WO2001071190A1 - Pompe a membrane a armature oscillante - Google Patents

Pompe a membrane a armature oscillante Download PDF

Info

Publication number
WO2001071190A1
WO2001071190A1 PCT/DE2001/001050 DE0101050W WO0171190A1 WO 2001071190 A1 WO2001071190 A1 WO 2001071190A1 DE 0101050 W DE0101050 W DE 0101050W WO 0171190 A1 WO0171190 A1 WO 0171190A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
voltage
diaphragm pump
control
vibrating armature
Prior art date
Application number
PCT/DE2001/001050
Other languages
German (de)
English (en)
Inventor
Peter Krause
Michael Ludwig
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE50109875T priority Critical patent/DE50109875D1/de
Priority to EP01921216A priority patent/EP1266141B1/fr
Publication of WO2001071190A1 publication Critical patent/WO2001071190A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • F04B17/042Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids the solenoid motor being separated from the fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0202Linear speed of the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/04Motor parameters of linear electric motors
    • F04B2203/0403Magnetic flux
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/09Flow through the pump

Definitions

  • a fluid is conveyed into and out of a pump chamber via a fluid outlet with an outlet valve and via an outlet with an outlet valve.
  • the request process takes place through a periodic change in volume of the pump chamber in cooperation with the outlet and the outlet valve.
  • the change in volume is achieved by means of a membrane which partially closes off the pump chamber and is periodically deflected by an oscillating armature driven by an electrical coil.
  • the flow or the flow of the fluid through the pump and thus the delivery capacity of the pump results from the amount and frequency of the diaphragm deflection, whereby in the case of gases to be demanded their compressibility and the resistance against which the pump work must affect the flow.
  • the flow measurement is usually carried out by means of a separate flow measurement device, for example a flow sensor, which is arranged upstream or downstream of the pump.
  • a separate flow measurement device for example a flow sensor, which is arranged upstream or downstream of the pump.
  • the invention is based on the object of enabling flow measurement in the case of a vibrating armature diaphragm pump without the need for a separate flow measuring device or a structural modification of the pump.
  • the object is achieved by the vibrating anchor diaphragm pump specified in claim 1.
  • Advantageous developments of the oscillating armature diaphragm pump according to the invention can be found in the subclaims.
  • the fluid is only required due to the kinetic energy of the system consisting of the vibrating armature, membrane and fluid that was previously accelerated by the control of the coil.
  • the greater the flow or the flow of the fluid the less the vibrating armature is braked, so that its speed curve, for example the period until the speed drops below a predetermined value, is a measure of the flow.
  • the speed profile of the vibration armature is recorded during the activation-free times via the voltage occurring at the coil. If the vibrating armature is designed as a magnet armature, the detected voltage corresponds to the speed-dependent voltage induced by the magnet armature of the coil.
  • the detected voltage corresponds to the voltage generated by the decrease in the coil current after activation when the magnetic field is broken down, the breakdown of the magnetic field and the voltage thus detected being dependent on the inductance of the coil, which in turn depends Depends on the speed curve of the vibration anchor changes.
  • the voltage on the coil is preferably detected here immediately after the control.
  • FIG. 1 shows a first exemplary embodiment of the vibration armature diaphragm pump according to the invention with a magnet armature
  • FIG. 2 shows a further exemplary embodiment of the vibration anchor diaphragm pump in the form of a
  • Double diaphragm pump with ferromagnetic vibrating armature Figure 3 shows an example of a control of the pump
  • Voltage pulses and Figure 4 shows an example of a control of the pump with a sinusoidal control voltage.
  • the vibration anchor diaphragm pump shown in FIG. 1 has a pump chamber 1 with a fluid inlet 2 and a fluid outlet 3 each in the form of a connection for a fluid line, not shown here.
  • a pump chamber 1 In the area of the fluid passage 2 there is an inlet valve 4 and in the area of the fluid outlet 3 there is an outlet valve 5, which only allow the fluid to be pumped to flow in the direction from the fluid passage 2 to the fluid outlet 3 and block it in the opposite direction.
  • the pump chamber 1 is closed on one side by a membrane 6, which can be deflected by an oscillating armature 8 movably mounted on a coil 7.
  • the vibrating armature 8 is supported by the membrane 6 and a spring 9 capable of oscillation.
  • the vibrating armature 8 is also designed as a magnet armature.
  • a control device 10 is connected to the coil 7, which periodically applies a control voltage to the coil 7.
  • a flow measuring device 11 is connected to the coil 7, which detects the voltage occurring at the coil 7 during the activation-free times between two successive exposures of the coil 7 and generates a flow measurement signal 12 on the output side.
  • the control device 10 communicates to the flow measuring device 11 the information about the control-free times in the form of a control signal 13.
  • the voltage across the coil 7 detected by the flow measurement device 11 m during the activation-free times corresponds to the voltage induced by the moving magnet armature 8 m of the coil 7.
  • the exemplary embodiment shown in FIG. 2 of the oscillating armature diaphragm pump according to the invention like the example according to FIG. 1, has a pump chamber 1, a fluid channel 2, a fluid outlet 3, an inlet valve 4, an outlet valve 5, a membrane 6, a coil 7, an oscillating armature 8, a control device 10 generating a control signal 13 and a flow measuring device 11 generating a flow measurement signal 12.
  • a pump chamber 1 a fluid channel 2
  • a fluid outlet 3 an inlet valve 4
  • an outlet valve 5 a membrane 6, a coil 7, an oscillating armature 8
  • a control device 10 generating a control signal 13
  • a flow measuring device 11 generating a flow measurement signal 12.
  • FIG. 2 of the oscillating armature diaphragm pump according to the invention has a pump chamber 1, a fluid channel 2, a fluid outlet 3, an inlet valve 4, an outlet valve 5, a membrane 6, a coil 7, an oscillating armature 8, a control device 10 generating a control
  • the oscillating armature diaphragm pump is designed here as a double diaphragm pump with a further pump chamber 14, which has a further fluid inlet 15 with an outlet valve 16 and a further fluid outlet 17 with an outlet valve 18 and is closed off with a further membrane 19 ,
  • the oscillating armature 8, which is mounted between the two membranes 6 and 19 in a floating manner, is not designed here, for example, as a magnet armature, but instead consists only of ferromagnetic material.
  • the voltage across the coil 7 detected by the flow measurement device 11 m during the non-triggering times corresponds to the voltage generated after each application of the coil 7 with the trigger voltage during the subsequent reduction of the magnetic field by the decrease in the coil current.
  • the flow measuring device 11 has a current measuring resistor 20 on the input side, at which a voltage proportional to the decaying coil current is generated and is evaluated by a downstream evaluation device 21 to generate the flow measuring signal 12.
  • FIG. 3 shows an example of the periodic application of voltage pulses 22 to the coil 7.
  • the voltage 23 induced by the magnet armature 8 m of the coil 7 is detected m in the subsequent activation-free time T until the next voltage pulse 22 and exceeded of a threshold value 24 is monitored.
  • the time TA is therefore a measure of the flow of the fluid through the oscillating armature diaphragm pump and thus its pumping capacity.
  • FIG. 4 shows an example of the application of a sinusoidal control voltage 25 to the coil 7, the course of which is interrupted at predetermined times for the duration of the control-free time T.
  • the voltage 23 occurring at the coil 7 is detected and, for example, as in FIG. 3, evaluated with regard to a threshold value 4.
  • the voltage 23 occurring on the coil 7 at the control-free times T is preferably carried out immediately after the control voltage 22 or 25 has been applied to the coil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Reciprocating Pumps (AREA)

Abstract

L'invention concerne une pompe à membrane à armature oscillante comprenant une bobine (7) entraînant l'armature oscillante (8), et un dispositif de commande (10) alimentant périodiquement la bobine (7) par une tension de commande, caractérisée en ce que pour la mesure du débit durant la période exempte de commande entre deux alimentations successives de la bobine (7) en tension de commande, la tension appliquée sur la bobine (7) est détectée, ce qui a pour conséquence de générer un signal de mesure de débit (12).
PCT/DE2001/001050 2000-03-20 2001-03-19 Pompe a membrane a armature oscillante WO2001071190A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE50109875T DE50109875D1 (de) 2000-03-20 2001-03-19 Schwinganker-membranpumpe
EP01921216A EP1266141B1 (fr) 2000-03-20 2001-03-19 Pompe a membrane a armature oscillante

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10013797.0 2000-03-20
DE10013797A DE10013797B4 (de) 2000-03-20 2000-03-20 Schwinganker-Membranpumpe

Publications (1)

Publication Number Publication Date
WO2001071190A1 true WO2001071190A1 (fr) 2001-09-27

Family

ID=7635647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/001050 WO2001071190A1 (fr) 2000-03-20 2001-03-19 Pompe a membrane a armature oscillante

Country Status (5)

Country Link
EP (1) EP1266141B1 (fr)
AT (1) ATE327433T1 (fr)
DE (2) DE10013797B4 (fr)
ES (1) ES2265425T3 (fr)
WO (1) WO2001071190A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608587A (zh) * 2011-06-20 2014-02-26 三菱电机株式会社 流体运送装置
WO2016156173A1 (fr) * 2015-04-01 2016-10-06 Koninklijke Philips N.V. Unité de pompe pour tire-lait
DE102016121333A1 (de) * 2016-11-08 2018-05-09 Lutz Holding GmbH Doppelmembranpumpe, verfahren zum betrieb einer solchen doppelmembranpumpe, sowie membranpumpe

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1515044A1 (fr) * 2003-09-11 2005-03-16 Franco De Bernardi Pompe à membrane pour fluides
US20170298919A1 (en) 2016-04-18 2017-10-19 Ingersoll-Rand Company Direct drive linear motor for conventionally arranged double diaphragm pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599052A (en) * 1984-03-22 1986-07-08 J. Eberspacher Control device for metering pump
DE3719460A1 (de) * 1986-07-03 1988-01-07 Erich Becker Verfahren zum antreiben eines mit einem schwingankerantrieb verbundenen foerderelementes einer pumpe sowie danach arbeitende pumpe
US5342176A (en) * 1993-04-05 1994-08-30 Sunpower, Inc. Method and apparatus for measuring piston position in a free piston compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH597596A5 (fr) * 1975-06-27 1978-04-14 Hoffmann La Roche
DE3546189A1 (de) * 1985-12-27 1987-07-02 Ott Kg Lewa Verfahren und vorrichtung zur durchflussmessung bei oszillierenden verdraengerpumpen
US4795314A (en) * 1987-08-24 1989-01-03 Cobe Laboratories, Inc. Condition responsive pump control utilizing integrated, commanded, and sensed flowrate signals
US5032772A (en) * 1989-12-04 1991-07-16 Gully Wilfred J Motor driver circuit for resonant linear cooler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599052A (en) * 1984-03-22 1986-07-08 J. Eberspacher Control device for metering pump
DE3719460A1 (de) * 1986-07-03 1988-01-07 Erich Becker Verfahren zum antreiben eines mit einem schwingankerantrieb verbundenen foerderelementes einer pumpe sowie danach arbeitende pumpe
US5342176A (en) * 1993-04-05 1994-08-30 Sunpower, Inc. Method and apparatus for measuring piston position in a free piston compressor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608587A (zh) * 2011-06-20 2014-02-26 三菱电机株式会社 流体运送装置
US20140147308A1 (en) * 2011-06-20 2014-05-29 Mitsubishi Electric Corporation Fluid sending apparatus
EP2743505A4 (fr) * 2011-06-20 2015-12-02 Mitsubishi Electric Corp Dispositif d'acheminement de fluide
US10060424B2 (en) 2011-06-20 2018-08-28 Mitsubishi Electric Corporation Fluid sending apparatus
US10208744B2 (en) 2011-06-20 2019-02-19 Mitsubishi Electric Corporation Fluid sending apparatus
WO2016156173A1 (fr) * 2015-04-01 2016-10-06 Koninklijke Philips N.V. Unité de pompe pour tire-lait
RU2712858C2 (ru) * 2015-04-01 2020-01-31 Конинклейке Филипс Н.В. Насосный узел для молокоотсоса
US10814052B2 (en) 2015-04-01 2020-10-27 Koninklijke Philips N.V. Pump unit for a breast pump
DE102016121333A1 (de) * 2016-11-08 2018-05-09 Lutz Holding GmbH Doppelmembranpumpe, verfahren zum betrieb einer solchen doppelmembranpumpe, sowie membranpumpe
US10662937B2 (en) 2016-11-08 2020-05-26 Lutz Holding GmbH Double-membrane pump and method for operation of such a double-membrane pump

Also Published As

Publication number Publication date
DE10013797A1 (de) 2001-10-04
EP1266141B1 (fr) 2006-05-24
ES2265425T3 (es) 2007-02-16
DE10013797B4 (de) 2004-12-16
DE50109875D1 (de) 2006-06-29
EP1266141A1 (fr) 2002-12-18
ATE327433T1 (de) 2006-06-15

Similar Documents

Publication Publication Date Title
EP0317705B1 (fr) Dispositif de commande pour doser et infuser des liquides dans le corps à partir d'un réservoir
EP1715229B1 (fr) Dispositif de soupape
DE10322220C5 (de) Störungsfrüherkennung an Pumpenventilen
EP2165770A1 (fr) Dispositif de sortie
DE3706338A1 (de) Membranpumpvorrichtung
DE4241073C1 (de) Apparat für die dosierte Abgabe von einem Fluid, insbesondere von einem Schmiermittelfluid
EP1889046A1 (fr) Procede et dispositif pour surveiller par ultrasons la presence d'air dans un ecoulement liquide
DE2142956C3 (de) Steuereinrichtung für eine Verdrängerpumpe oder Verdrängungsmesskammer
EP2184492B1 (fr) Procédé destiné à la commande de pompe péristaltique
EP2165769A2 (fr) Dispositif de distribution
WO2001071190A1 (fr) Pompe a membrane a armature oscillante
DE3829512C2 (fr)
WO1998024014A1 (fr) Procede et dispositif d'examen et/ou de reglage de soupapes
DE19939157A1 (de) Verfahren zum Ansteuern eines Schwingungserzeugers und Versorgungsschaltung für einen Schwingungserzeuger
DE102011106932B4 (de) Verfahren zum Betrieb eines Geräts zum Fördern und Dosieren
DE3520734A1 (de) Verfahren und einrichtung zum betrieb einer kreiselpumpe
DE102019212873A1 (de) Erfassungseinrichtung für den Betrieb einer Stelleinheit
DE102012212992B3 (de) Viskositätssensor und Verfahren zur Bestimmung der Viskosität von Flüssigkeiten
DE3520538A1 (de) Verfahren und einrichtung zum betrieb einer kreiselpumpe
DE102013209134A1 (de) Verfahren und Vorrichtung zur Erkennung eines Ankeranschlags eines elektromechanischen Aktuators
DE3810669C2 (de) Vorrichtung zur Überwachung des Pegelstandes einer Flüssigkeit
DE102016108118A1 (de) Dosierpumpe und Verfahren zum Betreiben einer Dosierpumpe
EP0379718A2 (fr) Dispositif et méthode pour déplacer des fluides
EP3081821B1 (fr) Actionneurs de vannes et systèmes de vannes
DE2658104A1 (de) Vorrichtung zum automatischen betrieb kuenstlicher kreislaufpumpen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001921216

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001921216

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001921216

Country of ref document: EP