WO2001074103A1 - Procede de recherche initiale cellulaire dans un systeme de communication mobile numerique a acces multiple par repartition de code (amrc) - Google Patents

Procede de recherche initiale cellulaire dans un systeme de communication mobile numerique a acces multiple par repartition de code (amrc) Download PDF

Info

Publication number
WO2001074103A1
WO2001074103A1 PCT/CN2001/000018 CN0100018W WO0174103A1 WO 2001074103 A1 WO2001074103 A1 WO 2001074103A1 CN 0100018 W CN0100018 W CN 0100018W WO 0174103 A1 WO0174103 A1 WO 0174103A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiple access
mobile communication
communication system
value
power
Prior art date
Application number
PCT/CN2001/000018
Other languages
English (en)
French (fr)
Other versions
WO2001074103A8 (fr
Inventor
Feng Li
Tiezhu Xu
Yusong He
Xiaolong Ran
Original Assignee
China Academy Of Telecommunications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy Of Telecommunications Technology filed Critical China Academy Of Telecommunications Technology
Priority to AT01900378T priority Critical patent/ATE548807T1/de
Priority to AU2500401A priority patent/AU2500401A/xx
Priority to MXPA02009561A priority patent/MXPA02009561A/es
Priority to EP01900378A priority patent/EP1330136B1/en
Priority to BRPI0109610-9A priority patent/BRPI0109610B1/pt
Priority to CA 2403929 priority patent/CA2403929C/en
Priority to JP2001571693A priority patent/JP4530603B2/ja
Priority to AU2001225004A priority patent/AU2001225004B2/en
Publication of WO2001074103A1 publication Critical patent/WO2001074103A1/zh
Priority to US10/255,334 priority patent/US6778588B2/en
Publication of WO2001074103A8 publication Critical patent/WO2001074103A8/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70758Multimode search, i.e. using multiple search strategies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/7077Multi-step acquisition, e.g. multi-dwell, coarse-fine or validation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7083Cell search, e.g. using a three-step approach
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to a mobile communication technology, and more particularly, to a method for initial cell search of a terminal device (UE) in a code division multiple access (CDMA) digital cellular mobile communication system including a training (pilot) sequence.
  • UE terminal device
  • CDMA code division multiple access
  • the first thing to be performed is an initial cell search.
  • the purpose of the initial cell search is to select a suitable operating frequency and obtain downlink synchronization between the terminal device and the base station at this frequency point. In this way, the terminal device can correctly receive the information sent by the base station.
  • the terminal equipment needs to be completed through the initial search of the cell: the working frequency point is locked; the downlink frequency synchronization with the base station is obtained at the locked working frequency point; the steps and procedures to correct the carrier frequency difference, and then the terminal The device can correctly receive the base station information.
  • downlink synchronization is generally performed through a pilot channel.
  • the traditional method for implementing downlink synchronization is: first, lock on a working frequency, and then correlate the entire frame of received data with a preset pilot sequence (training sequence), and continuously slide the correlation position until the correlation peak is greater than When a preset threshold is set, it indicates that the downlink synchronization is completed at the operating frequency. Step, the position where the correlation peak appears represents the receiving position of the terminal device.
  • Correlation operations are performed in any code division multiple access cellular mobile communication system to complete synchronization.
  • the limitations of the traditional correlation operation methods are as follows: Correlation is based on the entire frame of data with each chip (chip) or even a fraction of a chip. The order of chips is based on sliding, so the amount of calculation is very large, it takes a long time to calculate, and the related operations are performed on the entire frame of data, and the probability of misjudgment is increased, especially in time division duplex codes.
  • TDD-CDMA division multiple access communication system
  • when another terminal device B happens to be in the vicinity of the terminal device A the power of the terminal device B received by the terminal device A will be stronger than that of the terminal device A due to the distance.
  • the resulting base station signal power which results in that the position of the correlation peak that is misjudged after the related operation is not the actual receiving position of the terminal device, and incorrect downlink synchronization information is generated.
  • Correcting the carrier frequency difference is generally performed in a digital demodulator (in general, the existence of a certain carrier deviation will not affect downlink synchronization, but will affect the demodulated information).
  • the traditional method is to use an analog phase-locked loop circuit.
  • the advantage is that the technology is mature, the disadvantage is that it is difficult to balance performance and capture bandwidth, it is sensitive to carrier jitter, and the hardware circuit is too complicated.
  • the purpose of the present invention is to design a cell initial search method for a CDMA digital mobile communication system, and to improve the traditional cell initial search method, that is, to propose a method for solving downlink synchronization and carrier deviation correction in the cell initial search.
  • the terminal device can quickly and accurately complete downlink synchronization with the base station and achieve a good carrier deviation correction effect.
  • a method for initial cell search of a code division multiple access digital mobile communication system for a terminal device to correctly receive base station information which is characterized in that the terminal device selects an operating frequency and Obtaining downlink synchronization with a base station at a frequency includes:
  • the method based on the training sequence power feature window value includes:
  • the terminal device When receiving, the terminal device first searches for the power characteristic window value of the downlink pilot sequence time slot (DwPTS), and after finding the position range of the synchronization symbol, performs related operations only near the position.
  • DwPTS downlink pilot sequence time slot
  • the searching for a power characteristic window value of a downlink pilot sequence time slot (DwPTS) to find a position range of a synchronization symbol includes: a terminal device first locking a working frequency point, and then receiving a complete frame of data; calculating a downlink pilot Power of each synchronization symbol in a sequence slot (DwPTS); Calculate the power characteristic window value at the position of each synchronization symbol; Calculate the average power characteristic window value of the entire frame of data; Find the power at all synchronization symbol positions of the entire frame of received data
  • the position of the value is the starting position of the downlink pilot sequence time slot (DwPTS); correlation is performed near the starting position to obtain an accurate starting point for receiving, and the downlink is the same.
  • the calculation of the power of each synchronization symbol is based on the assumption that the receiving time is the starting point of a synchronization symbol, and adding all chips belonging to this symbol according to the power to obtain the power of each synchronization symbol.
  • the calculation of the power characteristic window value at the position of each synchronization symbol is to slide the symbol level on the entire frame of received data, and calculate the power characteristic window value R at each position according to the following formula at each position (i), where i represents the actual receiving position, P (k) represents the power value of each symbol, N and M are parameters of the feature window,
  • the calculation of the power characteristic window value at the position of each synchronization symbol is based on the power of each chip. Rate, slide on the chip level, and calculate the power feature window at each position.
  • a method for initial cell search in a CDMA digital mobile communication system which is used by a terminal device to correctly receive base station information, and is characterized in that the terminal device tracks Carrier deviation, and correcting the carrier deviation with the base station in the digital demodulator includes:
  • Carrier deviation correction method based on joint detection is used to eliminate multipath and multiple access interference and correct the carrier deviation to the range required for baseband demodulation.
  • estimating carrier deviation by software and adjusting hardware by decision feedback include: using a pure software method to estimate a carrier frequency difference of each frame of data; calculating a hardware adjustment value; and adjusting the calculated adjustment value.
  • Automatic frequency control hardware in a digital demodulator In the method for carrier deviation correction based on joint detection, estimating carrier deviation by software and adjusting hardware by decision feedback include: using a pure software method to estimate a carrier frequency difference of each frame of data; calculating a hardware adjustment value; and adjusting the calculated adjustment value.
  • the pure software method is used to estimate the frequency difference of each frame of data, and the specific formula is:
  • I and Q are orthogonal demodulated signals
  • L is the statistical length
  • the calculation hardware adjustment value that is, the calculation of the carrier frequency difference adjustment value, uses the following formula:
  • fe (n) is an estimated frequency difference value for the n-th frame of received data
  • the adjustment coefficient coef k ranges from 0 to 1.
  • the use of joint detection-based technology to eliminate multipath and multiple access interference and correct carrier deviation to the range required for baseband demodulation includes: adding a training sequence midamble in a data burst to each frame, for Estimate the actual channel response; the terminal equipment uses joint detection technology to eliminate multipath and multiple access interference, and demodulates the symbols near the midamble of the training sequence (midamble); uses the carrier frequency difference information contained in these symbols to perform automatic frequency control on the hardware Adjustment.
  • the described joint detection technology is used to eliminate multipath and multiple access interference, and demodulate the training sequence intermediate code
  • a method for initial cell search in a code division multiple access digital mobile communication system includes: selecting a working frequency point by a terminal device, and obtaining the downlink frequency with the base station at the frequency point Synchronization;
  • the terminal equipment tracks the deviation of the plant wave from the base station, and corrects the carrier deviation from the base station in the digital demodulator, which is characterized by:
  • the obtaining and the downlink synchronization of the base station include:
  • the correcting the carrier deviation from the base station in the digital demodulator includes:
  • Carrier deviation correction method based on joint detection is used to eliminate multipath and multiple access interference and correct the carrier deviation to the range required for baseband demodulation.
  • the method based on the training sequence power feature window value includes:
  • the terminal device When receiving, the terminal device first searches for a power characteristic window value of a downlink pilot sequence time slot (DwPTS). When the position range of the synchronization symbol is found, only relevant operations are performed near the position.
  • DwPTS downlink pilot sequence time slot
  • the method for initializing a cell in a CDMA mobile communication system is also a method for downlink synchronization in a CDMA mobile communication system.
  • the method is to implement the initial cell search lock in the mobile communication system.
  • a working frequency point, a method for obtaining downlink synchronization with the base station, and a method for recovering a carrier frequency difference between the base station and the terminal is also a method for downlink synchronization in a CDMA mobile communication system.
  • the method for locking the operating frequency and obtaining downlink synchronization with the base station is to first determine the approximate range of the training sequence by using a method based on the training sequence power feature window value, and then obtain the accuracy by finding the correlation between the received data and the training sequence within this range
  • the method for recovering the carrier frequency difference between the base station and the terminal is a carrier deviation correction method based on a joint detection technology.
  • the method of the present invention is mainly a cell search method for a mobile communication system with a training sequence.
  • Figure 1 is a block diagram of the initial cell search process.
  • Figure 2 is a schematic diagram of the required frame structure when using the power characteristic window method.
  • FIG. 3 is a flowchart of a method for implementing a power characteristic window.
  • Figure 4 is a block flow diagram of the steps of correcting the initial large frequency error to a smaller range in the carrier frequency error correction method.
  • Fig. 5 is a flow chart of steps in a carrier frequency offset correction method for correcting a frequency offset to a range required for baseband demodulation.
  • FIG. 1 shows a TD-SCDMA system (time division-synchronous code division multiple access system) as an example to illustrate the initial search of the entire cell from the initial search of the cell to the end of the initial search of the cell in the cellular mobile communication system.
  • Step 1 is to find the approximate position range of the downlink pilot sequence time slot (DwPTS) by using the power characteristic window method of the present invention, and determine the working frequency point;
  • step 2 within the position range determined in step 1, a conventional receiving method is used to search for an accurate receiving position, so as to obtain downlink synchronization.
  • Step 3 is to start the carrier deviation correction method based on joint detection (JD) of the present invention. Carry out carrier frequency difference recovery; in step 4, the information in the broadcast channel (BCCH) can be monitored.
  • JD joint detection
  • the figure shows the frame structure required when the power characteristic window method is used to implement the fast and accurate downlink synchronization of the present invention.
  • the present invention defines two training sequences in the frame structure of the TD-SCDMA system: independent downlink pilot sequence time slots (DwPTS) 5 and data bursts TD0 ... TDn, TU0 ... Midcodes in ⁇ They all have different roles in the initial search process of the cell.
  • the pilot sequence time slot (DwPTS) 5 shown in the figure occupies an independent time slot, including N GP (protection, GUARD) symbols, M SYNC (synchronization) symbols, and N GP (protection, GUARD) symbols.
  • the SYNC (synchronization) symbol is a code selected from a group of orthogonal codes. This code can be found by correlating methods, but it must be operated on the entire frame of data and this group of orthogonal codes. Great.
  • the base station is allowed to increase the transmission power of the SYNC (synchronization) symbol in the pilot sequence time slot (DwPTS) 5, but there is no transmission power on the GP (protection) symbol, so that it is received by the terminal device.
  • DwPTS pilot sequence time slot
  • DwPTS downlink pilot sequence time slot
  • the figure shows a process of searching the approximate position range of a downlink pilot sequence time slot (DwPTS) by using the power characteristic window method of the present invention.
  • DwPTS downlink pilot sequence time slot
  • Step 6 The terminal device first locks a working frequency point, which should be a possible frequency of the mobile communication system. Point, and then receive a complete frame of data (such as 5ms + Ams); Step 7, calculate the power P of each symbol (SYMBOL), that is, first assume that the receiving time is the starting point of a symbol, all chips belonging to this symbol ( (CHIP) Add the power according to the power to get the power of each symbol.
  • SYMBOL the power P of each symbol
  • CHIP chips belonging to this symbol
  • the purpose of the power characteristic window method is to obtain the approximate position range of the synchronization symbol (SYNC). Therefore, it will not have a great impact on the final result.
  • Ri is the power characteristic window value at each position
  • i is the actual receiving position
  • P (k) is the power value of each symbol
  • M and N are parameters of the characteristic window shape, i + Nl i + 2N + M- ⁇ i + N + M- ⁇
  • Step 9 Calculate the average feature window ratio of the entire frame of data Raver; Raver ⁇ R (i), where R (i) is the feature window value at each receiving position, and Q represents the number of receiving positions contained in the entire frame of data. number.
  • DwPTS downlink sequence time slot
  • the method for implementing carrier deviation correction is performed in two large steps, which are respectively shown by the flowcharts of FIG. 4 and FIG. 5.
  • the implementation of the first large step in the correction of the wave frequency difference is introduced in FIG. 4.
  • the frequency difference is estimated by software, and a decision feedback adjustment hardware mechanism is introduced to restore the frequency difference from the initial large value to one.
  • a smaller range For example, when the accuracy of the crystal used is 3 ppm and the operating frequency band is about 2G, the initial value can be considered to be about 6KHz.
  • the implementation process of the second major step in carrier frequency error correction is introduced by FIG. 5, which mainly includes the method based on joint detection technology. When multipath and multiple access interference are eliminated, this smaller frequency error range is reduced. (For example, around IK ⁇ ) Correction is within the required range of baseband demodulation, and more accurate frequency difference information can be obtained to guide hardware adjustment.
  • FIG. 4 it is a continuous adjustment process from the start of recovering the carrier frequency offset (difference) to the use of the intermediate code (Midamb le) to achieve higher frequency accuracy.
  • the software uses the method of estimating the frequency difference, and adds judgment feedback to the hardware for automatic frequency control (UFC) to correct the frequency difference from the initial large value to a relatively small range.
  • UFC automatic frequency control
  • Step 12 Use formula (2) to estimate the frequency difference of each frame of data using a pure software method.
  • the specific formula is as follows:
  • cc represents the estimated frequency difference
  • I and Q are orthogonal demodulated signals
  • L is the statistical length
  • Step 13 Use the formula (3) to calculate the carrier frequency difference adjustment value, that is, calculate the hardware adjustment value.
  • fe (n) is an estimated frequency difference value a for the n-th frame of received data, that is, a, and the adjustment coefficient coef k ranges from 0 to 1.
  • the selection principle is that k is larger, then coef k is smaller.
  • a frame of received data can be divided into kl, k2, ..., kn segments in sequence.
  • AFC hardware automatic frequency control
  • the data of each frame may not be fully fed back, but a multi-frame feedback method may be adopted.
  • the feedback is reflected in the mutual adjustment of software and hardware, that is, the frequency difference is first calculated by software, then the hardware adjustment is guided, and the software estimates the frequency deviation after the hardware adjustment. This process is repeated continuously until the preset number of times is reached.
  • the figure shows a process of using a midamble to achieve higher frequency accuracy.
  • Yes ⁇ Use the method based on joint detection to correct the small frequency difference to a range that can be tolerated by baseband demodulation.
  • Joint detection (JD) technology is used in the TD-SCDMA system, and a training sequence (Midamble) is added to each frame, which can be used to estimate the actual channel response.
  • the terminal can use the joint detection technology to eliminate multipath and multiple access interference, and demodulate data symbols (Data Symbol) near the midamble of the training sequence, and use the frequency difference information contained in these symbols to guide the hardware to perform automatic frequency Control (AFC) adjustment.
  • Specific steps are as follows:
  • Step 15 Receive m-frame data
  • Step 16 The joint detection technology is used to demodulate the received m-frame data, that is, the symbols (Data Symbol) near the midamble of the training sequence are demodulated to obtain P symbols before and after the midamble of the training sequence. (Symbol), denoted as X (l) ... X (P) and Y (l) ... ⁇ ( ⁇ ), respectively.
  • Step 17 Use formula (4) to calculate the direction of the frequency offset for each P symbols (Symbol) before and after the midamble of the training sequence in the m-frame data.
  • Step 18 according to the direction of the calculated frequency difference, set the adjustment step size (STEP Hz) of the hardware automatic frequency control (A F C);
  • Step 19 Adjust the hardware AFC according to the direction of the frequency difference obtained in Step 17 by the certain step (STEP Hz).
  • the method of the present invention can be applied to a code division multiple access (C DMA) mobile communication system, and is used in a cell initial search method with a training sequence system.
  • C DMA code division multiple access
  • carrier deviation estimation can be performed by the carrier detection correction method based on the joint detection of the present invention. Under the environmental conditions of a space wireless channel, the method can achieve good results. Alas.
  • the downlink synchronization method and the carrier deviation correction method of the present invention are designed for a TD-SCDMA system based on the China Wireless Communication Standards Group (CWTS) and which has become one of the international IMT-2000 wireless transmission technologies (RTT). However, it can be used in other digital cellular mobile communication systems with appropriate modifications.
  • CWTS China Wireless Communication Standards Group
  • RTT international IMT-2000 wireless transmission technologies

Description

一种码分多址数字移动通信系统的小区初始搜索方法 技术领域
本发明涉及一种移动通信技术, 更确切地说是涉及一种包含有训练(导频) 序列的码分多址( C D M A )数字蜂窝移动通信系统中终端设备(U E ) 的小区 初始搜索方法。
发明背景
在任一数字蜂窝移动通信系统中, 当终端设备开机后, 首先要进行的是小区 初始搜索。 小区初始搜索的目的是选择合适的工作频点, 并在该频点上取得终端 设备与基站的下行同步, 如此, 终端设备才能正确接收基站发送的信息。
此外, 在实际的数字蜂窝移动通信系统中, 由于基站和终端设备彼此使用的 是完全独立的主时钟, 即使双方工作在同一工作频点上, 相互之间也必然存在一 个载波偏差(或称频差、 频偏), 如果终端设备在解调时不能实现相对准确的载 波偏差恢复(或称校正、 纠正), 那么基带信号中将会保留有残余载波分量, 就 会影响基带信号的处理, 导致误码的产生, 终端设备就不可能正确接收基站的信 息。
所以, 对于数字蜂窝移动通信系统来说, 终端设备都需通过小区初始搜索完 成:工作频点锁定; 在锁定的工作频点上获得与基站的下行同步; 纠正载波频差 的步骤过程, 然后终端设备才能正确接收基站信息。
当然, 在实际的小区初始搜索过程中, 由于基站和终端设备的各自主时钟都 会随着时间漂移, 因此, 还必须同时进行载波频差跟踪。
在实际的码分多址蜂窝移动通信系统中, 一般都是通过导频信道来完成下行 同步的。 传统的实现下行同步的方法是: 首先, 锁定在一个工作频点上, 然后对 整帧接收数据和预先设置的导频序列 (训练序列)求相关, 不断地滑动求相关的 位置直至相关峰值大于预先设定的阈值时, 则表明在该工作频点上完成了下行同 步, 相关峰值出现的位置表示终端设备的接收位置。
任何码分多址蜂窝移动通信系统中同步的完成都要进行相关运算, 但是, 传 统相关运算方法的局限在于: 相关是在整帧数据上以每个码片 (chip )甚至以几 分之一个码片的量级为基础滑动进行的, 因此运算量非常大, 需要很长的计算时 间, 而且是对整帧数据进行相关操作, 还增大了误判的概率, 尤其是在时分双工 码分多址通信系统(T D D - C D M A )中, 当终端设备 A附近恰好有正在通话的 另一终端设备 B时, 由于距离的原因, 使终端设备 A接收到的终端设备 B的功率 会强于接收到的基站信号功率, 从而导致在相关操作后因误判出的相关峰值出现 的位置不是终端设备真正的接收位置, 而产生错误的下行同步信息。
纠正载波频差一般在数字解调器中进行(一般情况下, 存在一定的载波偏差 不会影响下行同步, 但会影响解调出来的信息), 传统的方法是采用模拟锁相环 电路, 其优点是技术成熟, 缺点是性能与捕获带宽难以兼顾, 对载波的抖动比较 敏感, 且硬件电路过于复杂。
如中国专利 97115151. 2 "扩频通信系统中载波恢复和补偿的方法及其装置", 提出了一种数字栽频的载波频差校正方法, 但由于该方法是在没有噪声和多径干 扰的信道模型下所作的最佳估计, 并不适用于蜂窝移动通信系统。
发明内容
本发明的目的是设计一种码分多址数字移动通信系统的小区初始搜索方法, 对传统的小区初始搜索方法作出改进, 即提出一种解决小区初始搜索中的下行同 步方法和载波偏差校正方法, 可使终端设备快速而准确地完成与基站的下行同步 和达到艮好的载波偏差纠正效果。
实现本发明的目的可以是这样的: 一种码分多址数字移动通信系统的小区初 始搜索方法, 用于终端设备正确接收基站信息, 其特征在于: 由终端设备选择工 作频点, 并在该频点上取得和基站的下行同步, 包括;
a.采用基于训练序列功率特征窗值的方法先判断出下行训练序列时隙的一个 范围;
b.在该范围内通过求接收数据和训练序列的相关获得精确的终端设备接收位 置。
所述的基于训练序列功率特征窗值的方法包括:
a.在基站帧结构中增加下行导频序列时隙 (DwPTS ) 中同步符号的发射功率, 并且在该下行导频序列时隙中位于同步符号前、 后的保护符号上没有发射功率; b.终端设备在接收时首先搜寻下行导频序列时隙 (DwPTS ) 的功率特征窗值, 在发现了同步符号的位置范围后只在该位置附近作相关操作。
所述的搜寻下行导频序列时隙 (DwPTS ) 的功率特征窗值, 以发现同步符号 的位置范围, 包括: 终端设备首先锁定一工作频点, 然后接收一帧完整的数据; 计算下行导频序列时隙 (DwPTS ) 中每个同步符号的功率; 在每个同步符号的位 置上计算功率特征窗值; 计算整帧数据的平均功率特征窗值; 寻找整帧接收数据 所有同步符号位置上功率特征窗值中的最小值; 判断平均功率特征窗值与最小功 率特征窗值之比是否大于阔值, 在平均功率特征窗值与最小功率特征窗值之比大 于阈值时, 该最小功率特征窗值的位置是下行导频序列时隙 (DwPTS ) 的起始位 置; 在该起始位置附近求相关获得精确的接收起点, 完成下行同.步。
所述的计算每个同步符号的功率, 是先假定接收时刻为一个同步符号的起 点, 将所有属于这个符号的码片按功率相加, 即得到每一个同步符号的功率。
所述的在每个同步符号的位置上计算功率特征窗值, 是在整帧接收数据上, 按符号级别滑动, 在每个位置上按下述公式计算每个位置上的功率特征窗值 R (i) , 式中 i代表实际的接收位置, P (k)代表每个符号的功率值, N与 M是特征 窗的参数,
i+N'\ i+2N+M-\ i+N+M-\ k~i k=i+N+M k-i+N
所述的在每个同步符号的位置上计算功率特征窗值, 是按照每个码片的功 率, 在码片级别上滑动, 在每个位置上计算功率特征窗值。
实现本发明目的的技术方案也可以是这样的:一种码分多址数字移动通信系 统的小区初始搜索方法, 用于终端设备正确接收基站信息, 其特征在于: 由终端 设备跟踪与基站间的载波偏差, 并在数字解调器中纠正与基站间的载波偏差, 包 括:
a.用软件估计载波偏差, 并用判决反馈方法调整硬件;
b.采用基于联合检测的载波偏差校正方法, 消除多径与多址干扰, 将载波偏 差纠正到基带解调要求的范围。
所述基于联合检测的载波偏差校正方法中用软件估计载波偏差, 并用判决反 馈调整硬件, 包括: 采用纯软件方法估计每帧数据的载波频差; 计算硬件调整值; 用计算出的调整值调整数字解调器中的自动频率控制硬件。
所述的采用纯软件方法估计每帧数据的频差, 具体公式是:
Ae iKa = j∑[I(i) + JQd)] * U(i + K) + jQ{i + Κ)]'
L
式中 oc代表估计的频差, I与 Q是正交解调信号, L是统计长度。
所述的计算硬件调整值即计算载波频差调整值是采用下述公式 :
fa(n) = fe(n) * coefk (n)
式中, fe (n)是对第 n帧接收数据估计出的频差值, 调整系数 coefk的范围是 0-1 之间, 选取原则是 k较大时, 则 coefk较小。
所述的采用基于联合检测技术消除多径与多址干扰, 将载波偏差纠正到基带 解调要求的范围, 包括: 在每帧中加入数据突发中的训练序列中间码(Midamble) , 用于估计实际的信道响应; 终端设备利用联合检测技术消除多径及多址干扰, 并 解调训练序列中间码 (Midamble)附近的符号; 利用这些符号中包含的载波频差信 息对硬件进行自动频率控制调整。
所述的利用联合检测技术消除多径及多址干扰, 并解调训练序列中间码 (Midamble)附近的符号进一步包括: 采用联合检测技术解调数据, 得到训练序列 中间码(Midamble)前面和后面的各 P个符号, 分别记作 X (l) ... X (P)和 Y (l) ... Υ (Ρ), 按公式 Xi(n) = X{n)l Xj{n) , Yi{n) = Y{n) I Yj{n) 分别计算出频偏的方向, 其 中 X j (n) =Yj (n) = ± π /4, ± 3 π /4,再通过公式
Z = f^ Yi(n) / Xi(n) 获得载波频差方向; 根据计算出的载波频差方向, 设定硬件自动频率控制的调整 步长; 根据获得的频差方向, 再以该一定的调整步长调整硬件自动频率控制。
实现本发明目的的技术方案还可以是这样的: 一种码分多址数字移动通信系 统的小区初始搜索方法, 包括: 由终端设备选择工作频点, 并在该频点上取得和 基站的下行同步; 由终端设备跟踪与基站间的栽波偏差, 并在数字解调器中纠正 与基站间的载波偏差, 其特征在于:
所述的取得和基站的下行同步包括:
a.采用基于训练序列功率特征窗值的方法先判断出下行训练序列时隙的一个 范围; 置;
所述的在数字解调器中纠正与基站间的载波偏差包括:
a.用软件估计载波偏差, 并用判决反馈方法调整硬件;
b.采用基于联合检测的载波偏差校正方法, 消除多径与多址干扰, 将载波偏 差纠正到基带解调要求的范围。
所述的基于训练序列功率特征窗值的方法包括:
a.在基站帧结构中增加下行导频序列时隙 (DwPTS ) 中同步符号的发射功率, 并且在该下行导频序列时隙中位于同步符号前、 后的保护符号上没有发射功率; b.终端设备在接收时首先搜寻下行导频序列时隙 (DwPTS ) 的功率特征窗值, 在 发现了同步符号的位置范围后只在该位置附近作相关操作。
本发明的一种码分多址移动通信系统的小区初始 ¾索方法, 也是一种在码分 多址移动通信系统中的下行同步方法, 该方法是在移动通信系统中实现小区初始 搜索的锁定工作频点、 获得与基站的下行同步方法和恢复基站与终端之间的载波 频差的方法。 其锁定工作频点、 获得与基站的下行同步方法是首先采用基于训练 序列功率特征窗值的方法判断出训练序列的大致范围, 然后在此范围内通过求接 收数据和训练序列的相关来得到精确的接收位置, 从而完成与基站的下行同步; 其恢复基站与终端之间的载波频差的方法, 是采用基于联合检测技术的载波偏差 纠正方法。 通过实现上述这两个方法(或其中之一)的若干操作步骤, 可以实现本 发明的小区初: ½叟索, 使终端快速而准确地完成下行同步。
本发明的方法主要是针对具有训练序列的移动通信系统的小区搜索方法。 附图简要说明
图 1是小区初始搜索过程框图。
图 2是采用功率特征窗值方法时所要求的帧结构示意图。
图 3是实现功率特征窗值方法的流程框图。
图 4 是载波频差纠正方法中将初始较大频差纠正到较小范围的步骤流程框 图。
图 5是载波频差纠正方法中将频差纠正到基带解调所要求的范围内的步驟流 程框图。
实施本发明的方式
下面结合实施例及附图进一步说明本发明的技术。
参见图 1, 图 1所示是以 TD-SCDMA系统(时分-同步码分多址系统) 为例, 说明在蜂窝移动通信系统中, 从小区初始搜索开始到小区初始搜索结束的整个小 区初始搜索过程中所包括的基本步骤。 其中, 步骤 1是使用本发明的功率特征窗 值法寻找下行导频序列时隙 (DwPTS ) 的大致位置范围, 并且确定工作频点; 步 骤 2中, 在步骤 1所确定的位置范围内通过惯用的求相关的方法搜寻准确的接收 位置, 从而获得下行同步; 步骤 3是采用本发明的基于联合检测 ( J D ) 的载波 偏差校正方法开始进行载波频差恢复; 在步骤 4中即可监听广播信道(BCCH ) 中 的信息。
参见图 2, 图中所示是实现本发明快速而准确的下行同步时, 采用功率特征 窗值方法时所要求的帧结构。 本发明在 TD-SCDMA 系统的帧结构中定义了两种训 练序列:独立的下行导频序列时隙(DwPTS) 5和数据突发 TD0…… TDn, TU0…… Τϋη 中的中间码(Midamble), 它们在小区初始搜索过程中均有不同的作用。 图中所示 的导频序列时隙(DwPTS) 5占用一个独立的时隙, 包括 N个 GP (保护, GUARD )符 号, M个 SYNC (同步)符号, 和又 N个 GP (保护, GUARD )符号, 中间码(Midamble) 的前后是 P个 Data Symbol (数据符号), 共同占用一个独立时隙。 SYNC (同步) 符号是从一组正交码中挑选出的一个码, 可以通过求相关的方法找到这个码, 但 必须要在整帧数据上和对这一组正交码进行操作, 运算量很大。
在本发明的下行同步方法中,让基站提高导频序列时隙(DwPTS) 5中 SYNC (同 步)符号的发射功率, 但在 GP (保护, GUARD )符号上没有发射功率, 这样在终 端设备接收时, 就可以首先搜寻下行导频序列时隙 (DwPTS ) 的功率特征窗值, 并在发现了 SYNC (同步)符号的大致位置范围后, 就只在该位置范围附近进行相 关操作, 这样就可大大缩短下行同步时间, 并且减少误判的概率。
参见图 3, 图中示出采用本发明的功率特征窗值法搜索下行导频序列时隙 ( DwPTS ) 大致位置范围的过程。 从按照特征窗的方法寻找 DwPTS 的大致位置开 始, 到发现了 DwPTS的大致位置或没有找到 DwPTS的大致位置后结束, 是以 TD- 在该 TD-SCDMA系统中, 设定保护符号个数 N=2, 同步符号个数 M=4, 每一帧数据 时长为 5ms。
步骤 6 , 终端设备首先锁定一工作频点, 该频点应是移动通信系统可能的频 点, 然后接收一帧完整的数据(如 5ms +Ams ); 步骤 7, 计算每个符号(SYMBOL) 的功率 P ,即先假定接收时刻为一个符号的起点,将所有属于这个符号的码片(CHIP) 按功率相加, 得到每一个符号的功率, 虽然, 实际的接收时刻不会正好是一个符 号的起点, 但是采用功率特征窗值方法的目的是要获得同步符号 (SYNC ) 的大致 位置范围, 因此, 并不会对最终结果产生较大影响。
下述公式( 1 ) 中, Ri是每个位置上的功率特征窗值, i代表实际的接收位 置, P(k)代表每个符号的功率值, M和 N是特征窗形状的参数, i+N-l i+2N+M-\ i+N+M-\
R, = (X>W+ ∑p(k))/ £w … ( 丄 )
k~i k=i+N+M k-i+N
步骤 8, 在每个符号的位置上计算特征窗值(比), 在整帧接收数据上, 按照 符号级别滑动, 在每个位置上对应 TD-SCDMA 的帧结构 N=2, M=4, 并按照公式 ((Pi+Pi +
Figure imgf000010_0001
计算功率特征窗值。 实际上, 也可以不 需要得到每一个符号的功率, 而按照每个码片 (CHIP ) 的功率, 在码片级别上滑 动, 这样, 可以获得更加准确的结果, 但代价是运算量增大。
步骤 9 , 计算整帧数据的平均特征窗值比 Raver; Raver ^R(i) , 式中 R(i) 是每个接收位置上的特征窗值, Q代表整帧数据所包含的接收位置个数。
步驟 10, 寻找整帧接收数据所有特征窗值中的最小值 Rmin, Rmin=min (R (i) ) , 并且计算 Raver /Rmin: 平均特征窗值 /最小特征窗值是否远远大于阔值, 如果 没有大于阈值说明没有找到下行序列时隙 (DwPTS ), 如果超过了阈值, 则认为此 最小特征窗值的位置表明了下行序列时隙 (DwPTS ) 的起始位置; 然后就可从获得 的下行序列时隙 (DwPTS ) 的起始位置附近求相关, 获得精确接收起点, 完成下行 同步。
本发明中, 实现载波偏差纠正的方法分两大步进行, 分别由图 4、 图 5的流 程示出。 其中, 由附图 4介绍了栽波频差纠正中第一大步的实现过程, 首先采用 软件估计频差, 并引入判决反馈调整硬件机制, 将频差从初始较大的值恢复到一 个较小的范围。 例如, 当使用的晶振精度为 3ppm, 工作频段在 2G左右, 则可认 为初始值在 6KHz左右。 由附图 5 介绍了载波频差纠正中第二大步的实现过程, 主要包括采用基于联合检测技术的方法, 在消除了多径以及多址干扰的情况下, 将这个较小的频差范围 (例如 ΙΚΗζ 左右) 纠正到基带解调的要求范围以内, 可 以得到更加精确的频差信息来指导硬件调整。
参见图 4, 是从恢复载波频偏(差)开始到利用中间码(Midamb le)达到更高 的频率精度间的一个不断调整的过程。 采用软件估计频差的方法, 并且加入判决 反馈对硬件进行自动频率控制 UFC ), 将频差从初始较大值纠正到一个比较小的 范围内。
采用软件估计频差是纯软件补偿, 如果只采用这一方法不涉及对硬件的调 整, 势必要求每次估值的准确性, 此外, 在无线信道的条件下该方法也不是一个 无偏估计, 所以完全依靠纯软件补偿的效果将不会 4艮好。 另一方面, 在无线信道 条件下, 该方法得到的估值虽不很准确, 但是, 它所估计出的频差方向, 尤其在 取多帧平均的情况下, 也仍然是可信的。 这样, 我们就可以利用它来指导对硬件 AFC的调整, 满足第一大步的要求。 具体步骤如下:
在步骤 1 1接收一帧数据开始之前, 先设帧数 n-0;
步骤 1 2, 利用公式(2 )采用纯软件方法估计每帧数据的频差, 具体公式 如下:
Ae_jk a=j∑[/( ) + jQii)} * + K) + jQ(i + K)] * ... ... ( 2 )
式中 cc代表估计的频差, I与 Q是正交解调信号, L是统计长度。
步骤 1 3 , 利用公式( 3 )计算载波频差调整值, 即计算硬件调整值
fa(n) = fe(n) * coefk(n) ( 3 ),
式中, fe (n)是对第 n帧接收数据估计出的频差值即 a, 调整系数 coefk的范 围是 0 - 1之间, 选取原则是 k较大时, 则 coefk较小。 例如, 可以按照先后顺 序将一帧接收数据分成 kl,k2, ...,kn段,则当 kl<k2<...<kn时, coefkl> coefk2〉...〉 coefkn.
步骤 1 4, 按照计算出的硬件调整值调整硬件自动频率控制 (AFC), 并让 n=n+l,判断 n>Q? , 并在 n不大于 Q (Q是预先设置的调整的帧数)时重复执行步骤 1 1至步骤 1 4, 直至 n>Q时则完成利用中间码(Midamble)达到更高频率精度的 目的。
实际过程中, 也可以不全部反馈每一帧数据, 而采用多帧反馈的方法。 此处 的反馈体现在软件与硬件的相互调整上, 即首先用软件计算频差值, 然后指导硬 件调整, 硬件调整后再进行软件估计频偏, 不断地重复此过程直至达到预设的次 数。
参见图 5, 图中示出利用中间码(Midamble)达到更高频率精度的过程。 是釆 用基于联合检测的方法将较小的频差纠正到基带解调可以容忍的范围以内。 在 TD-SCDMA 系统中采用联合检测 (JD)技术, 在每帧中加入训练序列 (中间码 (Midamble) ), 可以用来估计实际的信道响应。 这样, 终端可以利用联合检测技 术消除多径以及多址干扰, 并且解调训练序列中间码(Midamble)附近的数据符号 (Data Symbol ), 利用这些符号中包含的频差信息来指导硬件进行自动频率控制 (AFC)调整。 具体步骤如下:
步骤 1 5, 接收 m帧数据;
步骤 1 6, 采用联合检测技术解调接收的 m帧数据, 即解调训练序列中间码 (Midamble)附近的符号 (Data Symbol ), 得到训练序列中间码(Midamble)前面和 后面的各 P个符号 (Symbol ), 分别记作 X(l) ... X(P)和 Y(l) ...Υ(Ρ)。
步骤 1 7, 利用公式( 4 )对 m帧数据中训练序列中间码(Midamble)前面和 后面的各 P个符号 (Symbol )分别计算出频偏的方向,
Xi(n)=X (n) /X j (n)
Yi(n)=Y (n)/Yj(n) …"- (4)
其中 Xj(n)=Yj(n)=± ,±3 ,再通过公式( 5 )获得载波频差方向: Z
Figure imgf000013_0001
……(5)
步骤 1 8, 根据计算出的频差方向, 设定硬件自动频率控制 ( A F C ) 的调 整步长 (STEP Hz);
步骤 1 9, 根据步骤 1 7获得的频差方向, 再以该一定的步长 (STEP Hz ) 调整硬件 AFC。
可重复执行步驟 1 5至 1 9。 随着纠正后频差的不断减小, 训练序列中间码 (Midamble)附近的符号 (Data Symbol ) 可以再多取一些, 这样可以获得较多的 频差信息, 同时调整硬件 AFC时的步长(STEP, 单位 Hz)也可以逐渐减小。
本发明的方法可应用于码分多址( C DMA )移动通信系统中, ^^于具有 训练序列系统的小区初始搜索方法。 当码分多址通信系统中采用了联合检测技 术, 就可以通过本发明的基于联合检测的载波偏差校正方法进行载波偏差估计, 在空间无线信道的环境条件下, 该方法可以达到很好的效杲。
虽然, 本发明的下行同步方法和载波偏差校正方法是为基于中国无线通信标 准组(CWTS)所提出并已成为国际上 IMT-2000无线传输技术(RTT)之一的 TD-SCDMA 系统而设计的, 但是通过适当的修改完全可以用在其他的数字蜂窝移动通信系统 中。

Claims

权利要求
1 .一种码分多址数字移动通信系统的小区初始搜索方法, 用于 终端设备正确接收基站信息, 其特征在于: 由终端设备选择工作频 点, 并在该频点上取得和基站的下行同步, 包括;
a.采用基于训练序列功率特征窗值的方法先判断出下行训练序 列时隙的一个范围;
b.在该范围内通过求接收数据和训练序列的相关获得精确的终 端设备接收位置。
2 .根据权利要求 1所述的一种码分多址数字移动通信系统的小 区初始搜索方法, 其特征在于: 所述的基于训练序列功率特征窗值 的方法包括:
a.在基站帧结构中增加下行导频序列时隙 (DwPTS ) 中同步符号 的发射功率, 并且在该下行导频序列时隙中位于同步符号前、 后的 保护符号上没有发射功率;
b.终端设备在接收时首先搜寻下行导频序列时隙 ( DwPTS ) 的功 率特征窗值, 在发现了同步符号的位置范围后只在该位置附近作相 关操作。
3 .根据权利要求 1或 2所述的一种码分多址数字移动通信系统 的小区初始搜索方法, 其特征在于: 所述的搜寻下行导频序列时隙
( DwPTS ) 的功率特征窗值, 以发现同步符号的位置范围, 包括: 终 端设备首先锁定一工作频点, 然后接收一帧完整的数据; 计算下行 导频序列时隙 (DwPTS ) 中每个同步符号的功率; 在每个同步符号的 位置上计算功率特征窗值; 计算整帧数据的平均功率特征窗值; 寻 找整帧接收数据所有同步符号位置上功率特征窗值中的最小值; 判 断平均功率特征窗值与最小功率特征窗值之比是否大于阈值, 在平 均功率特征窗值与最小功率特征窗值之比大于闹值时, 该最小功率 特征窗值的位置是下行导频序列时隙 (DwPTS ) 的起始位置; 在该起 始位置附近求相关获得精确的接收起点, 完成下行同步。
4 .根据权利要求 3所述的一种码分多址数字移动通信系统的小 区初始搜索方法, 其特征在于: 所述的计算每个同步符号的功率, 是先假定接收时刻为一个同步符号的起点, 将所有属于这个符号的 码片按功率相加, 即得到每一个同步符号的功率。
5 .根据权利要求 3所述的一种码分多址数字移动通信系统的小 区初始搜索方法, 其特征在于: 所述的在每个同步符号的位置上计 算功率特征窗值, 是在整帧接收数据上, 按符号级别滑动, 在每个 位置上按下述公式计算每个位置上的功率特征窗值 R (i) , 式中 i代 表实际的接收位置, P (k)代表每个符号的功率值, N 与 M是特征窗 的参数,
R,
Figure imgf000015_0001
6 .根据权利要求 3所述的一种码分多址数字移动通信系统的小 区初始搜索方法, 其特征在于: 所述的在每个同步符号的位置上计 算功率特征窗值, 是按照每个码片的功率, 在码片级别上滑动, 在 每个位置上计算功率特征窗值。
7.一种码分多址数字移动通信系统的小区初始搜索方法, 用于 终端设备正确接收基站信息, 其特征在于: 由终端设备跟踪与基站 间的载波偏差, 并在数字解调器中纠正与基站间的载波偏差, 包括: a.用软件估计载波偏差, 并用判决反馈方法调整硬件; b.采用基于联合检测的载波偏差校正方法, 消除多径与多址干 扰, 将栽波偏差纠正到基带解调要求的范围。
8 .根据权利要求 7所述的一种码分多址数字移动通信系统的小 区初始搜索方法, 其特征在于所述的基于联合检测的载波偏差校正 方法中用软件估计载波偏差, 并用判决反馈调整硬件, 进一步包括: 采用纯软件方法估计每帧数据的载波频差; 计算硬件调整值; 用计 算出的调整值调整数字解调器中的自动频率控制硬件。
9 .根据权利要求 7或 8所述的一种码分多址数字移动通信系统 的小区初始搜索方法, 其特征在于: 所述的采用纯软件方法估计每 帧数据的频差是采用公式
Figure imgf000016_0001
式中 cc代表估计的频差, I与 Q是正交解调信号, L是统计长度。
1 0 .根据权利要求 Ί或 8所述的一种码分多址数字移动通信系 统的小区初始搜索方法, 其特征在于: 所述的计算硬件调整值是采 用公式 /。(《) = /φ)* ^(«) , 式中 fe (n)是对第 n 帧接收数据估计出 的频差值, 调整系数 coef 范围是 0 - 1之间, k较大时; 则 coefk 较小。
1 1 .根据权利要求 7所述的一种码分多址数字移动通信系统的 小区初始搜索方法, 其特征在于所述的采用基于联合检测技术消除 多径与多址干扰, 将载波偏差纠正到基带解调要求的范围, 进一步 包括: 在每帧中加入数据突发中的训练序列中间码(Midamble), 用 于估计实际的信道响应; 终端设备利用联合检测技术消除多径及多 址干扰, 并解调训练序列中间码(Midamble)附近的符号; 利用这些 符号中包含的载波频差信息对硬件进行自动频率控制调整。
1 2.根据权利要求 7或 1 1所述的一种码分多址数字移动通信 系统的小区初始搜索方法, 其特征在于所述的利用联合检测技术消 除多径及多址干扰, 并解调训练序列中间码(M i damb 1 e)附近的符号 进一步包括: 釆用联合检测技术解调数据, 得到训练序列中间码 (Midamble)前面和后面的各 P 个符号, 分别记作 X(l) ... X(P)和 Y(l) ... Y(P) , 按公式 Xi(n) = X(n)/Xj(n) , Yi{n) = Y{n)IYj{n) 分别 计算出频偏的方向, 其中 Xj(n)=Yj(n) = ± π , ±3π/4 , 再通过 公式
Z = ^Yi(n)/Xi(n) 获得载波频差方向; 根据计算出的栽波频差方向, 设定硬件自动频 率控制的调整步长; 居获得的频差方向, 再以该一定的调整步长 调整硬件自动频率控制。
1 3.—种码分多址数字移动通信系统的小区初始搜索方法, 包 括: 由终端设备选择工作频点, 并在该频点上取得和基站的下行同 步; 由终端设备跟踪与基站间的载波偏差, 并在数字解调器中纠正 与基站间的载波偏差, 其特征在于:
所述的取得和基站的下行同步包括:
a.采用基于训练序列功率特征窗值的方法先判断出下行训练序 列时隙的一个范围;
b.在该范围内通过求接收数据和训练序列的相关获得精确的终 端设备接收位置;
所述的在数字解调器中纠正与基站间的载波偏差包括: a.用软件估计载波偏差, 并用判决反馈方法调整硬件; b.采用基于联合检测的载波偏差校正方法, 消除多径与多址干 扰, 将载波偏差纠正到基带解调要求的范围。
1 4 .一种码分多址数字移动通信系统的小区初始搜索方法, 其 特征在于包括:
使用功率特征窗值法寻找下行导频序列时隙 (DwPTS ) 的大致位 置范围, 并且确定工作频点; 在所确定的位置范围内通过求相关的 方法搜寻准确的接收位置, 获得下行同步; 釆用基于联合检测的载 波偏差校正方法开始进行载波频差恢复。
1 5 .根据权利要求 1 4所述的一种码分多址数字移动通信系统 的小区初始搜索方法, 其特征在于所述的使用功率特征窗值法寻找 下行导频序列时隙 (DwPTS ) 的大致位置范围进一步包括:
终端设备首先锁定一工作频点, 接收一帧完整的数据; 计算每个 符号的功率 P ; 在每个符号的位置上计算特征窗值(比); 计算整帧 数据的平均特征窗值比; 寻找整帧接收数据所有特征窗值中的最小 值; 计算平均特征窗值 /最小特征窗值, 判断其是否远远大于阈值, 若平均特征窗值 /最小特征窗值远远大于阈值, 此最小特征窗值的位 置就是下行导频序列时隙 (DwPTS ) 的起始位置。
1 6 .根据权利要求 1 5所述的一种码分多址数字移动通信系统 的小区初始搜索方法, 其特征在于所述的计算每个符号的功率 P, 是 先假定接收时刻为一个符号的起点, 将所有属于这个符号的码片按功 率相加, 得到每一个符号的功率。
1 7 .根据权利要求 1 4所述的一种码分多址数字移动通信系统 的小区初始搜索方法, 其特征在于所述的采用基于联合检测的载波 偏差校正方法开始进行载波频差恢复进一步包括:
a.接收一帧数据, 设帧数 n=0; b.采用纯软件方法估计每帧数据的频差;
c.计算栽波频差调整值, 即计算硬件调整值;
d.按照计算出的硬件调整值调整硬件自动频率控制,并让 n=n+l, 判断 n是否大于一预先设置的调整的帧数 Q, 并在 n不大于 Q时重 复执行步骤 a至 d; 在 n大于 Q时结束。
1 8 .根据权利要求 1 4或 1 7所述的一种码分多址数字移动通 信系统的小区初始搜索方法, 其特征在于所述的采用基于联合检测 的载波偏差校正方法开始进行载波频差恢复还进一步包括:
e.接收 m帧数据;
f.采用联合检测技术解调接收的 m 帧数据, 即解调训练序列中 间码附近的符号, 得到训练序列中间码前面和后面的各 P个符号; g.对 m帧数据中训练序列中间码前面和后面的各 P个符号分别 计算出频偏的方向;
h.才艮据计算出的频差方向, 设定硬件自动频率控制的调整步长; i.根据获得的频差方向, 再以该一定的调整步长调整硬件自动 频率控制。
1 9.根据权利要求 18所述的一种码分多址数字移动通信系统的 小区初始搜索方法, 其特征在于:所述的步骤 e至 I是重复执行的。
PCT/CN2001/000018 2000-03-27 2001-01-12 Procede de recherche initiale cellulaire dans un systeme de communication mobile numerique a acces multiple par repartition de code (amrc) WO2001074103A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AT01900378T ATE548807T1 (de) 2000-03-27 2001-01-12 Verfahren zur zellen-anfangssuche in einem digitalen cdma-mobiltelekommunikationssystem
AU2500401A AU2500401A (en) 2000-03-27 2001-01-12 Method of cell initial search in cdma digital mobile telecommunication system
MXPA02009561A MXPA02009561A (es) 2000-03-27 2001-01-12 Metodo para busqueda inicial de celda en un sistema de comunicacion movil de acceso multiple por division de codigo.
EP01900378A EP1330136B1 (en) 2000-03-27 2001-01-12 Method of cell initial search in cdma digital mobile telecommunication system
BRPI0109610-9A BRPI0109610B1 (pt) 2000-03-27 2001-01-12 Processo para pesquisa inicial de célula em um sistema de comunicação móvel cdma
CA 2403929 CA2403929C (en) 2000-03-27 2001-01-12 Method for cell initial search in cdma mobile communication system
JP2001571693A JP4530603B2 (ja) 2000-03-27 2001-01-12 Cdmaデジタル移動通信システムにおけるセル初期探索方法
AU2001225004A AU2001225004B2 (en) 2000-03-27 2001-01-12 Method of cell initial search in cdma digital mobile telecommunication system
US10/255,334 US6778588B2 (en) 2000-03-27 2002-09-25 Method for cell initial search in a CDMA mobile communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN00103548A CN1131653C (zh) 2000-03-27 2000-03-27 一种码分多址数字移动通信系统的小区初始搜索方法
CN00103548.7 2000-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/255,334 Continuation US6778588B2 (en) 2000-03-27 2002-09-25 Method for cell initial search in a CDMA mobile communication system

Publications (2)

Publication Number Publication Date
WO2001074103A1 true WO2001074103A1 (fr) 2001-10-04
WO2001074103A8 WO2001074103A8 (fr) 2003-05-15

Family

ID=4577070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/000018 WO2001074103A1 (fr) 2000-03-27 2001-01-12 Procede de recherche initiale cellulaire dans un systeme de communication mobile numerique a acces multiple par repartition de code (amrc)

Country Status (13)

Country Link
US (1) US6778588B2 (zh)
EP (1) EP1330136B1 (zh)
JP (1) JP4530603B2 (zh)
KR (1) KR100564826B1 (zh)
CN (1) CN1131653C (zh)
AT (1) ATE548807T1 (zh)
AU (2) AU2001225004B2 (zh)
BR (1) BRPI0109610B1 (zh)
CA (1) CA2403929C (zh)
MX (1) MXPA02009561A (zh)
RU (1) RU2274954C2 (zh)
TW (1) TW508967B (zh)
WO (1) WO2001074103A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100501757B1 (ko) * 2001-08-09 2005-07-18 가부시키가이샤 엔티티 도코모 이동국 장치, 이동 통신 시스템 및 캐리어 검출 방법
KR100524730B1 (ko) * 2002-11-02 2005-10-31 엘지전자 주식회사 이동 통신 시스템의 초기 동기 검색 방법
CN100362892C (zh) * 2004-07-01 2008-01-16 凯明信息科技股份有限公司 时分同步码分多址系统中的初始小区搜索方法和装置
US7672277B2 (en) 2003-08-04 2010-03-02 Datang Mobile Communications Co. Ltd. Method and device for estimating carrier frequency offset of subscriber terminal
US7894397B2 (en) 2004-08-05 2011-02-22 Lg Electronics Inc. Interrupting use of frequency layer convergence scheme

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224280C (zh) * 2002-12-27 2005-10-19 大唐移动通信设备有限公司 用于分时隙移动通信系统的时变信道校准方法
CN1512794A (zh) * 2002-12-30 2004-07-14 �ʼҷ����ֵ��ӹɷ����޹�˾ 一种tdd-cdma系统中用于移动终端的小区搜索方法及装置
AU2003211659A1 (en) * 2003-01-23 2004-08-13 Linkair Communications, Inc. Implement method and apparatus for downlink synchronization subsystem
US7633927B2 (en) 2003-01-31 2009-12-15 Nokia Corporation System and method for extending neighboring cell search window
CN1263322C (zh) * 2003-08-06 2006-07-05 大唐移动通信设备有限公司 Td-scdma移动通信系统小区初始搜索中的增益控制方法
KR100565313B1 (ko) * 2003-11-26 2006-03-30 엘지전자 주식회사 시분할다중접속 방식과 코드분할다중접속 방식이 혼합된이동통신 시스템의 도메인 전력 측정방법
CN1303839C (zh) * 2003-12-19 2007-03-07 北京天碁科技有限公司 一种降低小区初搜运算量并提高运算精度的方法及装置
CN100337508C (zh) * 2004-01-12 2007-09-12 大唐移动通信设备有限公司 移动通信系统中搜索下行同步信号位置的方法
CN1298114C (zh) * 2004-05-14 2007-01-31 中兴通讯股份有限公司 一种td-scdma系统确定上行同步时间提前量的方法
CN100403657C (zh) * 2004-05-25 2008-07-16 大唐移动通信设备有限公司 基于训练序列的td-scdma系统频偏补偿方法及装置
CN100356704C (zh) * 2004-06-02 2007-12-19 大唐移动通信设备有限公司 无线移动通信系统中对频偏进行补偿的方法
CN100369386C (zh) * 2004-06-29 2008-02-13 大唐移动通信设备有限公司 一种结合频偏补偿的联合检测方法和装置
US7684378B2 (en) * 2004-11-08 2010-03-23 Interdigital Technology Corporation Method and apparatus for estimating channelization codes in a wireless transmit/receive unit
CN1780174B (zh) * 2004-11-19 2011-05-25 上海宣普实业有限公司 时分双工系统中小区搜索第一和第二步骤的并行迭代方法
CN1780175B (zh) * 2004-11-19 2010-09-29 上海宣普实业有限公司 时分双工系统中小区搜索第一和第二步骤的并行迭代方法
US7917140B2 (en) * 2004-12-06 2011-03-29 Telefonaktiebolaget L M Ericsson (Publ) Initial cell search in mobile communications systems
WO2006067657A1 (en) * 2004-12-24 2006-06-29 Koninklijke Philips Electronics N.V. Method and apparatus for cell search in wireless communication system
CN1797990B (zh) * 2004-12-27 2010-12-08 上海宣普实业有限公司 时分同步码分多址系统中的频点扫描方法
WO2006121302A1 (en) 2005-05-13 2006-11-16 Samsung Electronics Co., Ltd. Method and apparatus for indexing physical channels in an ofdma system
CN100409588C (zh) * 2005-06-03 2008-08-06 上海原动力通信科技有限公司 时隙码分多址系统多小区联合检测方法
CN1905406B (zh) * 2005-07-28 2011-04-20 上海原动力通信科技有限公司 宽带时分双工蜂窝系统的同步方法
CN1988415B (zh) * 2005-12-21 2010-04-14 大唐移动通信设备有限公司 在cdma通信系统中判断下行导频信号发送方式的方法
CN1996791B (zh) * 2006-01-06 2015-09-09 上海原动力通信科技有限公司 一种宽带时分双工蜂窝系统下行同步方法
CN101009513B (zh) * 2006-01-26 2013-02-13 上海原动力通信科技有限公司 宽带时分双工蜂窝系统的小区同步方法及小区初搜方法
KR101208541B1 (ko) 2006-11-01 2012-12-05 엘지전자 주식회사 동기 신호 위치 검출 방법 및 이를 이용한 셀 탐색 방법
CN101072438B (zh) * 2007-06-15 2010-09-29 中兴通讯股份有限公司 一种td-scdma系统移动终端进行初始小区搜索的方法
JP2009089203A (ja) * 2007-10-02 2009-04-23 Panasonic Corp 無線装置および無線通信システム
CN101222280B (zh) * 2007-11-30 2012-02-29 深圳国人通信有限公司 单时隙功率检测的方法和装置
JP2009141832A (ja) * 2007-12-10 2009-06-25 Mitsubishi Electric Corp 通信システム、受信端末機および無線基地局
CN101958746B (zh) * 2010-04-02 2014-03-12 展讯通信(上海)有限公司 无线终端的粗同步方法
CN102821442B (zh) * 2011-06-10 2014-10-22 联芯科技有限公司 一种频点扫描方法和装置
CN103298101B (zh) * 2013-06-19 2016-02-17 中国人民解放军空军工程大学 一种宽范围的码辅助载波同步实现方法
CN104253680B (zh) * 2013-06-27 2018-07-31 华为技术有限公司 一种fbmc系统中同步信号的发送方法和装置
KR102421473B1 (ko) * 2015-10-01 2022-07-18 삼성전자주식회사 Td-scdma 시스템에서 캐리어 서치를 수행하는 통신 디바이스 및 그 제어 방법
CN105933052B (zh) * 2016-05-20 2019-09-06 中国电子科技集团公司第十研究所 时域交叉极化干扰对消方法
CN105897304B (zh) * 2016-05-31 2018-02-06 西安空间无线电技术研究所 一种跳频通信系统的快速同步方法
WO2018163440A1 (en) 2017-03-10 2018-09-13 Nec Corporation Position estimation apparatus
EP3769483A1 (en) * 2018-03-20 2021-01-27 Telefonaktiebolaget LM Ericsson (publ) A wireless device, a network node and methods therein for enabling and determining reference signal configurations in a wireless communications network
CN114584438B (zh) * 2022-01-05 2023-08-15 华信咨询设计研究院有限公司 一种基于基准载波频偏的5g cfo估计方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852430A2 (en) 1997-01-07 1998-07-08 Yozan Inc. Initial synchronization DS-CDMA asynchronous cellular system
CN1226127A (zh) * 1997-12-18 1999-08-18 松下电器产业株式会社 小区搜索方法及移动台装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805983A (en) * 1996-07-18 1998-09-08 Ericsson Inc. System and method for equalizing the delay time for transmission paths in a distributed antenna network
US6128470A (en) * 1996-07-18 2000-10-03 Ericsson Inc. System and method for reducing cumulative noise in a distributed antenna network
JP2937897B2 (ja) * 1996-09-30 1999-08-23 株式会社ワイ・アール・ピー移動通信基盤技術研究所 チャネル割当て方法および該方法を使用する通信網
JP3376224B2 (ja) * 1996-10-23 2003-02-10 株式会社エヌ・ティ・ティ・ドコモ Ds−cdma基地局間非同期セルラ方式における初期同期方法および受信機
ES2168776T3 (es) * 1997-06-17 2002-06-16 Siemens Ag Procedimiento para la sincronizacion de tiempo para una estacion movil en un sistema de comunicacion por radio.
CN1061205C (zh) * 1997-07-24 2001-01-24 北京信威通信技术有限公司 扩频通信系统中载波恢复和补偿的方法及其装置
JPH11112472A (ja) * 1997-08-04 1999-04-23 Toshiba Corp スぺクトラム拡散通信装置
JP3897427B2 (ja) * 1997-12-01 2007-03-22 松下電器産業株式会社 基地局装置、移動局装置、移動体通信システム、無線送信方法及び無線受信方法
US6490454B1 (en) * 1998-08-07 2002-12-03 Telefonaktiebolaget Lm Ericsson (Publ) Downlink observed time difference measurements
WO2002098094A1 (en) * 2001-05-31 2002-12-05 Nortel Networks Limited Apparatus and method for measuring sub-carrier frequencies and sub-carrier frequency offsets
AU2002359543A1 (en) * 2001-11-29 2003-06-10 Interdigital Technology Corporation System and method using primary and secondary synchronization codes during cell search

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852430A2 (en) 1997-01-07 1998-07-08 Yozan Inc. Initial synchronization DS-CDMA asynchronous cellular system
CN1195956A (zh) * 1997-01-07 1998-10-14 株式会社鹰山 码分多址基站间异步蜂窝式系统的初始同步方法和接收机
CN1226127A (zh) * 1997-12-18 1999-08-18 松下电器产业株式会社 小区搜索方法及移动台装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1330136A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100501757B1 (ko) * 2001-08-09 2005-07-18 가부시키가이샤 엔티티 도코모 이동국 장치, 이동 통신 시스템 및 캐리어 검출 방법
KR100524730B1 (ko) * 2002-11-02 2005-10-31 엘지전자 주식회사 이동 통신 시스템의 초기 동기 검색 방법
US7672277B2 (en) 2003-08-04 2010-03-02 Datang Mobile Communications Co. Ltd. Method and device for estimating carrier frequency offset of subscriber terminal
CN100362892C (zh) * 2004-07-01 2008-01-16 凯明信息科技股份有限公司 时分同步码分多址系统中的初始小区搜索方法和装置
US7894397B2 (en) 2004-08-05 2011-02-22 Lg Electronics Inc. Interrupting use of frequency layer convergence scheme

Also Published As

Publication number Publication date
BR0109610A (pt) 2003-06-17
CA2403929A1 (en) 2002-09-24
AU2001225004B2 (en) 2005-03-17
KR20020092401A (ko) 2002-12-11
CA2403929C (en) 2008-09-23
US6778588B2 (en) 2004-08-17
AU2500401A (en) 2001-10-08
RU2274954C2 (ru) 2006-04-20
WO2001074103A8 (fr) 2003-05-15
EP1330136B1 (en) 2012-03-07
US20030031238A1 (en) 2003-02-13
MXPA02009561A (es) 2004-07-30
EP1330136A4 (en) 2009-11-04
JP4530603B2 (ja) 2010-08-25
CN1315808A (zh) 2001-10-03
TW508967B (en) 2002-11-01
EP1330136A1 (en) 2003-07-23
RU2002128747A (ru) 2004-03-10
JP2003529302A (ja) 2003-09-30
CN1131653C (zh) 2003-12-17
ATE548807T1 (de) 2012-03-15
KR100564826B1 (ko) 2006-03-30
BRPI0109610B1 (pt) 2015-08-18

Similar Documents

Publication Publication Date Title
WO2001074103A1 (fr) Procede de recherche initiale cellulaire dans un systeme de communication mobile numerique a acces multiple par repartition de code (amrc)
US7058399B2 (en) Search window delay tracking in code division multiple access communication systems
EP1435139B1 (en) Acquisition circuit for low chip rate option for mobile telecommunication system
CN1856945B (zh) 接收机的初始同步装置和方法
CN1607787B9 (zh) 时分无线通信系统的自动频率校正方法
WO2005013524A1 (fr) Procede et dispositif permettant d&#39;estimer le decalage des frequences porteuses d&#39;un terminal d&#39;abonne
US7580428B1 (en) 3GPP WCDMA receiver using pipelined apparatus and method for performing cell searches
CN105897304B (zh) 一种跳频通信系统的快速同步方法
EP1407588A1 (en) Method and apparatus for acquiring and tracking pilots in a cdma communication system
US6885693B1 (en) Synchronization in digital data transmission systems
JP2003509892A (ja) Cdma信号成分の処理方法
US7095811B1 (en) Apparatus and method for secondary synchronization channel detection in a 3GPP WCDMA receiver
WO1993020633A1 (en) Method and apparatus for modifying a decision-directed clock recovery system
CN1327720C (zh) 一种时分同步码分多址接入系统中同步码调制相位簇的检测方法
CN2757450Y (zh) 粗略频率校正装置
CN1607788B (zh) 时分无线通信系统接收机的自动频率校正方法
US7133440B1 (en) Acquisition of a synchronous CDMA TDD QPSK waveform using variable thresholds for PN and burst synchronization
CN1607787B (zh) 时分无线通信系统的自动频率校正方法
WO2003007520A1 (fr) Procede et systeme de synchronisation rapide de liaison montante et recepteur pour voie d&#39;acces d&#39;une station de base
JP4077255B2 (ja) 無線通信装置
RU2418373C2 (ru) Приемник для сети беспроводной связи с расширенным диапазоном
JP2005341277A (ja) 無線通信端末装置及び無線通信端末装置の伝送路推定値の補正方法
JP2003283377A (ja) Cdma受信装置及び同期捕捉サーチ方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: (EXCEPT EP (TR))

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001900378

Country of ref document: EP

Ref document number: IN/PCT/2002/00915/DE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001225004

Country of ref document: AU

Ref document number: 2403929

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10255334

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027012743

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2001 571693

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/009561

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2002 2002128747

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020027012743

Country of ref document: KR

CFP Corrected version of a pamphlet front page

Free format text: PUBLISHED FIGURE REPLACED BY CORRECT FIGURE

WWP Wipo information: published in national office

Ref document number: 2001900378

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001225004

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020027012743

Country of ref document: KR