WO2001059863A2 - Brennstoffzellenblock mit einem an betriebsgaszuleitung angeschlossenen kondenswasserabscheider - Google Patents

Brennstoffzellenblock mit einem an betriebsgaszuleitung angeschlossenen kondenswasserabscheider Download PDF

Info

Publication number
WO2001059863A2
WO2001059863A2 PCT/DE2001/000378 DE0100378W WO0159863A2 WO 2001059863 A2 WO2001059863 A2 WO 2001059863A2 DE 0100378 W DE0100378 W DE 0100378W WO 0159863 A2 WO0159863 A2 WO 0159863A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell block
operating gas
condensed water
water
Prior art date
Application number
PCT/DE2001/000378
Other languages
English (en)
French (fr)
Other versions
WO2001059863A3 (de
Inventor
Detlev Coerlin
Arno Mattejat
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CA002399938A priority Critical patent/CA2399938A1/en
Priority to DE50100756T priority patent/DE50100756D1/de
Priority to EP01909552A priority patent/EP1258047B1/de
Priority to JP2001559083A priority patent/JP2003523057A/ja
Publication of WO2001059863A2 publication Critical patent/WO2001059863A2/de
Publication of WO2001059863A3 publication Critical patent/WO2001059863A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell block that holds a number of fuel cells in a fuel cell stack and an operating gas supply line u.
  • the technical implementation of the principle of the fuel cell has led to different solutions, namely with different types of electrolytes and with operating temperatures between 80 ° C and 1000 ° C. Depending on their operating temperature, the fuel cells are classified into low, medium and high temperature fuel cells, which in turn differ from one another in different technical designs.
  • a single fuel cell supplies a maximum operating voltage of 1.1 volts.
  • a large number of fuel cells are therefore stacked on top of one another and combined to form a fuel line block.
  • such a block is also called a “stack”.
  • the operating voltage of a fuel cell system can be a few 100 volts.
  • a fuel cell block different components are stacked on top of one another in an alternating sequence.
  • Such components are, for example, an electrolyte electrode unit and a bipolar plate.
  • an electrolyte electrode unit and a bipolar plate there are between an electrolyte electrode unit and a bipolar plate
  • the bipolar plate is designed, for example, as a composite printed circuit board or as a temperature control element, which consists of two stacked plates with an intermediate cooling or heating water room.
  • the fuel cells of a fuel cell block are supplied with operating gases during their operation - that is, hydrogen-containing gas and oxygen-containing gas.
  • operating gases such as hydrogen-containing gas and oxygen-containing gas.
  • Some embodiments of low-temperature fuel cells in particular fuel cells with polymer electrolyte membranes (PEM fuel cells), require humidified operating gases for operation. These operating gases are heated to the temperature of the fuel cell block in a suitable device, such as, for example, a liquid condenser or other humidifier, and saturated with water vapor.
  • the object of the invention is to specify a fuel cell block in which the function of the fuel cells is not impaired by condensed water.
  • a fuel cell block which comprises a number of fuel cells in a fuel cell stack and an operating gas supply line and which, according to the invention, has a condensate separator branching off from the operating gas supply line.
  • the invention is based on the consideration that in the case of a long operating gas supply line from the humidifier to the fuel cell block, the condensation of water from the operating gas only requires great effort, for example due to the thermal insulation and heating of the affected lines can be prevented. In order not to reduce the efficiency of the fuel cell block, such a solution is out of the question.
  • a more economical solution is the removal of the condensate. This is done particularly simply by a condensate drain that branches off from the operating gas supply line between the humidifier and the fuel cell block.
  • the invention is based on the further consideration that the integration of the condensate drainage in the fuel cell block avoids the disadvantage of an additional line.
  • This condensate drainage is, for example, a component of a condensate drainage separator, which includes other elements in addition to the condensate drainage.
  • the condensate separator can also be formed solely by the condensate drain.
  • a condensate separator designed in this way as a component of the fuel cell block has the further advantage that it is connected to a point in the operating gas feed line at which the operating gas line has the temperature of the fuel cell block. “Connected” here means that the condensate separator is connected to the operating gas supply line in such a way that the condensed water can flow from the operating gas supply line m to the condensate separator.
  • the operating gas supply line remains on the constant temperature of the fuel cell block, which is why there is no further condensation of water from the humidified operating gas. This ensures that the condensate separator separates the entire amount of condensed water from the operating gas and essentially no condensed water can get into the fuel cells. This effectively prevents condensate from impairing the function of the fuel cells.
  • the separation of the condensed water from the operating gas supply line takes place, for example, in such a way that the condensed water discharge line takes up the condensed water from the operating gas supply line like a street gully.
  • the condensed water is passed through the condensed water discharge line, possibly stored in a condensed water collecting space of the condensed water separator, and then passed out of the condensed water separator.
  • the condensate drainage is arranged in a plate-shaped component and the component is integrated in the fuel cell stack.
  • a fuel cell block has a large number of plate-shaped components.
  • Such plate-shaped components house operating gas spaces, in which the operating gases can flow along the electrolyte electrode unit, one or more cooling water spaces and a multiplicity of channels for supplying and discharging operating gases and cooling water.
  • Such a channel and / or space can be designed within a plate-shaped component without great effort in such a way that the channel and / or space function as a condensate separator.
  • Such channels and or spaces are preferably used which otherwise have no function during normal operation of the fuel cell block. As a result, no additional plate-like or other component within the fuel cell block is required for the design of the condensate separator. Therefore, neither the grain The complexity of the fuel cell system increases the volume of the fuel cell block.
  • the component is advantageously a connection plate of the fuel cell block.
  • the connection plate limits the
  • Fuel cell stack of the fuel cell block and is provided with connections for supplying the fuel cell stack with operating gas and cooling or heating water.
  • the Be ⁇ operating gas feed line runs block from the humidifier to the fuel cell, through the connection plate through to the individual. Fuel cells.
  • the integration of the condensate separator in the connection plate can be carried out without significantly increasing the volume of the fuel cell block.
  • the a_-cr_ m condensate separator can be integrated with a separating plate that separates two areas of the fuel cell block.
  • the condensate separator runs along a thermal card.
  • a thermal card is a heating or cooling card and is used to regulate the temperature within the fuel cell block.
  • the thermal map of adjacent gas spaces is adjacent, through which the operating gases flow during operation of the fuel cells and along the Electrol_.t electrode unit.
  • the first thermal card seen in the stack direction of the fuel cell stack, is adjacent to a gas space to which no electrolyte electrode unit adjoins. It is advisable that no operating gas flows through this gas space, since the lack of electrolyte-electrode units means that no electrochemical reaction can occur. The gas space therefore has no function.
  • This gas space with its connections to the operating gas feed line of the fuel cell stack can thus be used as condensation water ⁇ water separator without degrading performance.
  • the condensed water flows through a path similar to that of the operating gas in the neighboring fuel cell.
  • the condensate separator is expediently connected to the operating gas feed line, seen in the flow direction of the operating gas, in front of the first fuel cell. In the case of a condensate water separator arranged in this way, it is ensured that the condensed water that is condensed out in the operating gas supply line between the humidifier and the fuel cell block cannot reach the first fuel cell, but is already taken up by the condensate water separator on the way to the first fuel cell.
  • the condensate separator comprises a gas barrier.
  • a condensate separator designed without a gas barrier has the disadvantage that a certain amount of operating gas does not find its way through the fuel cells, but through the fuel cell block via a condensate separator.
  • a gas barrier in the condensate separator prevents or reduces such a parasitic gas flow flowing through the condensate separator.
  • the gas barrier can be an active or a passive gas barrier.
  • a valve in the condensate separator is suitable as an active gas barrier, which only lets condensate through when it is open. When closed, the valve builds up the condensed water above the valve. When the fuel cell block is in operation, the valve is opened and closed periodically and the condensed water is thus drained off in portions. If only enough condensed water is let through the valve that a residual amount of condensed water remains above the valve, a flow of a parasitic gas flow through the condensed water separator is effectively avoided.
  • a sensor can sense the amount of condensed water above the valve.
  • a constriction within the condensate separator, a strainer or a filter is suitable as a passive gas barrier.
  • a gas barrier reduces the parasitic one Gas flow.
  • the gas flow can be adjusted to a specified amount by the type of sieve, filter or constriction.
  • the parasitic gas flow can also serve the advantage, since it continues to print the condensed water on the path predetermined for it.
  • a gas-tight passive gas barrier is, for example, a so-called "kink". In such a kink, as can be found in every washbasin siphon, there is always a certain amount of water due to an S-shaped arrangement of a water pipe. This water seals the condensate separator gas-tight and thus prevents Bet ⁇ eosgas from flowing through the condensate separator.
  • a further advantage of the invention is achieved in that the condensate separator is connected to a water collection container.
  • the outlet of the condensate separator thus m in a line that leads to the water collection container or directly m the collection container.
  • a water collection container is basically available in a fuel cell system that works with humidified operating gases. It is used for the return and temporary storage of the product water generated in the fuel cells.
  • the water collection container is usually connected to the humidifier, which feeds the product water back into the fuel cells as humidification. As a result, the condensed water is also collected in the water collection container and made available again to the fuel cells for moistening.
  • the condensate separator is connected to a gas feed line.
  • the condensate separator thus connects an operating gas supply line to an operating gas discharge line and conducts the condensed water from the operating gas supply line directly to an operating gas discharge line, through which the condensed water in turn is led out of the fuel cell block.
  • water is formed in the fuel cells through the electrochemical reaction of hydrogen and oxygen. This water is drive gas discharge together with the operating gas, which flows through the fuel cells without reaction, led out of the fuel cell block.
  • the condensed water from the condensed water separator is added to this water flow.
  • no channels or lines from the condensate separator to a water collection container are necessary. This simplifies the construction and reduces the volume of the fuel cell block,
  • a condenser water is expediently arranged in the operating gas supply line. This barrier ensures that the condensation water flowing in the operating gas supply line does not pass over the opening of the condensation water discharge line of the condensation water separator and continues to flow m the fuel cells.
  • the condensed water bar is formed, for example, as a threshold m of the operating gas feed line, which inhibits the flow of the condensed water.
  • the operating gas feed line is formed within the fuel cell block by openings in the plate-shaped elements of the fuel cell block. By narrowing the opening in one element relative to the openings in the adjacent elements, a threshold is created which acts as a condensation water barrier. In this way, which can be achieved by simple structural measures, the further flow of the condensed water through the fuel gas supply line is stopped.
  • the condensation water bar is formed by a sheet of a thermal card.
  • a thermal card usually comprises two joined sheets, which form a heating or cooling water space between them. One or both of these sheets can be guided in such a way that they protrude into the operating gas supply line and thus form the condensation water chamber. Similar to a dam, they prevent the condensed water from continuing to flow through the equipment supply line.
  • the condensate drain is expediently located between the connection of the condensate separator to the equipment
  • the condensed water is pressed into the fuel cell block with the operating gas flow.
  • the Be ⁇ operating gas feed line - or at least still Strom.ingsricr.t_r_ m before the next fuel cell - that spilled over on the opening condensation is dammed. It flows' t then the opening m back. It is thereby effectively changed that the condensed water flows at the condensed water separator v; r- and m the subsequent fuel cell.
  • the fuel cells are PEM fuel cells.
  • PEM fuel cells are operated at a low operating temperature of around 80 ° C, have cheap overload aging and have a long service life. They also show favorable behavior in the event of rapid load changes and can also be operated with air or pure oxygen. All of these properties make PEM fuel cells particularly suitable for use in the mobile sector, such as for driving a wide variety of vehicles.
  • FIG. 1 shows a fuel cell block 1, an operating gas supply line 2 connected thereto and a humidifier 3.
  • Be ⁇ driving gas 4 such as air or hydrogen-containing (H 2) gas humidifier m oen 3.
  • the humidifier 3 is provided with water
  • the operating gas 4 is heated in the humidifier 3 and humidified until saturated with water.
  • the operating gas 4 then flows out of the humidifier 3 m into the operating gas supply line 2.
  • the operating gas supply line 2 flows through, the operating gas 4 cools down, as a result of which condensed water 6 condenses out of the operating gas 4.
  • the condensed water becomes due to the gas flow of the operating gas 4
  • the condensed water 6 runs from the operating gas supply line 2 through the condensed water discharge line 7 m to a condensed water separator 8.
  • the condensed water 6 collects in a collecting space 11 of the condensed water separator 8.
  • a gas barrier 12 is arranged below the collecting space 11.
  • the gas barrier 12 of the condensation water separator 8 ensures that only a small amount of condensation water 6 can leave the collecting space 11 of the condensation water separator 8 per time. This happens because the gas barrier 12 narrows the collecting space 11 at its lower end so that only a narrow opening remains for leaving the collecting space 11.
  • the opening allows a small flow of operating gas to pass through.
  • the opening can also be dimensioned such that the condensed water 6 collects at the lower region of the collecting space 11, so that this lower region is filled with condensed water 6. Then no operating gas 4 flows through the condensate separator 8.
  • the cross-section of the condensate drain 7 can also be selected such that it also serves as a gas barrier. Regardless of where the gas barrier 12 is located in the condensation water separator, no level control of the condensation water 6 in the collecting space 11 is necessary.
  • the condensate separator 8 is located in a connection plate of the fuel cell block 1, to which, among other things, the part of the operating gas supply line 2 to the fuel cell block 1, which is located outside the fuel cell block, is connected.
  • the condensate separator 8 is seen in the direction of flow of the operating gas 4 in front of the first fuel cell 14 through the condensate drain to the operating gas line 2. Together with the condensed water camera 15, which is arranged between the connection of the condensed water separator 8 and the fuel cell 14 following the flow direction of the operating gas 4, it prevents condensed water 6, which is condensed in the operating gas feed line 2, from reaching the fuel cells 14.
  • the condensate separator 8 is connected to an operating gas line 13 through which the operating gas 4 leaves the fuel cell block 1 after it has left the fuel cells 14.
  • the condensed water 6 is therefore fed to the operating gas discharge line 13 and combines with the product water which was formed by the electrochemical reaction of the operating gases 4 m to the fuel cells 14.
  • the pressure difference between the operating gas supply line 2 and the operating gas discharge line 13 is used. The transport is supported by the operating gas 4 flowing through the condensate separator 8.
  • the operating gas supply line 2 is configured in the area of the fuel cell block 1 as an axial channel which runs parallel to the stacking direction of the fuel cells 14, that is to say parallel to the axis of the fuel cell block 1.
  • the operating gas supply line 2 is formed there by openings in the plate-shaped components of the fuel cell block 1.
  • In the operating gas supply line 2 there is a condensation water camera 15. It prevents the condensation water 6 from being blown over by the flow of the operating gas 4 via the opening 7 and thus being able to reach the subsequent fuel cells 14.
  • the condensation water 15 is as one
  • Threshold designed that the condensation water 6 m of the operating gas supply line 2.
  • FIG. 2 shows a schematic sectional illustration of a fuel cell block 21 which has a number of
  • the fuel cell block is designed for operation with air, which is enriched with water in a liquid condenser, not shown in FIG. 2, until it is saturated. Parts of the water condense out of the operating gas supply line 23 and reach the fuel cell block 21 as condensed water 25 m.
  • the air 24 flows from the liquid compressor through the operating gas feed line 23 m to the individual fuel cells 22, each of which comprises an electrolyte electrode assembly 26 with thermocards 27 adjoining on both sides.
  • the thermal cards 27 are used for cooling or for heating the fuel cells 22.
  • the air flows out of the fuel cell block 21 through an operating gas discharge line 30.
  • the condensed water camera 33 is designed as a narrowing of the operating gas supply line 23, which retains the condensed water 25 like a threshold.
  • the Condensed water 25 flows m the condensed water separator 32, which is arranged in a separating plate of the fuel cell block 21, and from there further m a water collection container 34 connected to the condensed water separator 32 of the condenser 32 with parasitic operating gas prevented.
  • the fuel cell block 41 shown in FIG. 3 in a schematic sectional drawing comprises a stack of fuel cells 42, only two of which are shown, a condensate separator 43 which is arranged between the fuel cell stack and a connection plate 44.
  • the fuel cells 42 each comprise an electrolyte electrode unit 45, the electrolyte of which is a polymer electrolyte membrane.
  • the fuel cells 42 are PEM fuel cells.
  • the fuel cells 42 each comprise a thermal card 46a, 46b on both sides of the electrolyte electrode unit.
  • the thermal cards 46a are designed as cooling cards, the thermal cards 46b as cooling and / or
  • the condensate separator 43 comprises a support element 47 with thermal cards 46b arranged on both sides.
  • the condensate separator 43 thus runs along two thermal cards. It is connected to the operating gas supply line 51 through the condensate drain 50. In addition, the condensate separator 43 is connected to a feed gas discharge line 52.
  • operating gas moistened with water flows in the form of hydrogen (H 2 ), oxygen (0 2 ) or air through the operating gas feed line 51 into the fuel cell block 41.
  • the operating gas 53 carries condensed water 54 with it, which also flows through the Operating gas supply line 51 m reaches the fuel cell block 41.
  • the condensed water 54 is taken up by the condensed water drain 50 of the condensed water separator 43, flows along the thermal cards 46b through the condensate separator 43 and is guided into the operating gas discharge line 52 as the flow continues.
  • One of the thermal cards 46b has an elongated plate 55 which prevents the condensed water 54 from flowing over the condensed water discharge line 50 and from reaching the fuel cells 42.
  • the sheet 55 protrudes - similar to a dam wall - into the operating gas supply line 51, which is designed as an axial channel, and thus blocks off the lower part of the fuel cell block 41 from the direction of flow against the condensed water 54. This ensures that the function of the fuel cells 42 is not impaired by condensed water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

Bei Brennstoffzellen (14,22,42), die mit befeuchteten Betriebsgasen (4,53) betrieben werden, kondensiert Kondenswasser (6,25,54) während der Strömung des Betriebsgases (4,53) vom Befeuchter (3) zum Brennstoffzellenblock (1,21,41) aus. Dieses Kondenswasser (6,25,54) läuft in die Brennstoffzellen (22,42) und beeinträchtigen deren Funktion. Es wird ein Brennstoffzellenblock (1,21,41) angegeben, der einen an die Betriebs-gaszuleitung (2,23,51) angeschlossenen Kondenswasserabscheider (6,25,43) aufweist, durch den das Einströmen des Kondenswassers (6,25,54) in die Brennstoffzellen (22,42) vermieden wird.

Description

Beschreibung
Brennstoffzellenbloc
Die Erfindung bezieht sich auf einen Brennstoffzellenblock, der eine Anzahl von Brennstoffzellen in einem Brennstoffzel- lenstapel sowie eine Betriebsgaszuleitung u fasst.
Es ist bekannt, dass bei der Elektrolyse von Wasser die Was- sermolekule durch elektrischen Strom m Wasserstoff (H_) und Sauerstoff (02) zerlegt werden. In einer Brennstoffzelle lauft u.a. dieser Vorgang m umgekehrter Richtung ab. Durch eine elektrochemische Verbindung von Wasserstoff und Sauerstoff zu Wasser entsteht elektrischer Strom mit hohem Wir- kungsgrad und, wenn als Brenngas reiner Wasserstoff eingesetzt wird, ohne Emission von Schadstoffen und Kohlendioxid (C02) . Auch mit einem tech iscnen Brenngas, beispielsweise Erdgas oder Kohlegas und mit Luft anstelle von reinem Sauerstoff, wobei die Luft zusätzlich mit Sauerstoff angereichert sein kann, erzeugt eine Brennstoffzelle deutlich weniger
Schadstoffe und weniger Kohlendioxid als andere Energieerzeuger, die mit fossilen Energieträgern arbeiten.
Die technische Umsetzung des Prinzips der Brennstoffzelle hat zu unterschiedlichen Losungen, und zwar mit verschiedenartigen Elektrolyten und mit Betriebstemperaturen zwischen 80°C und 1000°C, gefuhrt. In Abhängigkeit von ihrer Betriebstemperatur werden die Brennstoffzellen m Nieder-, Mittel- und Hochtemperatur-Brennstoffzellen eingeteilt, die sich wiederum durch verschiedene technische Aus fuhrungs formen voneinander unterscheiden.
Eine einzelne Brennstoffzelle liefert eine Betriebsspannung von maximal 1,1 Volt. Daher wird eine Vielzahl von Brenn- Stoffzellen aufeinander gestapelt und zu einem BrennstoffZeilenblock zusammengefasst . In der Fachliteratur wird ein solcher Block auch „Stack* genannt. Durch das In-Reihe-Schalten der Brennstoffzellen des BrennstoffZellenblocks kann die Betriebsspannung einer BrennstoffZellenanlage einige 100 Volt betragen.
Bei einem Brennstoffzellenblock sind m abwechselnder Reiherfolge verschiedene Bauelemente aufemandergestapel . Solche Bauelemente sind beispielsweise eine Elektrolyt-Elektroden- Einheit und eine bipolare Platte. Je nach Aus fuhrungs form αes BrennstoffZeilenblocks befinden sich zwischen einer Elektro- lyt-Elektroden-Emheit und einer bipolaren Platte «eitere
Bauelemente, wie beispielsweise Druckkissen, elektrisch leitende Schichten oder Dichtungen. In Abhängigkeit von der Art der Brennstoffzellen ist die bipolare Platte beispielsweise als eine Verbundleiterplatte oder als ein Temperierelement ausgestaltet, das aus zwei aufemandergestapelten Platten mit einem dazwischenliegenden Kühl- oder Heizwasserraun besteht.
Die Brennstoffzellen eines BrennstoffZellenblocks werden während ihres Betriebs mit Betriebsgasen - also wasserstoffhal- tigern Gas und sauerstoffhaltigem Gas - versorgt. Manche Ausfuhrungsformen von Niedertemperatur-Brennstoffzellen, insbesondere Brennstoffzellen mit Polymer-Elektrolyt-Menbranen (PEM-Brennstoffzellen) , benotigen zum Betrieb befeuchtete Betriebsgase. Diese Betriebsgase werden in. einer geeigneten Einrichtung, wie beispielsweise einem Flussigkeitsnngver- d chter oder anderen Befeuchtern auf die Temperatur des Brennstoffzellenblocks aufgeheizt und mit Wasserdampf gesattigt.
Werden die Betriebsgase durch lange Betriebsgaszuleitungen vom Befeuchter zum Brennstoffzellenblock geleitet, so kann auf diesem Weg die Temperatur eines befeuchteten Betriebsgases durch Warmeverlust an die Umgebung sinken. Dies fuhrt zur Kondensation von Wasser. Bei großen Massenstromen, langen Leitungen und großen Oberflachen der Leitungen, wie dies beispielsweise in Brennstoffzellenblocken der Fall ist, die mit Luft als sauerstoffhaltigem Betriebsgas betrieben werden, können so erhebl cne Mengen an flussigem Wasser anfallen. Dieses Wasser wird m- dem Betriebsgas zum Brennstof zellenblock transportiert __nd lauft bevorzugt in die m Stromungsrichtung des Betriebsgases gesehen zuerst angeordneten Zel- len. Bei ausreichend großer Menge kann das Wasser den Gasaustausch und somit die elektrochemische Verbindung von Wasser¬ stoff und Sauerstoff m diesen Zellen behindern und damit die Leistung dieser Zellen beeinträchtigen.
In Brennstoffzellenanlagen, die m Fahrzeuge integriert werden sollen, ist es nicht immer möglich, den Befeuchter und den Brennstoffzellenblock räumlich so nahe beieinander einzubauen, dass keine oder nur vernachlassigbare Kondensation auftritt. Meistens s nd die Einbauraume vorgegeben. Die Kom- ponenten der Brennstoffzellenanlage, also auch Befeucnter und ein oder mehrere Brennstoffzellenblocke, müssen im vorhandenen Einbauraum so verteilt werden, dass Ranαoeαingungen, wie Gewichtsverteilung im Fahrzeug, Ein- und Ausbauraume und Zuganglichkeit für die Wartung beachtet werden müssen. Damit kommt es gegebenenfalls zu einer Interessenkollision, die das Funktionieren der Brennstoffzellenanlage infrage stellen kann .
Aufgabe der Erfindung ist es, einen Brennstoffzellenblock an- zugeben, bei dem die Funktion der Brennstoffzellen nicht durch Kondenswasser beeinträchtigt wird.
Diese Aufgabe wird durch einen Brennstoffzellenblock gelost, der eine Anzahl von Brennstoffzellen m einem Brennstoffzel- lenstapel sowie eine Betriebsgaszuleitung umfasst, und der erfmdungsgemaß einen von der Betriebsgaszuleitung abzweigenden Kondenswasserabscheider aufweist.
Die Erfindung geht von der Überlegung aus, dass bei einer langen Betriebsgaszuleitung vom Befeuchter zum Brennstoffzellenblock die Kondensation von Wasser aus dem Betriebsgas nur it großem Aufwand, beispielsweise durch die Wärmeisolierung und Heizung der betroffenen Leitungen, verhindert werden kann. Um den Wirkungsgrad des BrennstoffZellenblocks nicht zu schmälern, kommt eine solche Losung nicht m Betracht. Eine gunstigere Losung stellt das Abfuhren des Kondenswassers dar. Dies geschieht besonders einfach durch eine Kondenswasserab- leitung, die zwischen dem Befeuchter und dem Brennstoffzellenblock von der Betriebsgaszuleitung aozweigt.
Eine solche Losung bringt jedoch den Nachteil mit sich, αass die Brennstoffzellenanlage, deren Bestandteil der Brennstoffzellenblock ist, eine weitere Leitung aufweist. Da eine Brennstoffzellenanlage m einem Fahrzeug auf engstem Raum untergebracht werden muss und eine solche Anlage eine Vielzahl von Rohren, Schlauchen, Verbmdungselementen und Ventilen um- fasst, stellt ede zusatzlich Leitung einen nicht unerheblichen Nachteil dar.
Daher geht die Erfindung von der weiteren Überlegung aus, dass die Integration der Kondenswasserableitung m den Brenn- stoffzellenblock den Nachteil einer zusätzlichen Leitung umgeht. Diese Kondenswasserableitung ist hierbei beispielsweise Bestandteil eines Kondenswasserabscheiαers, der neben der Kondenswasserableitung noch weitere Elemente umfasst. Der Kondenswasserabscheider kann aber auch alleine durch die Kon- denswasserableitung gebildet sein. Ein auf diese Weise als Bestandteil des Brennstoffzellenblocks ausgestalteter Kondenswasserabscheider bringt den weiteren Vorteil mit sich, dass er an einer Stelle der Betriebsgaszuleitung angeschlossen ist, an der die Betriebsgasleitung die Temperatur des Brennstoffzellenblocks hat. „Angeschlossen" bedeutet hierbei, dass der Kondenswasserabscheider mit der Betriebsgaszuleitung m der Weise verbunden ist, dass das Kondenswasser von der Betriebsgaszuleitung m den Kondenswasserabscheider fließen kann .
Bei der weiteren Fuhrung der Brenngaszuleitung zu den einzelnen Brennstoffzellen bleibt die Betriebsgaszuleitung auf der konstanten Temperatur des Brennstoffzellenblocks, weshalb keine weitere Kondensation von Wasser aus dem befeuchteten Betriebsgas erfolgt. Hierdurch ist gewahrleistet, dass der Kondenswasserabscheider die gesamte Menge des Kondenswassers aus dem Betriebsgas abscheidet und im wesentlichen kein Kondenswasser m die Brennstoffzellen gelangen kann. Hierdurch wird eine Beeinträchtigung der Funktion der Brennstoffzellen durch Kondenswasser wirksam vermieden.
Die Abscheidung des Kondenswassers aus der Betriebsgaszuleitung geschieht zum Beispiel in der Weise, dass die Kondenswasserableitung wie ein Straßengully das Kondenswasser aus der Betriebsgaszuleitung aufnimmt. Das Kondenswasser wird durch die Kondenswasserableitung hindurchgeleitet, eventuell m einem Kondenswassersammelraum des Kondenswasserabscheiders zwischengelagert und anschließend aus dem Kondenswasserabscheider fortgeleitet .
In vorteilhafter Ausgestaltung der Erfindung ist die Kondens- wasserableitung m einem plattenformigen Bauelement angeordnet und das Bauelement m den Brennstoffzellenstapel integriert. Ein Brennstoffzellenblock weist eine Vielzahl von plattenformigen Bauelementen auf. Solche plattenformigen Bauelemente beherbergen Betπebsgasraume, m denen die Betπebs- gase entlang der Elektrolyt-Elektroden-Emheit strömen können, einen oder mehrere Kuhlwasserraume und eine Vielzahl von Kanälen zur Zu- und Ableitung von Betriebsgasen und Kuhlwasser. Ohne großen Aufwand kann ein solcher Kanal und/oder Raum innerhalb eines plattenformigen Bauelements derart u gestal- tet werden, dass Kanal und/oder Raum als ein Kondenswasserabscheider fungieren. Bevorzugt werden solche Kanäle und oder Räume verwendet, die im normalen Betrieb des Brennstoffzellenblocks ansonsten ohne Funktion sind. Hierdurch wird für die Ausgestaltung des Kondenswasserabscheiders kein zusatzli- ches plattenformiges oder sonstiges Bauelement innerhalb des Brennstoffzellenblocks benotigt. Es wird daher weder die Korn- plexitat der Brennstoffzellenanlage erhöht noch das Volumer des Brennstoffzellenblocks vergrößert.
Mit Vorteil ist das Bauelement eine Anschlussplatte des Brennstoffzellenblocks . Die Anschlussplatte begrenzt den
Brennstoffzellenstapel des Brennstoffzellenblocks und ist rit Anschlüssen für die Versorgung des Brennstoffzellenstapels mit Betriebsgas und Kühl- oder Heizwasser versehen. Die Be¬ triebsgaszuleitung lauft vom Befeuchter zum Brennstoffzellen- block, durch die Anschlussplatte hindurch zu den einzelner. Brennstoffzellen. Die Integration des Kondenswasserabscheiders m die Anschlussplatte ist ohne wesentliche Vergrößerung des Volumens des Brennstoffzellenblocks durchfuhrcar . Mit ähnlichem Vorteil lasst sich der Kondenswasserabscheider a_-cr_ m eine Trennplatte integrieren, die zwei Bereiche des Brennstoffzellenblocks voneinander trennt.
In einer weiteren Ausgestaltung der Erfindung verlauft der Kondenswasserabscheider entlang einer Thermokarte. Eine Ther- mokarte ist eine Heiz- oder Kuhlkarte, und dient der Tempera- turregulierung innerhalb des Brennstoffzellenblocks . Bei üblichen Brennstoffzellen ist die Thermokarte von αenjemgen Gasraumen benachbart, durch die die Betriebsgase wahrend αes Betriebs der Brennstoffzellen hindurch und an der Elektrol_.t- Elektroden-Einheit entlang strömen. Die m Stapelrichtung des Brennstoffzellenstapels gesehen erste Thermokarte ist von einem Gasraum benachbart, an den keine Elektrolyt-Elektroden- Ein eit grenzt. Durch diesen Gasraum strömt sinnvollerweise kein Betriebsgas, da es durch die fehlende Elektrolyt-Elek- troden-Emheit keine elektrochemische Reaktion eingehen kann. Der Gasraum ist daher ohne Funktion. Dieser Gasraum mit seinen Anschlüssen zur Betriebsgaszuleitung kann somit ohne Leistungsverlust des Brennstoffzellenblocks als Kondenswas¬ serabscheider verwendet werden. Bei einer solchen Ausgestal- tung durchströmt das Kondenswasser einen analogen Weg wie aas Betriebsgas m der benachbarten Brennstoffzelle. Zweckmaßigerweise ist der Kondenswasserabscheider m Stro- mungsπchtung des Betriebsgases gesehen vor der ersten Brennstoffzelle an die Betriebsgaszuleitung angeschlossen. Bei einem derart angeordneten Kondenswasseraoscheider ist gewährleistet, dass das Kondenswasser, das in der Betriebsgaszuleitung zwischen dem Befeuchter und dem Brennstoffzellenblock auskondensiert ist, nicht m die erste Brennstoffzelle gelangen kann, sondern schon auf dem Weg zur ersten Brennstoffzelle vom Kondenswasserabscheider aufgenommen wird.
In weiterer vorteilhafter Ausgestaltung der Erfindung umfasst der Kondenswasserabscheider eine Gassperre. Ein ohne eine Gassperre ausgestalteter Kondenswasserabscheider weist den Nachteil auf, dass eine gewisse Menge Betriebsgas seinen Weg nicht m die Brennstoffzellen, sondern via Kondenswasserabscheider durch den Brennstoffzellenblock hindurch nimmt. Eine Gassperre im Kondenswasserabscheider verhindert oder reduziert einen solchen durch den Kondenswasserabscheider stromenden parasitären Gasstrom. Die Gassperre kann eine aktive oder eine passive Gassperre sein.
Als aktive Gassperre eignet sich ein im Kondenswasserabscheider angeordnetes Ventil, das nur im geöffneten Zustand Kondenswasser durchlasst. Im geschlossenen Zustand staut das Ventil das Kondenswasser oberhalb des Ventils auf. Im Betrieb des Brennstoffzellenblocks wird das Ventil periodisch geöffnet und geschlossen und somit das Kondenswasser portionsweise abgeleitet. Wird immer nur so viel Kondenswasser durch das Ventil gelassen, dass ein Rest von Kondenswasser oberhalb des Ventils verbleibt, wird ein Durchströmen des Kondenswasserabscheiders von einem parasitären Gasstrom wirksam vermieden. Das Abtasten der Kondenswassermenge oberhalb des Ventils kann durch einen Sensor erfolgen.
Als passive Gassperre eignet sich beispielsweise eine Verengung innerhalb des Kondenswasserabscheiders, ein Sieb oder ein Filter. Eine solche Gassperre vermindert den parasitären Gasstrom. Der Gasstrom kann durch die Art des Siebes, Filters oder der Verengung auf eine festgelegte Menge eingestellt werden. Der parasitäre Gasstrom kann auch zαm Vorteil diener, da er das Kondenswasser auf dem ihm vorbestimmten Weg weiter- druckt. Eine gasdichte passive Gassperre ist beispielsweise ein sogenannter „Knick" . In einem solchen Knick, wie er m jedem Waschbeckensiphon zu finden ist, steht durch eine S- formige Anordnung einer Wasserleitung immer eine gewisse Menge Wasser. Dieses Wasser verschließt den Kondenswasserab- scheider gasdicht und verhindert somit ein Durchströmen des Kondenswasserabscheiders mit Betπeosgas.
Ein weiterer Vorteil der Erfindung wird erreicht, indem der Kondenswasserabscheider an einem Wassersammelbehalter ange- schlössen ist. Der Ausgang des Kondenswasserabscheiders mundet somit m eine Leitung, die zu dem Wassersammelbehalter fuhrt oder direkt m den Sammelbehalter. Ein solcher Wassersammelbehalter ist m einer Brennstoffzellenanlage, die mit befeuchteten Betriebsgasen arbeitet, grundsatzlich vorhanden. Er dient zur Rückführung und Zwischenspeicherung des m den Brennstoffzellen entstehenden Produktwassers. Der Wassersammelbehalter ist in der Regel an den Befeuchter angeschlossen, der Produktwasser als Befeuchtung wieder in die Brennstoffzellen fuhrt. Hierdurch wird auch das Kondenswasser im Was- sersammelbehalter gesammelt und den Brennstoffzellen zur Befeuchtung wieder zur Verfugung gestellt.
In bevorzugter Ausfuhrungs form der Erfindung ist der Kondenswasserabscheider an eine Betπebsgasableitung angeschlossen. Der Kondenswasserabscheider verbindet somit eine Betriebsgaszuleitung mit einer Betπebsgasableitung und leitet das Kondenswasser aus der Betriebsgaszuleitung unmittelbar m eine Betriebsgasableitung, durch die das Kondenswasser wiederum aus dem Brennstoffzellenblock herausgeführt wird. Wahrend des Betriebs der Brennstoffzellen wird in den Brennstoffzellen durch die elektrochemische Reaktion von Wasserstoff und Sauerstoff Wasser gebildet. Dieses Wasser wird durch die Be- triebsgasableitung zusammen mit dem Betriebsgas, das die Brennstoffzellen ohne Reaktion durchströmt, aus dem Brennstoffzellenblock herausgeführt. In diesen Wasserstrom wird das Kondenswasser aus dem Kondenswasserabscheider hinzuge- fugt. Bei einer solchen Ausgestaltung der Erfindung sind keine Kanäle oder Leitungen vom Kondenswasserabscheider zu einem Wassersammelbehalter notwendig. Dies vereinfacht den Aufbau und reduziert das Volumen des Brennstoffzellenblocks,
Zweckmaßigerweise ist m der Betriebsgaszuleitung eine Kon- denswasserbamere angeordnet. Diese Barriere sorgt dafür, dass das m der Betriebsgaszuleitung stromende Kondenswasser nicht über die Öffnung der Kondenswasserableitung des Kondenswasserabscheiders vorbei und weiter m die Brennstoffzel- len strömt. Die Kondenswasserbarπere ist beispielsweise als eine Schwelle m der Betriebsgaszuleitung ausgebildet, die den Fluss des Kondenswassers hemmt. Innerhalb des Brennstoff- zellenblocks wird die Betriebsgaszuleitung durch Offnungen in den plattenformigen Elementen des Brennstoffzellenblocks ge- bildet. Durch eine Verengung der Öffnung m einem Element gegenüber den Offnungen der benachbarten Elemente entsteht eine Schwelle, die als Kondenswasserbarπere wirkt. Auf diese durch einfache bauliche Maßnahmen zu realisierende Weise wird der Weiterfluss des Kondenswassers durch die Brenngaszulei- tung gestoppt.
Alternativ wird die Kondenswasserbarπere durch ein Blech einer Thermokarte gebildet. Eine Thermokarte umfasst m der Regel zwei zusammengefugte Bleche, die zwischen sich einen Heiz- bzw. Kuhlwasserraum bilden. Eins oder beide dieser Bleche können so gefuhrt sein, dass sie m die Betriebsgaszuleitung hineinragen und somit die Kondenswasserbamere bilden. Sie hindern, ähnlich einer Staumauer, das Kondenswasser am Weiterfluss durch die Betriebsmittelzuleitung .
Zweckmaßigerweise ist die Kondenswasserbamere zwischen dem Anschluss des Kondenswasserabscheiders an die Betriebsmittel- Zuleitung und der in Stromungsrichtung des Betπeosgases gesehen folgenden Brennstoffzelle angeordnet. Das Kondenswasse: wird mit dem Betriebsgasstrom m den Brennstoffzellenbloc ' hineingedruckt. Bei einer Kondenswasserbamere unmittelbar hinter der Öffnung des Kondenswasserabscheiders ir die Be¬ triebsgaszuleitung - oder zumindest noch m Strom.ingsricr.t_r_: vor der nächstfolgenden Brennstoffzelle - wird das an der Öffnung vorbeigelaufene Kondenswasser aufgestaut. Es flie't dann m die Öffnung zurück. Es wird hierdurch wirksam ver ._π- dert, dass das Kondenswasser am Kondenswasserabscheider v;r- bei und m die nachfolgende Brennstoffzelle fließt.
Ein weiterer Vorteil lasst sich dadurch erreichen, dass o_e Brennstoffzellen PEM-BrennstoffZeilen sind. PEM-Brennsto - zellen werden bei einer niedrigen Betriebstemperatur von etw_ 80°C betrieben, weisen ein gunstiges Uberlastvernalten unα eine hohe Lebensdauer auf. Außerdem zeigen sie e n günstiges Verhalten bei schnellen Lastwechseln und sind mit Luft sc.ie auch mit reinem Sauerstoff betreibbar. Alle diese Eigenscr.af- ten machen PEM-Brennstoffzellen besonders geeignet für eine Anwendung im mobilen Bereich, wie beispielsweise für den Antrieb von Fahrzeugen verschiedenster Art.
Ausfuhrungsbeispiele der Erfindung werden anhand von 3 Figi- ren naher erläutert. Es zeigen:
FIG 1 einen Schnitt durch einen Brennstoffzellenblock m schematischer Darstellung;
FIG 2 einen weiteren Schnitt durch einen Brennsto fzellenblock m schematischer Darstellung;
FIG 3 einen weiteren Schnitt durch einen Brennstoffzellenblock m
Figure imgf000012_0001
Darstellung.
Figur 1 zeigt einen Brennstof fzellenblock 1 , eine daran angeschlossene Betriebsgas zuleitung 2 und einen Be feuchter 3 . Wahrend des Betriebs des Brennstoffzellenblocks strömt Be¬ triebsgas 4, beispielsweise Luft oder wasserstoffhaltiges (H2) Gas m oen Befeuchter 3. Der Befeuchter 3 ist mit Wasser
5 bis zu einem vorgesehenen Niveau gefüllt. Im Befeuchter 3 wird das Betriebsgas 4 erwärmt und bis zur Sättigung mit Wasser befeuchtet. Das Betriebsgas 4 strömt anschließend aus den Befeuchter 3 m die Betriebsgaszuleitung 2. Wahrend des Durchstromens der Betriebsgaszuleitung 2 kühlt das Betriebs¬ gas 4 ab, wodurch Kondenswasser 6 aus dem Betriebsgas 4 aus- kondensiert.
Durch den Gasstrom des Betriebsgases 4 wird das Kondenswasser
6 m Richtung zum Brennstoffzellenblock 1 gedruckt. Im Brennstoffzellenblock 1 angekommen lauft das Kondenswasser 6 von der Betriebsgaszuleitung 2 durch die Kondenswasserableitung 7 m einen Kondenswasserabscheider 8. Das Kondenswasser 6 sammelt sich m einem Sammelraum 11 des Kondenswasserabscheiders 8. Unterhalb des Sammelraums 11 ist eine Gassperre 12 angeordnet. Die Gassperre 12 des Kondenswasserabscheiders 8 sorgt dafür, dass nur eine geringe Menge Kondenswasser 6 pro Zeit den Sammelraum 11 des Kondenswasserabscheiders 8 verlassen kann. Dies geschieht dadurch, dass die Gassperre 12 den Sammelraum 11 an seinem unteren Ende so verengt, dass nur eine schmale Öffnung zum Verlassen des Sammelraums 11 stenen bleibt. Die Öffnung lasst zusätzlich zum Kondenswasser einen kleinen Betriebsgasstrom durch. Die Öffnung kann jedoch auch so bemessen sein, dass sich am unteren Bereich des Sammelraums 11 das Kondenswasser 6 sammelt, so dass dieser untere Bereich mit Kondenswasser 6 gefüllt ist. Dann strömt kein Be- triebsgas 4 durch den Kondenswasserabscheider 8.
Alternativ kann auch die Kondenswasserableitung 7 in ihrem Querschnitt so gewählt sein, dass sie gleichzeitig als Gassperre dient. Unabhängig davon, wo sich die Gassperre 12 im Kondenswasserabscheider befindet ist keine Niveauregelung des Kondenswassers 6 im Sammelraum 11 notig. Der Kondenswasserabscheider 8 befindet sich in einer Anschlussplatte des Brennstoffzellenblocks 1, an die unter anderem auch der Teil der Betriebsgaszuleitung 2 an den Brennstoffzellenblock 1 angeschlossen ist, die sich außerhalb des Brennstoffzellenblocks befindet.
Der Kondenswasserabscheider 8 ist m Stromungsrichtung des Betπebsgases 4 gesehen vor der ersten Brennstoffzelle 14 durch die Kondenswasserableitung an die Betπebsgaszulei- tung 2 angeschlossen. Zusammen mit der Kondenswasserbamere 15, die zwischen dem Anschluss des Kondenswasserabscheiders 8 und der m Stromungsrichtung des Betriebsgases 4 gesehen folgenden Brennstoffzelle 14 angeordnet ist, verhindert er, dass Kondenswasser 6, das m der Betriebsgaszuleitung 2 auskonden- siert ist, m die Brennstoffzellen 14 gelangt.
Der Kondenswasserabscheider 8 ist an eine Betπebsgasablei- tung 13 angeschlossen, durch die das Betriebsgas 4 nach Austritt aus den Brennstoffzellen 14 den Brennstoffzellenblock 1 verlasst. Das Kondenswasser 6 wird daher der Betriebsgasab- leitung 13 zugeleitet und verbindet sich mit dem Produktwasser, das durch die elektrochemische Reaktion der Betriebsgase 4 m den Brennstoffzellen 14 gebildet wurde. Zum Transport des Kondenswassers 6 durch den Kondenswasserabscheider 8 wiro die ohnehin vorhandene Druckdifferenz zwischen der Betriebsgaszuleitung 2 und der Betπebsgasableitung 13 genutzt. Der Transport wird durch das durch den Kondenswasserabscheider 8 stromende Betriebsgas 4 unterstutzt.
Die Betriebsgaszuleitung 2 ist im Bereich des Brennstoffzellenblocks 1 als ein Axialkanal ausgestaltete, der parallel zur Stapelrichtung der Brennstoffzellen 14, also parallel zur Achse des Brennstoffzellenblocks 1 verlauft. Die Betriebsgaszuleitung 2 ist dort durch Offnungen in den plattenformigen Bauelementen des Brennstoffzellenblocks 1 gebildet. In der Betriebsgaszuleitung 2 befindet sich eine Kondenswasserbamere 15. Sie verhindert, dass das Kondenswasser 6 vom Strom des Betriebsgases 4 über die Öffnung 7 hmuoergeblasen wird und somit m die nachfolgenden Brennstoffzellen 14 ge- langen kann. Die Kondenswasserbamere 15 ist als eine
Schwelle ausgestaltet, die das Kondenswasser 6 m der Betriebsgaszuleitung 2 staut.
In Figur 2 ist in einer schematischen Schnittdarstellung ein Brennstoffzellenblock 21 dargestellt, der eine Anzahl von
Brennstoffzellen 22 in einem Brennstoffzellenstapel sowie eine Betriebsgaszuleitung 23 umfasst. Der Brennstoffzellenblock ist zum Betrieb mit Luft ausgelegt, die m einem m Figur 2 nicht dargestellten Flussigkeitsnngverdicnter bis zur Satti- gung mit Wasser angereichert wird. Teile des Wassers kondensieren m der Betriebsgaszuleitung 23 aus und gelangen als Kondenswasser 25 m den Brennstoffzellenblock 21.
Die Luft 24 strömt vom Flussigkeitsπngverdichter durch die Betriebsgaszuleitung 23 m die einzelnen Brennstoffzellen 22, die jeweils eine Elektrolyt-Elektroden-Emheit 26 mit beid- seitig angrenzenden Thermokarten 27 umfassen. Die Thermokar- ten 27 werden zum Kuhlen oder zum Heizen der Brennstoffzellen 22 verwendet. Nach Durchströmen der Brennstoffzellen 22 strömt die Luft durch eine Betriebsgasableitung 30 aus dem Brennstoffzellenblock 21 heraus.
Das mit der Luft 24 m den Brennstoffzellenblock 21 hineingedruckte Kondenswasser 25 strömt durch die Betriebsgaszulei- tung 23 und wird größtenteils durch die Kondenswasserableitung 31 aufgenommen. Ein Teil des Kondenswassers 25 jedoch fließt an der Öffnung vorbei oder über sie hinweg weiter in Richtung Brennstoffzellen 22. Das Kondenswasser 25 wird jedoch durch eine Kondenswasserbamere 33 von den Brennstoff- zellen 22 zurückgehalten. Die Kondenswasserbamere 33 ist als eine Verengung der Betriebsgaszuleitung 23 ausgestaltet, die wie eine Schwelle das Kondenswasser 25 zurückhält. Das Kondenswasser 25 strömt m den Kondenswasserabscheider 32, der in einer Trennplatte des Brennstoffzellenblocks 21 angeordnet ist, und von dort weiter m einen an den Kondenswasserabscheider 32 angeschlossenen Wassersammelbehalter 34. Der Wassersammelbehalter 34 weist eine Gassperre 35 m Form e_~es Knicks auf, die das Durchströmen des Kondenswasserabscheiders 32 mit parasitären Betriebsgas verhindert.
Der in Figur 3 in einer schematischen Schnittzeichnung darge- stellte Brennstoffzellenblock 41 umfasst einen Stapel von Brennstoffzellen 42, von denen lediglich zwei gezeigt sine, einen Kondenswasserabscheider 43, der zwischen dem Brennstoffzellenstapel und einer Anschlussplatte 44 angeordnet ist. Die Brennstoffzellen 42 umfassen jeweils eine Elektrc- lyt-Elektroden-Emheit 45, deren Elektrolyt eine Polymer- Elektrolyt-Membran ist. Die Brennstoffzellen 42 sind PEM- Brennstoffzellen. Außerdem umfassen die Brennstoffzellen 42 beidseitig der Elektrolyt-Elektroden-Emheit jeweils eine Thermokarte 46a, 46b. Die Thermokarten 46a sind als Kuhlkar- ten ausgestaltet, die Thermokarten 46b als Kühl- und/oder
Heizkarten, die sowohl zum Kuhlen wie auch zum Heizen ausgelegt sind. Der Kondenswasserabscheider 43 umfasst ein Stutzelement 47 mit beidseitig angeordneten Thermokarten 46b. Der Kondenswasserabscheider 43 verlauft somit entlang zweier Thermokarten. Er ist durch die Kondenswasserableitung 50 an die Betriebsgaszuleitung 51 angeschlossen. Außerdem ist der Kondenswasserabscheider 43 an eine Betπebsgasableitung 52 angeschlossen.
Wahrend des Betriebs des Brennstoffzellenblocks 41 strömt mit Wasser befeuchtetes Betriebsgas 53 m Form von Wasserstoff (H2) , Sauerstoff (02) oder Luft durch die Betriebsgaszuleitung 51 in den Brennstoffzellenblock 41. Das Betriebsgas 53 fuhrt Kondenswasser 54 mit sich, das ebenfalls durch die Be- triebsgaszuleitung 51 m den Brennstoffzellenblock 41 gelangt. Das Kondenswasser 54 wird durch die Kondenswasserableitung 50 des Kondenswasserabscheiders 43 aufgenommen, strömt entlang der Thermoκarten 46b durch den Kondenswasserabscheider 43 und wird im weiteren Verlauf seiner Strömung in die Betπebsgasableitung 52 gefuhrt. E ne der Thermokarten 46b weist ein verlängertes Blech 55 auf, das verhindert, dass das Kondenswasser 54 über die Kondenswasserableitung 50 hinweg strömt und m die Brennstoffzellen 42 gelangt. Das Blech 55 ragt - ähnlich einer Staumauer - ..n die als Axialkanal ausgestaltete Betriebsgaszuleitung 51 hinein und sperrt somit den m Stromungsrichtung gesehen mnteren Te l des Brenn- stoffzellenblocks 41 gegen das Kondenswasser 54 ab. Hierdurch ist gewährleistet, dass die Funktion der Brennstoffzellen 42 nicht durch Kondenswasser beeinträchtigt wird.

Claims

Patentansprüche
1. Brennstoffzellenblock (1,21,41), der eine Anzahl von Brennstoffzellen (14,22,42) m einem BrennstoffZellenstapel sowie eine Betriebsgaszuleitung (2,23,51) umfasst, g e ¬ k e n n z e i c h n e t d u r c h einen an die Betriebsgaszuleitung (2,23,51) angeschlossenen Kondenswasserabscheider (8, 32, 43) .
2. Brennstoffzellenblock (1,21,41) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der Kondenswasserabscheider (8,32,43) in einem plattenformigen Bauelement angeordnet ist und das Bauelement in den Brennstoffzel- lenstapel integriert ist.
3. Brennstoffzellenblock (1) nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass das Bauelement eine Anschlussplatte ist.
4. Brennstoffzellenblock (41) nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , dass der Kondenswasserabscheider (43) entlang einer Thermokarte (46b) verlauft .
5. Brennstoffzellenblock (1,21,41) nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass der Kondenswasserabscheider (8,32,43) m Stromungsrichtung des Betriebsgases (4,24,53) gesehen vor der ersten Brennstoffzelle (14,22,42) an die Betriebsgaszuleitung (2,23,51) angeschlossen ist.
6. Brennstoffzellenblock (1) nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , dass der Kondenswasserabscheider (8) eine Gassperre (12) umfasst.
7. Brennstof fzellenblock (21) nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass der Kondenswasserabscheider (32) an einen Wassersammelbehalter (34) angeschlossen ist.
8. Brennstoffzellenblock (1,41) nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass der Kondenswasserabscheider (8,43) an eine Betπebsgasablei- tung (30,52) angeschlossen ist.
9. Brennstoffzellenblock (1,21,41) nach einem der Ansprüche 1 bis 8, g e k e n n z e i c h n e t d u r c h eine Kon- denswasserbarriere (14,33,55) m der Betriebsgaszuleitung (2,23,51) .
10. Brennstoffzellenblock (41) nach Anspruch 9, d a - d u r c h g e k e n n z e i c h n e t , dass die Kondens- wasserbarriere (55) durch ein Blech einer Thermokarte (46b) gebildet ist.
11. Brennstoffzellenblock (1,41) nach Anspruch 9 oder 10, d a d u r c h g e k e n n z e i c h n e t , dass die Kon- denswasserbarriere (14,55) zwischen dem Anschluss des Kondenswasserabscheiders (8,43) und der in Stromungsrichtung des Betriebsgases (4,53) gesehen folgenden Brennstoffzelle (14,42) angeordnet ist.
12. Brennstof fzellenblock (41) nach einem der Ansprüche 1 bis 11, d a d u r c h g e k e n n z e i c h n e t , dass die Brennstoffzellen PEM-Brennstof f zellen sind.
PCT/DE2001/000378 2000-02-14 2001-01-31 Brennstoffzellenblock mit einem an betriebsgaszuleitung angeschlossenen kondenswasserabscheider WO2001059863A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002399938A CA2399938A1 (en) 2000-02-14 2001-01-31 Fuel cell block comprising a condensed water separator which is connected to an operating gas delivery line
DE50100756T DE50100756D1 (de) 2000-02-14 2001-01-31 Brennstoffzellenblock mit einem an die betriebsgaszuleitung angeschlossenen kondenswasserabscheider
EP01909552A EP1258047B1 (de) 2000-02-14 2001-01-31 Brennstoffzellenblock mit einem an die betriebsgaszuleitung angeschlossenen kondenswasserabscheider
JP2001559083A JP2003523057A (ja) 2000-02-14 2001-01-31 燃料電池ブロック

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10006472A DE10006472A1 (de) 2000-02-14 2000-02-14 Brennstoffzellenblock
DE10006472.8 2000-02-14

Publications (2)

Publication Number Publication Date
WO2001059863A2 true WO2001059863A2 (de) 2001-08-16
WO2001059863A3 WO2001059863A3 (de) 2002-05-02

Family

ID=39146857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/000378 WO2001059863A2 (de) 2000-02-14 2001-01-31 Brennstoffzellenblock mit einem an betriebsgaszuleitung angeschlossenen kondenswasserabscheider

Country Status (6)

Country Link
US (1) US7014936B2 (de)
EP (1) EP1258047B1 (de)
JP (1) JP2003523057A (de)
CA (1) CA2399938A1 (de)
DE (2) DE10006472A1 (de)
WO (1) WO2001059863A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10329201A1 (de) * 2003-06-28 2005-01-20 Bbt Thermotechnik Gmbh Brennstoffzellensystem
US7163760B2 (en) 2001-12-28 2007-01-16 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack having a bypass flow passage
JP2008091344A (ja) * 2007-11-09 2008-04-17 Toyota Motor Corp 燃料電池
US8574778B2 (en) 2007-02-01 2013-11-05 Honda Motor Co., Ltd. Fuel cell stack

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2461745A1 (en) * 2001-09-27 2003-04-10 Siemens Aktiengesellschaft Fuel cell block
US6715743B2 (en) * 2001-11-27 2004-04-06 Chaojiong Zhang Gas humidifier
JP3801096B2 (ja) 2002-05-20 2006-07-26 トヨタ自動車株式会社 スタック構造を有する燃料電池
TWI269043B (en) * 2004-01-09 2006-12-21 Asia Pacific Fuel Cell Tech Detection and functional verification module for water-cooling fuel cell system components
JP4839581B2 (ja) * 2004-06-18 2011-12-21 日産自動車株式会社 燃料電池のケース構造
US20060105219A1 (en) * 2004-11-15 2006-05-18 Anderson Robert D Fuel cell component storage or shipment
JP4586555B2 (ja) 2005-02-09 2010-11-24 トヨタ自動車株式会社 燃料電池システム
US10704528B1 (en) * 2019-05-14 2020-07-07 Shun-Tsung Lu Liquid-filled hydroelectric generation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392058A (en) * 1963-08-27 1968-07-09 Gen Electric Heat transfer arrangement within a fuel cell structure
US4002493A (en) * 1974-01-25 1977-01-11 Societe Generale De Constructions Electriques Et Mecaniques (Alsthom) Fuel cell structure and system, more particularly for a carbon fuel and atmospheric air
US5064732A (en) * 1990-02-09 1991-11-12 International Fuel Cells Corporation Solid polymer fuel cell system: high current density operation
DE19809575A1 (de) * 1997-03-05 1998-09-10 Fuji Electric Co Ltd Brennstoff-Element mit einem festen Polymer-Elektrolyten

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585979A (ja) * 1981-07-03 1983-01-13 Hitachi Ltd 燃料電池
JPS62229768A (ja) * 1986-03-31 1987-10-08 Shin Kobe Electric Mach Co Ltd 燃料電池
JPS63195971A (ja) * 1987-02-10 1988-08-15 Mitsubishi Electric Corp 積層型燃料電池
JP2777299B2 (ja) * 1991-12-16 1998-07-16 三菱電機株式会社 燃料電池積層体の水素−水回収機構
JPH0668886A (ja) * 1992-08-19 1994-03-11 Fuji Electric Co Ltd 固体高分子電解質型燃料電池のセル構造
JPH08195212A (ja) * 1995-01-13 1996-07-30 Toyota Motor Corp 燃料電池装置
JPH10172593A (ja) * 1996-12-16 1998-06-26 Honda Motor Co Ltd 燃料電池システム
JP3443276B2 (ja) * 1997-05-14 2003-09-02 三洋電機株式会社 燃料電池システム
US7051801B1 (en) * 2000-07-28 2006-05-30 Hydrogenics Corporation Method and apparatus for humidification and temperature control of incoming fuel cell process gas
US6458478B1 (en) * 2000-09-08 2002-10-01 Chi S. Wang Thermoelectric reformer fuel cell process and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392058A (en) * 1963-08-27 1968-07-09 Gen Electric Heat transfer arrangement within a fuel cell structure
US4002493A (en) * 1974-01-25 1977-01-11 Societe Generale De Constructions Electriques Et Mecaniques (Alsthom) Fuel cell structure and system, more particularly for a carbon fuel and atmospheric air
US5064732A (en) * 1990-02-09 1991-11-12 International Fuel Cells Corporation Solid polymer fuel cell system: high current density operation
DE19809575A1 (de) * 1997-03-05 1998-09-10 Fuji Electric Co Ltd Brennstoff-Element mit einem festen Polymer-Elektrolyten

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 076 (E-167), 30. März 1983 (1983-03-30) -& JP 58 005979 A (HITACHI SEISAKUSHO KK), 13. Januar 1983 (1983-01-13) *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 099 (E-594), 31. März 1988 (1988-03-31) -& JP 62 229768 A (SHIN KOBE ELECTRIC MACH CO LTD), 8. Oktober 1987 (1987-10-08) *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 476 (E-693), 13. Dezember 1988 (1988-12-13) -& JP 63 195971 A (MITSUBISHI ELECTRIC CORP), 15. August 1988 (1988-08-15) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 566 (E-1446), 13. Oktober 1993 (1993-10-13) -& JP 05 166528 A (MITSUBISHI ELECTRIC CORP), 2. Juli 1993 (1993-07-02) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 308 (E-1560), 13. Juni 1994 (1994-06-13) -& JP 06 068886 A (FUJI ELECTRIC CO LTD), 11. März 1994 (1994-03-11) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 11, 29. November 1996 (1996-11-29) -& JP 08 195212 A (TOYOTA MOTOR CORP), 30. Juli 1996 (1996-07-30) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 11, 30. September 1998 (1998-09-30) -& JP 10 172593 A (HONDA MOTOR CO LTD), 26. Juni 1998 (1998-06-26) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 02, 26. Februar 1999 (1999-02-26) -& JP 10 312821 A (SANYO ELECTRIC CO LTD), 24. November 1998 (1998-11-24) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163760B2 (en) 2001-12-28 2007-01-16 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack having a bypass flow passage
DE10329201A1 (de) * 2003-06-28 2005-01-20 Bbt Thermotechnik Gmbh Brennstoffzellensystem
DE10329201B4 (de) * 2003-06-28 2007-09-27 Robert Bosch Gmbh Brennstoffzellensystem
US8574778B2 (en) 2007-02-01 2013-11-05 Honda Motor Co., Ltd. Fuel cell stack
JP2008091344A (ja) * 2007-11-09 2008-04-17 Toyota Motor Corp 燃料電池

Also Published As

Publication number Publication date
DE10006472A1 (de) 2001-08-23
CA2399938A1 (en) 2001-08-16
US20040033409A1 (en) 2004-02-19
EP1258047B1 (de) 2003-10-08
EP1258047A2 (de) 2002-11-20
US7014936B2 (en) 2006-03-21
JP2003523057A (ja) 2003-07-29
DE50100756D1 (de) 2003-11-13
WO2001059863A3 (de) 2002-05-02

Similar Documents

Publication Publication Date Title
DE102015122144A1 (de) Befeuchter mit integriertem Wasserabscheider für ein Brennstoffzellensystem, Brennstoffzellensystem sowie Fahrzeug mit einem solchen
DE10393165B4 (de) Brennstoffzellenstapel und Betriebsverfahren
DE69328874T2 (de) Feststoffpolymerzellensystem mit wasserentfernung an der anode
EP1430561B1 (de) Brennstoffzellenblock
DE102007055220B4 (de) Brennstoffzellenanordnung
EP1258047B1 (de) Brennstoffzellenblock mit einem an die betriebsgaszuleitung angeschlossenen kondenswasserabscheider
EP3489394A1 (de) Elektrolyseanlage zur niederdruck-pem-elektrolyse
DE102008059349B4 (de) Brennstoffzellenstapel mit einer Einrichtung zum verbesserten Wassermanagement
DE102015122115A1 (de) Befeuchter mit integriertem Wasserabscheider für ein Brennstoffzellensystem, Brennstoffzellensystem mit Befeuchter sowie Fahrzeug mit einem solchen
DE102018213916A1 (de) Befeuchter sowie Kraftfahrzeug mit einer einen Befeuchter aufweisenden Brennstoffzellenvorrichtung
DE102019200449A1 (de) Befeuchter mit Kühlmittelrohren und Brennstoffzellenvorrichtung
DE10342470A1 (de) Vorrichtung zum Beströmen wenigstens einer Brennstoffzelle mit einem Medium sowie Brennstoffzellensystem
EP2122737B1 (de) Brennstoffzellenanordnung
DE102005037093A1 (de) Brennstoffzelle mit Fluidführungskanälen mit sich gegenläufig ändernden Strömungsquerschnitten
EP4008035B1 (de) Befeuchter, brennstoffzellenvorrichtung mit befeuchter sowie kraftfahrzeug
DE102019205809A1 (de) Flussfeldplatte, Brennstoffzellenstapel mit einer Flussfeldplatte und Brennstoffzellensystem
DE102019126306A1 (de) Brennstoffzellensystem
DE102008060533A1 (de) Flüssigkeitsabscheider für ein Brennstoffzellensystem
DE102008005649B4 (de) Vorrichtung zum Betreiben einer Brennstoffzelle
DE102010041465B4 (de) Brennstoffzellensystem mit Direktmethanolbrennstoffzelle und Verfahren zu dessen Betrieb
DE102005025914A1 (de) Feuchtetauscher in Brennstoffzellenanordnungen
DE102018213153A1 (de) Befeuchter, Brennstoffzellenvorrichtung mit Befeuchter sowie Kraftfahrzeug
DE102015213853A1 (de) Brennstoffzellen-Befeuchtermodul
EP3959767B1 (de) Befeuchtermodul, befeuchter, brennstoffzellensystem mit einem solchen, sowie verfahren zur befeuchtung eines gases
DE102019126308A1 (de) Befeuchter, Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer Brennstoffzellenvorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001909552

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 559083

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2399938

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2001909552

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001909552

Country of ref document: EP