WO2001063686A1 - Composition a base de solution electrolytique pour accumulateur au lithium - Google Patents

Composition a base de solution electrolytique pour accumulateur au lithium Download PDF

Info

Publication number
WO2001063686A1
WO2001063686A1 PCT/JP2001/001142 JP0101142W WO0163686A1 WO 2001063686 A1 WO2001063686 A1 WO 2001063686A1 JP 0101142 W JP0101142 W JP 0101142W WO 0163686 A1 WO0163686 A1 WO 0163686A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
methyl
lithium secondary
secondary battery
sulfoxide
Prior art date
Application number
PCT/JP2001/001142
Other languages
English (en)
French (fr)
Inventor
Koji Shimada
Yoshinori Yoshida
Shinichi Tai
Daisuke Hirakawa
Original Assignee
Sumitomo Seika Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co., Ltd. filed Critical Sumitomo Seika Chemicals Co., Ltd.
Publication of WO2001063686A1 publication Critical patent/WO2001063686A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte composition for a lithium secondary battery.
  • Lithium secondary batteries typically, L i C o0 2, L i M n 0 4, L it N i 0 lithium oxides such as 2 is used as the positive electrode active material, metal lithium as an anode active material , Lithium-containing alloys, carbonaceous materials and the like are used.
  • the lithium Kisafuruororin acid (L i PF 6), tetrafurfuryl O b lithium borate (L i BF 4), lithium perchlorate (L i C 1_Rei 4), triflate Ruo b methanesulfonic acid A non-aqueous electrolyte in which a lithium salt such as lithium (L i S0 3 CF 3 ) is dissolved is used.
  • lithium ions move between the positive electrode and the negative electrode via the non-aqueous electrolyte. It is like that.
  • Such a lithium secondary battery has a high energy density capable of generating a high voltage of 4 V or more, and is excellent in reliability such as storage properties, so that it can be used in consumer electronics such as personal computers and mobile phones. It is widely used as a power source for equipment.
  • non-aqueous electrolytes for lithium secondary batteries generally include high dielectric constant solvents such as ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, and sulfolane, and low viscosity solvents such as dimethyl carbonate and ethyl methyl carbonate.
  • high dielectric constant solvents such as ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, and sulfolane
  • low viscosity solvents such as dimethyl carbonate and ethyl methyl carbonate.
  • Kisafuruorori lithium phosphate to a mixed solvent containing a (L i PF 6), tetrafurfuryl O b lithium borate (L i BFj, lithium perchloric (L i C 1_Rei 4), triflate Ruo b lithium methanesulfonate ( Lithium salts such as L i S 0 3 CF 3 ) have been used.However, batteries using such electrolytes have an irreversible reaction between the negative electrode and the non-aqueous electrolyte during the initial stage of charging. ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • Japanese Patent Application Laid-Open No. 11-32944 describes a method of using a non-aqueous solvent generated when a carbon material such as natural graphite or artificial graphite is used as a negative electrode.
  • a method is proposed in which a vinyl sulfone derivative is added to the non-aqueous electrolyte.
  • these methods did not sufficiently solve the above problem. For these reasons, there is a need for an electrolyte solution that is superior in initial charge / discharge efficiency, has little decrease in charge / discharge efficiency with the progress of charge / discharge cycles, and can provide a battery with excellent storage stability. ing. Disclosure of the invention
  • the present invention provides an electrolyte composition for a lithium secondary battery that has excellent initial charge / discharge efficiency, has a small decrease in charge / discharge efficiency with the progress of the charge / discharge cycle, and can provide a battery with excellent storage stability.
  • the task is to provide.
  • the present inventors have found that the aforementioned problems can be solved by including a specific ester compound and 7 or a sulfoxide compound in a non-aqueous electrolytic solution, and have completed the present invention.
  • the electrolytic solution composition for a lithium secondary battery of the present invention comprises a non-aqueous solvent containing a high dielectric constant solvent and a low-viscosity solvent, a lithium salt dissolved in the non-aqueous solvent, and a non-aqueous solvent. Further, it contains at least one of an ester compound represented by the following general formula (1) and a sulfoxide compound represented by the following general formula (2).
  • the lengths' and ⁇ 'indicate German,' /: and ⁇ represent 1 to 4 non-S-substituted alkyl S or halogenated alkyl S, and n is 1 Or 2
  • Examples of the unsubstituted alkyl group having 1 to 4 carbon atoms in the ester compound include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
  • a methyl group and an ethyl group are exemplified.
  • halogenated alkyl group having 1 to 4 carbon atoms in the ester compound examples include, for example, CH 2 .F—, CHF 2 —, CF 3 —, CH 3 CHF—, CH 2 CF 2 —, CH, FCH 2 —, CH 2 FCHF—, CH, FCF, CHF, CH, CHF, CHF—, CHF 2 CF 2 _, CF 3 CH 2 _, CF 3 CHF—, CF 3 CF and the like.
  • CHF 2 — and CF 3 — are exemplified.
  • ester compound examples include, for example, methyl methyl thioacetate, methyl thioacetate, propyl methyl thioacetate, methyl butyl thioacetate, methyl methyl thiopropionate, methyl ethyl thiopropionate, propyl methyl thiopropionate, butyl methyl thiopropionate, difluoromethyl thioate Methyl acetate, ethinole difluoromethylthioacetate, and difluoromethylthio alcohol.
  • Mouth pill butyl difluoromethyl thioacetate, methyl trifluoromethyl thioacetate, ethyl trifluoromethyl thioacetate, propyl trifluoromethyl thioacetate, butynole trifluoromethyl thioate, methyl difluoromethyl thiopropionate, methyl ethyl difluoromethyl thiopropionate, Propyl difluoromethylthiopropionate, butyl difluoromethylthiopropionate and the like.
  • Preferable examples include methyl methylthioacetate, methyl ethyl thioacetate, methyl difluoromethinorethioacetate, ethyl ethyl difluoromethylthioacetate, and methyl difluoromethylthiopropionate. These ester compounds may be used alone or in combination of two or more.
  • an ester compound can be produced by reacting a thiocarboxylic acid ester with a halogenated alkane in an alcohol in the presence of a base such as sodium alcoholate.
  • Examples of the ⁇ -or non-g-substituted alkyl S having ⁇ number of 1 to 4 in the sulfoxide compound include -methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, Examples thereof include an isobutyl group, a methoxymethyl group, an acetylmethyl group, a methoxycarbonylmethyl group, an acetyloxymethyl group, a methylthiomethyl group, a cyanomethyl group, and an N, N-dimethylaminomethyl group.
  • a methyl group, an ethyl group, an acetylmethyl group and a methoxycarbonylmethyl group are exemplified.
  • the substituted or unsubstituted phenyl group in the sulfoxide compound include, for example, a phenyl group, a tolyl group, an ethenyl phenyl group, a phenyl phenyl group, a bromophenyl group, a fluorophenyl group, a difluorophenyl group, a methoxyphenyl group, and a phenyl group.
  • Examples include a cetylphenyl group, a cyanophenyl group, a methylthiophenyl group, a methoxycarbylphenyl group, and an N, N-dimethylaminophenyl group.
  • a phenyl group, a difluorophenyl group, and an acetyl phenyl group are exemplified.
  • sulfoxide compound examples include, for example, dimethyl sulfoxide, getyl sulfoxide, di (acetylmethyl) sulfoxide, di (methoxycarbonylboninolemethyl) sulfoxide, diphenylenolesulfoxide, ditrinolesulfoxide, di (methoxyphenyl) sulfoxide.
  • methylphenyl sulfoxide, diphenyl sulfoxide, di (acetyl phenyl) sulfoxide are exemplified.
  • These sulfoxide compounds may be used alone or in combination of two or more.
  • the content of the ester compound and the Z or sulfoxide compound is from 0.01 to 10% by weight, preferably from 0.05 to 5% by weight, based on the non-aqueous electrolyte. / 0 .
  • the content of the ester compound and / or the sulfoxide compound is 0.01 wt. /. If it is less than 10%, the effect of excellent initial charge / discharge efficiency is not recognized. Even if the content exceeds 10% by weight, the effect corresponding to the content cannot be obtained, and the power is not economical, but the battery capacity is reduced. It is not preferable because the cycle characteristics are impaired.
  • the ester compound and the sulfoxide compound coexist, the content refers to the total amount.
  • the non- ⁇ 3 ⁇ 43 ⁇ 4 is preferably a ⁇ solvent of a ⁇ -inducing solvent and a low-viscosity solvent: the ⁇ -inducing; solvent is not particularly limited, and examples thereof include cyclic carbonates (ethylene carbonate, propylene acid ⁇ ⁇ ⁇ ⁇ ⁇ ). , Butylene carbonate, etc.), cyclic carboxylate ( ⁇ -butyrolactone, ⁇ -perolactone, etc.) and sulfolane. These may be used alone or in combination of two or more.
  • the low-viscosity solvent is not particularly restricted but includes, for example, chain carbonate (dimethyl carbonate, getyl carbonate, ethyl methyl carbonate, etc.), cyclic ether (tetrahydrofuran, 1,3-dioxolan, etc.), chain ether ( 1,2-dimethoxetane, 1,2-etoxetane, etc.) and acetonitrile. These may be used alone or in combination of two or more.
  • the mixing ratio of the high dielectric constant solvent and the low viscosity solvent is usually 2: 8 to 8: 2, preferably 3: 7 to 7: 3 by volume.
  • lithium salt (electrolyte) dissolved in the non-aqueous solvent examples include lithium hexafluorophosphate (L i PF 6 ), lithium tetrafluoroborate (L i BF 4 ), and lithium perchlorate (L i C 10 4), lithium salts such as triflate Ruo b lithium methanesulfonate (L i SO3 C F3) is preferably used.
  • These electrolytes are usually used after being dissolved in a non-aqueous solvent so as to have a concentration of 0.1 to 2 mol / liter, preferably 0.5 to 1.5 mol Z liter.
  • the configuration of the secondary battery using the electrolyte solution for a secondary battery of the present invention is not particularly limited, and a known configuration can be used.
  • the positive electrode active material L i C O_ ⁇ 2, L i Mn 2 0 4 , L i N i O, available lithium oxide and the like.
  • the negative electrode active material include metal lithium, lithium-containing alloys, pyrolytic carbons, cokes, artificial graphite, natural graphite, and other graphite ions, organic polymer combustors, and lithium ion doping materials such as carbon fibers.
  • a carbon material that can be undoped is used.
  • the initial charge / discharge efficiency of a lithium secondary battery is improved, and a decrease in charge / discharge efficiency due to repeated charge / discharge cycles is suppressed. be able to.
  • FIG. 1 is a schematic cross-sectional view of a coin-type battery used in various examples and comparative examples of the present invention.
  • Lithium hexafluorophosphate (L i PF 6 ) was dissolved in an equal volume mixture of ethylene carbonate and dimethyl carbonate to a concentration of 1 mol Zl, and methyl difluoromethylthioacetate was added to the nonaqueous electrolyte obtained.
  • the carohydrate was added and dissolved so as to have a content of 0.5% by weight to obtain an electrolyte composition for a lithium secondary battery.
  • a coin-type battery having an outer diameter of 2 Omm and a height of 3 mm was manufactured using the obtained electrolytic solution.
  • This coin-type battery comprises a negative electrode 1, a positive electrode 2, a separator 3 for separating these two electrodes, a lid 4 for conducting to the negative electrode 1, a case 5 for conducting to the positive electrode 2, a lid 4 and a case 5 And an annular seal member 6 that insulates and seals the space between them.
  • Negative electrode 1 contains 90 weights of artificial graphite (trade name: MCMB, manufactured by Osaka Gas Chemical Co., Ltd.). /.
  • polyvinylidene fluoride was mixed at a ratio of 10% by weight, compression molded, and punched into a disk shape.
  • Positive electrode 2 has Li CoO, 90 weight. /. , Graphite 7 weight. /. 3 weight of fluororesin as binder. /.
  • a mixture obtained by press-molding the above mixture into a disk shape was used.
  • As the separator 3 a porous separator made of polypropylene was used, and the cover 4 and the case 5 were press-bonded together with the above-mentioned electrolyte composition between the negative electrode 1 and the positive electrode 2.
  • the fabricated coin-type battery was charged at a current of lmA and a maximum voltage of 4.2 V with low current and low current. Then, charging was completed when the charging current became 50 / A or less. Subsequently, discharging was performed until the voltage became constant at a constant current of 1 mA, and the voltage became £ 2.7 V. Such a charge / discharge operation was repeated a predetermined number of times, and a discharge capacity and a charge capacity were measured, respectively, and charge / discharge efficiency was calculated from the following equation. The results are shown in Table 1.
  • Charge / discharge efficiency (%) (discharge capacity (mAh / g) Z charge capacity (mAh / g)) X 100
  • Example 2 the content of difluoromethylthio methyl acetate ⁇ . 2 weight 0 /.
  • An electrolyte solution composition was obtained in the same manner as in Example 1, except that the composition was changed to.
  • a coin-type battery was produced in the same manner as in Example-1, and its performance was evaluated. The results are shown in Table 1.
  • Example 3 an electrolytic solution composition was obtained in the same manner as in Example 1, except that the ester compound was changed to ethyl difluoromethylthioacetate. Using the obtained electrolyte solution composition, a coin-type battery was produced in the same manner as in Example 1, and the performance was evaluated. The results are shown in Table 1.
  • Example 4 an electrolytic solution composition of the present invention was obtained in the same manner as in Example 1, except that the ester compound was changed to methyl methylthioacetate. Using the obtained electrolyte solution composition, a coin-type battery was produced in the same manner as in Example 1, and the performance was evaluated. The results are shown in Table 1. (Example 5)
  • Example 5 difluorofluoroethylene phosphate (L i PF 6 ) was dissolved in a mixture of propylene carbonate and dimethyl carbonate at a volume ratio of 1: 2 to a concentration of 1 mol / liter, and difluorofluoroethylene was added to the electrolyte. Methyl methylthioacetate was added and dissolved to a content of 0.2% by weight to obtain an electrolyte composition for a lithium secondary battery. Electrolysis obtained A liquid pond was prepared, and the upper part was prepared. The results are shown in Table 1.
  • Example 6 the ester compound in Example 1 was changed to a sulfoxide compound. Specifically, an electrolytic solution composition for a lithium secondary battery was obtained by using difuninyl sulfoxide instead of methyl difluoromethylthioacetate in Example 1. Using the obtained electrolyte solution composition, a coin-type battery was produced in the same manner as in Example 1, and its performance was evaluated. The results are shown in Table 1.
  • Example 7 the content of diphenyl sulfoxide was 0.2% by weight.
  • An electrolyte solution composition was obtained in the same manner as in Example 6, except that the ratio was changed to / 0 .
  • Using the obtained electrolyte solution composition a coin-type battery was produced in the same manner as in Example 1, and the performance was evaluated. The results are shown in Table 1.
  • Example 8 an electrolytic solution composition was obtained in the same manner as in Example 6, except that the sulfoxide compound was changed to methylphenyl sulfoxide. Using the obtained electrolytic solution composition, a coin-type battery was produced in the same manner as in Example 1, and its performance was evaluated. The results are shown in Table 1.
  • An electrolytic solution composition was obtained in the same manner as in Example 6, except that the sulfoxide compound was changed to di (acetylphenyl) sulfoxide. Using the obtained electrolyte solution composition, a coin-type battery was produced in the same manner as in Example 1, and its performance was evaluated. The results are shown in Table 1- )> lo)
  • Example 10 In Example 10, the concentration of lithium hexafluorophosphate (L i PFJ in a 1: 1 mixture of brovirene acid and dimethyl carbonate in a 1: 2 mixture) was dissolved in an electrolytic solution in which diphenyl was dissolved to a concentration of 1 mol liter. Sulfoxide was added and dissolved to a content of 0.2% by weight to obtain an electrolyte composition for a lithium secondary battery, and the obtained electrolyte solution was used in the same manner as in Example 1. A coin-type battery was fabricated and its performance was evaluated, and the results are shown in Table 1.
  • Comparative Example 1 an electrolytic solution was obtained in the same manner as in Example 1 except that methyl dimethyl methylthioacetate was not added. Using the obtained electrolytic solution, a coin-type battery was produced in the same manner as in Example 1, and the performance was evaluated. The results are shown in Table 1.
  • Comparative Example 2 an electrolytic solution was obtained in the same manner as in Example 5, except that methyl difluoromethylthioacetate was not added. Using the obtained electrolyte solution, a coin-type battery was produced in the same manner as in Example 1, and its performance was evaluated. Therefore, the results are not listed in Table 1. (Comparative Example 3)
  • Comparative Example 3 an electrolytic solution was obtained in the same manner as in Example 6, except that diphenylsulfoxide was not added. Using the obtained electrolyte solution, a coin-type battery was produced in the same manner as in Example 1, and the performance was evaluated. The results are shown in Table 1. (Comparative Example 4)
  • the initial charge / discharge efficiency can be increased, and further, a decrease in the charge / discharge efficiency due to repetition of the charge / discharge cycle can be suppressed, and A battery having excellent storage stability can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Description

明細 s リチウム二次 ϊίΐ池川' ¾解液組成物 技術分野
本発明は、 リチウム二次電池用電解液組成物に関する。 背景技術
近年、 パーソナルコンピューターや携帯電話等の小型化、 軽量化に伴い、 より 高性能な二次電池が求められている。 このような要求を満たす二次電池として、 リチウム二次電池が提案されている。
リチウム二次電池は、 典型的には、 正極活物質として L i C o02、 L i M n 04、 L i N i 02等のリチウム酸化物が用いられ、 負極活物質として金属リチウ ム、 リチウム含有合金、 炭素質材料等が用いられている。 また、 電解液としては, へキサフルォロリン酸リチウム(L i PF6)、テトラフルォロホウ酸リチウム(L i B F4) 、 過塩素酸リチウム (L i C 1〇4) 、 トリフルォロメタンスルホン酸 リチウム (L i S03 C F3) 等のリチウム塩を溶解した非水電解液が用いられ、 電池の充放電時に、 この非水電解液を介して正極及び負極間でリチウムイオンの 移動が行われるようになつている。 このようなリチウム二次電池は、 4V以上の 高電圧を発生させることのできる高エネルギー密度を有し、 かつ貯蔵性等の信頼 性に優れているため、 パーソナルコンピューターや携帯電話等の民生用電子機器 の電源として広く用いられている。
従来、 リチウム二次電池用の非水電解液としては、 一般に、 炭酸エチレン、 炭 酸プロピレン、 γ—プチロラク トン、 スルホラン等の高誘電率溶媒と、 炭酸ジメ チル、 炭酸ェチルメチル等の低粘度溶媒とを含む混合溶媒にへキサフルォロリ ン 酸リチウム (L i P F6) 、 テトラフルォロホウ酸リチウム (L i BFJ 、 過塩 素酸リチウム (L i C 1〇4) 、 トリフルォロメタンスルホン酸リチウム (L i S 03CF3) 等のリチウム塩を溶解したものが用いられているつ しかしながら、 こ のような電解液を用いた電池は、 充電初期に負電極と非水電解液との不可逆反応 が起二りやすくなるため允放 'Γίί効率が一時的に悪くなる。 従って、 一定の充放電 効书を βるためには、 予備充放 ϊίίを跺り返して安定化した後、 電池を使用しなけ ればならない欠点がある。 また、 リチウム二次電池のような高電圧電池では、 充 放? aサイクルの繰り返しに伴う充放' f 効率の低下が大きい。 さらに、 リチウム二 次 池では、 電解液の分解が起こりやすく保存安定性に満足できるものではない。 上記のような問題点に鑑み、 特開平 1 1— 6 7 2 6 6号公報は、 例えばプロピ レン力一ボネ一ト、 鎖状カーボネー ト及びビニレンカーボネートを含有する非水 溶媒に電解質が溶解されてなる電解液を用いる方法を提案しており、 特開平 1 1 - 3 2 9 4 9 4号公報は、 天然黒鉛や人造黒鉛等の炭素材料を負極として使用し た場合に生ずる非水溶媒の分解、 特にプロピレンカーボネートの分解を抑制する ために、 非水電解液にビニルスルホン誘導体を添加する方法を提案している。 し かしながら、 これらの方法は、 前記問題を十分に解決するものではなかった。 こ のようなことから、 より初期の充放電効率に優れ、 充放電サイクルの進行に伴う 充放電効率の低下が少なく、 かつ保存安定性に優れた電池を得ることができる電 解液が求められている。 発明の開示
本発明は、 初期の充放電効率に優れ、 充放電サイクルの進行に伴う充放電効率 の低下が少なく、 かつ保存安定性に優れた電池を得ることができるリチウム二次 電池用電解液組成物を提供することを課題とする。
本発明者らは、 非水電解液に特定のエステル化合物及び 7又はスルホキシド化 合物を含有させることにより、 前記の課題が解決できることを見出し本発明を完 成した。
すなわち、 本発明のリチウム二次電池用電解液組成物は、 高誘電率溶媒及び低 粘度溶媒を含む非水溶媒と、 この非水溶媒に溶解されたリチウム塩と、 前記非水 溶媒に溶解された、 下記の一般式 (1 ) で示されるエステル化合物及び下記一般 式 (2 ) で示されるスルホキシド化合物の少なくとも一方とを含有する。
R 1 S ( C H 2 ) n C O〇R 2 ( 1 )
R :i— S〇— R 4 ( 2 ) 上 d'己式 ( 1 ) において、 尺 '及び^'」は、 それぞれ独、'/:して^^数が 1〜4の無 S換アルキル S又はハロゲン化アルキル Sを示し、 nは 1又は 2を示す。 上記式 (2) において、 R:i 及び はそれぞれ独立して炭^数が 1〜4の無置換アル キル基、 [1換アルキル基、 無 11換フヱニル基及び置換フエニル基のいずれか 1つ を示す。
前記エステル化合物における炭素数が 1〜4の無置換アルキル基としては、 例 えば、 メチル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n—ブチル基、 イソブチル基等が挙げられる。 好ましくは、 メチル基、 ェチル基が挙げられる。 前記エステル化合物における炭素数が 1〜4のハロゲン化アルキル基としては、 例えば CH2.F—、 CHF2―、 CF3—、 CH3CHF―、 CH2 CF2—、 CH, FCH2—、 CH2 FCHF—、 CH, F C F, CHF, CH, CHF, CHF ―、 CHF2CF2_、 CF3 CH2_、 CF3CHF—、 C F3 C F 一等が挙げられ る。 好ましくは、 CHF2―、 CF3—が挙げられる。
前記エステル化合物の具体例としては、 例えばメチルチオ酢酸メチル、 メチル チォ酢酸ェチル、 メチルチオ酢酸プロピル、 メチルチオ酢酸ブチル、 メチルチオ プロピオン酸メチル、 メチルチオプロピオン酸ェチル、 メチルチオプロピオン酸 プロピル、 メチルチオプロピオン酸ブチル、 ジフロロメチルチオ酢酸メチル、 ジ フロロメチルチオ酢酸ェチノレ、 ジフロロメチルチオ醉酸フ。口ピル、 ジフロロメチ ルチオ齚酸ブチル、 トリフロロメチルチオ酢酸メチル、 トリフロロメチルチオ酢 酸ェチル、 トリフロロメチルチオ酢酸プロピル、 トリフロロメチルチオ鲊酸ブチ ノレ、 ジフロロメチルチオプロピオン酸メチル、 ジフロロメチルチオプロピオン酸 ェチル、 ジフロロメチルチオプロピオン酸プロピル、 ジフロロメチルチオプロピ オン酸ブチル等が挙げられる。 好ましくは、 メチルチオ酢酸メチル、 メチルチオ 酢酸ェチル、 ジフロロメチノレチォ酢酸メチル、 ジフロロメチルチオ酢酸ェチル、 ジフロロメチルチオプロピオン酸メチルが挙げられる。 これらエステル化合物は 単独で用いても良いし、 2種以上を併用しても良い。
前記エステル化合物の製造方法としては、 特に限定されない: 例えばアルコー ル中で、 ナトリ ウムアルコラート等の塩基の存在下、 チォカルボン酸エステルと ハロゲン化アルカンとを反応することによりエステル化合物を製造することがで さる。
前記スルホキシド化合物における^ ^数が 1〜 4の^換または無 g換のアルキ ル Sと しては、 例えば、 -メチル基、 ェチル基、 n —プロピル基、 イ ソプロピル基、 n —ブチル基、 イソブチル基、 メ トキシメチル基、 ァセチルメチル基、 メ トキシ カルボニルメチル基、 ァセチルォキシメチル基、 メチルチオメチル基、 シァノメ チル基、 N, N—ジメチルァミノメチル基等が挙げられる。 好ましくは、 メチル 基、 ェチル基、 ァセチルメチル基、 メ トキシカルボニルメチル基が挙げられる。 前記スルホキシド化合物における置換または無置換のフエニル基としては、 例 えば、 フエニル基、 トリル基、 ェチルフエニル基、 ク口口フエニル基、 ブロモフエ ニル基、 フルオロフヱニル基、 ジフルオロフェニル基、 メ トキシフエ二ル基、 ァ セチルフエニル基、 シァノフエ二ル基、 メチルチオフエニル基、 メ トキシカルボ ユルフェニル基、 N, N—ジメチルァミノフエニル基等が挙げられる。 好ましく は、 フエニル基、 ジフルオロフェニル基、 ァセチルフエニル基が挙げられる。 前記スルホキシド化合物の具体例としては、 例えば、 ジメチルスルホキシド、 ジェチルスルホキシド、 ジ (ァセチルメチル) スルホキシド、 ジ (メ トキシカル ボニノレメチル) スルホキシド、 ジフエニノレスルホキシド、 ジト リノレスルホキシド、 ジ (メ トキシフエ二ル) スルホキシド、 ジ (ァセチルフエニル) スルホキシド、 ジ (フノレオロフェニル) スノレホキシド、 メチルフエニノレス/レホキシド、 ェチルフエ ニルスルホキシド、 メチル (ァセチルフヱニル) スルホキシド等が挙げられる。 好ましくは、 メチルフエニルスルホキシド、 ジフエニルスルホキシド、 ジ (ァセ チルフエニル) スルホキシドが挙げられる。 これらスルホキシド化合物は、 単独 で用いても良いし、 2種以上を併用して用いても良い。
前記エステル化合物及び Z又はスルホキシド化合物の含有量は、 非水電解液に 対して 0 . 0 1〜 1 0重量%、 好ましくは 0 . 0 5〜5重量。 /0である。 エステル 化合物及び/又はスルホキシド化合物の含有量が 0 . 0 1重量。/。未満では初期の 充放電効率に優れた効果が認められず、 1 0重量%を超えて含有させても、 含有 量に見合う効果が得られず、 経済的でないばかり力 、 却って電池容量が低下しサ ィクル特性が損なわれるため好ましくない。 なお、 エステル化合物とスルホキシ ド化合物が共存する場合の含有量は、 合計量をいう。 前記非 κ¾¾は、 卨誘 ii书溶媒と低粘度溶媒との ¾ί 溶媒であるのが好ましい: 前記^誘 ; 溶媒としては、 特に限定されず、 例えば、 環状炭酸エステル (炭 酸エチレン、 ^酸プロピレン、 炭酸ブチレン等) 、 環状カルボン酸エステル (γ ーブチロラク トン、 γ—ヮレロラク トン等) 及びスルホラン等が挙げられる。 こ れらは、 各々単独で用いても良いし、 2種以上を併用して用いても良い。
前記低粘度溶媒としては、 特に限定されず、 例えば、 鎖状炭酸エステル (炭酸 ジメチル、 炭酸ジェチル、 炭酸ェチルメチル等) 、 環状エーテル (テ トラヒ ドロ フラン、 1, 3—ジォキソラン等) 、 鎖状エーテル (1, 2—ジメ トキシェタン、 1, 2—ェトキシェタン等)及びァセトニトリル等が挙げられる。 これらは、各々 単独で用いても良いし、 2種以上を併用して用いても良い。
前記高誘電率溶媒と前記低粘度溶媒との混合割合は、 通常、 体積比で 2 : 8〜 8 : 2、 好ましくは 3 : 7〜7 : 3である。
前記非水溶媒に溶解されるリチウム塩 (電解質) としては、 例えばへキサフル ォロリン酸リチウム (L i P F6) 、 テトラフルォロホウ酸リチウム (L i B F4) 、 過塩素酸リチウム (L i C 104) 、 トリフルォロメタンスルホン酸リチウム (L i SO3 C F3) 等のリチウム塩が好ましく用いられる。 これらの電解質は、通常、 非水溶媒に対して 0. 1〜2モル/リ ッ トル、 好ましくは 0. 5〜 1. 5モル Z リ ッ トルの濃度になるように溶解して用いられる。
本発明の二次電池用電解液を用いた二次電池の構成は、 特に限定されず公知の 構成を利用できる。 例えば、 正極活物質としては、 L i C o〇2、 L i Mn204、 L i N i O, 等のリチウム酸化物を利用できる。 負極活物質としては、 金属リチ ゥム、 リチウム含有合金、 又は熱分解炭素類、 コークス類、 人造黒鉛、 天然黒鉛 等のグラフアイ ト類、有機高分子燃焼体、炭素繊維等のリチウムイオンのド一プ · 脱ドープが可能な炭素材料等が用いられる。 そして、 リチウムイオン移動の媒体 として、 本発明の電解液組成物を用いることにより、 リチウム二次電池の初期充 放電効率が改善され、 かつ充放電サイクルの繰り返しに伴う充放電効率の低下を 抑制することができる。
本発明の電解液組成物が、 特に初期充放電効率に優れた性質を有する作用機構 については、 明らかではないが、 添加されたエステル化合物及び Z又はスルホキ
0 シド化 物がリチウムイオン透過性の^い皮膜を i r!i 表面に形成し、 この皮膜 が i と非水' 解液の不可逆反^を抑制するためと推測される:
本発明の利点は、 以 に述べる'上:施例から明らかとなろう。 図而の简寧-な説明
図 1は、 本発明の種々な実施例及び比較例で用いたしたコィン型電池の概略断 面図である。 発明を実施するための最良の形態
以下、 本発明を実施例に基づいてさらに詳細に説明するが、 本発明はかかる実 施例によって限定されるものではない。
(実施例 1 )
炭酸エチレンと炭酸ジメチルの等容量混合物にへキサフルォロリン酸リチウム ( L i P F 6 )を 1モル Zリットルの濃度になるように溶解して得られた非水電解 液に、 ジフロロメチルチオ酢酸メチルを 0 . 0 5重量%の含有量になるように添 カロ、 溶解してリチウム二次電池用電解液組成物を得た。
次に、 得られた電解液を用いて、 図 1に示すように、 外径 2 O mm高さ 3 mm のコイン型電池を作製した。 このコイン型電池は、 負極 1と、 正極 2と、 これら 両極を分離するセパレ一タ 3と、 負極 1に導通する蓋体 4と、 正極 2に導通する ケース 5と、 蓋体 4及びケース 5の間を絶縁封止する環状シール部材 6とを含ん でいる。 負極 1には人造黒鉛 (商品名 ; M C M B、 大阪ガスケミカル (株) 製) を 9 0重量。 /。、 ポリフッ化ビニリデンを 1 0重量%の割合で混合し、 圧縮成型し て円盤状に打ち抜いたものを用いた。正極 2には L i C o O, 9 0重量。/。、グラファ イ ト 7重量。 /。、 結合剤としてフッ素樹脂 3重量。 /。の混合物を円盤状に加圧成型し たものを用いた。 セパレ一タ 3としては、 ポリプロピレン製多孔質セパレ一タを 用い、 上記電解液組成物とともに、 負極 1と正極 2との間に介在させて、 蓋体 4 とケース 5に圧着させた。
次に、 作製したコイン型電池を、 電流 l m A、 最大電圧 4 . 2 Vで低電流低電 ? ίίし、 充? ίί?ίί流が 5 0 / A以下になった^に充 ¾を終了した。 引き続き、 定 ', ί流 1 m Aで' , 厂£ 2 . 7 Vになるまで放電した。 このような充放電操作を所定回 数繰り返し、 それぞれ放電容量、 充電容量を測定し、 下記式から充放電効率を算 出した。 結果を表 1に示した。
充放電効率 (%) = (放電容量 (mAh/g) Z充電容量 (mAh/g) ) X 1 0 0
(実施例 2 )
実施例 2では、 ジフロロメチルチオ酢酸メチルの含有量を◦. 2重量0 /。に変更 した以外は、 実施例 1と同様にして電解液組成物を得た。 得られた電解液組成物 を用いて実施例- 1と同様にしてコイン型電池を作製し、 その性能を評価した。 結 果を表 1に示した。
(実施例 3 )
実施例 3では、 エステル化合物をジフ口ロメチルチオ酢酸ェチルに変更した以 外は、 実施例 1と同様にして電解液組成物を得た。 得られた電解液組成物を用い て実施例 1と同様にしてコイン型電池を作製し、 その性能を評価した。 結果を表 1に示した。
(実施例 4 )
実施例 4では、 エステル化合物をメチルチオ酢酸メチルに変更した以外は、 実 施例 1と同様にして本発明の電解液組成物を得た。 得られた電解液組成物を用い て実施例 1と同様にしてコイン型電池を作製し、 その性能を評価した。 結果を表 1に示した。 (実施例 5 )
実施例 5では、 炭酸プロピレンと炭酸ジメチルの容量比 1 : 2の混合物にへキ サフルォロリン酸リチウム (L i P F 6 ) を 1モル/リッ トルの濃度になるように 溶解した電解液に、 ジフロロメチルチオ酢酸メチルを 0 . 2重量%の含有量にな るように添加、 溶解してリチウム二次電池用電解液組成物を得た。 得られた電解 液糾成物を川いて'上:施例 1と同様にしてコィン¾¾池を作製し、 その性能を評価 した。 結^を表 1に示した。
(¾施例 6 )
実施例 6では、 実施例 1におけるエステル化合物をスルホキシド化合物に変更 した。 具体的には、 実施例 1におけるジフロロメチルチオ酢酸メチルに代えてジ フニニルスルホキシドを用いてリチウム二次電池用電解液組成物を得た。 得られ た電解液組成物を用いて実施例 1と同様にしてコイン型電池を作製し、 その性能 を評価した。 結果を表 1に示した。
(実施例 7 )
実施例 7では、 ジフエニルスルホキシドの含有量を 0 . 2重量。 /0に変更した以 外は、 実施例 6と同様にして電解液組成物を得た。 得られた電解液組成物を用い て実施例 1と同様にしてコイン型電池を作製し、 その性能を評価した。 結果を表 1に示した。
(実施例 8 )
実施例 8では、 スルホキシド化合物をメチルフエニルスルホキシドに変更した 以外は、 実施例 6と同様にして電解液組成物を得た。 得られた電解液組成物を用 いて実施例 1と同様にしてコイン型電池を作製し、 その性能を評価した。 結果を 表 1に示した。
(実施例 9 )
実施例 9において、 スルホキシド化合物をジ (ァセチルフエニル) スルホキシ ドに変更した以外は、 実施例 6と同様にして電解液組成物を得た。 得られた電解 液組成物を用いて実施例 1と同様にしてコイン型電池を作製し、 その性能を評価 した。 結果を表 1に示した- )> l o )
'上:施例 1 0では、 ^酸ブロビレンと炭酸ジメチルの容 比 1 : 2の混合物にへ キサフルォロリン酸リチウム (L i P F J を 1モルダリッ トルの濃度になるよう に溶解した電解液に、 ジフエニルスルホキシドを 0 . 2重量%の含有量になるよ うに添加、 溶解してリチウム二次電池用電解液組成物を得た。 得られた電解液組 成物を用いて実施例 1と同様にしてコイン型電池を作製し、 その性能を評価した。 結果を表 1に示した。
(比較例 1 )
比較例 1では、 ジブ口ロメチルチオ酢酸メチルを添加しない以外は実施例 1と 同様にして電解液を得た。 得られた電解液を用いて実施例 1と同様にしてコイン 型電池を作製し、 その性能を評価した。 結果を表 1に示した。
(比較例 2 )
比較例 2では、 ジフロロメチルチオ酢酸メチルを添加しない以外は実施例 5と 同様にして電解液を得た。 得られた電解液を用いて実施例 1と同様にしてコイン 型電池を作製し、 その性能を評価したが、 充放電できなかった。 よって、 その結 果は、 表 1には掲載されていない。 (比較例 3 )
比較例 3では、 ジフヱニルスルホキシドを添加しない以外は実施例 6と同様に して電解液を得た。 得られた電解液を用いて実施例 1と同様にしてコイン型電池 を作製し、 その性能を評価した。 結果を表 1に示した。 (比較例 4 )
比較例 4では、 ジフヱニルスルホキシドを添加しない以外は実施例 1 0と同様 にして電解液を得た。 得られた電解液を用いて実施例 1と同様にしてコイン型電 池を作製し、 その性能を評価したが、 充放電できなかった。 よって、 その結果は、 表 1には掲載されていない。 表 1
Figure imgf000012_0001
(評価)
表 1から、 本発明の実施例 1〜 1 0では、 電解液組成物が特定のエステル化合 物又はスルホキシド化合物を含有しているため、 電池は初期から高い充放電効率 を示し、 また充放電サイクルの操り返しに伴う充放電効率の低下が少ないことが 分かる。 それに対し、 エステル化合物又はスルホキシド化合物を添加していない 電解液を用いた比較例 1及び 3では、 電池の初期の充放電効率が低く、 また充放 電サイクルの繰り返しに伴う充放電効率の低下が大きかった。 また、 前述したと おり、 比較例 2及び 4では、 電解液がエステル化合物又はスルホキシド化合物を 添加していないために、 電池に充放電すること自体が不可能であった。
このように、 本発明のリチウム二次電池用電解液組成物を用いると、 初期の充 放電効率を高めることができ、 しかも充放電サイクルの繰り返しに伴う充放電効 率の低下を抑制でき、 かつ保存安定性に優れた電池を得ることができる。

Claims

請求の範囲
1. 非水溶媒と、
この非水溶媒に溶解されたリチウム塩と、
前記非水溶媒に溶解された、 下記の一般式 ( 1) で示されるエステル化合物 及び "記一般式 (2) で示されるスルホキシド化合物の少なく とも一方とを含有 し、
R 1 S (CH2) n COOR2 ( 1 )
R :i - S O - R (2)
式中、 1¾'及び1^は、 それぞれ独立して炭素数が 1〜4の無置換アルキル基 又はハロゲン化アルキル基を示し、 nは 1又は 2を示し、 R3 及び R4 はそれぞ れ独立して炭素数が 1〜4の無置換アルキル基、 置換アルキル基、 無置換フエ二 ル基及び置換フヱニル基のいずれか 1つを示すものである、 リチウムニ次電池用 電解液組成物。
2. 前記エステル化合物の無置換アルキル基は、 メチル基、 ェチル基、 n—プロ ピル基、 イソプロピル基、 n—ブチル基及びイソブチル基からなる群より選択さ れる、 請求項 1記載のリチゥム二次電池用電解液組成物。
3. 前記エステル化合物のハロゲン化アルキル基は、 CH2 F―、 CHF: C F3—、 CH3CHF—、 CH3CF2—、 CH, F CH, CH FCHF―、 CH 2 FCF2—、 CHF2CH2—、 CHF2CHF—、 CHF2C F2—、 C F3CH2 一、 CF3CHF—及び CF3CF2—からなる群より選択される、 請求項 1記載の リチウム二次電池用電解液組成物。
4. 前記エステル化合物は、 メチルチオ酢酸メチル、 メチルチオ酢酸ェチル、 メ チルチオ酢酸プロピル、 メチルチオ酢酸ブチル、 メチルチオプロピオン酸メチル、 メチルチオプロピオン酸ェチル、 メチルチオァロピオン酸プロピル、 メチルチオ プロピオン酸ブチル、 ジフロロメチルチオ酢酸メチル、 ジフロロメチルチオ酢酸 ェチル、 ジフロロメチルチオ酢酸ブロビル、 ジフロロメチルチオ酢酸ブチル、 ト リフロロメチルチオ酢酸メチル、 ト リフロロメチルチオ鲊 §¾ェチル、 トリフロロ メチルチオ ft酸プロピル、 トリフロロメチルチオ f¾乍酸ブチル、 ジフロロメチルチ ォプロピオン酸メチル、 ジフロロメチノレチォプロピオン酸ェチル、 ジフロロメチ ノレチォプロピオン酸プロピル及びジフロ口メチルチオプロピオン酸ブチルからな る群より選択される、 請求項 1記載のリチウム二次電池用電解液組成物。
5 . 前記スルホキシド化合物の無置換アルキル基は、 メチル基、 ェチル基、 n— プロピル基、 イソプロピル基、 n—ブチル基及びイソブチル基からなる群より選 択される、 請求項 1記載のリチウム二次電池用電解液組成物。
6 . 前記スルホキシド化合物の置換アルキル基は、 メ トキシメチル基、 ァセチル メチル基、 メ トキシカルボニルメチル基、 ァセチルォキシメチル基、 メチルチオ メチル基、 シァノメチル基及び N, N—ジメチルァミノメチル基からなる群より 選択される、 請求項 1記載のリチウム二次電池用電解液組成物。
7 . 前記スルホキシド化合物の置換フエニル基は、 トリル基、 ェチルフエ二ル基, クロ口フエ二ル基、 ブロモフエニル基、 フノレオロフェニノレ基、 ジフルオロフェニ ル基、 メ トキシフエ二ル基、 ァセチルフエニル基、 シァノフエニル基、 メチルチ オフェニル基、 メ トキシカルボニルフエニル基、 N, N—ジメチルァミノフエ二 ル基からなる群より選択される、 請求項 1記載のリチウム二次電池用電解液組成 物。
8 . 前記スルホキシド化合物は、 ジメチルスルホキシド、 ジェチルスルホキシド、 ジ (ァセチルメチル) スルホキシド、 ジ (メ トキシカルボニルメチル) スルホキ シド、 ジフエニルスルホキシド、 ジトリルスルホキシド、 ジ (メ トキシフエニル) スルホキシド、 ジ (ァセチルフエニル) スルホキシド、 ジ (フルオロフェニル) スルホキシド、 メチルフエニルスルホキシド、 ェチルフエニルスルホキシド及び メチル (ァセチルフヱニル) スルホキシドからなる群より選択される、 請求項 1 己載のリチウム二次' 池川' 解液糾成物。
9 . 前記エステル化合物及び Z乂はスルホキシド化合物の含有量は、 0 . 0 1〜 1 0重量%である、 請求項 1記載のリチウムニ次電池用電解液組成物。
10. 前記非水溶媒は、 高誘電率溶媒と低粘度溶媒とを含む、 請求項 1記載のリチ ゥム二次電池用電解液組成物。
11. 前記高誘電率溶媒は、 炭酸ヱチレン、 炭酸プロピレン、 炭酸プチレン、 γ— ブチロラク トン ヮレロラク トン及びスルホランからなる群より選択される、 請求項 1 0記載のリチウムニ次電池用電解液組成物。
12. 前記低粘度溶媒は、 炭酸ジメチル、 炭酸ジェチル、 炭酸ェチルメチル、 テト ラヒ ドロフラン、 1, 3—ジォキソラン、 1 , 2—ジメ トキシェタン、 1 , 2— エトキシェタン及びァセトニトリルからなる群より選択される、 請求項 1 0記載 のリチウム二次電池用電解液組成物。
13. 前記高誘電率溶媒と前記低粘度溶媒とは、 体積比で 2 : 8〜 8 : 2の割合で 混合されている、 請求項 1 0記載のリチウム二次電池用電解液組成物。
14. 前記リチウム塩は、 例えばへキサフルォロリン酸リチウム、 テトラフルォロ ホウ酸リチウム、 過塩素酸リチウム及びトリフルォロメタンスルホン酸リチウム からなる群より選択される、 請求項 1記載のリチウム二次電池用電解液組成物。
15. 前記リチウム塩は、 前記非水溶媒に対して 0 . 1 〜 2モル Ζリ ッ トルの濃度 で溶解されている、 請求項 1記載のリチウムニ次電池用電解液組成物。
PCT/JP2001/001142 2000-02-22 2001-02-16 Composition a base de solution electrolytique pour accumulateur au lithium WO2001063686A1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000-43751 2000-02-22
JP2000043751 2000-02-22
JP2000-120467 2000-04-21
JP2000120467 2000-04-21
JP2000168377 2000-06-06
JP2000-168377 2000-06-06

Publications (1)

Publication Number Publication Date
WO2001063686A1 true WO2001063686A1 (fr) 2001-08-30

Family

ID=27342436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001142 WO2001063686A1 (fr) 2000-02-22 2001-02-16 Composition a base de solution electrolytique pour accumulateur au lithium

Country Status (2)

Country Link
TW (1) TW506155B (ja)
WO (1) WO2001063686A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008720A (ja) * 2000-04-18 2002-01-11 Sony Corp 非水電解質電池
WO2004086550A1 (ja) * 2003-03-25 2004-10-07 Sanyo Electric Co., Ltd. 二次電池用非水系電解液及び非水系電解液二次電池
JP2014032781A (ja) * 2012-08-01 2014-02-20 Nec Corp 電解液およびこれを含むリチウム二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112133963A (zh) * 2019-06-25 2020-12-25 宁德时代新能源科技股份有限公司 一种锂金属电池电解液及其锂金属二次电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154478A (ja) * 1984-01-24 1985-08-14 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池用電解液
JPH03167761A (ja) * 1989-11-27 1991-07-19 Yuasa Battery Co Ltd リチウム二次電池
JPH07169504A (ja) * 1993-12-14 1995-07-04 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH0878052A (ja) * 1994-09-05 1996-03-22 Sanyo Electric Co Ltd リチウム二次電池
EP0901180A1 (fr) * 1997-08-29 1999-03-10 Alcatel Générateur rechargeable au lithium à électrolyte organique et anode de carbone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154478A (ja) * 1984-01-24 1985-08-14 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池用電解液
JPH03167761A (ja) * 1989-11-27 1991-07-19 Yuasa Battery Co Ltd リチウム二次電池
JPH07169504A (ja) * 1993-12-14 1995-07-04 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH0878052A (ja) * 1994-09-05 1996-03-22 Sanyo Electric Co Ltd リチウム二次電池
EP0901180A1 (fr) * 1997-08-29 1999-03-10 Alcatel Générateur rechargeable au lithium à électrolyte organique et anode de carbone

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008720A (ja) * 2000-04-18 2002-01-11 Sony Corp 非水電解質電池
JP4529274B2 (ja) * 2000-04-18 2010-08-25 ソニー株式会社 非水電解質電池
WO2004086550A1 (ja) * 2003-03-25 2004-10-07 Sanyo Electric Co., Ltd. 二次電池用非水系電解液及び非水系電解液二次電池
JP2004296105A (ja) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd 二次電池用非水系電解液及び非水系電解液二次電池
JP4635407B2 (ja) * 2003-03-25 2011-02-23 三洋電機株式会社 二次電池用非水系電解液及び非水系電解液二次電池
US8323839B2 (en) 2003-03-25 2012-12-04 Sanyo Electric Co., Ltd. Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
JP2014032781A (ja) * 2012-08-01 2014-02-20 Nec Corp 電解液およびこれを含むリチウム二次電池

Also Published As

Publication number Publication date
TW506155B (en) 2002-10-11

Similar Documents

Publication Publication Date Title
TWI358843B (en) Non-aqueous electrolyte and secondary battery usin
JP4416991B2 (ja) リチウム二次電池用の非水電解液及びリチウム二次電池
JP5466364B2 (ja) リチウム・硫黄電池用電解質及びこれを使用するリチウム・硫黄電池
US20120301760A1 (en) Nonaqueous electrolyte secondary battery with an electrolyte including a lithium boron compound
US20100239917A1 (en) Electrolyte comprising eutectic mixture and secondary battery using the same
CN101009391A (zh) 非水电解质二次电池、非水电解质及其充电方法
JP4361218B2 (ja) リチウム二次電池用電解液
JP2004103558A (ja) リチウム二次電池用電解液及びこれを含むリチウム二次電池
JP2005135895A (ja) 効率的な性能を有するリチウム電池
JP2006114285A (ja) リチウム二次電池用の非水電解液およびリチウム二次電池および二次電池システム
KR100500788B1 (ko) 비수전해질 이차전지
JP2008522376A5 (ja)
KR970008713A (ko) 비수성 전해액 및 리튬 이차 전지
US20230021456A1 (en) Method of restoring capacity of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5062459B2 (ja) 非水電解質二次電池
JP2005203342A (ja) 二次電池
CN114597497A (zh) 含有电解液的液体组合物及其制造方法、非水电解液二次电池的容量回复方法
JP5982201B2 (ja) ジスルホン酸ベンジルアミド化合物、非水電解液用添加剤、非水電解液、及び、蓄電デバイス
JPH11111332A (ja) 非水電解質電池
TWI694630B (zh) 非水電解液用添加劑、非水電解液及蓄電裝置
JP4493197B2 (ja) リチウム二次電池用電解液
JP5953146B2 (ja) 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
JP2002134168A (ja) リチウム二次電池用電解液
JP4901089B2 (ja) 非水電解質二次電池
WO2001063686A1 (fr) Composition a base de solution electrolytique pour accumulateur au lithium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 562769

Kind code of ref document: A

Format of ref document f/p: F