WO2001075390A1 - Dual operating pyrotechnic charge - Google Patents

Dual operating pyrotechnic charge Download PDF

Info

Publication number
WO2001075390A1
WO2001075390A1 PCT/FR2001/000944 FR0100944W WO0175390A1 WO 2001075390 A1 WO2001075390 A1 WO 2001075390A1 FR 0100944 W FR0100944 W FR 0100944W WO 0175390 A1 WO0175390 A1 WO 0175390A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
pyrotechnic
explosive
nominal
explosive charge
Prior art date
Application number
PCT/FR2001/000944
Other languages
French (fr)
Inventor
Dominique Chambolle
Jean-Philippe Borgoltz
Philippe Adamski
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to DE60124882T priority Critical patent/DE60124882T2/en
Priority to EP01921435A priority patent/EP1269105B1/en
Publication of WO2001075390A1 publication Critical patent/WO2001075390A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/22Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction
    • F42B12/32Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction the hull or case comprising a plurality of discrete bodies, e.g. steel balls, embedded therein or disposed around the explosive charge

Definitions

  • the present invention relates to a pyrotechnic charge with dual operation.
  • the present invention specifically aims to overcome the aforementioned drawbacks by providing a dual-function pyrotechnic charge which in particular meets the multi-mission needs mentioned above.
  • the pyrotechnic charge according to the invention comprises a nominal explosive charge surrounded by a detonating secondary explosive charge surrounded by a burst generator surrounded by a protective envelope, this pyrotechnic charge further comprising a first ignition means and a second ignition means, the first and second ignition means being able to be controlled independently from control means, for transmitting, as desired, a pyrotechnic order respectively to the nominal explosive charge or secondary explosive charge, the detonation of the secondary explosive charge not triggering the nominal explosive charge.
  • this pyrotechnic charge has two operating modes according to the explosive charge to which the pyrotechnic order is transmitted: a so-called “energetic” mode against rapidly evolving missiles, that is to say at a relative speed> 1500 m / s, a mode called “energy play” against missiles evolving slowly, that is to say at a relative speed ⁇ 1500 m / s.
  • the pyrotechnic charge of the present invention may further comprise a chopper cutting cord placed between the secondary explosive charge and the chopper generator and / or between the protective envelope and the chopper generator, and a third ignition means, the third ignition means being able to be controlled independently from the control means for transmitting a pyrotechnic command to the cutting cord, the detonation of the cutting cord not damaging the secondary explosive charge and not causing initiation of the nominal explosive charge.
  • the nominal explosive charge preferably has the highest possible energy density to reduce its mass, as well as the highest possible density so that it is not initiated by the detonation of the secondary explosive charge.
  • This nominal explosive may for example: - the explosive composition sold by the
  • Company SNPE commercially under the name of V350 is described in patent application FR-A-2 671 549, and - the explosive composition sold by the company SNPE known under the name of octogen-based V401 (HMX) in a fluorinated binder, which is more energetic than the previous one, - any composition comparable in density, sensitivity and energy disclosed to date.
  • HMX octogen-based V401
  • the nominal explosive charge is not in contact with the secondary explosive charge.
  • the space existing between the nominal explosive charge and the burst generator depends in particular directly on the volume density of the main explosive and on the sensitivity of this explosive to initiation.
  • the secondary explosive charge must detonate without initiating the nominal explosive.
  • This explosive detonates is essential to respect the chronometry necessary during the initiation phase of the use of the charge. Indeed, the total decomposition after the initiation signal of the secondary explosive charge must preferably be obtained in less than 100 ⁇ s, which imposes a detonation regime.
  • This explosive charge can for example be in the form of pellets or strips of a low energy secondary explosive distributed in a material inert wave damper, this assembly forming an explosive architecture.
  • the secondary explosive can be of the same nature as the nominal explosive if the latter is sufficiently sensitive. It can be V350, but also more sensitive, comparable, or octogenous compositions of bands, for example V401. According to the present invention, a composition with pentrite, easy to form and very good detonating capacity, can also be used. The secondary explosive can therefore, due to its nature and its conformation in the pyrotechnic charge of the present invention, be initiated in the same way as the nominal explosive.
  • the mass of the secondary explosive to be used is proportional to the kinetic energy ratio that one wishes to communicate to the fragments between the two operations. Indeed, for a given "charge section", the kinetic energy communicated to the fragments is a function of the mass of explosive which detonates.
  • the inert material can be, for example in the form of a foam such as a porous plastic or a honeycomb, metallic or composite honeycomb structure, for example having a density ranging from about 0, 2 to 0.3.
  • Non-initiation of the main explosive is essentially ensured by the vacuum formed by the foam cells which acts as a shock absorber.
  • the foam can also fill a space left between the nominal explosive and the splinter generator. This space can be approximately 10 mm.
  • the layer formed by the inert material and the explosive secondary may be partially structuring and participate in the mechanical behavior of the load.
  • the above-mentioned damping material and secondary composition act as a disturbance of the main stress, during the fragmentation into "small splinters” of the splinter generator.
  • This disturbance remains low, due to the energy ratio between the nominal explosive and the secondary explosive.
  • the ignition delay or pyrotechnic delay, existing between on the one hand the nominal explosive, and on the other hand the network of cords and the secondary composition, must make it possible to reduce the influence of a local concentration of explosive, likely to disturb the desired speed field of the flakes.
  • the chip generator according to the present invention is capable of generating, depending on the operating mode, that is to say according to the chosen pyrotechnic order, respectively large chips in "energy” operation or small chips in low energy operation.
  • the splinter generator is made of dense metal chosen for example from tantalum, tungsten, and steel. Tantalum is preferred for its good ductility properties. Tungsten is also suitable, however it can present binding metallurgical brittleness problems for speeding up, which limits the effectiveness of the splinters. The choice of a steel chip generator is also possible the effectiveness of the splinters seems however less.
  • the burst generator can be made up of a monobloc assembly. It can be in the form of a part of revolution, of variable thickness. The exact profile of this generator and the thickness are determined to precisely obtain the desired speed field in energy operation. In a "load section", the speed of the flakes depends as a first approximation, for a given load radius:
  • the thickness of the flash generator Qualitatively, the larger the average radius, the faster the flakes, and the thinner the thickness, the faster the flakes.
  • the profile generator and the thickness of the brightness generator are therefore adjusted in sections, in order to obtain the "correct" speed distribution. It is thus possible to generate splinters varying in a mass and speed ratio of up to twenty
  • Small chips can be obtained by controlled fragmentation for example by means of an electron beam or by machining: that is to say that the whole of the chip generator is precut according to inclined lines, for example by inclination close to 45 ° in order to allow the appearance of constraints "spreading" the pre-fragmentation lines relative to the axis of revolution of the assembly.
  • Large chips can be obtained by cutting the one-piece chip generator using at least two cutting cords or a network of detonating cords. It is possible to use the weakening lines of small flakes, for example one line on n lines, but it is preferable not to . not superimpose the network for cutting large flakes and small flakes, in order to allow more latitude for obtaining large flakes and to limit mass losses at the two ends of the cylinder of the flake generator, for example in triangular form .
  • the brightness generator is such that it can operate without the cutting cords.
  • the splitting of the burst generator into small bursts or into large bursts is obtained according to the pyrotechnic energy supplied: in small bursts if the stress is high, that is to say if the nominal charge is initiated, and in large flakes if the load is low, i.e. if the secondary charge is initiated.
  • This can be achieved for example by using a structuring shell placed between the secondary explosive and the burst generator.
  • the ferrule is a cylinder of circular section and curved generator, for example hyperboloid. The thickness of the cylinder is a priori constant.
  • the ferrule may for example be made of steel or titanium, which represents a weight gain for the pyrotechnic charge.
  • the large flakes can be composed for example of projectiles with preformed fragmentation, for example of a set of parallelepipeds. Large chips can be linked together to ensure a certain structural strength, for example by gluing or by inter-chip welding using an electron beam. Small flakes can be obtained for example either by controlled fragmentation: small flakes result from an accentuated precut of large flakes (for example with an electron beam or machining), or by "preformed fragmentation”: small flakes are parallelepipeds embedded in a matrix.
  • This matrix can be a polymer, a fusible metal, for example aluminum, or an explosive material for a dispersive effect of the fragments, if the explosion takes place near the charge, or amplifier of effectiveness, if explosion takes place in contact with the target.
  • the detonation of the explosive architecture results just in a swelling of the shell which puts in speed the large fragments which remain coherent.
  • the high stress generated has the effect of breaking all the links between the small fragments.
  • the influence of the damping material on the dynamics of large flakes is negligible, even favorable: it has an effect of attenuation and homogenization.
  • the energy loss due to this influence can be compensated, if necessary, by a small increase in the explosive mass of explosive architecture.
  • the shock absorber layer may, depending on the embodiment of the present invention, and in particular according to the choice of the material of the burst generator, be necessary to attenuate the intensity of the detonation shock wave of the secondary explosive and thus allowing the generation of intact shards. This is the case, for example, for a tungsten chip generator obtained by sintering.
  • the burst generator can also ensure the structuring of the pyrotechnic charge with respect to external mechanical stresses.
  • the function of the envelope is to protect the charge of the present invention in its cycle of use from external aggressions such as mechanical, thermal, dust, humidity, etc. attacks during its operational life.
  • the nature of this envelope therefore strongly depends on the environment in which the load is used.
  • the cutting lines of the burst generator can be placed on either side of the burst generator. They can also be placed either between the protective casing and the burst generator, or between the secondary charge and the burst generator. The position on either side of the splinter generator makes it possible to avoid crossing the lines.
  • the control means may for example comprise a charge control unit and a switch.
  • the control unit performs the function of transmitting the firing order from the originator, for example from an electrical command, to the means, also called system, of ignition.
  • the priming system comprises the first priming means, or main priming means, intended for priming the nominal load, consisting of a pyrotechnic cord, also called the main cord, and an amplifier.
  • the priming system further includes the second priming means for priming the secondary explosive, as well as a priming network for the detonating cords for cutting the generator. and a detonic switch placed between the control box and the amplifier.
  • the switch can operate as a switch. Depending on the order received from the originator, for example from the control unit, it may allow cutting off or not the initiation line of the nominal explosive.
  • the switch can be integrated into the control box. It does not jeopardize safety because in the event of untimely operation it does not detonate the charges.
  • the second priming means can comprise, for example, a network of detonating cords, for priming said pellets.
  • the initiation of this network of detonating cords can be obtained by adding a bypass from the main cord.
  • the cutting cord can be primed by adding a bypass between the control unit and the aforementioned bypass for secondary priming.
  • the offset of the initiation of the detonating cord and of the secondary composition relative to that of the nominal explosive. This can be ensured for example by adjusting the length of the detonator paths, but also by adding delay lines introducing initiation delays.
  • the inventors therefore provided a pyrotechnic charge comprising two types of operation allowing to attack at choice and effectively several types of targets.
  • the device of the present invention makes it possible to generate either small rapid flashes, effective against a slowly evolving threat, or large slow slow flashes effective against a rapidly evolving threat.
  • the combination of the two operations in a single charge allows a gain in mass and volume at the level of the load carrier, and consequently a gain in efficiency and overall costs: reduction in the number of carriers, simplification of the maintenance and operational implementation etc.
  • FIG. 1 is a simplified diagram of an embodiment of the pyrotechnic charge according to the invention comprising a cutting cord of the shards generator.
  • Example 1 Pyrotechnic charge according to the present invention with a chopper cutting cord.
  • FIG. 1 is a simplified diagram of an embodiment of the pyrotechnic charge according to the present invention comprising a cutting cord of the chip generator.
  • the pyrotechnic charge (1) comprises a nominal explosive charge (3) surrounded by a detonating secondary explosive charge (5) surrounded by a burst generator (7) surrounded by a protective envelope (9), said pyrotechnic charge further comprising a first priming means (11,13) and a second priming means (15), the first and second priming means being able to be controlled independently- from control means (17,19), to optionally transmit a pyrotechnic order respectively to the nominal explosive charge (3) or to the secondary explosive charge (5), so that the detonation of the secondary explosive charge does not trigger the nominal explosive charge.
  • the pyrotechnic charge also comprises two cutting cords (21) of the burst generator placed between the secondary explosive charge (5) and the burst generator (7), and a third ignition means (not shown).
  • the third ignition means is independently controlled from the control means (17,19) to transmit a pyrotechnic command to the cutting lines (21), so that the detonation of the cutting line does not damage the explosive charge secondary and does not initiate the nominal explosive charge.
  • the characteristics of this charge are as follows:
  • Nominal explosive V350 of density 1.70; in the form of a part of revolution, of average radius 0.048, mass 6.157 kg.
  • V350 of the same kind inserted in 0.146 kg of foam, density 0.1 over a thickness of 0.096 m, surrounding the nominal explosive block: 0.127 kg of V350, in the form of strips of thickness 8 mm , is evenly distributed in the foam.
  • the pyrotechnic switch receives or not the order of the decision-making body to cut the nominal ignition line
  • control unit receives the order, for example electrical, from the decision-making body to initiate the explosion. a) energy functioning
  • the pyrotechnic order is transmitted to the amplifier which initiates the nominal explosive and potentially the Detonating Cord and the Secondary Explosive.
  • the main composition detonates, releasing the energy of the nominal explosive and thus causing the speeding of small rapid bursts.
  • the burst of splinters is optimized by convergence of sheaves to reduce the area touched on the target.
  • the main composition detonates before the pyrotechnic architecture (secondary explosive) and the detonating cutting cord, making them a priori obsolete.

Abstract

The invention concerns a dual operating pyrotechnic charge (1). The inventive charge comprises a nominal explosive charge (3) enclosed in a secondary detonating charge (5) encased in a fragment generator (7) contained in a protective casing (9), said pyrotechnic charge further comprising first initiating means (11, 13) and second initiating means (15), the first and second initiating means capable of being independently controlled by control means (17, 19), for selectively transmitting a pyrotechnic instruction respectively to the nominal explosive charge or the secondary explosive charge, detonation of the secondary explosive charge not priming the nominal explosive charge.

Description

CHARGE PYROTECHNIQUE A FONCTIONNEMENT DUAL DUAL-OPERATING PYROTECHNIC LOAD
DESCRIPTIONDESCRIPTION
Domaine techni Λe de l'inventionTechnical field of the invention
La présente invention se rapporte à une charge pyrotechnique à fonctionnement dual.The present invention relates to a pyrotechnic charge with dual operation.
Il s'agit d'une charge répondant à plusieurs missions, appelée aussi charge multi-missions , disposant de deux modes de fonctionnement permettant d'attaquer efficacement plusieurs types de cibles.It is a charge responding to several missions, also called multi-mission charge, having two operating modes allowing to effectively attack several types of targets.
La multiplicité des menaces et, la réduction demandée des coûts unitaires impliquent un besoin de charges nouvelles qui soient polyvalentes ou versatiles .The multiplicity of threats and the requested reduction in unit costs imply a need for new charges which are versatile or versatile.
Art antérieurPrior art
Ce type de charge multi-missions est à l'étude dans divers centres américains, comme le montre une simple recherche sur Internet, par exemple l'étude d'une charge antiaérienne et antimissile balistique sur le missile de la "Navy" -SM2-bloc IVA sur le site www. chinfo .navy.1000/navpalib/weapons/missiles/standart /standarthtml . La plupart des charges militaires embarquées telles que les missiles, les obus, les mines etc., sont des charges à projection d'éclats générés par l'explosion d'un dispositif pyrotechnique susceptibles d'augmenter les dégâts sur la cible visée. Mais ces charges sont soumises entre autres contraintes de conception à des limitations en masse et en volume. Ceci a conduit à rechercher des dispositifs optimisés autour d'un point de fonctionnement, et de fait à une seule fonction. Ce point de fonctionnement dépend de la mission et du porteur des charges. II existe un grand nombre de charges à éclats dans des systèmes divers. Le document Conventionnal warheadThis type of multi-mission charge is under study in various American centers, as shown by a simple search on the Internet, for example the study of an anti-aircraft and anti-ballistic missile charge on the missile of the "Navy" -SM2- IVA block on the website www. chinfo .navy.1000 / navpalib / weapons / missiles / standart / standarthtml. Most of the on-board military charges such as missiles, shells, mines, etc. are burst-projection charges generated by the explosion of a pyrotechnic device capable of increasing damage to the targeted target. But these loads are subject among other design constraints to mass limitations and in volume. This has led to the search for optimized devices around an operating point, and in fact to a single function. This operating point depends on the mission and the load carrier. There are a large number of flash charges in various systems. The Warhead Conventional Document
Systems - Physics ingenneering - Richard M. Lloyd-Systems - Physics ingenneering - Richard M. Lloyd-
Progress in astronautics and aeronautics - Paul ZarchanProgress in astronautics and aeronautics - Paul Zarchan
Vol.179, préface mars 1998, Lavoisier, décrit un certain nombre de ces charges.Vol. 179, preface March 1998, Lavoisier, describes a number of these charges.
Ces charges de l'art antérieur ont cependant toutes en commun qu'elles ne présentent qu'un seul mode de fonctionnement.These charges of the prior art, however, all have in common that they have only one mode of operation.
Exposé de l'inventionStatement of the invention
La présente invention a précisément pour but de pallier les inconvénients précités en fournissant une charge pyrotechnique à fonctionnement dual qui répond notamment aux besoins multi-missions rappelés précédemment.The present invention specifically aims to overcome the aforementioned drawbacks by providing a dual-function pyrotechnic charge which in particular meets the multi-mission needs mentioned above.
La charge pyrotechnique selon l'invention comprend une charge explosive nominale entourée d'une charge explosive secondaire détonante entourée d'un générateur d'éclats entouré d'une enveloppe de protection, cette charge pyrotechnique comprenant en outre un premier moyen d'amorçage et un deuxième moyen d'amorçage, les premier et deuxième moyens d'amorçage pouvant être commandés indépendamment à partir de moyens de commande, pour transmettre au choix un ordre pyrotechnique respectivement à la charge explosive nominale ou à la charge explosive secondaire, la détonation de la charge explosive secondaire ne provoquant pas l'amorçage de la charge explosive nominale.The pyrotechnic charge according to the invention comprises a nominal explosive charge surrounded by a detonating secondary explosive charge surrounded by a burst generator surrounded by a protective envelope, this pyrotechnic charge further comprising a first ignition means and a second ignition means, the first and second ignition means being able to be controlled independently from control means, for transmitting, as desired, a pyrotechnic order respectively to the nominal explosive charge or secondary explosive charge, the detonation of the secondary explosive charge not triggering the nominal explosive charge.
Ainsi, cette charge pyrotechnique a deux modes de fonctionnement selon la charge explosive à laquelle est transmis l'ordre pyrotechnique : un mode dit "énergétique" contre des missiles évoluant rapidement, c'est-à-dire à une vitesse relative > 1500 m/s, un mode dit "jeu énergétique" contre des missiles évoluant lentement c'est-à-dire à une vitesse relative < 1500 m/s.Thus, this pyrotechnic charge has two operating modes according to the explosive charge to which the pyrotechnic order is transmitted: a so-called "energetic" mode against rapidly evolving missiles, that is to say at a relative speed> 1500 m / s, a mode called "energy play" against missiles evolving slowly, that is to say at a relative speed <1500 m / s.
La charge pyrotechnique de la présente invention peut comprendre en outre un cordeau de découpe du générateur d'éclats placé entre la charge explosive secondaire et le générateur d'éclats et/ou entre l'enveloppe de protection et le générateur d'éclats, et un troisième moyen d'amorçage, le troisième moyen d'amorçage pouvant être commandé indépendamment à partir des moyens de commande pour transmettre un ordre pyrotechnique au cordeau de découpe, la détonation du cordeau de découpe n'endommageant pas la charge explosive secondaire et ne provoquant pas l'amorçage de la charge explosive nominale.The pyrotechnic charge of the present invention may further comprise a chopper cutting cord placed between the secondary explosive charge and the chopper generator and / or between the protective envelope and the chopper generator, and a third ignition means, the third ignition means being able to be controlled independently from the control means for transmitting a pyrotechnic command to the cutting cord, the detonation of the cutting cord not damaging the secondary explosive charge and not causing initiation of the nominal explosive charge.
La charge explosive nominale a de préférence une densité d'énergie la plus forte possible pour réduire sa masse, ainsi qu'une densité la plus forte possible afin qu'elle ne soit pas amorcée par la détonation de la charge explosive secondaire. Cet explosif nominal peut-être par exemple : - la composition explosive vendue par laThe nominal explosive charge preferably has the highest possible energy density to reduce its mass, as well as the highest possible density so that it is not initiated by the detonation of the secondary explosive charge. This nominal explosive may for example: - the explosive composition sold by the
Société SNPE (FRANCE) commercialement sous le nom de V350 est décrite dans la demande de brevet FR-A-2 671 549, et — la composition explosive vendue par la société SNPE connue sous le nom de V401 à base d'octogène (HMX) dans un liant fluoré, qui est plus énergétique que la précédente, - toute composition comparable en densité, sensibilité et énergie divulguée à ce jour.Company SNPE (FRANCE) commercially under the name of V350 is described in patent application FR-A-2 671 549, and - the explosive composition sold by the company SNPE known under the name of octogen-based V401 (HMX) in a fluorinated binder, which is more energetic than the previous one, - any composition comparable in density, sensitivity and energy disclosed to date.
De préférence, la charge explosive nominale n'est pas en contact avec la charge explosive secondaire. L'espace existant entre la charge d'explosif nominale et le générateur d'éclat dépend notamment directement de la densité volumique de l'explosif principal et de la sensibilité de cet explosif à l'amorçage. Selon l'invention la charge explosive secondaire doit détoner sans amorcer l'explosif nominal. Le fait que cet explosif détone est indispensable pour respecter la chronométrie nécessaire en phase d'engagement de l'utilisation de la charge. En effet, la décomposition totale après le signal d'amorçage de la charge explosive secondaire doit de préférence être obtenue en moins de 100 μs , ce qui impose un régime de détonation .Preferably, the nominal explosive charge is not in contact with the secondary explosive charge. The space existing between the nominal explosive charge and the burst generator depends in particular directly on the volume density of the main explosive and on the sensitivity of this explosive to initiation. According to the invention the secondary explosive charge must detonate without initiating the nominal explosive. The fact that this explosive detonates is essential to respect the chronometry necessary during the initiation phase of the use of the charge. Indeed, the total decomposition after the initiation signal of the secondary explosive charge must preferably be obtained in less than 100 μs, which imposes a detonation regime.
Cette charge explosive peut être par exemple sous la forme de pastilles ou de bandes d'un explosif secondaire peu énergétique réparties dans un matériau inerte amortisseur d'ondes, cet ensemble formant une architecture explosive.This explosive charge can for example be in the form of pellets or strips of a low energy secondary explosive distributed in a material inert wave damper, this assembly forming an explosive architecture.
L'explosif secondaire peut être de même nature que l'explosif nominal si celui-ci est suffisamment sensible. Ce peut être le V350, mais aussi des compositions octogenes plus sensibles, comparables, ou de bandes, par exemple du V401. Selon la présente invention, une composition à la pentrite, aisée à mettre en forme et de très bonne capacité à détoner, peut aussi être utilisée. L'explosif secondaire peut donc, du fait de sa nature et de sa conformation dans la charge pyrotechnique de la présente invention, être amorcé de la même façon que l'explosif nominal.The secondary explosive can be of the same nature as the nominal explosive if the latter is sufficiently sensitive. It can be V350, but also more sensitive, comparable, or octogenous compositions of bands, for example V401. According to the present invention, a composition with pentrite, easy to form and very good detonating capacity, can also be used. The secondary explosive can therefore, due to its nature and its conformation in the pyrotechnic charge of the present invention, be initiated in the same way as the nominal explosive.
La masse de l'explosif secondaire à utiliser est proportionnelle au rapport d'énergie cinétique que l'on souhaite communiquer aux éclats entre les deux fonctionnements. En effet, pour une "tranche de charge" donnée, l'énergie cinétique communiquée aux éclats est fonction de la masse d'explosif qui détone. Selon l'invention, le matériau inerte peut être, par exemple sous la forme d'une mousse telle qu'un plastique poreux ou un nid d'abeille, structure alvéolaire métallique ou composite, ayant par exemple une densité allant d'environ 0,2 à 0,3. Le non-amorçage de l'explosif principal est essentiellement assuré par le vide formé par les alvéoles de la mousse qui assure un rôle d'amortisseur.The mass of the secondary explosive to be used is proportional to the kinetic energy ratio that one wishes to communicate to the fragments between the two operations. Indeed, for a given "charge section", the kinetic energy communicated to the fragments is a function of the mass of explosive which detonates. According to the invention, the inert material can be, for example in the form of a foam such as a porous plastic or a honeycomb, metallic or composite honeycomb structure, for example having a density ranging from about 0, 2 to 0.3. Non-initiation of the main explosive is essentially ensured by the vacuum formed by the foam cells which acts as a shock absorber.
La mousse peut aussi assurer le remplissage d'un espace laissé entre l'explosif nominal et le générateur d'éclats. Cet espace peut être d'environ 10 mm. La couche formée par le matériau inerte et l'explosif secondaire peut être partiellement structurante et participer à la tenue mécanique de la charge.The foam can also fill a space left between the nominal explosive and the splinter generator. This space can be approximately 10 mm. The layer formed by the inert material and the explosive secondary may be partially structuring and participate in the mechanical behavior of the load.
Pour le fonctionnement "énergétique", le matériau amortisseur et la composition secondaire précités interviennent comme une perturbation de la sollicitation principale, lors de la fragmentation en "petits éclats" du générateur d'éclats. Cette perturbation reste faible, du fait du rapport énergétique entre l'explosif nominal et l'explosif secondaire. Le retard d'amorçage ou retard pyrotechnique, existant entre d'une part l'explosif nominal, et d'autre part le réseau de cordeaux et la composition secondaire, doit permettre de réduire l'influence d'une concentration locale d'explosif, susceptible de perturber le champ de vitesse souhaité des éclats .For the "energetic" operation, the above-mentioned damping material and secondary composition act as a disturbance of the main stress, during the fragmentation into "small splinters" of the splinter generator. This disturbance remains low, due to the energy ratio between the nominal explosive and the secondary explosive. The ignition delay or pyrotechnic delay, existing between on the one hand the nominal explosive, and on the other hand the network of cords and the secondary composition, must make it possible to reduce the influence of a local concentration of explosive, likely to disturb the desired speed field of the flakes.
Le générateur d'éclats selon la présente invention est susceptible de générer suivant le mode de fonctionnement, c'est à dire suivant l'ordre pyrotechnique choisi, respectivement des gros éclats en un fonctionnement "énergétique" ou des petits éclats en fonctionnement peu énergétique.The chip generator according to the present invention is capable of generating, depending on the operating mode, that is to say according to the chosen pyrotechnic order, respectively large chips in "energy" operation or small chips in low energy operation.
Afin de maximiser l'efficacité des éclats, il est préférable que le générateur d'éclats soit en métal dense choisi par exemple parmi le tantale, le tungstène, et l'acier. Le tantale est préféré pour ses bonnes propriétés de ductilité. Le tungstène convient aussi, cependant il peut présenter des problèmes de fragilité métallurgique contraignants pour la mise en vitesse ce qui limite l'efficacité des éclats. Le choix d'un générateur d'éclats en acier est également possible l'efficacité des éclats semble toutefois moindre.In order to maximize the efficiency of the splinters, it is preferable that the splinter generator is made of dense metal chosen for example from tantalum, tungsten, and steel. Tantalum is preferred for its good ductility properties. Tungsten is also suitable, however it can present binding metallurgical brittleness problems for speeding up, which limits the effectiveness of the splinters. The choice of a steel chip generator is also possible the effectiveness of the splinters seems however less.
Le générateur d'éclats peut être constitué d'un ensemble monobloc. Il peut être sous la forme d'une pièce de révolution, d'épaisseur variable. Le profil exact de ce générateur et l'épaisseur sont déterminés pour obtenir précisément le champ de vitesse désiré en fonctionnement énergétique. Dans une "tranche de charge" , la vitesse des éclats dépend en première approximation, pour un rayon de charge donné :The burst generator can be made up of a monobloc assembly. It can be in the form of a part of revolution, of variable thickness. The exact profile of this generator and the thickness are determined to precisely obtain the desired speed field in energy operation. In a "load section", the speed of the flakes depends as a first approximation, for a given load radius:
- du rayon moyen du générateur d'éclat, en faisant l'hypothèse que l'épaisseur de la charge explosive secondaire est constante et que les variations de rayon moyen du générateur d'éclats correspondent à des variations du rayon de la charge nominale,- the average radius of the flash generator, assuming that the thickness of the secondary explosive charge is constant and that the variations in average radius of the flash generator correspond to variations in the radius of the nominal charge,
- de l'épaisseur du générateur d'éclat. Qualitativement, plus le rayon moyen est important, plus les éclats seront rapides, et plus l'épaisseur sera faible, plus les éclats seront rapides .- the thickness of the flash generator. Qualitatively, the larger the average radius, the faster the flakes, and the thinner the thickness, the faster the flakes.
La génératrice du profil et l'épaisseur du générateur d'éclat sont donc ajustées par tranche, afin d'obtenir la "bonne" répartition de vitesse. Il est ainsi possible de générer des éclats variant dans un rapport de masse et de vitesse allant jusqu'à vingtThe profile generator and the thickness of the brightness generator are therefore adjusted in sections, in order to obtain the "correct" speed distribution. It is thus possible to generate splinters varying in a mass and speed ratio of up to twenty
(rapport de plus de 400 sur l'énergie cinétique) .(ratio of more than 400 on kinetic energy).
Les petits éclats peuvent être obtenus par fragmentation contrôlée par exemple au moyen d'un faisceau d'électrons ou par usinage : c'est-à-dire que l'ensemble du générateur d'éclats est prédécoupé selon des lignes inclinées, par exemple par inclinaison voisine de 45° afin de permettre l'apparition de contraintes "écartant" les lignes de pré-fragmentation par rapport à l'axe de révolution de l'ensemble. Les gros éclats peuvent être obtenus par découpe du générateur d'éclats monobloc à l'aide d'au moins deux cordeaux de découpe ou d'un réseau de cordeaux détonants. Il est possible d'utiliser les lignes de fragilisation des petits éclats, par exemple une ligne sur n lignes, mais il est préférable de ne .pas superposer le réseau de découpe des gros éclats et des petits éclats, afin de laisser plus de latitude pour l'obtention des gros éclats et pour limiter les pertes de masse aux deux bouts du cylindre du générateur d'éclats, par exemple sous forme triangulaire.Small chips can be obtained by controlled fragmentation for example by means of an electron beam or by machining: that is to say that the whole of the chip generator is precut according to inclined lines, for example by inclination close to 45 ° in order to allow the appearance of constraints "spreading" the pre-fragmentation lines relative to the axis of revolution of the assembly. Large chips can be obtained by cutting the one-piece chip generator using at least two cutting cords or a network of detonating cords. It is possible to use the weakening lines of small flakes, for example one line on n lines, but it is preferable not to . not superimpose the network for cutting large flakes and small flakes, in order to allow more latitude for obtaining large flakes and to limit mass losses at the two ends of the cylinder of the flake generator, for example in triangular form .
Selon une variante de la présente invention le générateur d'éclat est tel qu'il peut fonctionner sans les cordeaux de découpe. Selon cette variante, le fractionnement du générateur d'éclats en petits éclats ou en gros éclats est obtenu suivant l'énergie pyrotechnique fournie : en petits éclats si la sollicitation est élevée, c'est à dire si la charge nominale est amorcée, et en gros éclats si la sollicitation est faible, c'est à dire si la charge secondaire est amorcée. Ceci peut être réalisé par exemple en utilisant une virole structurante placée entre l'explosif secondaire et le générateur d'éclats. La virole est un cylindre de section circulaire et de génératrice courbe, par exemple hyperboloïde . L'épaisseur du cylindre est a priori constante. La virole peut être par exemple en acier ou en titane ce qui représente un gain de poids pour la charge pyrotechnique. Les gros éclats peuvent être composés par exemple de projectiles à fragmentation préformée, par exemple d'un ensemble de parallélépipèdes. Les gros éclats peuvent être liés entre eux pour assurer une certaine tenue structurale par exemple par collage ou par soudure inter éclats au moyen d'un faisceau d'électrons. Les petits éclats peuvent être obtenus par exemple soit par fragmentation contrôlée : les petits éclats sont issus d'une prédécoupe accentué des gros éclats (par exemple au faisceau d'électrons ou usinage), soit par "fragmentation préformée" : les petits éclats sont des parallélépipèdes noyés dans une matrice. Cette matrice peut être un polymère, un métal fusible, par exemple de l'aluminium, ou une matière explosive pour un effet dispersif des éclats, si l'explosion a lieu près de la charge, ou amplificateur d'efficacité, si explosion a lieu au contact de la cible . Dans cette variante, la détonation de l'architecture explosive se traduit juste par un gonflement de la virole qui met en vitesse les gros éclats qui restent cohérents. Lorsque tout l'explosif détone la sollicitation importante générée a pour effet de rompre toutes les liaisons entre les petits éclats.According to a variant of the present invention, the brightness generator is such that it can operate without the cutting cords. According to this variant, the splitting of the burst generator into small bursts or into large bursts is obtained according to the pyrotechnic energy supplied: in small bursts if the stress is high, that is to say if the nominal charge is initiated, and in large flakes if the load is low, i.e. if the secondary charge is initiated. This can be achieved for example by using a structuring shell placed between the secondary explosive and the burst generator. The ferrule is a cylinder of circular section and curved generator, for example hyperboloid. The thickness of the cylinder is a priori constant. The ferrule may for example be made of steel or titanium, which represents a weight gain for the pyrotechnic charge. The large flakes can be composed for example of projectiles with preformed fragmentation, for example of a set of parallelepipeds. Large chips can be linked together to ensure a certain structural strength, for example by gluing or by inter-chip welding using an electron beam. Small flakes can be obtained for example either by controlled fragmentation: small flakes result from an accentuated precut of large flakes (for example with an electron beam or machining), or by "preformed fragmentation": small flakes are parallelepipeds embedded in a matrix. This matrix can be a polymer, a fusible metal, for example aluminum, or an explosive material for a dispersive effect of the fragments, if the explosion takes place near the charge, or amplifier of effectiveness, if explosion takes place in contact with the target. In this variant, the detonation of the explosive architecture results just in a swelling of the shell which puts in speed the large fragments which remain coherent. When all the explosive detonates, the high stress generated has the effect of breaking all the links between the small fragments.
L'influence du matériau amortisseur sur la dynamique des gros éclats est négligeable, voire favorable : elle a un effet d'atténuation et d'homogénéisation. La perte énergétique due a cette influence peut être compensée, si nécessaire, par un accroissement faible, de la masse d'explosif de l'architecture explosive. La couche d'amortisseur peut suivant le mode de réalisation de la présente invention, et notamment suivant le choix du matériau du générateur d'éclats, être nécessaire pour atténuer l'intensité de l'onde de choc de détonation de l'explosif secondaire et permettre ainsi la génération d'éclats intègres. C'est le cas par exemple pour un générateur d'éclats en tungstène obtenu par frittage.The influence of the damping material on the dynamics of large flakes is negligible, even favorable: it has an effect of attenuation and homogenization. The energy loss due to this influence can be compensated, if necessary, by a small increase in the explosive mass of explosive architecture. The shock absorber layer may, depending on the embodiment of the present invention, and in particular according to the choice of the material of the burst generator, be necessary to attenuate the intensity of the detonation shock wave of the secondary explosive and thus allowing the generation of intact shards. This is the case, for example, for a tungsten chip generator obtained by sintering.
A partir du même principe, c'est à dire à partir de compositions explosives qui détonent distinctement, il est possible d'augmenter le nombre de modes de fonctionnement, en remplaçant l'architecture explosive et le générateur d'éclats par une succession de couches explosives qui peuvent être amorcées séparément, délivrant ainsi par paliers plusieurs gammes d'énergie cinétique d'éclats.From the same principle, that is to say from explosive compositions which detonate distinctly, it is possible to increase the number of operating modes, by replacing the explosive architecture and the burst generator by a succession of layers explosives which can be ignited separately, thereby delivering in stages several ranges of burst kinetic energy.
Selon l'invention, le générateur d'éclats peut également assurer la structuration de la charge pyrotechnique par rapport aux sollicitations mécaniques externes .According to the invention, the burst generator can also ensure the structuring of the pyrotechnic charge with respect to external mechanical stresses.
L'enveloppe a pour fonction de protéger dans son cycle d'utilisation la charge de la présente invention des agressions extérieures telles que les agressions mécaniques, thermiques, les poussières, l'humidité, etc., pendant sa vie opérationnelle. La nature de cette enveloppe dépend en conséquence fortement de l'environnement d'utilisation de la charge.The function of the envelope is to protect the charge of the present invention in its cycle of use from external aggressions such as mechanical, thermal, dust, humidity, etc. attacks during its operational life. The nature of this envelope therefore strongly depends on the environment in which the load is used.
En outre, elle intervient dans le fonctionnement de la charge car elle fait partie de la matière projetée. Elle doit autant que possible ne pas perturber la mise en vitesse des éclats dans le mode "peu énergétique" .In addition, it is involved in the operation of the load because it is part of the projected material. As much as possible she must not disrupt the speed of the flakes in the "low energy" mode.
Par exemple, dans une application en tant que missile effectuant un vol aérobie, elle doit pouvoir résister à un flux thermique qui est dimensionnantFor example, in an application as a missile performing an aerobic flight, it must be able to withstand a heat flux which is dimensioning
Elle peut être réalisée par exemple en matière composite isolante.It can be made for example of insulating composite material.
Lorsqu'ils sont présents les cordeaux de découpe du générateur d'éclats peuvent être placés de part - et d'autre du générateur d'éclats. Ils peuvent aussi être placés soit entre l'enveloppe de protection et le générateur d'éclats, soit entre la charge secondaire et le générateur d'éclats. La position de part et d'autre du générateur d'éclats permet d'éviter les croisements des cordeaux.When they are present, the cutting lines of the burst generator can be placed on either side of the burst generator. They can also be placed either between the protective casing and the burst generator, or between the secondary charge and the burst generator. The position on either side of the splinter generator makes it possible to avoid crossing the lines.
Les moyens de commande peuvent par exemple comprendre un boîtier de commande charge et un commutateur. Le boîtier de commande assure la fonction de transmission de l'ordre de mise à feu en provenance du donneur d'ordre, par exemple d'une commande électrique, vers les moyens, appelé aussi système, d' amorçage .The control means may for example comprise a charge control unit and a switch. The control unit performs the function of transmitting the firing order from the originator, for example from an electrical command, to the means, also called system, of ignition.
Le système d'amorçage comprend le premier moyen d'amorçage, ou moyen d'amorçage principal, destiné à l'amorçage de la charge nominale, constitué d'un cordeau pyrotechnique, appelé aussi cordeau principal, et d'un amplificateur. Le système d'amorçage comprend en outre le deuxième moyen d'amorçage pour l'amorçage de l'explosif secondaire, ainsi qu'un réseau d'amorçage des cordeaux détonants de découpe du générateur d'éclats, et un commutateur détonique placé entre le boîtier de commande et l'amplificateur.The priming system comprises the first priming means, or main priming means, intended for priming the nominal load, consisting of a pyrotechnic cord, also called the main cord, and an amplifier. The priming system further includes the second priming means for priming the secondary explosive, as well as a priming network for the detonating cords for cutting the generator. and a detonic switch placed between the control box and the amplifier.
Le commutateur peut fonctionner en interrupteur. Il peut permettre en fonction de l'ordre reçu en provenance du donneur d'ordre, par exemple du boîtier de commande, de couper ou non la ligne d'amorçage de l'explosif nominal. Le commutateur peut être intégré au boîtier de commande. Il ne remet pas en cause la sécurité car en cas de fonctionnement intempestif il ne fait pas détoner les charges.The switch can operate as a switch. Depending on the order received from the originator, for example from the control unit, it may allow cutting off or not the initiation line of the nominal explosive. The switch can be integrated into the control box. It does not jeopardize safety because in the event of untimely operation it does not detonate the charges.
Lorsque l'explosif secondaire est sous forme de pastilles d'explosif le deuxième moyen d'amorçage peut comprendre par exemple un réseau de cordeaux détonnants, pour amorcer lesdites pastilles. L'amorçage de ce réseau de cordeaux détonnants, peut être obtenu par ajout d'une dérivation à partir du cordeau principal. L'amorçage du cordeau de découpe peut être obtenu par ajout d'une dérivation entre le boîtier de commande et la dérivation précitée pour l'amorçage secondaire.When the secondary explosive is in the form of pellets of explosive, the second priming means can comprise, for example, a network of detonating cords, for priming said pellets. The initiation of this network of detonating cords can be obtained by adding a bypass from the main cord. The cutting cord can be primed by adding a bypass between the control unit and the aforementioned bypass for secondary priming.
Dans le cas du fonctionnement "peu énergétique" de la charge pyrotechnique de la présente invention, il est préférable de régler le décalage de l'amorçage du cordeau détonant et de la composition secondaire par rapport à celui de l'explosif nominal. Ceci peut être assuré par exemple en ajustant la longueur des chemins détoniques, mais aussi en ajoutant des lignes à retard introduisant des retards d'amorçage.In the case of the "low energy" operation of the pyrotechnic charge of the present invention, it is preferable to adjust the offset of the initiation of the detonating cord and of the secondary composition relative to that of the nominal explosive. This can be ensured for example by adjusting the length of the detonator paths, but also by adding delay lines introducing initiation delays.
Les inventeurs ont donc fourni une charge pyrotechnique comprenant deux types de fonctionnement permettant d'attaquer au choix et efficacement plusieurs types de cibles. Le dispositif de la présente invention permet de générer soit des petits éclats rapides, efficaces contre une menace évoluant lentement, soit des gros éclats lents efficaces contre une menace évoluant rapidement.The inventors therefore provided a pyrotechnic charge comprising two types of operation allowing to attack at choice and effectively several types of targets. The device of the present invention makes it possible to generate either small rapid flashes, effective against a slowly evolving threat, or large slow slow flashes effective against a rapidly evolving threat.
En outre, l'association des deux fonctionnements dans une seule charge permet un gain de masse et de volume au niveau du porteur des charges, et en conséquence un gain d'efficacité et de coûts globaux : réduction du nombre de porteurs, simplification de la maintenance et de la mise en œuvre opérationnelle etc.In addition, the combination of the two operations in a single charge allows a gain in mass and volume at the level of the load carrier, and consequently a gain in efficiency and overall costs: reduction in the number of carriers, simplification of the maintenance and operational implementation etc.
D'autres caractéristiques et avantages apparaîtront encore à la lecture des exemples qui suivent, donnés à titre illustratif et non limitatif, en référence à la figure annexée.Other characteristics and advantages will become apparent on reading the examples which follow, given by way of nonlimiting illustration, with reference to the appended figure.
Brève description de la figure - la figure 1 est un schéma simplifié d'un mode de réalisation de la charge pyrotechnique selon 1 ' invention comprenant un cordeau de découpe du générateur d'éclats.Brief description of the figure - Figure 1 is a simplified diagram of an embodiment of the pyrotechnic charge according to the invention comprising a cutting cord of the shards generator.
ExemplesExamples
Exemple 1 : Charge pyrotechnique selon la présente invention avec un cordeau de découpe du générateur d' éclats .Example 1: Pyrotechnic charge according to the present invention with a chopper cutting cord.
La figure 1 est un schéma simplifié d'un mode de réalisation de la charge pyrotechnique selon la présente invention comprenant un cordeau de découpe du générateur d'éclats.FIG. 1 is a simplified diagram of an embodiment of the pyrotechnic charge according to the present invention comprising a cutting cord of the chip generator.
La charge pyrotechnique (1) comprend une charge explosive nominale (3) entourée d'une charge explosive secondaire détonante (5) entourée d'un générateur d'éclats (7) entouré d'une enveloppe de protection (9), ladite charge pyrotechnique comprenant en outre un premier moyen d'amorçage (11,13) et un deuxième moyen d'amorçage (15), les premier et deuxième moyens d'amorçage pouvant être commandés indépendamment- à partir de moyens de commande (17,19), pour transmettre au choix un ordre pyrotechnique respectivement à la charge explosive nominale (3) ou à la charge explosive secondaire (5), de telle manière que la détonation de la charge explosive secondaire ne provoque pas l'amorçage de la charge explosive nominale.The pyrotechnic charge (1) comprises a nominal explosive charge (3) surrounded by a detonating secondary explosive charge (5) surrounded by a burst generator (7) surrounded by a protective envelope (9), said pyrotechnic charge further comprising a first priming means (11,13) and a second priming means (15), the first and second priming means being able to be controlled independently- from control means (17,19), to optionally transmit a pyrotechnic order respectively to the nominal explosive charge (3) or to the secondary explosive charge (5), so that the detonation of the secondary explosive charge does not trigger the nominal explosive charge.
La charge pyrotechnique comprend en outre deux cordeaux de découpe (21) du générateur d'éclats placés entre la charge explosive secondaire (5) et le générateur d'éclats (7), et un troisième moyen d'amorçage (non représenté) . Le troisième moyen d'amorçage est commandé indépendamment à partir des moyens de commande (17,19) pour transmettre un ordre pyrotechnique aux cordeaux de découpe (21) , de telle manière que la détonation du cordeau de découpe n'endommage pas la charge explosive secondaire et ne provoque pas l'amorçage de la charge explosive nominale . Les caractéristiques de cette charge sont les suivantes :The pyrotechnic charge also comprises two cutting cords (21) of the burst generator placed between the secondary explosive charge (5) and the burst generator (7), and a third ignition means (not shown). The third ignition means is independently controlled from the control means (17,19) to transmit a pyrotechnic command to the cutting lines (21), so that the detonation of the cutting line does not damage the explosive charge secondary and does not initiate the nominal explosive charge. The characteristics of this charge are as follows:
- Explosif nominal : V350 de densité 1,70 ; sous forme d'une pièce de révolution, de rayon moyen 0,048, de masse 6,157 kg.- Nominal explosive: V350 of density 1.70; in the form of a part of revolution, of average radius 0.048, mass 6.157 kg.
- Explosif lent : V350 de même nature, inséré dans 0,146 kg de mousse, de densité 0,1 sur une épaisseur de 0,096 m, entourant le bloc d'explosif nominal : 0,127 kg de V350, sous forme de bandes d'épaisseur 8 mm, est réparti régulièrement dans la mousse.- Slow explosive: V350 of the same kind, inserted in 0.146 kg of foam, density 0.1 over a thickness of 0.096 m, surrounding the nominal explosive block: 0.127 kg of V350, in the form of strips of thickness 8 mm , is evenly distributed in the foam.
- Générateur d'éclats : bloc de tantale, entourant les deux compositions précédentes, d'épaisseur 0,0018 m, de masse 5,351 kg, prédécoupée à 1 ' extérieur selon deux hélices sécantes. Deux cordons de découpe en HNS noyé dans du Pb (hexanitrostilbène) sont disposés autour du générateur d'éclats, le long des deux hélices sécantes : longueur totale de 5,60 m, diamètre extérieur d'environ 4 mm, masse totale de 1600 g dont 33,6 g de HNS.- Shard generator: block of tantalum, surrounding the two previous compositions, 0.0018 m thick, 5.351 kg mass, precut on the outside using two intersecting helices. Two HNS cutting cords embedded in Pb (hexanitrostilbene) are arranged around the splinter generator, along the two secant propellers: total length of 5.60 m, outside diameter of about 4 mm, total mass of 1600 g including 33.6 g of HNS.
- Protection thermique : en composite mousse, acier, épaisseur de 10,6 mm pour une masse de 0,276 kg (densité de 0,13). La charge est munie de moyens d'amorçage et de commande, a une hauteur de 0,490 m pour un rayon extérieur de 0,0705 m. Fonctionnement de la charge pyrotechnique de la présente invention décrite dans l'exemple 1 Le fonctionnement est le suivant :- Thermal protection: in foam composite, steel, thickness of 10.6 mm for a mass of 0.276 kg (density of 0.13). The load is provided with priming and control means, at a height of 0.490 m for an outside radius of 0.0705 m. Operation of the pyrotechnic charge of the present invention described in Example 1 The operation is as follows:
• 1 ' interrupteur pyrotechnique reçoit ou pas l'ordre de l'organe de décision de couper la ligne d'amorçage nominale,The pyrotechnic switch receives or not the order of the decision-making body to cut the nominal ignition line,
• le boîtier de commande reçoit l'ordre, par exemple électrique, de l'organe de décision d'initier l'explosion. a) fonctionnement énergétique• the control unit receives the order, for example electrical, from the decision-making body to initiate the explosion. a) energy functioning
• 1 ' ordre pyrotechnique est transmis à l'amplificateur qui amorce l'explosif nominal et potentiellement le Cordeau Détonant et l'Explosif Secondaire. • La composition principale détone, libérant l'énergie de l'explosif nominal et entraînent ainsi la mise en vitesse des petits éclats rapides. La gerbe d'éclats est optimisée par convergence de gerbe pour diminuer la surface touchée sur la cible. La composition principale détone avant 1 ' architecture pyrotechnique (explosif secondaire) et le cordeau détonant de découpe, rendant a priori caduque le fonctionnement de ces derniers .• the pyrotechnic order is transmitted to the amplifier which initiates the nominal explosive and potentially the Detonating Cord and the Secondary Explosive. • The main composition detonates, releasing the energy of the nominal explosive and thus causing the speeding of small rapid bursts. The burst of splinters is optimized by convergence of sheaves to reduce the area touched on the target. The main composition detonates before the pyrotechnic architecture (secondary explosive) and the detonating cutting cord, making them a priori obsolete.
b) fonctionnement peu énergétiqueb) low energy operation
• l'ordre pyrotechnique n'est transmis qu'aux Cordeaux Détonants de découpe et à la composition secondaire, • les Cordeaux Détonants découpent les "gros éclats", sans endommager la composition secondaire ni amorcer l'explosif nominal, et• the pyrotechnic order is transmitted only to the Detonating Cutting Strings and to the secondary composition, • the Detonating Cords cut out the "large flakes", without damaging the secondary composition or initiating the nominal explosive, and
• la Composition Secondaire détone sans amorcer l'explosif nominal par action de l'architecture explosive qui permet d'amortir l'onde de détonation. Une faible énergie est alors libérée de la Composition Secondaire, mettant en vitesse les gros éclats . • the Secondary Composition detonates without initiating the nominal explosive by the action of the explosive architecture which makes it possible to damp the detonation wave. A weak energy is then released from the Secondary Composition, speeding up the big shards.

Claims

REVENDICATIONS
1. Charge pyrotechnique caractérisée en ce qu'elle comprend une charge explosive nominale entourée d'une charge explosive secondaire détonante entourée d'un générateur d'éclats entouré d'une enveloppe de protection, dans laquelle ladite charge pyrotechnique comprend en outre un premier moyen d'amorçage et un deuxième moyen d'amorçage, les premier et deuxième moyens d'amorçage pouvant être commandés indépendamment à partir de moyens de commande, pour transmettre au choix un ordre pyrotechnique respectivement à la charge explosive nominale ou à la charge explosive secondaire, la détonation de la charge explosive secondaire ne provoquant pas l'amorçage de la charge explosive nominale, et dans laquelle la charge explosive secondaire est sous la forme de pastilles ou de bandes d'un explosif secondaire réparties dans un matériau inerte amortisseur d'ondes.1. Pyrotechnic charge characterized in that it comprises a nominal explosive charge surrounded by a detonating secondary explosive charge surrounded by a burst generator surrounded by a protective envelope, in which said pyrotechnic charge further comprises a first means ignition and a second ignition means, the first and second ignition means being able to be controlled independently from control means, for transmitting, as desired, a pyrotechnic order respectively at the nominal explosive charge or at the secondary explosive charge, the detonation of the secondary explosive charge not causing the initiation of the nominal explosive charge, and in which the secondary explosive charge is in the form of pellets or strips of a secondary explosive distributed in an inert wave-absorbing material.
2. Charge pyrotechnique selon la revendication 1, comprenant aux moins deux cordeaux de découpe du générateur d'éclats placé entre la charge explosive secondaire et le générateur d'éclats et/ou entre l'enveloppe de protection et le générateur d'éclats, et un troisième moyen d'amorçage, le troisième moyen d'amorçage pouvant être commandé indépendamment à partir des moyens de commande pour transmettre un ordre pyrotechnique au cordeau de découpe, la détonation du cordeau de découpe n'endommageant pas la charge explosive secondaire et ne provoquant pas l'amorçage de la charge explosive nominale.2. Pyrotechnic charge according to claim 1, comprising at least two cutting lines of the burst generator placed between the secondary explosive charge and the burst generator and / or between the protective envelope and the burst generator, and a third priming means, the third priming means being able to be controlled independently from the control means to transmit a pyrotechnic command to the cutting cord, the detonation of the cutting cord does not damage the secondary explosive charge and does not cause the initiation of the nominal explosive charge.
3. Charge pyrotechnique selon la revendication 1 ou 2 , dans laquelle les moyens de commande comprennent un boîtier de commande charge et un commutateur.3. Pyrotechnic charge according to claim 1 or 2, wherein the control means comprise a charge control unit and a switch.
4. Charge pyrotechnique selon la revendication 1 ou 2, comprenant en outre un amplificateur d'amorçage relié à la charge explosive nominale.4. Pyrotechnic charge according to claim 1 or 2, further comprising a starting amplifier connected to the nominal explosive charge.
5. Charge pyrotechnique selon la revendication 1, dans laquelle le matériau inerte est une mousse telle qu'un plastique poreux ou un nid d'abeille, structure alvéolaire métallique ou composite.5. Pyrotechnic charge according to claim 1, in which the inert material is a foam such as a porous plastic or a honeycomb, metallic or composite honeycomb structure.
6. Charge pyrotechnique selon la revendication 5, dans laquelle le matériau inerte a une densité allant d'environ 0.2 à 0.3.6. Pyrotechnic charge according to claim 5, wherein the inert material has a density ranging from about 0.2 to 0.3.
7. Charge pyrotechnique selon la revendication 1, dans laquelle le matériau inerte assure essentiellement le non-amorçage de la charge explosive nominale par la détonation de la charge explosive secondaire.7. Pyrotechnic charge according to claim 1, wherein the inert material essentially ensures the non-initiation of the nominal explosive charge by the detonation of the secondary explosive charge.
8. Charge pyrotechnique selon la revendication 1, dans laquelle le générateur d'éclats génère respectivement, suivant l'ordre pyrotechnique choisi, des petits éclats ou des gros éclats .8. Pyrotechnic charge according to claim 1, wherein the burst generator generates respectively, depending on the pyrotechnic order chosen, small flakes or large flakes.
9. Charge pyrotechnique selon la revendication 8, comprenant en outre une virole structurante placée entre l'explosif secondaire et le générateur d'éclats.9. Pyrotechnic charge according to claim 8, further comprising a structuring shell placed between the secondary explosive and the burst generator.
10. Charge pyrotechnique selon la revendication 8, dans laquelle le générateur d'éclats comporte un double réseau de fragmentation contrôlée.10. Pyrotechnic charge according to claim 8, in which the burst generator comprises a double network of controlled fragmentation.
11. Charge pyrotechnique selon la revendication 1 ou 2, dans laquelle le générateur d'éclats est un système composite de projectiles à fragmentations préformées .11. Pyrotechnic charge according to claim 1 or 2, in which the burst generator is a composite system of projectiles with preformed fragments.
12. Charge pyrotechnique selon la revendication 1, dans laquelle le générateur d'éclats est en tantale.12. Pyrotechnic charge according to claim 1, wherein the burst generator is tantalum.
13. Charge pyrotechnique selon la revendication 1 ou 2, dans laquelle le générateur d'éclats assure la structuration de la charge pyrotechnique.13. Pyrotechnic charge according to claim 1 or 2, wherein the burst generator provides the structuring of the pyrotechnic charge.
14. Charge pyrotechnique selon la revendication 1 ou 2, dans laquelle l'enveloppe extérieure est constituée d'une matière composite isolante. 14. Pyrotechnic charge according to claim 1 or 2, wherein the outer envelope is made of an insulating composite material.
PCT/FR2001/000944 2000-03-30 2001-03-28 Dual operating pyrotechnic charge WO2001075390A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE60124882T DE60124882T2 (en) 2000-03-30 2001-03-28 PYROTECHNICAL LOADING WITH DOUBLE FUNCTION
EP01921435A EP1269105B1 (en) 2000-03-30 2001-03-28 Dual operating pyrotechnic charge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0004044A FR2807156B1 (en) 2000-03-30 2000-03-30 DUAL FUNCTIONAL PYROTECHNIC LOAD
FR00/04044 2000-03-30

Publications (1)

Publication Number Publication Date
WO2001075390A1 true WO2001075390A1 (en) 2001-10-11

Family

ID=8848670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/000944 WO2001075390A1 (en) 2000-03-30 2001-03-28 Dual operating pyrotechnic charge

Country Status (4)

Country Link
EP (1) EP1269105B1 (en)
DE (1) DE60124882T2 (en)
FR (1) FR2807156B1 (en)
WO (1) WO2001075390A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840402B1 (en) 2002-05-31 2004-07-16 Giat Ind Sa ENCLOSURE GENERATING CHIPS, EXPLOSIVE CHARGE AND AMMUNITION IMPLEMENTING SUCH AN ENVELOPE
DE102021002470B4 (en) 2021-05-10 2023-09-21 TDW Gesellschaft für verteidigungstechnische Wirksysteme mit beschränkter Haftung Scalable active system and warhead

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2428232A1 (en) * 1978-06-05 1980-01-04 Mulleman Michel Cover for fragmentation-type bomb - has double envelope containing inert type projectiles and with thermal insulation between them
DE3016861A1 (en) * 1980-05-02 1981-11-12 Messerschmitt-Bölkow-Blohm GmbH, 8000 München AMMUNITION WITH A SHELL FOR SPLITTERING
US4655139A (en) * 1984-09-28 1987-04-07 The Boeing Company Selectable deployment mode fragment warhead
US4768440A (en) * 1986-05-23 1988-09-06 Matra Warhead for missiles
FR2671549A1 (en) 1991-01-16 1992-07-17 Commissariat Energie Atomique EXPLOSIVE COMPOSITION AND METHODS FOR PREPARING A POWDER AND A PART THEREOF

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2428232A1 (en) * 1978-06-05 1980-01-04 Mulleman Michel Cover for fragmentation-type bomb - has double envelope containing inert type projectiles and with thermal insulation between them
DE3016861A1 (en) * 1980-05-02 1981-11-12 Messerschmitt-Bölkow-Blohm GmbH, 8000 München AMMUNITION WITH A SHELL FOR SPLITTERING
US4655139A (en) * 1984-09-28 1987-04-07 The Boeing Company Selectable deployment mode fragment warhead
US4768440A (en) * 1986-05-23 1988-09-06 Matra Warhead for missiles
FR2671549A1 (en) 1991-01-16 1992-07-17 Commissariat Energie Atomique EXPLOSIVE COMPOSITION AND METHODS FOR PREPARING A POWDER AND A PART THEREOF

Also Published As

Publication number Publication date
EP1269105B1 (en) 2006-11-29
FR2807156B1 (en) 2002-12-13
FR2807156A1 (en) 2001-10-05
EP1269105A1 (en) 2003-01-02
DE60124882T2 (en) 2007-05-31
DE60124882D1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
EP1659359B1 (en) Ammunition or ammunition part comprising a structural element made of energetic material
EP3102906B1 (en) Hollow charge and use for separating two floors of an aeronautical vehicle or for the neutralization thereof
FR2545923A1 (en) PROJECTILE ENSURING THE DRILLING OF SHIELDS
EP0221218B1 (en) Shaped-charge war heads in tandem arrangement
FR2599134A1 (en) MILITARY HEAD FOR MACHINE
FR2552870A1 (en) Improvements to warheads with shaped charges mounted in tandem
CH635422A5 (en) EXPLOSIVE CHARGE.
FR2514123A1 (en) IMPROVEMENTS TO MILITARY LOADS ACTING AGAINST TARGETS IN FLIGHT OR ON THE GROUND
EP1269105B1 (en) Dual operating pyrotechnic charge
FR2520102A1 (en) HOLLOW LOAD, IN PARTICULAR FOR MISSILE
CA2328285A1 (en) Ballistic armour for protection against hollow-charge projectiles
FR2552869A1 (en) Warhead with sequential hollow charges
EP3663703B1 (en) Penetrative warhead
FR2691794A1 (en) Multicomponent shell for use against laminar armoured targets
EP0677718B1 (en) Projectile for attacking hard targets
EP1099926B1 (en) Dual mode explosive warhead for use against conventional targets and against tactical ballistic missiles
FR2706997A1 (en) Device for protecting an armoured structure from high energy projectiles
EP1521053A1 (en) Anti-bunker ammunition
FR2502768A1 (en) Explosive munition - comprising classical explosive surrounded by heat resistant explosive in metal casing
FR2993355A1 (en) Explosive ammunition for use in e.g. rocket, has body formed of two concentric fragmentable and inert layers, where body encloses explosive material i.e. explosive containing octogene, and having specific detonation velocity
FR2831257A1 (en) Projectile has adjustable casing to control fragmentation and reduce collateral damage
EP0193427A1 (en) Warhead with shaped charges arranged in tandem
EP1302741A1 (en) High explosive projectile
FR2863699A1 (en) Polyvalent bomb for attacking e.g. bridge, has module comprising penetration charge cone with high explosives contained in metallic shell including holes, each inclined outwards at angle with respect to longitudinal axis of bomb
EP3633313A1 (en) Enclosure for ammunition and ammunition including such an enclosure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001921435

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001921435

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001921435

Country of ref document: EP