowarmeubertrager sind Gebilde, in denen sich Kanalanordnungen mit sehr kleinen Abmessungen im Submillimeterbereich, befinden.
Der Einsatz eines Mikrowarmeubertragers bietet mehrere Vorteile:
- Kleine Abmessungen verbunden mit geringem Gewicht,
- Große warmeubertragende Flache der Kanäle für das Kältemittel und dadurch gute lokale Kühlung der Elektronikbauteile.
Üblicherweise erfolgt die Warmeabfuhr m Mikrowarme- ubertragern durch Wärmeübergang an eine durchströmende Flüssigkeit . Entscheidende Vorteile ergeben sicn durch die Durch- stromung des Mikrowarmeubertragers mit einem geeigneten Kältemittel, das bei der gewünschten Bauteiletemperatur verdampft. Mikrowarmeubertrager besitzen durch ihre Viel- zahl von durchströmten Kanälen eine große Warmeubertra- gungsflache und sind somit m der Lage, wenn sie von einem geeigneten Kältemittel durchströmt werden, sehr große Warmestrome bei der gewünschten Temperatur abzuführen. Weiterhin ist die Temperaturdifferenz entlang der Kuhlkanale geringer als bei einphasiger konvektiver Warmeuoertragung, da ein großer Teil der Warme bei der Phasenubergangstemperatur übertragen wird. Somit stellen sich auch m Bereich der zu kühlenden Bauelemente gleichmaßige Te peraturverteilungen ein. Aufgrund ihrer geringen Kanaldurchmesser sind Mikrowarmeubertrager für den Einsatz bei hohen Drucken geeignet. Außerdem sind Dichtungsprobleme einfacher als bei der Siedebadkühlung zu losen.
Zeichnung
Eine erfmdungsgemaße Kuhlvorrichtung wird nachstehend m Ausfuhrungsbeispielen bezugnehmend auf die beiliegende Zeichnung naher beschrieben. Es zeigen:
Figur 1 schematisch im Schnitt ein erstes Ausfuhrungs- beispiel einer erfindungsgemaßen Kuhlvorrichtung;
Figur 2 schematisch im Schnitt ein zweites Ausfuhrungs- oeispiel einer erfmdungsgemaßen Kuhlvorrichtung und Figur 3 schematisch im Schnitt ein drittes Ausfuhrungs- beispiel einer erfmdungsgemaßen Kuhlvorrichtung.
Ausfuhrungsbeisp ele
In den Figuren 1 bis 3 sind drei Varianten einer erfmdungsgemaßen Kuhlvorrichtung zur Kühlung von Bauelementen der Leistungselektronik dargestellt.
Bei einem m Figur 1 gezeigten ersten Ausfuhrungsbeispiel ist ein Mikrowarmeubertrager 10 auf der Ruckseite eines isolierenden Schaltungsplattensubstrats 2 einem zu k hlenden Bauteil 1 gegenüber angeordnet, das auf der Vorderseite des Substrats 2 über eine elektrische und thermische Kontaktierung 6 und eine Lotschicht 5 mit dem Schaltungsplattensubstrat 2 verbunden ist. In dem Leistungselektronikbauelement 1 wird ein Warmestrom frei, der über das Lot 5, die elektrische und thermische Kontaktierung 6 und das Schaltungsplattensubstrat 2 (kurz Platine) an den Mikrowarmeubertrager 10 abgegeben wird.
Dem Mikrowarmeubertrager 10 wird flussiges Kältemittel, das geringfügig unterkühlt ist, zugeführt. Das Kalte- mittel erwärmt sich zunächst auf Siedezustand und beginnt dann, m den Kanälen des Mikrowarmeubertragers 10 zu sieden. Dabei spricht man auch von Stromungssieden einer gesattigten Flüssigkeit. Eine Alternative ist das Strömungssieden einer als Kältemittel dienenden unterkühlten Flüssigkeit. Hierbei tritt die unterkühlte Flüssigkeit in den Mikrowarmeubertrager 10 ein und es bilden sich Blasen, die jedoch im Gegensatz zum Strömungssieden gesättigter Flüssigkeiten entweder schon an der Wand oder in unmittelbarer Wandnähe kollabieren. Der hierbei auftretende verbesserte Wärmeübergang ist auf gleichzeitiges Verdampfen und Kondensieren sowie auf eine verstärkte Turbulenz in der wandnahen Flüssigkeit stromabwärts von Blasenentstehungspunkt zurückzuführen.
Figur 2 zeigt ein zweites Ausführungsbeispiel der erfindungsgemäßen Kühlvorrichtung, bei der ein Mikro- Wärmeübertrager 11 direkt auf und über dem zu kühlenden Bauelement (z.B. Chip) 1 angeordnet ist. Auch dieses Bauelement 1 ist über eine Lotschicht 5 und eine elektrische und thermische Kontaktierung 6 mit einer isolierenden Platine 2 verbunden.
Ein weiteres Ausführungsbeispiel zeigt Figur 3. Ein Mikrowarmeubertrager 12 ist direkt im Schaltungsplatten- substrat 3 integriert, und zwar so, dass die Mikrokanäle des Mikrowarmeubertragers 3 in der Substratebene verlaufen und dem zu kühlenden Bauteil 1 bzw. dessen elektrischer und thermischer Kontaktierung 6 benachbart verlaufen.
Es ist ausdrücklich zu bemerken, dass auch Kombinationen der in den Figuren 1 bis 3 dargestellten Ausführungs- beispiele möglich und sinnvoll sein können, d. h., dass dann der Mikrowarmeubertrager in einzelne Abschnitte aufgeteilt sein kann, die dann jeweils die in den Figuren 1 bis 3 dargestellte Struktur und Lage haben können.
Das Kältemittel und der Systemdruck, bei dem sich der entsprechende Verdampfungsvorgang einstellt, werden so gewählt, dass der Wärmestrom aus den elektrischen Bauteilen abgeführt und die maximal zulässige Temperatur im Bereich des Bauteils bzw. Chips nicht überschritten wird. Im Fall des Strömungssiedens verdampft ein Großteil des zugeführten Kältemittels, wird nachfolgend kondensiert und tritt anschließend wieder in den Mikrowarmeubertrager ein. Ein (nicht gezeigter) Kondensator, der zur Kondensierung des aus dem Mikrowarmeubertrager tretenden verdampften Kältemittels dient, kann mikrostrukturiert oder konventionell aufgebaut sein, und ist zentral oder dezentral angeordnet. Der Rücktransport des im Kondensator kondensierten Kältemittels kann aktiv über eine (nicht gezeigte) Pumpe oder passiv über Schwerkraft oder über Kapillarleitungen in den Mikrowarmeubertrager erfolgen.
Bedingt durch die kleinen Volumina in den Kanälen des Mikrowarmeubertragers sind sowohl für den Fall des Strömungssiedens einer gesättigten als auch einer unterkühlten Flüssigkeit nur geringe Mengen an Kältemittel erforderlich.

Claims

PATENTANSPRÜCHE
1. Kuhlvorrichtung, insbesondere zur Kühlung von Bau- elementen der Leistungselektronik mittels eines durch einen in gutem Warmekontakt mit dem Bauelement stehenden Mikrowarmeubertrager stromenden Kältemittels, dadurch gekennzeichnet, dass das Kältemittel so gewählt ist, dass es bei der gewünschten Bauelementetemperatur im Mikro- Wärmeübertrager verdampft.
2. Kuhlvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Mikrowarmeubertrager (10) auf der Ruckseite eines das Leistungselektronikbauelement (1) auf seiner Vorderseite tragenden Schaltungsplattensubstrats (2) dem Bauelement gegenüberliegend angeordnet ist.
3. Kuhlvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Mikrowarmeubertrager (11) direkt auf und über dem Bauelement (1) angeordnet ist.
4. Kuhlvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Abmessungen des Mikrowarmeubertragers (10, 11) an die Abmessungen des Bauelements (1) angepasst sind.
5. Kuhlvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Mikrowarmeubertrager (12) m einem das Bauelement tragenden Schaltungsplattensubstrat (3) dem Bauelement (1) benachbart so angeordnet ist, dass das Kältemittel das Substrat (3) in der Substratebene durchströmt .
6. Kühlvorrichtung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der
Mikrowarmeubertrager (10, 11, 12) in mehrere Abschnitte unterteilt ist, die jeweils auf der Rückseite des das Bauelement auf seiner Vorderseite tragenden Schaltungsplattensubstrats und/oder direkt auf und über dem Bau- element und/oder in dem das Bauelement tragenden Schaltungsplattensubstrat liegen.
7. Kühlvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Mikrowarmeubertrager Element eines Kältemittelkreises ist.
8. Kühlvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass in dem Kältemittelkreis dem Mikrowarmeubertrager in Strömungsrichtung ein Kondensator für das im Mikrowarmeubertrager verdampfte Kältemittel nachgeschaltet ist.
9. Kühlvorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Rücktransport des Kältemittels zum Mikrowarmeubertrager aktiv durch eine im Kältemittelkreis angeordnete Pumpe erfolgt.
10. Kühlvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass Struktur und Anordung des Mikrowarmeubertragers, das Kältemittel und der Systemdruck so gewählt sind, dass eine maximal zulässige Temperatur des zu kühlenden Bauelements nicht überschritten wird.
PCT/DE2001/000498 2000-04-11 2001-02-09 Kühlvorrichtung zur kühlung von bauelementen der leistungselektronik mit einem mikrowärmeübertrager WO2001078478A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001575793A JP2004509450A (ja) 2000-04-11 2001-02-09 マイクロ熱伝達器を用いて、パワーエレクトロニクスの構成部材を冷却するための冷却装置
EP01913609A EP1275278A1 (de) 2000-04-11 2001-02-09 Kühlvorrichtung zur kühlung von bauelementen der leistungselektronik mit einem mikrowärmeübertrager
KR1020027013507A KR20020093897A (ko) 2000-04-11 2001-02-09 마이크로 열 교환기를 장착한 파워 전자 장치의 부품냉각을 위한 냉각장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10017971A DE10017971A1 (de) 2000-04-11 2000-04-11 Kühlvorrichtung zur Kühlung von Bauelementen der Leistungselektronik mit einem Mikrowärmeübertrager
DE10017971.1 2000-04-11

Publications (1)

Publication Number Publication Date
WO2001078478A1 true WO2001078478A1 (de) 2001-10-18

Family

ID=7638356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/000498 WO2001078478A1 (de) 2000-04-11 2001-02-09 Kühlvorrichtung zur kühlung von bauelementen der leistungselektronik mit einem mikrowärmeübertrager

Country Status (6)

Country Link
US (1) US20030178178A1 (de)
EP (1) EP1275278A1 (de)
JP (1) JP2004509450A (de)
KR (1) KR20020093897A (de)
DE (1) DE10017971A1 (de)
WO (1) WO2001078478A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2063696A3 (de) * 2007-11-23 2011-06-29 MiCryon Technik GmbH Verfahren zum Kühlen thermisch hochbelasteter Bauelemente und Vorrichtung zur Durchführung des Verfahrens

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7246940B2 (en) * 2003-06-24 2007-07-24 Halliburton Energy Services, Inc. Method and apparatus for managing the temperature of thermal components
DE502004007852D1 (de) 2003-07-08 2008-09-25 Infineon Technologies Ag Integrierte kühl-schaltungsanordnung, betriebsverfahren und herstellungsverfahren
DE10333877A1 (de) * 2003-07-25 2005-02-24 Sdk-Technik Gmbh Kühlvorrichtung, insbesondere zur Kühlung von Bauelementen der Leistungselektronik mittels eines Wärmeübertragungskreislaufes
US20050141195A1 (en) * 2003-12-31 2005-06-30 Himanshu Pokharna Folded fin microchannel heat exchanger
US20060102353A1 (en) * 2004-11-12 2006-05-18 Halliburton Energy Services, Inc. Thermal component temperature management system and method
US8024936B2 (en) * 2004-11-16 2011-09-27 Halliburton Energy Services, Inc. Cooling apparatus, systems, and methods
WO2006060673A1 (en) * 2004-12-03 2006-06-08 Halliburton Energy Services, Inc. Rechargeable energy storage device in a downhole operation
US20060191682A1 (en) 2004-12-03 2006-08-31 Storm Bruce H Heating and cooling electrical components in a downhole operation
WO2006060708A1 (en) * 2004-12-03 2006-06-08 Halliburton Energy Services, Inc. Switchable power allocation in a downhole operation
DE102005008271A1 (de) 2005-02-22 2006-08-24 Behr Gmbh & Co. Kg Mikrowärmeübertrager
US20070119572A1 (en) * 2005-11-30 2007-05-31 Raytheon Company System and Method for Boiling Heat Transfer Using Self-Induced Coolant Transport and Impingements
DE102007056783A1 (de) 2007-11-23 2009-05-28 Micryon Technik Gmbh Verfahren zum Kühlen thermisch hochbelasteter Bauelemente und Vorrichtung zur Durchführung des Verfahrens
DE202007016535U1 (de) 2007-11-23 2008-10-16 Hellwig, Udo, Prof. Dr.-Ing. Einrichtung zum Kühlen thermisch hochbelasteter Bauelemente
TWI513069B (zh) * 2013-05-21 2015-12-11 Subtron Technology Co Ltd 散熱板
JPWO2016075838A1 (ja) * 2014-11-14 2017-10-19 株式会社ExaScaler 電子機器の冷却システム、及び冷却方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4322737A (en) * 1979-11-20 1982-03-30 Intel Corporation Integrated circuit micropackaging
US5179043A (en) * 1989-07-14 1993-01-12 The Texas A&M University System Vapor deposited micro heat pipes
DE4311839A1 (de) * 1993-04-15 1994-10-20 Siemens Ag Mikrokühleinrichtung für eine Elektronik-Komponente
US5598632A (en) * 1994-10-06 1997-02-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for producing micro heat panels
WO2000075764A1 (en) * 1999-06-04 2000-12-14 Icurie Lab Inc. Micro cooling device

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2204589A1 (de) * 1972-02-01 1973-08-16 Siemens Ag Kuehlanordnung fuer flache halbleiterbauelemente
US4047198A (en) * 1976-04-19 1977-09-06 Hughes Aircraft Company Transistor cooling by heat pipes having a wick of dielectric powder
JPS5936827B2 (ja) * 1979-01-12 1984-09-06 日本電信電話株式会社 集積回路素子の冷却装置
US4392362A (en) * 1979-03-23 1983-07-12 The Board Of Trustees Of The Leland Stanford Junior University Micro miniature refrigerators
US4573067A (en) * 1981-03-02 1986-02-25 The Board Of Trustees Of The Leland Stanford Junior University Method and means for improved heat removal in compact semiconductor integrated circuits
US4386505A (en) * 1981-05-01 1983-06-07 The Board Of Trustees Of The Leland Stanford Junior University Refrigerators
DE3206059C2 (de) * 1982-02-19 1984-11-29 Siemens AG, 1000 Berlin und 8000 München Kühleinrichtung für elektrische Bauelemente
US4503483A (en) * 1982-05-03 1985-03-05 Hughes Aircraft Company Heat pipe cooling module for high power circuit boards
US4491010A (en) * 1983-06-20 1985-01-01 General Motors Corporation Dynamic combustion characteristic sensor for internal combustion engine
DE3402003A1 (de) * 1984-01-21 1985-07-25 Brown, Boveri & Cie Ag, 6800 Mannheim Leistungshalbleitermodul
DE3504992A1 (de) * 1985-02-14 1986-08-14 Brown, Boveri & Cie Ag, 6800 Mannheim Leistungshalbleitermodul mit integriertem waermerohr
EP0484320B1 (de) * 1985-11-19 1999-04-28 Fujitsu Limited Kühlmodule für Vorrichtungen mit elektronischem Schaltkreis
US4758926A (en) * 1986-03-31 1988-07-19 Microelectronics And Computer Technology Corporation Fluid-cooled integrated circuit package
US4894709A (en) * 1988-03-09 1990-01-16 Massachusetts Institute Of Technology Forced-convection, liquid-cooled, microchannel heat sinks
JP2859927B2 (ja) * 1990-05-16 1999-02-24 株式会社東芝 冷却装置および温度制御装置
US5199487A (en) * 1991-05-31 1993-04-06 Hughes Aircraft Company Electroformed high efficiency heat exchanger and method for making
US5355942A (en) * 1991-08-26 1994-10-18 Sun Microsystems, Inc. Cooling multi-chip modules using embedded heat pipes
US5218515A (en) * 1992-03-13 1993-06-08 The United States Of America As Represented By The United States Department Of Energy Microchannel cooling of face down bonded chips
DE59302279D1 (de) * 1992-05-25 1996-05-23 Fichtel & Sachs Ag Elektrische maschine mit halbleiterventilen
US5283715A (en) * 1992-09-29 1994-02-01 International Business Machines, Inc. Integrated heat pipe and circuit board structure
US5316077A (en) * 1992-12-09 1994-05-31 Eaton Corporation Heat sink for electrical circuit components
US5441102A (en) * 1994-01-26 1995-08-15 Sun Microsystems, Inc. Heat exchanger for electronic equipment
US5611214A (en) * 1994-07-29 1997-03-18 Battelle Memorial Institute Microcomponent sheet architecture
DE19514548C1 (de) * 1995-04-20 1996-10-02 Daimler Benz Ag Verfahren zur Herstellung einer Mikrokühleinrichtung
US5548605A (en) * 1995-05-15 1996-08-20 The Regents Of The University Of California Monolithic microchannel heatsink
DE19608824A1 (de) * 1996-03-07 1997-09-18 Inst Mikrotechnik Mainz Gmbh Verfahren zur Herstellung von Mikrowärmetauschern
DE19626227C2 (de) * 1996-06-29 1998-07-02 Bosch Gmbh Robert Anordnung zur Wärmeableitung bei Chipmodulen auf Mehrschicht-Keramikträgern, insbesondere für Multichipmodule, und Verfahren zu ihrer Herstellung
US5801442A (en) * 1996-07-22 1998-09-01 Northrop Grumman Corporation Microchannel cooling of high power semiconductor devices
US5841244A (en) * 1997-06-18 1998-11-24 Northrop Grumman Corporation RF coil/heat pipe for solid state light driver
US5901037A (en) * 1997-06-18 1999-05-04 Northrop Grumman Corporation Closed loop liquid cooling for semiconductor RF amplifier modules
US6907921B2 (en) * 1998-06-18 2005-06-21 3M Innovative Properties Company Microchanneled active fluid heat exchanger
US6290685B1 (en) * 1998-06-18 2001-09-18 3M Innovative Properties Company Microchanneled active fluid transport devices
US6457515B1 (en) * 1999-08-06 2002-10-01 The Ohio State University Two-layered micro channel heat sink, devices and systems incorporating same
US6415860B1 (en) * 2000-02-09 2002-07-09 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Crossflow micro heat exchanger
EP1321015B1 (de) * 2000-09-29 2004-05-19 Nanostream, Inc. Mikrofluidische vorrichtung zur wärmeübertragung
US6437981B1 (en) * 2000-11-30 2002-08-20 Harris Corporation Thermally enhanced microcircuit package and method of forming same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4322737A (en) * 1979-11-20 1982-03-30 Intel Corporation Integrated circuit micropackaging
US5179043A (en) * 1989-07-14 1993-01-12 The Texas A&M University System Vapor deposited micro heat pipes
DE4311839A1 (de) * 1993-04-15 1994-10-20 Siemens Ag Mikrokühleinrichtung für eine Elektronik-Komponente
US5598632A (en) * 1994-10-06 1997-02-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for producing micro heat panels
WO2000075764A1 (en) * 1999-06-04 2000-12-14 Icurie Lab Inc. Micro cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2063696A3 (de) * 2007-11-23 2011-06-29 MiCryon Technik GmbH Verfahren zum Kühlen thermisch hochbelasteter Bauelemente und Vorrichtung zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
JP2004509450A (ja) 2004-03-25
KR20020093897A (ko) 2002-12-16
US20030178178A1 (en) 2003-09-25
DE10017971A1 (de) 2001-10-25
EP1275278A1 (de) 2003-01-15

Similar Documents

Publication Publication Date Title
DE602005002507T2 (de) Integriertes Kühlsystem für elektronische Geräte
WO2001078478A1 (de) Kühlvorrichtung zur kühlung von bauelementen der leistungselektronik mit einem mikrowärmeübertrager
DE112005000672B4 (de) Kühlen eines Chips mit integrierter Schaltung mit Kühlflüssigkeit in einem Mikrokanal und eine thermoelektrischer Dünnfilm-Kühlvorrichtung im Mikrokanal
DE112005001365B4 (de) Wärmeableitungseinrichtung mit verbesserter Siede/Kondensationsstruktur
Faulkner et al. Practical design of a 1000 W/cm/sup 2/cooling system [High Power Electronics]
DE4401607C2 (de) Kühleinheit für Leistungshalbleiter
DE102010043904A1 (de) Leistungselektroniksubstrat für direkte Substratkühlung
DE2056699A1 (de) Kuhlsystem, insbesondere fur Schal tungsanordnungen
EP0013362B1 (de) Vorrichtung zur Wärmeübertragung, insbesondere für integrierte Schaltungen
EP3900034B1 (de) Wärmeübertragungsvorrichtung und bauteil
DE1574667A1 (de) Kuehlanordnung fuer elektronische Bauelemente
DE102018118070B4 (de) Monolithische Phasenänderung-Wärmeabführvorrichtung
DE102006019376A1 (de) Leistungskühler für Stromrichterbaugruppen und Stromrichter, insbesondere für Schienen- und Hybridfahrzeuge
WO2018234262A1 (de) Schaltungsträger für eine elektronische schaltung und verfahren zu dessen herstellung
EP1905076B1 (de) Anordnung eines elektrischen bauelements und einer zwei-phasen-kühlvorrichtung und verfahren zum herstellen der anordnung
DE102008044645B3 (de) Flugzeugsignalrechnersystem mit einer Mehrzahl von modularen Signalrechnereinheiten
DE19527674C2 (de) Kühleinrichtung
EP2255604B1 (de) Steuergerät
DE202010011783U1 (de) Von Druckgefälle getriebener dünner Niederdruck-Thermosiphonkühler
EP4071800A1 (de) Halbleiterchipanordnung mit kühlung
WO2022238086A1 (de) Kühlvorrichtung
DE102013217615A1 (de) Dampfkondensator mit dreidimensional gefalzter Struktur
DE202010011784U1 (de) Von Druckgefälle getriebener schleifenförmiger Niederdruck-Thermosiphonkühler
EP2063696B1 (de) Verfahren zum Kühlen thermisch hochbelasteter Bauelemente und Vorrichtung zur Durchführung des Verfahrens
DE102005013457B4 (de) Elektronisches Gerät, beispielsweise Rechner mit einem Kühlsystem

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001913609

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 575793

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027013507

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027013507

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001913609

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10257509

Country of ref document: US

WWR Wipo information: refused in national office

Ref document number: 2001913609

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020027013507

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2001913609

Country of ref document: EP