WO2001062415A1 - Verfahren zur herstellung einer verbundstruktur mit einem metallschaum-kern - Google Patents

Verfahren zur herstellung einer verbundstruktur mit einem metallschaum-kern Download PDF

Info

Publication number
WO2001062415A1
WO2001062415A1 PCT/DE2001/000556 DE0100556W WO0162415A1 WO 2001062415 A1 WO2001062415 A1 WO 2001062415A1 DE 0100556 W DE0100556 W DE 0100556W WO 0162415 A1 WO0162415 A1 WO 0162415A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
metal foam
casting
foam core
die
Prior art date
Application number
PCT/DE2001/000556
Other languages
English (en)
French (fr)
Inventor
Robert F. Singer
Frank Heinrich
Carolin KÖRNER
Gerhard Grötzschel
Original Assignee
FREISTAAT BAYERN, vertreten durch DIE FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FREISTAAT BAYERN, vertreten durch DIE FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG filed Critical FREISTAAT BAYERN, vertreten durch DIE FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG
Priority to US10/204,400 priority Critical patent/US6675864B2/en
Publication of WO2001062415A1 publication Critical patent/WO2001062415A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/24Accessories for locating and holding cores or inserts

Definitions

  • the invention relates to a method for producing a composite structure in which a metal foam core is surrounded by a metal body. It also relates to a component produced by the method.
  • a method for producing a composite structure is known from DE 195 26 057.
  • the surface of a metal foam core is compressed under heating, so that only fine cracks and holes remain in the surface.
  • a metal layer is applied to the surface using a thermal spray process.
  • the contour of the component is predetermined by the contour of the metal foam core. Complex contours cannot be produced or only with great effort.
  • DE 196 50 613 discloses a component with a metal foam core and a method for its production.
  • the metal foam core is covered with a metal foil and then cast with a cast material.
  • the purpose of the metal foil is to prevent the melt from penetrating into the pores of the metal foam core.
  • the known method is complex because the metal foam core has to be sealed with the metal foil. This requires manual work.
  • the object of the invention is to eliminate the disadvantages of the prior art.
  • a method for producing a composite structure is to be specified which can be carried out as simply and inexpensively as possible.
  • Another object of the invention is to provide an automatable method for producing a composite structure.
  • a method for producing a composite structure in which a metal foam core is surrounded by a metal body, with the following steps:
  • the proposed method can be carried out simply and inexpensively.
  • a pressure peak occurring in the continuous die casting process, in particular at the time when the die is completely filled, is avoided. It is assumed that this measure forms a solidification layer on the surface of the metal foam core, which surprisingly prevents melt from penetrating into the metal foam core despite the subsequent application of a second casting pressure.
  • the metal foam core is produced by known processes. For this, e.g. an alloy in the form of sheet metal strips, pieces or granules mixed with a metal hydride, preferably a titanium hydride, brought into a closed form. The mold is heated and the alloy melts. The metal hydride releases gas and causes foaming.
  • a metal foam core produced in this way has an essentially closed, i.e. surface or skin containing fine pores and cracks.
  • Casting pressure is the pressure that prevails in the casting chamber.
  • the casting pressure is generally different from the pressure acting in the die on the metal foam core contained therein. This difference is e.g. due to the geometry of the die, e.g. their cut, or caused by dynamic effects such as frictional forces.
  • the casting pressure is usually greater than the pressure exerted on the metal foam core.
  • the first and / or second casting pressure is expediently applied according to a predetermined pressure / time profile.
  • the rate of pressure increase, the second casting pressure and its holding time is fixed.
  • the first casting pressure is lower than the second casting pressure.
  • the first casting pressure is expediently reduced as soon as the die is at least 90 vol. % is filled.
  • the pressure caused by the second casting pressure on the metal foam core is advantageously less than its compressive strength.
  • the pressure caused by the first casting pressure on the metal foam core is expediently less than 25 bar, the pressure caused by the second casting pressure on the metal foam core is greater than 25 bar.
  • the second casting pressure is preferably between 200 and 700 bar.
  • the first casting pressure is used to essentially completely fill the die. During this phase, the melt has the possibility of fulfilling the essential gusset volume of the die. No significant pressure is exerted on the metal foam core.
  • the second casting pressure is only applied when the die is completely filled. The pressure caused by the second casting pressure acts on the metal body and the metal foam core. It is smaller than the compressive strength of the metal foam core in order not to destroy its structure and large enough to close pores remaining in the metal body.
  • spacers are integrally formed on the metal foam core. They are expediently designed as web-like elevations.
  • the metal foam core before step lit. b is covered with a thermally resistant layer.
  • This layer can be produced by means of thermal spotting or by dipping in a ceramic slip.
  • Thermal spraying can be carried out, for example, by flame spraying, for example aluminum wire flame spraying. Instead of wire flame spraying, other high-speed flame spraying processes can also be used, for example vacuum plasma spraying.
  • An MgAl spinel slip, for example, can be used as the slip. The slip adheres well to the surface of the metal foam core. The aforementioned features additionally prevent melt from entering the pores on the surface of the metal foam core during the die casting process.
  • the mold cavity enclosed by the die casting mold after step lit. b applied with negative pressure. It is advantageous to evacuate the mold cavity as far as possible. Good results are achieved when the mold cavity is subjected to negative pressure in the range from 5 to 50 mbar, preferably from 10 to 30 mbar.
  • the application of pressure to the mold cavity is expediently carried out until the die is completely filled with melt.
  • the vacuum supply can be switched off by the melt penetrating into the associated channels when the die is completely filled and closing a vacuum valve arranged there.
  • FIG. 6 is a plan view of one side of a component produced under the application of negative pressure
  • FIG. 7 is a plan view of the other side of the component of FIG. 6,
  • Fig. 8 is a plan view of one side of another component, made without applying vacuum and
  • FIG. 9 is a plan view of the other side of the component according to FIG. 8th. 1, the casting pressure is plotted over time with the reference symbol p.
  • the casting pressure is specific for the die casting device and mold used in each case.
  • a metal foam core made essentially of aluminum has been encapsulated with aluminum.
  • a first casting pressure pl during the filling of the die is less than 50 bar. It is typically initially around 20 bar. With a degree of filling of more than 90 vol.%, Preferably of more than 98 vol.%, The first casting pressure pl is reduced by reducing the piston feed speed and reduced to zero or almost zero.
  • the die will remain pressureless for a short time when fully filled. It is believed that during this time, melt solidifies on the surface of the metal foam core and seals pores and cracks therein.
  • a second casting pressure p2 of approximately 400 bar is then applied at a constant rate.
  • the pressure applied to the metal foam core by the second casting pressure p2 is less than the compressive strength of the metal foam core.
  • the second casting pressure p2 is held for a predetermined time.
  • the second casting pressure p2 closes pores remaining in the metal body surrounding the metal foam core.
  • the piston feed speed v of the die casting device is also plotted over the path. Up to a filling level of the die of about 80 vol. %, the piston feed speed v is expediently increased.
  • the piston feed speed v remains up to a filling level of at least 90 vol. % constant.
  • the Piston feed speed v is reduced to zero or almost zero when a degree of filling of at least 90% by volume, preferably 98% by volume is reached.
  • the die casting mold remains depressurized for a short period of time before the second casting pressure p2 of approximately 400 bar is applied by a slight further advancement of the piston.
  • Al metal foam samples of an Al metal foam sheet made of a khet alloy and Al metal foam samples of an Al metal foam sheet made of a cast alloy are shown in comparison.
  • the compressive strength of the Al metal foam samples of both alloys is between 7 and 10 MPa.
  • the Al metal foam sheet made on the basis of a wrought alloy shows little scatter in terms of its density and compressive strength.
  • FIG. 3 shows a metal foam core 1 which is surrounded by an Al wire flame spray layer. 2 with a web-like spacer is designated, which has been produced in one piece with the metal foam core 1 made of aluminum.
  • the 4 shows a metal foam core 1 which is surrounded by a ceramic slip layer.
  • the slip layer is made from a MgAl spinner.
  • FIG. 5 shows a composite structure in which the metal foam core 1 with the spacers 2 formed thereon is surrounded by a metal body 3.
  • the metal body 3 is just like the metal foam core 1 made of an aluminum alloy.
  • a component which has been produced by the process according to the invention under the application of negative pressure.
  • the mold cavity enclosed by the die casting mold is acted upon by a suitable device with a negative pressure of approximately 10 mbar.
  • the application of negative pressure lasts until the melt has completely filled the mold cavity.
  • the melt expediently penetrates into suitable channels emanating therefrom and closes a vacuum valve there.
  • the application of negative pressure to the mold cavity enables the process to be carried out at lower pressures compared to conventional die-casting processes.
  • Components produced under the application of negative pressure - as can be seen from a comparison of FIGS. 6 to 9 - have significantly better casting qualities, the porosity of which is lower.
  • the mold filling is better when the mold cavity is subjected to negative pressure.
  • FIGS. 6 to 9 have each been produced with identical casting parameters.
  • the pressure in the casting chamber is 500 bar, the maximum mold filling speed is 3.7 m / s.
  • the component shown in FIGS. 6 and 7 has been cast with a vacuum of about 30 mbar applied to the mold cavity.
  • FIGS. 8 and 9 The component shown in FIGS. 8 and 9 has been cast without applying pressure to the mold cavity.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer Verbundstruktur, bei der ein Metallschaum-Kern (1) mit einem Metallkörper (3) umgeben ist, mit folgenden Schritten: a) Herstellen eines Metallschaum-Kerns (1) mit einer im wesentlichen geschlossenen Oberfläche, b) Einsetzen des Metallschaum-Kerns (1) in eine Druckgiessform, c) Füllen der Druckgiessform mit einem ersten Giessdruck (p1), d) Absenken des ersten Giessdrucks (p1), bevor die Druckgiessform gefüllt ist, e) vollständiges Füllen der Druckgiessform, wobei der erste Giessdruck (p1) auf Null oder nahezu Null abgesenkt wird, und f) Aufbringen eines zweiten Giessdrucks (p2) und Halten desselben für eine vorgegebene Haltezeit.

Description

Verfahren zur Herstellung einer Verbundstruktur mit einem Metallschäum-Kern
Die Erfindung betrifft ein Verfahren zur Herstellung einer Verbundstruktur, bei der ein Metallschaum-Kern mit einem Metallkörper umgeben ist. Sie betrifft ferner ein nach dem Verfahren hergestelltes Bauteil .
Nach dem Stand der Technik ist aus der DE 195 26 057 ein Ver- fahren zur Herstellung einer Verbundstruktur bekannt . Dabei wird die Oberfläche eines Metallschaum-Kerns unter Erwärmung verdichtet, so daß in der Oberfläche nur noch feine Risse und Löcher verbleiben. Anschließend wird mit einem thermischen Spritzverfahren eine Metallschicht auf die Oberfläche aufge- bracht. - Bei diesem Verfahren ist die Kontur des Bauteils durch die Kontur des Metallschaum-Kerns vorgegeben. Komplexe Konturen sind nicht oder nur mit hohem Aufwand herstellbar.
Aus der DE 196 50 613 ist ein Bauteil mit einem Metallschaum- Kern sowie ein Verfahren zu dessen Herstellung bekannt. Dabei wird der Metallschaum-Kern mit einer Metallfolie ummantelt und anschließend mit einem Gußwerkstoff umgössen. Die Metall - folie hat den Zweck, ein Eindringen der Schmelze in die Poren des Metallschäum-Kerns zu verhindern. - Das bekannte Verfah- ren ist aufwendig, weil der Metallschaum-Kern dichtend mit der Metallfolie ummantelt werden muß. Das erfordert manuelle Tätigkeit .
Aufgabe der Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es soll insbesondere ein Verfahren zur Herstellung einer Verbundstruktur angegeben werden, welches möglichst einfach und kostengünstig durchführbar ist. Ein weiteres Ziel der Erfindung ist es, ein automatisierbares Verfahren zur Herstellung einer Verbundstruktur anzugeben.
Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst . Zweckmäßige Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 - 11.
Nach Maßgabe der Erfindung ist ein Verfahren zur Herstellung einer Verbundstruktur vorgesehen, bei der ein Metallschaum- Kern mit einem Metallkörper umgeben ist, mit folgenden Schritten:
a) Herstellen eines Metallschäum-Kerns mit einer im wesentlichen geschlossenen Oberfläche,
b) Einsetzen des Metallschaum-Kerns m eine Druckgießform,
c) Füllen der Druckgießform mit einem ersten Gießdruck,
d) Absenken des ersten Gießdrucks, bevor die Druckgießform gefüllt ist,
e) vollständiges Füllen der Druckgießform, wobei der er- ste Gießdruck auf Null oder nahezu Null abgesenkt wird, und
f) Aufbringen eines zweiten Gießdrucks und Halten desselben für eine vorgegebene Haltezeit.
Das vorgeschlagene Verfahren ist einfach und kostengünstig durchführbar. Das Vorsehen einer Metallfolie oder dgl . zur Abdichtung der oberflächlichen Poren des Metallschaums ist nicht zwingend erforderlich. Das wird erfindungsgemäß insbesondere dadurch erreicht, daß vor dem vollständigen Füllen der Druckgießform der erste Druck, z.B. durch Reduzieren der Kolbenvorschubgeschwindigkeit der Druckgußvorrichtung, verringert bzw. auf Null oder nahezu Null zurückgefahren wird. Eine beim kontinuierlichen Druckgußverfahren, insbesondere im Zeitpunkt des vollständigen Füllens der Druckgießform, auftretende Druckspitze wird vermieden. Es wird angenommen, daß durch diese Maßnahme sich eine Erstarrungsschicht auf der Oberfläche des Metallschaum-Kerns bildet, die überraschenderweise trotz des nachfolgenden Aufbringens eines zweiten Gieß- drucks ein Eindringen von Schmelze in den Metallschaum-Kern verhindert .
Das Herstellen des Metallschaum-Kerns erfolgt nach bekannten Verfahren. Dazu wird z.B. eine mit einem Metallhydrid, vor- zugsweise einem Titanhydrid, versetzte Legierung in Form von Blechstreifen, Stücken oder Granulat in eine geschlossene Form gebracht. Die Form wird erhitzt, dabei schmilzt die Legierung. Das Metallhydrid setzt Gas frei und bewirkt dabei ein Aufschäumen. Ein derartig hergestellter Metallschaum-Kern weist eine im wesentlichen geschlossene, d.h. feine Poren und Risse enthaltende, Oberfläche bzw. Haut auf.
Unter Gießdruck wird der Druck verstanden, der in der Gießkammer herrscht. Der Gießdruck ist in der Regel verschieden von dem in der Druckgießform auf den darin aufgenommenen Metallschäum-Kern wirkenden Druck. Dieser Unterschied wird z.B. durch die Geometrie der Druckgießform, z.B. deren Anschnitt, oder durch dynamische Effekte, wie Reibungskräfte, bewirkt. Der Gießdruck ist üblicherweise größer als der dadurch auf den Metallschäum-Kern ausgeübte Druck.
Zweckmäßigerweise wird der erste und/oder zweite Gießdruck nach einem vorgegbenen Druck/Zeitprofil aufgebracht . Damit ist z.B. die Rate der Drucksteigerung, des zweiten Gießdrucks und dessen Haltezeit festgelegt.
Nach einer vorteilhaften Ausgestaltung ist der erste Gieß- druck kleiner als der zweite Gießdruck. Der erste Gießdruck wird zweckmäßigerweise abgesenkt, sobald die Druckgießform zu mindestens 90 Vol . % gefüllt ist. Der durch den zweiten Gießdruck auf den Metallschaum-Kern bewirkte Druck ist vorteilhafterweise kleiner als dessen Druckfestigkeit. Der durch den ersten Gießdruck auf den Metallschaum-Kern bewirkte Druck ist zweckmäßigerweise kleiner als 25 bar, der durch den zweite Gießdruck auf den Metallschaum-Kern bewirkte Druck größer als 25 bar. Der zweite Gießdruck liegt vorzugsweise zwischen 200 und 700 bar.
Der erste Gießdruck dient dem im wesentlichen vollständigen Füllen der Druckgießform. Die Schmelze hat während dieser Phase die Möglichkeit, das wesentliche Zwickelvolumen der Druckgießform zu erfüllen. Es wird dabei kein nennenswerter Druck auf den Metallschaum-Kern ausgeübt. Der zweite Gießdruck wird erst aufgebracht, wenn die Druckgießform vollständig gefüllt ist. Der durch den zweiten Gießdruck bewirkte Druck wirkt auf den Metallkörper und den Metallschaum-Kern. Er ist kleiner als die Druckfestigkeit des Metallschaum- Kerns, um dessen Struktur nicht zu zerstören, und groß genug, um im Metallkörper verbliebene Poren zu schließen.
Nach einer weiteren Ausgestaltung sind an dem Metallschaum- Kern in einstückiger Ausbildung Abstandshalter angeformt. Sie sind zweckmäßigerweise als stegartige Erhebungen ausgebildet.
Das vereinfacht und verbilligt das vorgeschlagene Verfahren weiter und schafft zusätzliche gestalterische Möglichkeiten für die Bauteilgeometrie. Nach einem weiteren Ausgestaltungsmerkmal ist vorgesehen, daß der Metallschaum-Kern vor dem Schritt lit. b mit einer thermisch beständigen Schicht ummantelt wird. Diese Schicht kann mittels thermischen Spπtzens oder durch Tauchen m einen ke- ramischen Schlicker hergestellt werden. Das thermische Spritzen kann beispielsweise mittels Flammspritzen, z.B. Alumini- umdrahtflammspritzen, erfolgen. Statt dem Drahtflammspritzen können auch andere Hochgeschwindigkeitsflammspπtzverfahren angewendet werden, z.B. Vakuum-Plasmaspritzen. Als Schlicker kann z.B. ein MgAl -Spinell -Schlicker benutzt werden. Der Schlicker haftet gut auf der Oberfläche des Metallschaum- Kerns. Die vorgenannten Merkmale verhindern zusätzlich einen Eintritt von Schmelze in die Poren an der Oberfläche des Metallschaum-Kerns während des Druckgießvorgangs.
Nach einer weiteren, besonders vorteilhaften Ausgestaltung wird der von der Druckgießform umschlossene Formhohlraum nach dem Schritt lit. b mit Unterdruck beaufschlagt. Vorteilhaft ist es, den Formhohlraum soweit als möglich zu evakuieren. Gute Ergebnisse werden bei einer Beaufschlagung des Formhohlraums mit Unterdruck im Bereich von 5 bis 50 mbar, vorzugsweise von 10 bis 30 mbar, erzielt. Die Beaufschlagung des Formhohlraums mit Unterdruck erfolgt zweckmäßigerweise so lange, bis die Druckgießform vollständig mit Schmelze gefüllt ist. Das Abschalten der Unterdruckbeaufschlagung kann erfolgen, indem die Schmelze bei Vollständiger Füllung der Druckgießform in damit verbundene Kanäle eindringt und ein dort angeordnetes Unterdruckventil schließt. Durch die Beaufschlagung der Druckgießform mit Unterdruck können weitgehend Po- ren- und fehlerfreie Bauteile einfach und schnell hergestellt werden . Nach weiterer Maßgabe der Erfindung wird ein nach dem vorgenannten Verfahren hergestelltes Bauteil beansprucht.
Nachfolgend wird anhand eines Ausführungsbeispiels das erfin- dungsgemäße Verfahren näher erläutert. Es zeigen:
Fig. 1 den Gießdruck sowie die Kolbengeschwindigkeit aufgetragen über der Zeit bzw. dem Weg,
Fig. 2 die Druckfestigkeit von Aluminium-Metallschaumproben in Abhängigkeit von der Dichte,
Fig. 3 einen mit einer Drahtflammspritzschicht ummantelten Metallschäum-Kern,
Fig. 4 einen mit einer Schlickerschicht ummantelten Me- Metallschäum-Kern,
Fig. 5 eine hergestellte Verbundstruktur im Schnitt,
Fig. 6 eine Draufsicht auf eine Seite eines unter Beaufschlagung mit Unterdruck hergestellten Bauteils,
Fig. 7 eine Draufsicht auf die andere Seite des Bauteils nach Fig. 6,
Fig. 8 eine Draufsicht auf eine Seite eines weiteren Bauteils, hergestellt ohne Beaufschlagung von Unterdruck und
Fig. 9 eine Draufsicht auf die andere Seite des Bauteils nach Fig . 8. In Fig. 1 ist allgemein mit dem Bezugszeichen p der Gießdruck über der Zeit aufgetragen. Der Gießdruck ist spezifisch für die jeweils verwendete Druckgußvorrichtung und -form. Im vorliegenden Beispiel ist ein im wesentlichen aus Aluminium her- gestellter Metallschaum-Kern mit Aluminium umgössen worden. Wie aus der Fig. 1 ersichtlich ist, beträgt ein erster Gießdruck pl während des Füllens der Druckgießform weniger als 50 bar. Er beträgt typischerweise zunächst etwa 20 bar. Bei einem Füllgrad von mehr als 90 Vol.%, vorzugsweise von mehr als 98 Vol.%, wird der erste Gießdruck pl durch Verringerung der Kolbenvorschubgeschwindigkeit zurückgenommen und auf Null oder nahezu Null reduziert. Die Druckgießform verbleibt für eine kurze Zeit im vollständig gefüllten Zustand drucklos. Es wird angenommen, daß während dieser Zeit Schmelze an der Oberfläche des Metallschaum-Kerns erstarrt und darin befindliche Poren und Risse verschlossen werden.
Sodann wird ein zweiter Gießdruck p2 von etwa 400 bar mit einer konstanten Rate aufgebracht . Der durch den zweiten Gieß- druck p2 auf den Metallschaum-Kern aufgebrachte Druck ist geringer als die Druckfestigkeit des Metallschaum-Kerns. Der zweite Gießdruck p2 wird für eine vorgegebene Zeit gehalten. Durch den zweiten Gießdruck p2 werden in dem den Metall - schäum-Kern umgebenden Metallkörper verbliebene Poren ge- schlössen.
In Fig. 1 ist außerdem die Kolbenvorschubgeschwindigkeit v der Druckgußvorrichtung über dem Weg aufgetragen. Bis zu einem Füllgrad der Druckgießform von etwa 80 Vol . % wird die Kolbenvorschubgeschwindigkeit v zweckmäßigerweise gesteigert.
Das bewirkt eine besonders effektive Füllung der Druckgießform. Anschließend bleibt die Kolbenvorschubgeschwindigkeit v bis zu einem Füllgrad von mindestens 90 Vol . % konstant. Die Kolbenvorschubgeschwindigkeit v wird bei Erreichen eines Füllgrads von mindestens 90 Vol.%, vorzugsweise von 98 Vol.%, auf Null oder nahezu Null zurückgenommen. Die Druckgießform verbleibt für einen kurzen Zeitabschnitt drucklos, bevor durch einen geringen weiteren Vorschub des Kolbens der zweite Gießdruck p2 von etwa 400 bar aufgebracht wird.
In Fig. 2 ist die Druckfestigkeit von AI -Metallschaumproben über der Dichte dargestellt. Es sind AI -Metallschaumproben einer Al-Metallschaumplatte, die aus einer Khetlegierung hergestellt worden ist, und AI -Metallschaumproben einer Al- Metallschaumplatte, die aus einer Gußlegierung hergestellt worden ist, im Vergleich gezeigt. In typischen Dichtebereichen von 0,6 bis 0,7 g/cm3 liegt die Druckfestigkeit der Al- Metallschaumproben beider Legierungen zwischen 7 und 10 MPa. Die auf der Grundlage einer Knetlegierung hergestellte Al- Metallschaumplatte zeigt eine geringe Streuung hinsichtlich ihrer Dichte und Druckfestigkeit.
Die Fig. 3 zeigt einen Metallschäum-Kern 1, der mit einer Al- Drahtflammspritzschicht umgeben ist. Mit 2 ist ein stegartiger Abstandshalter bezeichnet, der in einstückiger Ausbildung mit dem aus Aluminium hergestellten Metallschaum-Kern 1 hergestellt worden ist.
In Fig. 4 ist ein Metallschaum-Kern 1 gezeigt, der mit einer keramischen Schlickerschicht umgeben ist. Die Schlickerschicht ist hier aus einem MgAl-Spinnel hergestellt worden.
Fig. 5 zeigt eine Verbundstruktur, bei welcher der Metallschaum-Kern 1 mit den daran angeformten Abstandshaltern 2 von einem Metallkörper 3 umgeben ist. Der Metallkörper 3 ist ebenso wie der Metallschaum-Kern 1 aus einer Aluminiumlegierung hergestellt.
In den Fig. 6 und 7 ist ein Bauteil gezeigt, welches nach dem erfindungsgemäßen Verfahren unter Beaufschlagung von Unterdruck hergestellt worden ist. Nachdem Einsetzen des Metallschaum-Kerns in die Druckgießform wird diese im wesentlich vakuumdicht geschlossen. Der von der Druckgießform umschlossene Formhohlraum wird mit einer geeigneten Vorrichtung mit einem Unterdruck von etwa 10 mbar beaufschlagt. Die Beaufschlagung mit Unterdruck dauert so lange, bis die Schmelze den Formhohlraum vollständig gefüllt hat. Zweckmäßigerweise dringt die Schmelze beim vollständigen Füllen des Formhohlraums in davon ausgehende geeignete Kanäle ein und verschließt dort ein Vakuumventil. Die Beaufschlagung des Formhohlraums mit Unterdruck ermöglicht es, das Verfahren im Vergleich zu herkömmlichen Druckgußverfahren mit niedrigeren Drücken durchzuführen. Unter Beaufschlagung von Unterdruck hergestellte Bauteile weisen - wie aus einem Vergleich der Fig. 6 bis 9 ersichtlich ist - wesentlich bessere Gußqualitäten auf, deren Porosität ist geringer. Die Formfüllung ist bei der Beaufschlagung des Formhohlraums mit Unterdruck besser.
Die in den Fig. 6 bis 9 gezeigten Bauteile sind jeweils mit identischen Gießparametern hergestellt worden. Der Druck in der Gießkammer hat jeweils 500 bar, die maximale Formfüllgeschwindigkeit 3,7 m/s betragen. Das in den Fig. 6 und 7 bezeigte Bauteil ist mit einer Beaufschlagung des Formhohlraums mit Unterdruck von etwa 30 mbar gegossen worden.
Das in den Fig. 8 und 9 gezeigte Bauteil ist ohne Beaufschlagung des Formhohlraums mit Unterdruck gegossen worden.

Claims

Patentansprüche
1. Verfahren zur Herstellung einer Verbundstruktur, bei der ein Metallschaum-Kern (1) mit einem Metallkörper (3) um- geben ist, mit folgenden Schritten:
a) Herstellen eines Metallschaum-Kerns (1) mit einer im wesentlichen geschlossenen Oberfläche,
b) Einsetzen des Metallschäum-Kerns (1) in eine Druckgießform,
c) Füllen der Druckgießform mit einem ersten Gießdruck
(pl) ,
d) Absenken des ersten Gießdrucks (pl) , bevor die Druckgießform gefüllt ist,
e) vollständiges Füllen der Druckgießform, wobei der er- ste Gießdruck (pl) auf Null oder nahezu Null abgesenkt wird, und
f) Aufbringen eines zweiten Gießdrucks (p2) und Halten desselben für eine vorgegebene Haltezeit .
2. Verfahren nach Anspruch 1, wobei der erste (pl) und/oder zweite Gießdruck (p2) nach einem vorgegebenen Druck/Zeitprofil aufgebracht wird.
3. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste Gießdruck (pl) kleiner als der zweite Gießdruck (p2) ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste Gießdruck (pl) abgesenkt wird., sobald die Druckgießform zu mindestens 90 Vol . % gefüllt ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei der durch den zweiten Gießdruck (p2) auf den Metall - schäum—Kern (1) bewirkte Druck kleiner ist als dessen Druckfestigkeit .
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei an den Metallschaum-Kern (1) in einstückiger Ausbildung Abstandshalter (2) angeformt sind.
7. Verfahren nach einem der vorhergehenden Ansprüche, wo- bei der Metallschaum-Kern (1) vor dem Schritt lit. b mit einer thermisch beständigen Schicht ummantelt wird.
8. Verfahren nach Anspruch 7, wobei die thermisch beständige Schicht mittels thermischen Spritzens oder Tauchen in einen keramischen Schlicker hergestellt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei der die thermisch beständige Schicht aus Aluminium oder aus Al/Mg-Mischoxid hergestellt ist.
10. Verfahren nach einem der vorhergehenden Ansprüche, wobei der von der Druckgießform umschlossene Formhohlraum nach dem Schritt lit. b mit Unterdruck beaufschlagt wird.
11. Bauteil hergestellt nach dem Verfahren nach einem der vorhergehenden Ansprüche .
PCT/DE2001/000556 2000-02-25 2001-02-13 Verfahren zur herstellung einer verbundstruktur mit einem metallschaum-kern WO2001062415A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/204,400 US6675864B2 (en) 2000-02-25 2001-02-13 Method for producing a composite structure with a foamed metal core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10009008A DE10009008C1 (de) 2000-02-25 2000-02-25 Verfahren zur Herstellung einer Verbundstruktur mit einem Metallschaum-Kern
DE10009008.7 2000-02-25

Publications (1)

Publication Number Publication Date
WO2001062415A1 true WO2001062415A1 (de) 2001-08-30

Family

ID=7632471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/000556 WO2001062415A1 (de) 2000-02-25 2001-02-13 Verfahren zur herstellung einer verbundstruktur mit einem metallschaum-kern

Country Status (3)

Country Link
US (1) US6675864B2 (de)
DE (1) DE10009008C1 (de)
WO (1) WO2001062415A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354651A2 (de) 2002-04-19 2003-10-22 Hütte Klein-Reichenbach Gesellschaft m.b.H. Metallschaum enthaltender Leichtbauteil, sowie Verfahren und Vorrichtung zu dessen Herstellung

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10123899A1 (de) * 2001-05-16 2002-11-21 Goldschmidt Ag Th Verfahren zur Herstellung von Metallformteilen
US6808003B2 (en) * 2001-08-07 2004-10-26 Alcoa Inc. Coextruded products of aluminum foam and skin material
DE10140332C1 (de) * 2001-08-16 2003-04-24 Daimler Chrysler Ag Leichtbaukurbelwelle
DE10325819B4 (de) * 2003-06-07 2005-06-23 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur Herstellung eines Metallschaumkörpers
WO2006083375A2 (en) * 2004-11-29 2006-08-10 North Carolina State University Metal foam comprising hollow metal spheres and solid matrix and methods of preparation thereof
US9208912B2 (en) 2004-11-29 2015-12-08 Afsaneh Rabiei Composite metal foam and methods of preparation thereof
JP2006326630A (ja) * 2005-05-25 2006-12-07 Toyota Industries Corp アルミ複合材の製造方法
DE102005037069B4 (de) * 2005-08-05 2010-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Poröse Verbundwerkstoffe auf Basis eines Metalls und Verfahren zu deren Herstellung
DE102009030428A1 (de) 2009-06-25 2010-12-30 Daimler Ag Schaumkörper für ein Gussverbundbauteil sowie Gussverbundbauteil und Verfahren zum Herstellen eines Gussverbundbauteils
US20120051898A1 (en) * 2011-08-05 2012-03-01 General Electric Company Wind turbine component having a lightweight structure
US10434568B2 (en) 2012-04-12 2019-10-08 Loukus Technologies, Inc. Thermal isolation spray for casting articles
US9468118B1 (en) * 2013-12-20 2016-10-11 Amazon Technologies, Inc. Reinforced structural composite
CN106270453A (zh) * 2016-08-23 2017-01-04 张家港华日法兰有限公司 一种多层次法兰的加工方法
CN113290245B (zh) * 2021-05-25 2022-04-19 江南大学 一种二次施压制备金属基陶瓷复合材料的工艺
DE102022106524A1 (de) 2022-03-21 2023-09-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen eines Schaumelements, Bauteil sowie Werkzeug
DE102022106525A1 (de) 2022-03-21 2023-09-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen eines Schaumelements sowie Bauteil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344010A1 (de) * 1988-05-25 1989-11-29 Ahresty Corporation Druckgiessverfahren
DE19526057C1 (de) * 1995-07-17 1996-04-04 Daimler Benz Ag Verfahren zur Herstellung einer Verbundstruktur
DE19501508C1 (de) * 1995-01-19 1996-04-25 Lemfoerder Metallwaren Ag Bauteil für das Fahrwerk eines Kraftfahrzeuges und Verfahren zur Herstellung eines solchen Bauteils
US5685358A (en) * 1994-05-30 1997-11-11 Tokyo Denshi Yakin Co., Ltd. Method for melt-molding Ge, Si, or Ge-Si alloy
WO1999039923A1 (de) * 1998-02-04 1999-08-12 Austria Alu-Guss-Gesellschaft Mbh Rad-gussfelge

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19650613B4 (de) * 1996-12-06 2005-12-29 Daimlerchrysler Ag Bauteil mit einem Metallschaum-Kern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344010A1 (de) * 1988-05-25 1989-11-29 Ahresty Corporation Druckgiessverfahren
US5685358A (en) * 1994-05-30 1997-11-11 Tokyo Denshi Yakin Co., Ltd. Method for melt-molding Ge, Si, or Ge-Si alloy
DE19501508C1 (de) * 1995-01-19 1996-04-25 Lemfoerder Metallwaren Ag Bauteil für das Fahrwerk eines Kraftfahrzeuges und Verfahren zur Herstellung eines solchen Bauteils
DE19526057C1 (de) * 1995-07-17 1996-04-04 Daimler Benz Ag Verfahren zur Herstellung einer Verbundstruktur
WO1999039923A1 (de) * 1998-02-04 1999-08-12 Austria Alu-Guss-Gesellschaft Mbh Rad-gussfelge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354651A2 (de) 2002-04-19 2003-10-22 Hütte Klein-Reichenbach Gesellschaft m.b.H. Metallschaum enthaltender Leichtbauteil, sowie Verfahren und Vorrichtung zu dessen Herstellung
EP1354651A3 (de) * 2002-04-19 2004-08-18 Hütte Klein-Reichenbach Gesellschaft m.b.H. Metallschaum enthaltender Leichtbauteil, sowie Verfahren und Vorrichtung zu dessen Herstellung
US7134477B2 (en) 2002-04-19 2006-11-14 Huette Klein-Reichenbach Gesellschaft M.B.H Lightweight part, as well as process and device for its production
US7135236B2 (en) 2002-04-19 2006-11-14 Huette Klein-Reichenbach Gesellschaft M.B.H Lightweight part, as well as a process and device for its production
US7137433B2 (en) 2002-04-19 2006-11-21 Huette Klein-Reichenbach Gesellschaft M.B.H. Lightweight part, as well as a process and device for its production
NO337269B1 (no) * 2002-04-19 2016-02-29 Huette Klein Reichenbach Gmbh Fremgangsmåte og innretning for fremstilling av lettkonstruksjonsdel

Also Published As

Publication number Publication date
US20030141032A1 (en) 2003-07-31
US6675864B2 (en) 2004-01-13
DE10009008C1 (de) 2001-09-13

Similar Documents

Publication Publication Date Title
WO2001062415A1 (de) Verfahren zur herstellung einer verbundstruktur mit einem metallschaum-kern
DE4020324A1 (de) Verfahren zum herstellen eines duennen films auf einem substrat
DE3546148C2 (de)
EP0971805A1 (de) Verfahren und giesseinrichtung für feinguss
DE19539922A1 (de) Verfahren und Vorrichtung zur Bildung eines Aluminiumlegierungs-Verbundmaterials
DE2951202A1 (de) Verfahren zum von unten her erfolgenden bzw. bodenseitigen einblasen von gas in eine stahlschmelze
DE19701728C2 (de) Verfahren und Vorrichtung zur Herstellung geschäumter Polyurethan-Formkörper
DE3903310C1 (de)
EP1034863A1 (de) Verfahren zum Druckgiessen von Leichtmetallen
DE2008348A1 (de) Verfahren zur Herstellung von Werkstücken durch Materialumformung und Vorrichtung zur Durchführung des Verfahrens
EP0241426B1 (de) Verfahren und Anlage zum Druckgiessen
DE3015575A1 (de) Verfahren zur herstellung eines gegenstandes aus keramischem oder metallischem material durch isostatisches pressen
EP0775447A2 (de) Verfahren und Vorrichtung zur Formen von Schokoladeschalen
DE10258546A1 (de) Verfahren und Vorrichtung zur Herstellung geschäumter Polyurethan-Formkörper
EP0733422B1 (de) Verfahren zur Herstellung von Formteilen aus Metall
DE3723763C2 (de)
DE3907022C2 (de)
EP0987233B1 (de) Verfahren zur Herstellung eines Keramikbauteils mit einem Cermet-Körper
DE1458098A1 (de) Vorrichtung und Verfahren zum Pressgiessen von Metall
WO1999046072A1 (de) Giessvorrichtung und giessverfahren mit nachverdichtung
DE10030874C2 (de) Verfahren und Vorrichtung zum Herstellen von Kunststoffteilen mittels Vakuumgießens
DE19520880C1 (de) Thermoschock-Körper und Herstellungsverfahren
DE10255691A1 (de) Verfahren zur Herstellung eines gekühlten Ringträgers für einen Aluminiumkolben
DE19803743C2 (de) Verfahren zum Herstellen von langfaserverstärkten Bauteilen
DE4431865A1 (de) Verfahren und Vorrichtung zum Herstellen von Druckgußteilen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10204400

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP