WO2001052300A1 - Dispositif a image continue - Google Patents

Dispositif a image continue Download PDF

Info

Publication number
WO2001052300A1
WO2001052300A1 PCT/JP2001/000091 JP0100091W WO0152300A1 WO 2001052300 A1 WO2001052300 A1 WO 2001052300A1 JP 0100091 W JP0100091 W JP 0100091W WO 0152300 A1 WO0152300 A1 WO 0152300A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocathode
streak
focusing
electrode
magnetic flux
Prior art date
Application number
PCT/JP2001/000091
Other languages
English (en)
French (fr)
Inventor
Katsuyuki Kinoshita
Yoshinori Inagaki
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to AU2001225491A priority Critical patent/AU2001225491A1/en
Priority to DE60134719T priority patent/DE60134719D1/de
Priority to EP01900668A priority patent/EP1253618B1/en
Priority to US10/169,861 priority patent/US7196723B2/en
Publication of WO2001052300A1 publication Critical patent/WO2001052300A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • H01J31/501Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output with an electrostatic electron optic system
    • H01J31/502Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output with an electrostatic electron optic system with means to interrupt the beam, e.g. shutter for high speed photography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • H01J31/501Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output with an electrostatic electron optic system

Definitions

  • the present invention relates to a streak device suitable for measuring the intensity distribution of a light emission phenomenon over time.
  • a streak camera is a device provided with a camera for imaging the output surface of a streak tube.
  • a streak device equipped with a streak tube is a device that converts a temporal intensity distribution of a measured light into a spatial intensity distribution on an output surface.
  • Japanese Patent Publication No. Hei 4-733257 discloses an electromagnetic focusing streak device. This streak device has a single focusing magnetic flux generator (electromagnetic focusing coil), and this focusing flux generator generates a focusing magnetic flux only from the outside of the streak tube to the space between the photocathode and the entrance of the deflection electrode. It substantially focuses photoelectrons emitted from the photocathode.
  • the above-mentioned streak device has only one focusing magnetic flux generator, if a large effective range in the spatial direction is taken on the photocathode, the photoelectron group emitted from the end of the photocathode becomes large.
  • the light passes through the periphery of the electron lens formed by the focusing magnetic flux generator, the spatial resolution and the time resolution are degraded, and the spatial distortion is increased.
  • the distance from the center of the focusing electron lens to the output surface is larger than the distance from the photocathode to the center of the focusing electron lens, it is difficult to increase the effective range in the spatial direction on the photocathode.
  • US Pat. No. 4,350,919 discloses an electromagnetic focusing streak device equipped with two focusing magnetic flux generators.
  • this streak device since the focusing magnetic field generated by the focusing magnetic flux generator and the deflection electric field generated by the deflection electrode for sweeping overlap in the tube axis direction of the streak tube, the photoelectron beam is deflected for sweeping. Cycloid motion occurs in the electrode. For this reason, it is not possible to obtain a large effective range in the spatial direction on the photocathode. Further, since the photoelectron beam is affected by the focusing magnetic field, sufficient deflection sensitivity cannot be obtained.
  • the two focusing magnetic field generators of this streak device use a photoelectron emitted from the end of the photocathode to form an electron image formed on the photocathode near the center of an electron lens that forms an image on the output surface. They are not arranged to pass. For this reason, there is a problem that the spatial resolution and the temporal resolution at the end of the photocathode deteriorate, and the spatial distortion increases.
  • the electrostatic focusing type streak device has the advantage that a large effective area on the photocathode can be taken, but the potential of the focusing electrode forming the focusing electron lens is low, so that the electron beam is generated by the space charge effect. Is diffused and the dynamic range (D-range) is reduced.
  • the present invention has been made in view of such circumstances, and has a large effective range on a photocathode, a high spatial resolution and a high temporal resolution in the effective range, a small spatial distortion, and a D-range. It is an object of the present invention to provide a streak device capable of increasing the streak.
  • the first streak device is provided with a photocathode that converts received light into photoelectrons at one end, and a vacuum container that has an output surface at the other end that converts an image of the photoelectrons into a visible light image, and a tube shaft of the vacuum container
  • An acceleration electrode that is arranged along the photocathode along the axis and accelerates the photoelectrons emitted from the photocathode, and a pair of electrodes opposing each other across the tube axis between the acceleration electrode and the output surface
  • a streak tube comprising: an electrode; a plurality of focusing magnetic flux generators for generating a focusing magnetic flux between the photocathode and the entrance of the deflection electrode to focus photoelectrons emitted from the photocathode;
  • a streak device comprising: a deflection voltage generation circuit that supplies a voltage for generating an electric field; an acceleration voltage generation circuit that supplies a voltage to an acceleration electrode; and a drive power supply that supplies a current to
  • Focusing Flux generator includes a main focusing electron lens for forming an electron image formed on the photocathode on the output surface, disposed between the photocathode and the main focusing electron lens, or photocathode And a prefocus lens for focusing the photoelectrons emitted from the main focusing electron lens toward the center thereof.
  • the photoelectron beam emitted from the end of the effective range in the spatial direction is bent by the prefocus lens and advances toward the center of the main focusing electron lens. Since the central part of the main focusing electron lens has small spherical aberration, an image of a spot with little blur on the output surface can be obtained. As a result, good spatial resolution can be obtained in both the time direction and the spatial direction.
  • the second streak device includes a photocathode that converts received light into photoelectrons at one end, and a vacuum container that has an output surface at the other end that converts an image formed by photoelectrons into a visible light image, and a tube shaft of the vacuum container.
  • a deflector consisting of an accelerating electrode arranged along the photocathode to accelerate the photoelectrons emitted from the photocathode, and a pair of electrodes opposing each other with the tube axis interposed between the accelerating electrode and the output surface
  • a streak tube comprising: an electrode; and a plurality of focused magnetic flux generators including a permanent magnet and generating a magnetic flux between the photocathode and the entrance of the deflection electrode to focus photoelectrons emitted from the photocathode.
  • a streak device comprising: a deflection voltage generation circuit that supplies a voltage for generating a deflection electric field to the deflection electrode; and an acceleration voltage generation circuit that supplies a voltage to the acceleration electrode.
  • a focused magnetic flux generator can be configured using a permanent magnet.
  • the photoelectron beam emitted from the end of the effective range in the spatial direction is bent by the prefocus lens and advances toward the center of the main focusing electron lens. Since the central part of the main focusing electron lens has small spherical aberration, an image of a spot with little blur on the output surface can be obtained. As a result, good spatial resolution can be obtained in both the time direction and the spatial direction.
  • the distance between the center of the main focusing electron lens and the output surface is set to be smaller than the distance between the photocathode and the center of the main focusing electron lens in the first or second device. Take the configuration that has been.
  • the main focusing electron lens is located closer to the output side than the center of the streak tube, the distance from the point where the density of photoelectrons is maximum to the output sweep surface is reduced. For this reason, even if the Coulomb repulsion due to the space charge effect works at the maximum density part, the degree of diffusion of the photoelectron beam due to it is small. As a result, D-range degradation can be reduced.
  • the fourth streak device is any of the first to third devices, wherein each of the focused magnetic flux generators is provided so as to orbit the outside of the vacuum vessel and has a central axis coinciding with the tube axis; And a mouth provided on the vacuum vessel side of the magnetic body.
  • the range in which the magnetic field generated by the focusing magnetic flux generator works can be limited to only the necessary range, the attenuation from the peak intensity is fast, and the penetration of the magnetic field into the deflection electrode field is negligible. Can be. For this reason, it is possible to avoid that the magnetic field extends to the deflecting electrode and that the deflecting sensitivity is reduced and that the photoelectron beam is rotated at the deflecting electrode.
  • the fifth streak device is any of the first to fourth devices, wherein the streak tube comprises: a first focusing magnetic flux generator forming a main focusing electron lens; and a second focusing flux forming a prefocus lens. And a magnetic flux generator.
  • the photoelectron beam emitted from the end of the effective range in the spatial direction is bent by the prefocus lens and advances toward the center of the main focusing electron lens. Since the central part of the main focusing electron lens has small spherical aberration, an image of a spot with little blur on the output surface can be obtained. As a result, good spatial resolution can be obtained in both the time direction and the spatial direction.
  • the sixth streak device is a device according to any of the first to fifth devices, wherein A shield plate is provided near the entrance of the counter electrode, shields the electric field leaking from the deflection electrode, and opens around the tube axis.
  • the potential of the shield plate is set to be lower than the potential of the acceleration electrode. take.
  • the deflection sensitivity can be increased by lowering the potential from the shield plate to the output surface.
  • a seventh streak device is the sixth device, wherein the streak tube further includes a flange provided between the two adjacent focusing magnetic flux generators to support the shield plate and to be electrically connected to the shield plate.
  • the flange is provided between the two adjacent magnetic flux generators, it is possible to avoid as much as possible that the flange, which is a ferromagnetic material, disturbs the magnetic field to cause deterioration of the resolution and distortion.
  • An eighth streak device is any of the first to seventh devices, wherein the streak tube further includes a gate electrode opened between the photocathode and the acceleration electrode around a tube axis. .
  • a voltage of +200 V is applied to the photocathode, and before and after the sweep, a voltage of 150 V is applied to the photocathode Can be controlled as follows. For this reason, even when light is incident on the photocathode, unnecessary output images can be prevented from occurring even when the sweep is not performed, and the background rise can be reduced.
  • FIG. 1 is a configuration diagram of a streak device according to Embodiment 1 of the present invention.
  • FIG. 2A is a diagram showing a voltage applied to the deflection plate 5a during the sweep operation.
  • FIG. 2B is a diagram showing a voltage applied to the deflection plate 5b during the sweep operation.
  • FIG. 3A is a diagram showing an input using a multi-channel fiber.
  • FIG. 3B is a diagram showing a streak image on the output surface.
  • FIG. 4A is a diagram showing the trajectory of a photoelectron beam emitted from a minute spot at the end of the photocathode in a multichannel photoelectron beam.
  • FIG. 4B is a diagram showing an output spot on the fluorescent material.
  • FIG. 5 is a diagram showing a state in which the photoelectron beam group rotates around the tube axis.
  • FIG. 6A is a diagram showing a state in which an electron beam is imaged on an output fluorescent material in a streak device provided with only a single focusing magnetic flux generator.
  • FIG. 6B is a diagram showing an output spot on the fluorescent material.
  • FIG. 7A is a diagram showing an image obtained on an output fluorescent material in a mode in which a group of minute spots of multiple channels is imaged at equal intervals on a photocathode when a prefocus lens is provided.
  • FIG. 7B is a diagram showing an image obtained on an output fluorescent material in a mode in which sweeping is not performed when minute spot groups of multiple channels are imaged at equal intervals on a photocathode without a prefocus lens.
  • FIG. 8 is a diagram showing electron orbits in a multi-channel simultaneous time-resolved photometry using an electrostatic focusing streak tube.
  • FIG. 9 is a diagram showing a potential distribution in the tube axis direction of the electromagnetic focusing streak tube according to Embodiment 1 of the present invention in comparison with that of the electrostatic focusing streak tube.
  • FIG. 10 is a diagram for evaluating the D-range when the streak tube according to Embodiment 1 of the present invention is used for multi-channel simultaneous time resolution measurement.
  • FIG. 11 is a diagram showing the time resolution B of the streak tube according to Embodiment 1 of the present invention in comparison with the time resolution A of a conventional electrostatic focusing streak tube.
  • FIG. 12 is a view showing a streak device according to Embodiment 2 of the present invention, and a focused magnetic flux generator shielded by an iron frame having an opening on a tube side.
  • Fig. 13 shows the magnetic flux density on the tube axis when the magnetic shield is provided and when it is not provided. It is a figure showing a cloth.
  • FIG. 14 is a schematic sectional view of a streak device according to Embodiment 3 of the present invention.
  • FIG. 15 is a partial cross-sectional view near the photocathode of the streak device according to Embodiment 4 of the present invention.
  • FIG. 1 is a configuration diagram of a streak device showing a streak device according to Embodiment 1 of the present invention together with a schematic sectional configuration thereof.
  • the streak tube 1 has a cylindrical glass tube 1a as an envelope, and the inside of the glass tube 1a is maintained at a high vacuum.
  • an input window 2 into which light to be measured enters, and on the inner surface of the input window 2, a photocathode (photocathode) 3 for converting light into a photoelectron beam is formed.
  • an accelerating electrode 4 made of a mesh for accelerating the photoelectron beam and directing the photoelectron beam to the output side in this order from the one end side, and the photoelectrons on the output surface.
  • a window 7 is provided along the tube axis.
  • the photocathode 3 is electrically connected to the metal flange 8a fusing the input window 2, and the fluorescent material 6 is also electrically connected to the metal flange 8b fusing the output window. It is connected.
  • the acceleration electrode 4 is supported by the cylindrical electrode 4a, and is electrically connected to the metal flange 8c via the cylindrical electrode 4a.
  • the deflection plates 5a and 5b of the deflection electrode 5 are electrically connected to a metal deflection lead 5c embedded in the wall of the glass tube 1a.
  • the photocathode 3 and the accelerating electrode 4 are connected to an accelerating voltage generating circuit 9 for applying an accelerating voltage via metal flanges 8a and 8c to which they are electrically connected.
  • the accelerating electrode 4 has a ground potential
  • the photocathode 3 has a potential of 110 kV. Has been applied.
  • the metal flange 8b to which the fluorescent material 6 is connected is connected to the ground potential.
  • a sweep voltage generation circuit 10 is connected to a deflection lead 5 c for applying a sweep voltage to the deflection electrode 5.
  • a sweeping voltage which changes with time in a diagonal manner of 1 to 2 kvpp as shown in FIG. 2A is applied to the deflection plate 5a and FIG. 2B is applied to the deflection plate 5b.
  • a multi-alkali photocathode is used for visible light.
  • the distance between the photocathode 3 and the accelerating electrode 4 is 5 mm, and the roughness of the accelerating electrode 4 is 100 mesh / inch.
  • aluminum is vapor-deposited on the inner wall of the glass tube 1a to prevent electric charge, thereby forming a wall anode 11.
  • the vicinity of the base of the deflection lead 5c electrically insulates the wall anode 11 from the deflection lead 5c without vapor deposition of aluminum.
  • the distance between the photocathode 3 and the fluorescent material 6 is 250 mm.
  • a first focused magnetic flux generator 12 a and a second focused magnetic flux generator 12 are arranged from the fluorescent material 6 side along the tube axis.
  • b and two focused flux generators are arranged.
  • These focusing magnetic flux generators 12a and 12b are composed of coils whose central axis coincides with the tube axis.
  • Drive coils 13a and 13b for supplying current are connected to each coil.
  • the first focusing magnetic flux generator 12a is located at a position in the tube axis direction from the photocathode 3 to the center of the first focusing magnetic flux generator 12a, and from the center of the first focusing magnetic flux generator 12a. They are arranged so that the ratio to the distance to the fluorescent material 6 is approximately 1.5: 1.
  • the streak device according to the first embodiment of the present invention can: 1) secure a large effective range on the photocathode, and have good spatial resolution and time resolution over the effective range. At the same time, (2) it has a high D-range in the sweep operation that performs time resolution. These can be understood from the trajectory of the photoelectron beam emitted from the photocathode 3. First, 1 will be explained. FIG.
  • FIG. 3A is a diagram illustrating an input using a multi-channel fiber
  • FIG. 3B is a diagram illustrating a streak image on an output surface.
  • light from many channel fibers 30 is imaged on a straight line passing through the center on the photocathode 3 via a lens 31.
  • the photoelectron beam emitted from the minute spot corresponding to each channel is swept by the deflection electrode 5, and a streak image is obtained on the output surface (fluorescent material 6).
  • Figure 4A shows the microchannel of the multichannel photoelectron beam at the center of the photocathode 3 and at the end farthest from the center, that is, at the end of the effective range in the spatial direction, 8 mm from the center of the photocathode 3.
  • 4 shows the trajectory of a photoelectron beam emitted from a spot.
  • FIG. 4B is a diagram showing an output spot on the fluorescent material.
  • the three electron orbits shown in Fig. 4A actually rotate around the tube axis where the focusing magnetic field exists in the direction of the tube axis.
  • the orbit in the plane of rotation is drawn on the same paper. Due to this rotation relationship, it is necessary to limit the inclination of the straight line with respect to the deflection electrode 5 for the group of minute spots imaged linearly on the photocathode 3 described above.
  • the photoelectron beams emitted from each of these linear points (only three are shown in Figs. 4A and 4B) are aligned in a straight line on the cross section at each position along the tube axis.
  • the tilt at the photocathode 3 is the largest, rotates around the tube axis, and becomes parallel to the deflecting plates 5 a and 5 b as approaching the deflecting electrode 5.
  • this group of photoelectron beams is incident on the deflecting electrode 5, it is necessary to previously determine the inclination of a straight line on the photocathode 3 so as to be parallel to the deflecting plates 5a and 5b. Otherwise, since the interval between the two deflection plates 5a and 5b is as small as about 8 mm, the electron beam in the channel near the end of the group of photoelectron beams collides with the deflection plate 5a or 5b.
  • the inclination of the straight line in a plane perpendicular to the tube axis of the photocathode 3 is set to about 70 degrees with respect to the deflection plates 5a and 5b.
  • a first focusing magnetic flux generator 12a and a second focusing magnetic flux generator 12b are provided so as to surround the outside of the glass tube 1a. I have.
  • this streak tube is a streak tube provided with a pair of deflecting plates 5a and 5b for deflecting electrons between the photocathode 3 and the fluorescent material 6, and includes a photocathode 3 and deflecting plates 5a and 5b. And a group of electron lenses that divides the electrons emitted from the photocathode 3 into a plurality of stages and focuses the electrons between the deflection plates 5a and 5b.
  • the position of the first focusing magnetic flux generator 12a in the tube axis direction is determined as follows.
  • the first focusing magnetic flux generator 12a is arranged on the photocathode 3 side of the deflection electrode 5 so that the focusing magnetic field does not substantially act on the deflection electrode 5. If a focusing magnetic field is present at the deflection electrode 5, the photoelectron beam is constrained by the magnetic field, lowering the deflection sensitivity, requiring a large voltage for sweeping, and causing the photoelectron beam having a linear cross section to be deflected by the deflection plate 5 Even when the light is incident parallel to a and 5b, the photoelectric beam rotates in a cycloidal motion due to the synergistic action of the focusing magnetic field and the deflection electric field.
  • the first focusing magnetic flux generator 12a is arranged on the photocathode 3 side of the deflection electrode 5.
  • the position of the first focusing magnetic flux generator 12a forming the main focusing electron lens in the tube axis direction determines the position of the first focusing magnetic flux generator 12a forming the main focusing electron lens in the tube axis direction. It is a scale that indicates the magnification of the electron optical system, ie, how many times the light image on the photocathode 3 is magnified and formed on the output fluorescent material 6.
  • a minute spot light is imaged at the end of the effective range (at a position 8 mm from the center of the photocathode 3).
  • the magnification of the electron optical system is M
  • the output image on the fluorescent material 6 corresponding to the spot is formed at a position 8 mm from the center of the fluorescent material 6.
  • the streak tube 1 since the streak tube 1 according to the first embodiment uses the cylindrical glass tube 1a as an envelope, when the effective diameter of the output fluorescent material 6 becomes larger than the effective range of the photocathode 3, the diameter of the envelope becomes larger. Must be increased on the output side, which complicates the structure.
  • the enlargement ratio is set to about 1.
  • the magnification of the streak tube 1 is approximately (center of the main focusing electron lens—distance between output sweep surfaces) / (photocathode— (The distance from the center of the main focusing electron lens).
  • the prefocus lens formed by the second focusing magnetic flux generator 12 b is installed between the photocathode 3 and the first focusing magnetic flux generator 12 a,
  • the rate is several percent higher than the value given by the above equation.
  • the ratio of the above equation is set to about 1Z1.5 as described above, and an enlargement ratio of about 1 is obtained.
  • the role of the second focusing magnetic flux generator 12b forming the prefocus lens will be described with reference to FIG.
  • the photoelectron beam emitted from the minute spot 8 mm from the center of the photocathode 3 at the end of the effective range in the spatial direction is bent by the prefocus lens 40 to form the main focused electron beam.
  • FIG. 6A shows how the electron beam is imaged on the output fluorescent material in the streak device provided with only the first focusing magnetic flux generator 12a without the second focusing magnetic flux generator 12b.
  • FIG. 6B is a diagram showing an output spot on the fluorescent material.
  • the photoelectron beam emitted from the end of the photocathode 3 is focused on the peripheral portion of the main focusing electron lens 60 where the spherical aberration is large, so that the beam is largely blurred on the output surface and the spatial resolution is deteriorated. I do.
  • FIGS. 7A and 7B are diagrams showing images obtained on the fluorescent material 6 in a non-sweep mode when a multi-channel minute spot group is imaged on the photocathode at regular intervals.
  • FIG. 7A shows the case with the prefocus lens
  • FIG. 7B shows the case without the prefocus lens. It can be seen that the spatial distortion can be reduced by having the prefocus lens.
  • FIG. 8 is a diagram showing electron trajectories in a multi-channel simultaneous time-resolved photometry using an electrostatic focusing streak tube 81.
  • Light incident from the input window 82 is converted into photoelectrons by the photocathode 83.
  • the photoelectrons are accelerated by the accelerating electrode 84, focused by the focusing electrode 85, and incident on the anode 86. Thereafter, an image is formed on the fluorescent material 87.
  • the fluorescent material 87 adheres to the inner surface of the output window 88. In this case, the photoelectron beams emitted from the plurality of minute spots on the photocathode 83 corresponding to each channel cross at a point called crossover.
  • the photoelectrons emitted from each minute spot are collected near the center of the main focusing electron lens 41. They do not cross at one point as in the case of a focusing streak tube. For this reason, the density of photoelectrons is much smaller than that of the electrostatic focusing type even at the location where the density is maximum in the tube axis direction. Therefore, D-range degradation due to the space charge effect is small.
  • the density of photoelectrons is maximized by the main focusing electron lens.
  • the main focusing electron lens 41 is located closer to the output side than the center of the streak tube, as described above. And the distance from the point to the output sweep surface becomes smaller. For this reason, even if the Coulomb repulsion due to the space charge effect works at the maximum density part, the degree of diffusion of the photoelectron beam due to this will be small. As a result, D-range degradation can be reduced.
  • FIG. 9 is a diagram showing the potential distribution in the tube axis direction of the electromagnetic focusing streak tube according to Embodiment 1 of the present invention in comparison with the electrostatic focusing streak tube.
  • the potential of the focusing electrode is set lower than that of the accelerating electrode, so that the focusing electrode is in the low-speed region in the tube axis direction, and the effect of the space charge effect of the photoelectron group forming the photoelectron beam increases. .
  • the blur of the electron beam on the fluorescent material becomes larger, and the D-range becomes smaller.
  • the photoelectron beam emitted from the photocathode is immediately accelerated to 1 O keV by the accelerating electrode provided oppositely, so that the effect of the space charge effect is reduced. D-range can be increased.
  • the D-range when the streak tube according to the first embodiment was used for multi-channel simultaneous time-resolved measurement was evaluated in an arrangement as shown in FIG.
  • a black sheet 100 having 11 pinholes having a diameter of 100 ⁇ m and opened in a row at a pitch of 1.6 mm is irradiated by a pulse laser having a time width of 30 ps.
  • This pinhole array is imaged on the photocathode 3 of the streak tube by the optical relay lens 101 having a magnification ratio of 1: 1. Therefore, the distance between both ends of the spot group formed on the photocathode 3 is 16 mm.
  • the plurality of photoelectron beams emitted from the spot group on the photocathode 3 are re-imaged on the fluorescent material at a magnification of 1 by the focusing magnetic flux generator, and are swept by the sweep electrode to obtain a streak image.
  • Can be The half value width of the luminance distribution in that sweep direction is Dividing by degrees gives the time resolution.
  • FIG. 11 is a diagram showing the time resolution B of the streak tube according to the first embodiment in comparison with the time resolution A of the conventional electrostatic focusing streak tube.
  • the streak tube according to the first embodiment has a large amount of deterioration and a large improvement in the D-range compared to the electrostatic focusing type. .
  • the first focusing magnetic flux generator 12 a is arranged on the photocathode 3 side of the deflecting electrode 5 so that the focusing magnetic field does not substantially act on the deflecting electrode 5.
  • the deflection sensitivity decreases, and the rotation of the photoelectron beam at the deflection electrode 5 occurs to some extent.
  • the coil is shielded with a magnetic material such as soft iron in order to minimize the influence of the magnetic field.
  • FIG. 12 is a diagram showing a focused magnetic flux generator 12a shielded by an iron frame 120 having an opening 120a on the streak tube side.
  • the focused magnetic flux enters the streak pipe through the opening 120a and performs a focusing action.
  • FIG. 13 is a diagram showing the magnetic flux density distribution on the tube axis when the magnetic shield is provided and when it is not provided. As shown in Fig. 13, when there is a magnetic shield, the peak intensity is attenuated faster and the penetration of the magnetic field into the deflection electrode field can be negligible.
  • FIG. 14 is a schematic sectional view of the streak device according to Embodiment 3 of the present invention.
  • a sweep voltage is applied to the deflecting plates 5a and 5b, a strong electric field is generated in the deflecting plates 5a and 5b, which also affects the main focusing magnetic flux region, and causes a problem such as a reduction in time resolution.
  • the center of the tube axis is set near the deflection electrode 5 on the photocathode 3 side.
  • the shield plate 141 is held by the cylindrical electrode 140 fixed to the metal flange 142.
  • the potential of the shielding plate 141 is set to be equal to the potential of the acceleration electrode 4.
  • the deflection sensitivity can be increased. Since the metal flange 144 needs to be fused with the glass tube 1a, it is mainly formed of a ferromagnetic material. The ferromagnetic material disturbs the focusing magnetic field and causes degradation of the resolution and distortion.Therefore, a metal flange 14 is provided almost halfway between the first focusing flux generator 12a and the second focusing flux generator 12b. 2 is arranged.
  • FIG. 15 is a partial cross-sectional view near the photocathode of the streak device according to Embodiment 4 of the present invention.
  • a gate electrode 150 having an opening having a length of, for example, 20 mm and a width of l mm is provided between the photocathode 3 and the acceleration electrode 4.
  • the interval between the photocathode 3 and the gate electrode 150 is 0.5 mm, and a voltage of +200 V is applied to the photocathode 3 during the streak sweep.
  • a voltage of 150 V is applied to the photocathode 3.
  • the photoelectron beam emitted from the end of the effective range in the spatial direction is bent by the prefocus lens and advances toward the center of the main focusing electron lens. Since the central portion of the main focusing electron lens has small spherical aberration, an image of a spot with little blur on the output surface can be obtained. As a result, good spatial resolution can be obtained in both the time direction and the spatial direction.
  • the focusing magnetic flux generator is configured as one for forming a prefocus lens and one for forming a main focusing electron lens. Although each is provided, a plurality of focusing magnetic flux generators may be used to form each lens. For example, if the prefocus lens is formed by two focusing magnetic flux generators, the trajectory of the photoelectron beam can be more finely controlled, and spatial distortion and spatial resolution characteristics in the periphery can be improved.
  • a fluorescent material was mentioned as an output surface where the photoelectron beam is swept and the photoelectron image is converted into a visible light image, but a microchannel plate (MCP) with an electron multiplication function is installed in front of it. May be.
  • MCP microchannel plate
  • an electron-implanted imaging device may be used instead.
  • the acceleration electrode has been described as a mesh electrode, but may be a plate-like electrode having an opening.
  • the photoelectron beam emitted from the end of the effective range in the space direction is bent by the prefocus lens and the photoelectron beam of the main focusing electron lens is bent. It will advance toward the center. Since the central part of the main focusing electron lens has small spherical aberration, an image of a spot with little blur can be obtained on the output surface. As a result, good spatial resolution can be obtained in both the time direction and the spatial direction. In addition, since the position of the main focusing electron lens in the electromagnetic focusing type is close to the output surface (fluorescent material side), the effect of the space charge effect can be reduced, and high D-range characteristics can be obtained. .
  • the device of the present invention can be used for a streak device.

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

曰月糸田 β
ストリーク装置
技術分野
本発明は、 発光現象の経時的な強度分布の測定等に好適なストリーク装置に関 する。
背景技術
ストリークカメラは、 ストリーク管の出力面を撮像するカメラを備えた装置で ある。 ストリーク管を備えたストリーク装置は、 被測定光の時間的な強度分布を 出力面上の空間的な強度分布に変換する装置である。 例えば特公平 4一 7 3 2 5 7号公報には、 電磁集束型のストリーク装置が開示されている。 このストリーク 装置は、 単一の集束磁束発生器 (電磁集束コイル) を備え、 この集束磁束発生器 によってストリーク管の外側から光電陰極と偏向電極の入口との間の空間にのみ 集束磁束を発生させ、 光電陰極から放出される光電子を実質的に集束させるもの である。
発明の開示
しかしながら、 上記のストリーク装置は、 集束磁束発生器を一つしか備えてい ないため、 光電陰極上で空間方向の有効範囲を大きく取ると、 光電陰極の端部か ら放出された光電子の電子群が、 集束磁束発生器によって形成される電子レンズ の周辺を通過してしまうため、 空間分解能及び時間分解能が劣化し、 空間歪みが 大きくなるという問題がある。 また、 集束電子レンズの中心から出力面までの距 離が、 光電陰極から集束電子レンズの中心までの距離よりも大きいため、 光電陰 極上で空間方向の有効範囲を大きくすることが困難である。
また、 例えば米国特許第 4 3 5 0 9 1 9号には、 集束磁束発生器を 2つ備えた 電磁集束型のストリーク装置が開示されている。 しかし、 このストリーク装置で は、 集束磁束発生器が発生する集束磁界と掃引用の偏向電極が発生する偏向電界 とがストリーク管の管軸方向で重なっているため、 光電子ビームが掃引用の偏向 電極内で、 サイクロィ ド運動をしてしまう。 このため、 光電陰極上で空間方向の 有効範囲を大きく取ることができない。 また、 光電子ビームが集束磁界の影響を 受けるため、 十分な偏向感度を得ることができない。 さらに、 このストリーク装 置の 2つの集束磁界発生器は、 光電陰極の端部から放出された光電子が、 光電陰 極上に形成された電子像を出力面上に結像させる電子レンズの中心付近を通過す るように配置されていない。 このため、 光電陰極の端部における空間分解能及び 時間分解能が劣化し、 空間歪みが大きくなるという問題がある。
一方、 静電集束型のストリーク装置は、 光電陰極上の有効範囲を大きく取るこ とができるという利点があるが、 集束電子レンズを形成する集束電極の電位が低 いため、 空間電荷効果によって電子ビームが拡散し、 ダイナミックレンジ ( D— レンジ) が小さくなるという問題がある。
本発明は、 このような事情に鑑みてなされたものであり、 光電陰極上で有効範 囲を大きく取ると共に、 その有効範囲において空間分解能及び時間分解能を高く、 空間歪みを小さく、 かつ D—レンジを大きくさせることができるストリーク装置 を提供することを目的とする。
第 1のストリーク装置は、 受けた光を光電子に変換する光電陰極を一端に備え、 光電子による像を可視光像に変換する出力面を他端に備える真空容器と、 真空容 器の管軸に沿って光電陰極と対向するように配置され光電陰極から放出された光 電子を加速する加速電極と、 加速電極と出力面との間で管軸を挟むように対向す る一対の電極からなる偏向電極と、 光電陰極と偏向電極の入射口との間に集束磁 束を発生させて光電陰極から放出された光電子を集束させる複数の集束磁束発生 器と、 を備えるストリーク管と、 偏向電極に偏向電界を発生させる電圧を供給す る偏向電圧発生回路と、 加速電極に電圧を供給する加速電圧発生回路と、 集束磁 束発生器に電流を供給する駆動電源と、 を備えるストリーク装置において、 複数 の集束磁束発生器は、 光電陰極上に形成された電子像を出力面上に結像させる主 集束電子レンズと、 光電陰極と主集束電子レンズとの間に設けられ、 光電陰極か ら放出された光電子を主集束電子レンズの中心方向に集束させるプリフォーカス レンズとを形成する構成を採る。
この構成により、 光電陰極において、 空間方向の有効範囲の端部から放出され た光電子ビームが、 プリフォーカスレンズにより曲げられて主集束電子レンズの 中心方向に進むこととなる。 主集束電子レンズの中央部は球面収差が小さいため、 出力面上にボケの少ないスポットの像が得られる。 これにより、 時間方向、 空間 方向の両方向に良好な空間分解能が得られる。
第 2のストリーク装置は、 受けた光を光電子に変換する光電陰極を一端に備え、 光電子による像を可視光像に変換する出力面を他端に備える真空容器と、 真空容 器の管軸に沿つて光電陰極と対向するように配置され光電陰極から放出された光 電子を加速する加速電極と、 加速電極と出力面との間で管軸を挟むように対向す る一対の電極からなる偏向電極と、 永久磁石を含み光電陰極と偏向電極の入射口 との間に永久磁石による磁束を発生させて光電陰極から放出された光電子を集束 させる複数の集束磁束発生器と、 を備えるストリーク管と、 偏向電極に偏向電界 を発生させる電圧を供給する偏向電圧発生回路と、 加速電極に電圧を供給する加 速電圧発生回路と、 を備えるストリーク装置において、 複数の集束磁束発生器は、 光電陰極上に形成された電子像を出力面上に結像させる主集束電子レンズと、 光 電陰極と主集束電子レンズとの間に設けられ、 光電陰極から放出された光電子を 主集束電子レンズの中心方向に集束させるプリフォーカスレンズと、 を形成する 構成を採る。
このように、 永久磁石を利用して集束磁束発生器を構成することができる。 こ のため、 光電陰極において、 空間方向の有効範囲の端部から放出された光電子ビ —ムが、 プリフォーカスレンズにより曲げられて主集束電子レンズの中心方向に 進むこととなる。 主集束電子レンズの中央部は球面収差が小さいため、 出力面上 にボケの少ないスポットの像が得られる。 これにより、 時間方向、 空間方向の両 方向に良好な空間分解能が得られる。 第 3のストリーク装置は、 第 1又は第 2の装置において、 主集束電子レンズの 中心と出力面との距離は、 光電陰極と主集束電子レンズの中心との距離よりも小 さくなるように設定されている構成を採る。
このように、 主集束電子レンズがストリーク管の中央より出力側に近いところ に設置されているため、 光電子の密度の最大となるところから出力掃引面までの 距離が小さくなる。 このため、 最大密度の部分で空間電荷効果によるクーロン反 発力が働いても、 それによる光電子ビームの拡散度合いは小さくて済む。 その結 果、 D—レンジ劣化を小さくさせることができる。
第 4のストリーク装置は、 第 1乃至第 3の装置のいずれかにおいて、 各集束磁 束発生器は、 真空容器の外側を周回するように設けられ中心軸が管軸と一致する コイルと、 コイルをシ一ルドする磁性体と、 磁性体の真空容器側に設けられた開 口部と、 を備える構成を採る。
この構成により、 集束磁束発生器が発生する磁場が働く範囲を必要な範囲のみ に限定させることができ、 ピーク強度からの減衰を早く、 偏向電極場への磁場の 浸透を無視できるレベルにすることができる。 このため、 磁場が偏向電極にも及 び、 偏向感度が下がったり、 偏向電極で光電子ビームの回転が生ずることを回避 することができる。
第 5のストリーク装置は、 第 1乃至第 4の装置のいずれかにおいて、 ストリー ク管は、 主集束電子レンズを形成する第 1の集束磁束発生器と、 プリフォーカス レンズを形成する第 2の集束磁束発生器と、 を備える構成を採る。
この構成により、 光電陰極において、 空間方向の有効範囲の端部から放出され た光電子ビームが、 プリフォーカスレンズにより曲げられて主集束電子レンズの 中心方向に進むこととなる。 主集束電子レンズの中央部は球面収差が小さいため、 出力面上にボケの少ないスポットの像が得られる。 これにより、 時間方向、 空間 方向の両方向に良好な空間分解能が得られる。
第 6のストリーク装置は、 第 1乃至第 5の装置において、 ストり一ク管は、 偏 向電極の入射口近傍に設けられ、 偏向電極から漏出する電界を遮蔽すると共に管 軸を中心に開口する遮蔽板を備え、 遮蔽板の電位は加速電極の電位以下に設定さ れている構成を採る。
この構成により、 偏向板に掃引電圧が印加される際に生ずる強い電界が外部に 漏出することを防止することができるため、 漏出した電界が主集束磁束領域にも 影響し、 時間分解能の低下等が生ずることを回避することができる。 また、 遮蔽 板から出力面における電位をより低くすることによって、 偏向感度を上げること も可能である。
第 7のストリーク装置は、 第 6の装置において、 ストリーク管は、 隣接する 2 つの集束磁束発生器の中間に設けられ遮蔽板を支持すると共に遮蔽板と電気的に 接続されるフランジを更に備える構成を採る。
このように、 隣接する 2つの集束磁束発生器の中間にフランジを設けたため、 強磁性体であるフランジが集束磁場を乱し、 解像度の劣化、 歪みを起こすことを 極力回避させることができる。
第 8のストリーク装置は、 第 1乃至第 7の装置のいずれかにおいて、 ストリ一 ク管は、 光電陰極と加速電極との間に管軸を中心に開口するゲート電極を更に備 える構成を採る。
この構成により、 例えば、 ストリーク掃引を行う間は、 光電陰極に対して + 2 0 0 Vの電圧を印加し、 掃引の前後には、 光電陰極に対して一 5 0 Vの電圧を印 加するように制御することができる。 このため、 掃引を行わない間は光電陰極に 光が入射しても不要な出力像が生ずることを回避することができ、 バックグラウ ンド上昇を少なくさせることができる。
図面の簡単な説明
図 1は本発明の実施の形態 1に係るストリーク装置の構成図である。
図 2 Aは掃引動作時に偏向板 5 aに印加される電圧を示す図である。
図 2 Bは掃引動作時に偏向板 5 bに印加される電圧を示す図である。 図 3 Aは多チャンネルファイバによる入力を示す図である。
図 3 Bは出力面上のストリーク像を示す図である。
図 4 Aは多チャンネルの光電子ビームのうち、 光電陰極の端部における微小ス ポットから放出された光電子ビームの軌道を示す図である。
図 4 Bは蛍光材料上の出力スポットを示す図である。
図 5は光電子ビーム群が管軸を中心に回転する様子を示す図である。
図 6 Aは単一の集束磁束発生器のみが設けられたストリーク装置において、 電 子ビームの出力蛍光材料上への結像の様子を示す図である。
図 6 Bは蛍光材料上の出力スポットを示す図である。
図 7 Aはプリフォーカスレンズを有する場合、 多チャンネルの微小スポット群 を等間隔で光電陰極に結像したときに掃引していないモードで出力蛍光材料に得 られるイメージを示す図である。
図 7 Bはプリフォーカスレンズを有しない場合、 多チャンネルの微小スポット 群を等間隔で光電陰極に結像したときに掃引していないモードで出力蛍光材料に 得られるイメージを示す図である。
図 8は静電集束型のストリーク管を用いて多チャンネル同時時間分解測光をす る時の、 管内の電子軌道を示す図である。
図 9は本発明の実施の形態 1に係る電磁集束型のストリーク管の管軸方向にお ける電位分布を静電集束型のストリーク管と比較して示す図である。
図 1 0は本発明の実施の形態 1に係るストリーク管を多チャンネル同時時間分 解計測に利用する場合の D—レンジを評価する図である。
図 1 1は本発明の実施の形態 1に係るストリーク管の時間分解能 Bを、 従来の 静電集束型のストリーク管の時間分解能 Aと比較して示す図である。
図 1 2は本発明の実施の形態 2に係るストリーク装置、 管側に開口部を有する 鉄枠によってシールドされた集束磁束発生器を示す図である。
図 1 3は磁気シールドを有する場合と、 有しない場合との管軸上の磁束密度分 布を示す図である。
図 1 4は本発明の実施の形態 3に係るストリーク装置の概略断面図である。 図 1 5は本発明の実施の形態 4に係るストリーク装置の光電陰極付近の一部断 面図である。
発明を実施するための最良の形態
(実施の形態 1 )
図 1は、 本発明の実施の形態 1に係るストリーク装置を、 その概略断面構成と 共に示すストリーク装置の構成図である。
ストリーク管 1は、 外囲器として円筒状のガラス管 1 aを有し、 このガラス管 1 aの内部は、 高真空に保持されている。 ガラス管 l aの一端には、 被計測光が 入射する入力窓 2が設けられており、 入力窓 2の内面には、 光を光電子ビームに 変換する光電面 (光電陰極) 3が形成されている。 ガラス管 1 aの前記一端と他 端との間には、 この一端側から順番に、 光電子ビームを加速して出力側に向かわ せるためのメッシュからなる加速電極 4と、 光電子を出力面上で掃引するための 偏向電極 5と、 入射した光電子の衝突に応じて当該電子を蛍光に変換する蛍光面 (蛍光材料) 6と、 蛍光材料 6を付着させガラス管 1 aの他端を閉塞する出力窓 7とが管軸に沿って設けられている。
光電陰極 3は、 入力窓 2を融着している金属フランジ 8 aと電気的に接続され ており、 同様に蛍光材料 6は、 出力窓を融着している金属フランジ 8 bと電気的 に接続されている。 加速電極 4は、 円筒電極 4 aによって支持されると共に、 円 筒電極 4 aを介して金属フランジ 8 cと電気的に接続されている。 また、 偏向電 極 5の偏向板 5 a、 5 bは、 ガラス管 1 aの壁に埋め込められた金属製の偏向リ —ド 5 cと電気的に接続されている。
光電陰極 3と加速電極 4は、 それそれが電気的に接続された金属フランジ 8 a, 8 cを介して加速電圧を印加するための加速電圧発生回路 9が接続されている。 実施の形態 1では、 加速電極 4はグラウンド電位、 光電陰極 3には一 1 0 k Vが 印加されている。 蛍光材料 6が接続されている金属フランジ 8 bは、 グラウンド 電位に接続されている。
偏向電極 5に掃引電圧を印加するための偏向リード 5 cには、 掃引電圧発生回 路 1 0が接続されている。 掃引動作時は、 偏向板 5 aには図 2 A、 偏向板 5 bに は図 2 Bにそれそれ示す 1〜2 k v p— pの斜状に時間的に変化する掃引電圧が 印加される。
実施の形態 1では、 光電陰極 3として、 可視光用としてマルチアルカリ光電陰 極を用いている。 光電陰極 3から加速電極 4の間の距離は 5 mmで、 加速電極 4 の粗さは 1 0 0 0メッシュ/ィンチである。 加速電極 4と蛍光材料 6との間にお いて、 ガラス管 1 aの内壁には電荷の帯電を防ぐために、 アルミニウムを蒸着し、 ウォールアノード 1 1を形成している。 但し、 偏向リード 5 cの付け根付近はァ ルミ二ゥムを蒸着せずに電気的にウォールアノード 1 1と偏向リード 5 cとを絶 縁している。 また、 光電陰極 3から蛍光材料 6との間の距離は 2 5 0 mmである。 ストリーク管 1の外周であって加速電極 4と偏向電極 5との間には、 管軸に沿 つて蛍光材料 6側から第 1集束磁束発生器 1 2 aと、 第 2集束磁束発生器 1 2 b との 2つの集束磁束発生器が配置されている。 これらの集束磁束発生器 1 2 a、 1 2 bは、 中心軸が管軸と一致するコイルから構成されている。 それそれのコィ ルには、 電流を供給する駆動電源 1 3 a、 1 3 bが接続されている。
第 1集束磁束発生器 1 2 aは、 管軸方向の位置として、 光電陰極 3から第 1集 束磁束発生器 1 2 aの中心まで距離と、 第 1集束磁束発生器 1 2 aの中心から蛍 光材料 6までの距離との比がおよそ 1 . 5 : 1となるように配置されている。 本発明の実施の形態 1に係るストリーク装置は、 ①光電陰極上で大きな有効範 囲を確保することができ、 しかもその有効範囲にわたって、 空間分解能、 時間分 解能が良好である。 同時に、 ②時間分解を行う掃引動作で高い D—レンジを有す る。 これらは、 光電陰極 3から放出された光電子ビームの軌道から理解すること ができる。 まず、 ①について説明する。 図 3 Aは、 多チャンネルファイバによる入力を示す図であり、 図 3 Bは、 出力 面上のストリーク像を示す図である。 例えば、 多チャンネル同時時間分解測光等 では、 図 3 Aに示すように、 多数のチャンネルファイバ 3 0からの光を、 レンズ 3 1を介して光電陰極 3上の中心を通る直線上に結像させる。 各チャンネルに対 応する微小スポットから放出された光電子ビームは、 偏向電極 5により掃引され、 出力面 (蛍光材料 6 ) 上でストリーク像を得る。
図 4 Aは、 多チャンネルの光電子ビームのうち、 光電陰極 3の中心、 および中 心から最も離れた端部、 すなわち空間方向の有効範囲の端で光電陰極 3の中心か ら 8 mmの位置における微小スポットから放出された光電子ビームの軌道を示す。 また、 図 4 Bは、 蛍光材料上の出力スポットを示す図である。
図 4 Aに示す 3つの電子軌道は、 実際には管軸方向で集束磁場の存在する場所 では、 管軸の周りで回転している。 ここでは、 説明のため、 その回転面内での軌 道を同一紙面上に描いてある。 この回転の関係から、 上述した光電陰極 3上に直 線状に結像される微小スポット群に対し、 偏向電極 5に対するその直線の傾きを 限定する必要がある。 この直線状の各点から放出された光電子ビーム群 (図 4 A、 4 Bでは、 3つのみを示す) は、 管軸方向の各位置における断面上で直線上に並 んでいる。
すなわち、 図 5において、 光電陰極 3における傾きが最も大きく、 管軸を中心 に回転し、 偏向電極 5に近づくにつれて偏向板 5 a、 5 bに対して平行になって いく。 この光電子ビーム群が偏向電極 5に入射する時、 偏向板 5 a、 5 bと平行 になるよう、 予め光電陰極 3上で直線の傾きを決める必要がある。 さもなくば 2 枚の偏向板 5 a、 5 bの間隔が 8 mm程度と小さいため、 光電子ビーム群の端部 に近いチャンネルの電子ビームが、 偏向板 5 a又は 5 bに衝突してしまう。
実施の形態 1では、 光電陰極 3における管軸に垂直な平面内における上記直線 の傾きは、 偏向板 5 a、 5 bに対して約 7 0度に設定されている。 また、 各々の 光電子ビームは、 微小スポットから放出された後、 ビームを形成する光電子群が 持つ初速度分布のため広がっていくが、 集束磁束発生器が発生する集束磁界によ り、 再び蛍光材料 6上に結像される。 なお、 偏向板 5 a、 5 bの間隔を 8 mm程 度に小さくしているのは、 良好な偏向感度を得るためである。
さて、 本発明の実施の形態 1に係るストリーク装置には、 第 1集束磁束発生器 1 2 a及び第 2集束磁束発生器 1 2 bが、 ガラス管 1 aの外側を囲むように設け られている。
すなわち、 本ストリーク管は、 光電陰極 3と蛍光材料 6との間の電子を偏向す る一対の偏向板 5 a, 5 bを備えたストリーク管において、 光電陰極 3と偏向板 5 a , 5 bとの間に磁場を形成し、 光電陰極 3から出射された電子を複数段階に 分けて偏向板 5 a , 5 b間に集束させる電子レンズ群を備えている。
光電陰極 3上の微小スポッ卜の光電子像を蛍光材料 6上に結像させる主たる集 束電子レンズを形成するのは、 第 1集束磁束発生器 1 2 aである。 この第 1集束 磁束発生器 1 2 aの管軸方向の位置は、 次のようにして決まる。
先ず、 偏向電極 5には実質的に集束磁場が作用しないように第 1集束磁束発生 器 1 2 aを偏向電極 5の光電陰極 3側に配置する。 偏向電極 5に集束磁界が存在 すると、 光電子ビームが磁界に拘束されて偏向感度が下がり、 掃引に大きな電圧 が必要になると共に、 断面が線状の光電子ビームを偏向電極 5の入り口で偏向板 5 a、 5 bに対して平行に入射させても集束磁界と偏向電界との相乗作用で光電 子ビームがサイクロィド運動をして回転する。 その結果、 線状電子ビームの線方 向の長さが大きいと偏向板 5 a、 5 bに衝突してしまう。 これを回避するため、 第 1集束磁束発生器 1 2 aを偏向電極 5の光電陰極 3側に配置する。
さらに、 主集束電子レンズを形成する第 1集束磁束発生器 1 2 aの管軸方向の 位置を決めるもう一つの要素がある。 それは、 電子光学系の拡大率、 すなわち光 電陰極 3上の光像が出力蛍光材料 6上に何倍に拡大されて結像されるかを示す尺 度である。 実施の形態 1では、 光電陰極 3上の有効範囲を大きくするため、 有効 範囲の端部 (光電陰極 3の中心から 8 mmの位置) に微小スポット光を結像した 時、 電子光学系の拡大率を Mとすれば、 そのスポットに対応する蛍光材料 6上の 出力像は、 蛍光材料 6の中心から 8 Mmmの位置に結像される。
従って、 拡大率 Mが大きいほど蛍光材料 6の形成領域の有効径を大きくする必 要がある。 そのため、 ストリーク管 1が大型化してしまう。 また、 実施の形態 1 に係るストリーク管 1は、 円筒状のガラス管 1 aを外囲器としているので、 出力 蛍光材料 6の有効径が光電陰極 3の有効範囲より大きくなると外囲器の径を出力 側で大きくする必要が生じ、 構造が複雑になる。
そこで、 実施の形態 1では、 拡大率を約 1に設定している。 ストリーク管 1の 拡大率は、 集束磁束発生器が第 1集束磁束発生器 1 2 aのみである場合は、 ほぼ、 (主集束電子レンズの中心—出力掃引面間の距離) / (光電陰極—主集束電子レ ンズの中心の距離) の値に等しくなる。
実施の形態 1に係るストリーク管では、 第 2集束磁束発生器 1 2 bが形成する プリフォーカスレンズを光電陰極 3と第 1集束磁束発生器 1 2 aとの間に設置し ているため、 拡大率は、 上記の式による値より数割大きくなる。 実施の形態 1で は、 前式の比を、 上述したように約 1 Z 1 . 5として、 約 1の拡大率を得ている。 次に、 プリフォーカスレンズを形成する第 2集束磁束発生器 1 2 bの役割を、 図 4を参照して説明する。 光電陰極 3において、 空間方向の有効範囲の端部で光 電陰極 3の中心から 8 mmの位置の微小スポッ卜から放出された光電子ビームは、 このプリフォーカスレンズ 4 0により曲げられて主集束電子レンズ 4 1の中心方 向に進む。 主集束電子レンズ 4 1の中央部は球面収差が小さいため、 出力蛍光材 料 6上にボケの少ないスポットの像が得られる。 これにより、 時間方向、 空間方 向の両方向に良好な空間分解能が得られる。
一方、 図 6 Aは、 第 2集束磁束発生器 1 2 bがなく、 第 1集束磁束発生器 1 2 aのみが設けられたストリーク装置において、 電子ビームの出力蛍光材料上への 結像の様子を示す図であり、 図 6 Bは、 蛍光材料上の出力スポットを示す図であ る。 光電陰極 3の端部から放出された光電子ビームは、 主集束電子レンズ 6 0の球 面収差の大きい周辺部分で集束作用を受けるので、 出力面上でビームのボケが大 きく、 空間分解能が劣化する。
図 7 A、 図 7 Bは、 多チャンネルの微小スポット群を等間隔で光電陰極に結像 した場合、 掃引していないモードで蛍光材料 6に得られるイメージを示す図であ る。 図 7 Aは、 プリフォーカスレンズ有り、 図 7 Bは無しの場合を示している。 プリフオーカスレンズを有する方が空間歪みを少なくすることができることがわ かる。
次に、 本発明の実施の形態 1に係るストリーク装置が、 ②時間分解をする掃引 動作で高い D—レンジを有することを、 電子軌道等を用いて説明する。
図 8は、 静電集束型のストリーク管 8 1を用いて多チャンネル同時時間分解測 光をする時の、 管内の電子軌道を示す図である。 入力窓 8 2から入射した光は光 電陰極 8 3で光電子に変換される。 光電子は加速電極 8 4で加速され、 集束電極 8 5で集束されて陽極 8 6に入射する。 その後、 蛍光材料 8 7上に結像する。 蛍 光材料 8 7は出力窓 8 8の内面上に付着している。 この場合、 各チャンネルに対 応する光電陰極 8 3上の複数の微小スポッ卜から放出された光電子ビームは、 ク ロスオーバ一と呼ばれる点で交叉する。
従って、 この地点およびこの近辺では、 光量が大きくなると、 光電子の密度が 非常に大きくなり、 空間電荷効果により反発しあう。 その結果、 蛍光材料 8 7上 の電子ビームの結像にボケを発生させ、 時間分解能が劣化する。
これに対し、 図 4に示す電磁集束型のストリーク管 1の場合は、 各微小スポッ トから放出された光電子は、 主集束電子レンズ 4 1の中央部付近に集められる力 図 8に示す静電集束型のストリーク管のように 1点で交叉することはない。 この ため、 光電子の密度は、 管軸方向で最大密度となるところでも、 静電集束型に比 ベ格段と小さい。 従って、 空間電荷効果による D—レンジ劣化は小さくなる。 また、 光電子の密度が最大となるのは、 図 4に示すように、 主集束電子レンズ 4 1の出射面付近であり、 このストリーク管 1では、 主集束電子レンズ 4 1は、 先述したようにストリーク管の中央より出力側に近いところに設置されているた め、 光電子の密度の最大となるところから出力掃引面までの距離が小さくなる。 このため、 最大密度の部分で空間電荷効果によるクーロン反発力が働いても、 そ れによる光電子ビームの拡散度合いは小さくて済む。 その結果、 D—レンジ劣化 を小さくさせることができる。
図 9は、 本発明の実施の形態 1に係る電磁集束型のストリーク管の管軸方向に おける電位分布を静電集束型のストリーク管と比較して示す図である。 静電集束 型では、 集束電極部の電位が加速電極より低く設定されるので、 管軸方向で集束 電極部は低速領域となり、 光電子ビームを形成する光電子群の空間電荷効果の影 響が大きくなる。
このため、 蛍光材料上での電子ビームのボケがより大きくなり、 D—レンジが 小さくなる。 これに対して、 電磁集束型では、 光電陰極から放出された光電子ビ —ムは、 対向して設けられた加速電極により、 1 O k e Vまで直ちに加速される ので空間電荷効果の影響を小さくすることができ、 D—レンジを大きくすること ができる。
実施の形態 1に係るストリーク管を多チャンネル同時時間分解計測に利用する 場合の D—レンジを、 図 1 0に示すような配置で評価した。 すなわち、 時間幅 3 0 p sのパルスレーザ一によって、 1 0 0〃m径のピンホールが 1 1個、 1 . 6 mmピッチで 1列に開口した黒色シート 1 0 0を照射する。 このピンホール列が 拡大率 1 : 1の光学リレーレンズ 1 0 1により、 ストリーク管の光電陰極 3に結 像される。 従って、 光電陰極 3上に結像されたスポット群の両端部間の距離は、 1 6 mmである。
光電陰極 3上のスポット群から放出された複数の光電子ビームは、 集束磁束発 生器により蛍光材料上に拡大率 1で、 再結像されるとともに、 掃引電極により掃 引され、 ストリーク像が得られる。 その掃引方向の輝度分布の半値幅を、 掃引速 度で割れば、 時間分解能が求められる。
図 1 1は、 実施の形態 1に係るストリーク管の時間分解能 Bを、 従来の静電集 束型のストリーク管の時間分解能 Aと比較して示す図である。 光パルスの輝度が 大きくなると時間分解能が劣化するが、 静電集束型に比べ、 実施の形態 1に係る ストリーク管では、 その劣化の生じる光量が大きく、 D—レンジが大幅に改善さ れている。
(実施の形態 2 )
次に、 本発明の実施の形態 2に係るストリーク装置について説明する。 実施の 形態 1では、 偏向電極 5には実質的に集束磁場が作用しないように第 1集束磁束 発生器 1 2 aを偏向電極 5の光電陰極 3側に配置したが、 磁場が偏向電極 5にも 及び、 偏向感度が下がったり、 偏向電極 5で光電子ビームの回転がある程度生じ る。 この磁場による影響を無視できる程度に小さくするため、 実施の形態 2では、 コィルを軟鉄などの磁性体によりシールドした。
図 1 2は、 ストリーク管側に開口部 1 2 0 aを有する鉄枠 1 2 0によってシ一 ルドされた集束磁束発生器 1 2 aを示す図である。 集束磁束は、 この開口部 1 2 0 aからストリーク管内に入り、 集束作用を行う。
図 1 3は、 このような磁気シールドを有する場合と、 有しない場合との管軸上 の磁束密度分布を示す図である。 図 1 3に示すように、 磁気シールドがある時の 方が、 ピーク強度からの減衰が早く、 偏向電極場への磁場の浸透を無視できるレ ベルにすることができる。
(実施の形態 3 )
次に、 本発明の実施の形態 3に係るストリーク装置について説明する。
図 1 4は、 本発明の実施の形態 3に係るストリーク装置の概略断面図である。 偏向板 5 a、 5 bに掃引電圧が印加される際、 偏向板 5 a、 5 bには強い電界が 生じ、 主集束磁束領域にも影響し、 時間分解能の低下等の問題が生ずる。 これを 防ぐため、 実施の形態 3では、 偏向電極 5の光電陰極 3側の近傍に、 管軸を中心 に開口する遮蔽板 1 4 1を設けた。 この遮蔽板 1 4 1は、 金属フランジ 1 4 2に 固定された円筒電極 1 4 0に保持される。 遮蔽板 1 4 1の電位は、 加速電極 4の 電位と等しくなるように設定される。
また、 円筒電極 1 4 0から蛍光材料 6における電位を加速電極 4の電位より低 くすれば、 偏向感度を上げることも可能である。 この金属フランジ 1 4 2は、 ガ ラス管 1 aとの融着が必要であるため、 主に強磁性体で形成される。 強磁性体は 集束磁場を乱し、 解像度の劣化、 歪みの原因となるため、 第 1集束磁束発生器 1 2 aと第 2集束磁束発生器 1 2 bとののほぼ中間に金属フランジ 1 4 2を配置さ せている。
(実施の形態 4 )
次に、 本発明の実施の形態 4に係るストリーク装置について説明する。
図 1 5は、 本発明の実施の形態 4に係るストリーク装置の光電陰極付近の一部 断面図である。 実施の形態 4では、 光電陰極 3と加速電極 4の間に、 例えば長さ 2 0 mm、 幅 l mmの開口を有するゲート電極 1 5 0を設けた。 光電陰極 3とゲ ート電極 1 5 0の間隔は 0 . 5 mmで、 ストリーク掃引を行う間は、 光電陰極 3 に対して + 2 0 0 Vの電圧を印加し、 掃引の前後には、 光電陰極 3に対して一 5 0 Vの電圧を印加する。 これにより、 掃引を行わない間は光電陰極 3に光が入射 しても不要な出力像が生ずることを回避することができ、 バックグラウンド上昇 を少なくさせることができる。
このように、 本発明によれば、 光電陰極において、 空間方向の有効範囲の端部 から放出された光電子ビームが、 プリフォーカスレンズにより曲げられて主集束 電子レンズの中心方向に進むこととなる。 主集束電子レンズの中央部は球面収差 が小さいため、 出力面上にボケの少ないスポットの像が得られる。 これにより、 時間方向、 空間方向の両方向に良好な空間分解能が得られる。
なお、 以上説明した各実施の形態では、 集束磁束発生器は、 プリフォーカスレ ンズを形成するものと、 主集束電子レンズを形成するものについて、 それぞれ 1 つずつ設けたが、 それぞれのレンズを形成するのに複数の集束磁束発生器を用い ても良い。 例えば、 プリフォーカスレンズを 2個の集束磁束発生器で形成すれば、 光電子ビームの軌道をより微妙に制御でき、 空間歪みや周辺における空間解像度 特性を向上させることができる。
また、 光電子ビームが掃引されかつ光電子像を可視光像に変換する出力面とし て、 蛍光材料を挙げたが、 その前に電子増倍作用を有するマイクロチャンネルブ レ一ト (M C P ) を設置しても良い。 また、 それらの代わりに電子打ち込み型撮 像素子を用いても良い。 また、 加速電極は、 メッシュ電極で説明したが、 開口を 有する板状電極でも良い。
以上の説明から明らかなように、 本発明によれば、 光電陰極において、 空間方 向の有効範囲の端部から放出された光電子ビームが、 プリフォーカスレンズによ り曲げられて主集束電子レンズの中心方向に進むこととなる。 主集束電子レンズ の中央部は球面収差が小さいため、 出力面上にボケの少ないスポッ卜の像が得ら れる。 これにより、 時間方向、 空間方向の両方向に良好な空間分解能を得ること ができる。 また、 電磁集束型で主集束電子レンズの位置を出力面側 (蛍光材料 側) に近くしているので、 空間電荷効果の影響を小さくさせることができ、 高い D—レンジ特性を得ることができる。
産業上の利用可能性
本発明の装置は、 ストリーク装置に利用することができる。

Claims

言青求の範囲
1 . 受けた光を光電子に変換する光電陰極を一端に備え、 前記光電子による 像を可視光像に変換する出力面を他端に備える真空容器と、 前記真空容器の管軸 に沿って前記光電陰極と対向するように配置され前記光電陰極から放出された光 電子を加速する加速電極と、 前記加速電極と前記出力面との間で前記管軸を挟む ように対向する一対の電極からなる偏向電極と、 前記光電陰極と前記偏向電極の 入射口との間に集束磁束を発生させて前記光電陰極から放出された光電子を集束 させる複数の集束磁束発生器とを備えるストリーク管と、
前記偏向電極に偏向電界を発生させる電圧を供給する偏向電圧発生回路と、 前記加速電極に電圧を供給する加速電圧発生回路と、
前記集束磁束発生器に電流を供給する駆動電源と、 を備えるストリーク装置に おいて、
前記複数の集束磁束発生器は、
前記光電陰極上に形成された電子像を前記出力面上に結像させる主集束電子レ ンズと、
前記光電陰極と前記主集束電子レンズとの間に設けられ、 前記光電陰極から放 出された光電子を前記主集束電子レンズの中心方向に集束させるプリフォーカス レンズと、 を形成することを特徴とするストリーク装置。
2 . 受けた光を光電子に変換する光電陰極を一端に備え、 前記光電子による 像を可視光像に変換する出力面を他端に備える真空容器と、 前記真空容器の管軸 に沿って前記光電陰極と対向するように配置され前記光電陰極から放出された光 電子を加速する加速電極と、 前記加速電極と前記出力面との間で前記管軸を挟む ように対向する一対の電極からなる偏向電極と、 永久磁石を含み前記光電陰極と 前記偏向電極の入射口との間に前記永久磁石による磁束を発生させて前記光電陰 極から放出された光電子を集束させる複数の集束磁束発生器と、 を備えるストリ ーク管と、 前記偏向電極に偏向電界を発生させる電圧を供給する偏向電圧発生回路と、 前記加速電極に電圧を供給する加速電圧発生回路と、 を備えるストリーク装置 において、
前記複数の集束磁束発生器は、
前記光電陰極上に形成された電子像を前記出力面上に結像させる主集束電子レ ンズと、
前記光電陰極と前記主集束電子レンズとの間に設けられ、 前記光電陰極から放 出された光電子を前記主集束電子レンズの中心方向に集束させるプリフォーカス レンズと、 を形成することを特徴とするストリーク装置。
3 . 前記主集束電子レンズの中心と前記出力面との距離は、 前記光電陰極と 前記主集束電子レンズの中心との距離よりも小さくなるように設定されているこ とを特徴とする請求の範囲第 1項に記載のストリーク装置。
4 . 前記主集束電子レンズの中心と前記出力面との距離は、 前記光電陰極と 前記主集束電子レンズの中心との距離よりも小さくなるように設定されているこ とを特徴とする請求の範囲第 2項に記載のストリーク装置。
5 . 前記各集束磁束発生器は、 前記真空容器の外側を周回するように設けら れ中心軸が前記管軸と一致するコイルと、 前記コイルをシールドする磁性体と、 前記磁性体の前記真空容器側に設けられた開口部と、 を備えることを特徴とする 請求の範囲第 1項に記載のストリーク装置。
6 . 前記各集束磁束発生器は、 前記真空容器の外側を周回するように設けら れ中心軸が前記管軸と一致するコイルと、 前記コイルをシールドする磁性体と、 前記磁性体の前記真空容器側に設けられた開口部と、 を備えることを特徴とする 請求の範囲第 2項に記載のストリーク装置。
7 . 前記ストリーク管は、 前記主集束電子レンズを形成する第 1の集束磁束 発生器と、 前記プリフォーカスレンズを形成する第 2の集束磁束発生器と、 を備 えることを特徴とする請求の範囲第 1項に記載のストリーク装置。
8 . 前記ストリーク管は、 前記主集束電子レンズを形成する第 1の集束磁束 発生器と、 前記プリフォーカスレンズを形成する第 2の集束磁束発生器と、 を備 えることを特徴とする請求の範囲第 2項に記載のストリーク装置。
9 . 前記ストリーク管は、 前記偏向電極の入射口近傍に設けられ、 前記偏向 電極から漏出する電界を遮蔽すると共に前記管軸を中心に開口する遮蔽板を備え、 前記遮蔽板の電位は前記加速電極の電位以下に設定されていることを特徴とする 請求の範囲第 1項に記載のストリーク装置。
1 0 . 前記ストリーク管は、 前記偏向電極の入射口近傍に設けられ、 前記偏 向電極から漏出する電界を遮蔽すると共に前記管軸を中心に開口する遮蔽板を備 え、 前記遮蔽板の電位は前記加速電極の電位以下に設定されていることを特徴と する請求の範囲第 2項に記載のストリーク装置。
1 1 . 前記ストリーク管は、 隣接する 2つの集束磁束発生器の中間に設けら れ前記遮蔽板を支持すると共に前記遮蔽板と電気的に接続されるフランジを更に 備えることを特徴とする請求の範囲第 9項に記載のストリーク装置。
1 2 . 前記ストリーク管は、 隣接する 2つの集束磁束発生器の中間に設けら れ前記遮蔽板を支持すると共に前記遮蔽板と電気的に接続されるフランジを更に 備えることを特徴とする請求の範囲第 1 0項に記載のストリーク装置。
1 3 . 前記ストリーク管は、 前記光電陰極と前記加速電極との間に管軸を中 心に開口するゲート電極を更に備えることを特徴とする請求の範囲第 1項に記載 のストリーク装置。
1 4 . 光電陰極と蛍光材料との間の電子を偏向する一対の偏向板を備えたス トリーク管において、 前記光電陰極と前記偏向板との間に磁場を形成し、 前記光 電陰極から出射された電子を複数段階に分けて前記偏向板間に集束させる電子レ ンズ群を備えることを特徴とするストリーク管。
PCT/JP2001/000091 2000-01-12 2001-01-11 Dispositif a image continue WO2001052300A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2001225491A AU2001225491A1 (en) 2000-01-12 2001-01-11 Streak device
DE60134719T DE60134719D1 (de) 2000-01-12 2001-01-11 Streak vorrichtung
EP01900668A EP1253618B1 (en) 2000-01-12 2001-01-11 Streak device
US10/169,861 US7196723B2 (en) 2000-01-12 2001-01-11 Streak apparatus with focus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000003781A JP4429447B2 (ja) 2000-01-12 2000-01-12 ストリーク装置
JP2000-003781 2000-01-12

Publications (1)

Publication Number Publication Date
WO2001052300A1 true WO2001052300A1 (fr) 2001-07-19

Family

ID=18532666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000091 WO2001052300A1 (fr) 2000-01-12 2001-01-11 Dispositif a image continue

Country Status (6)

Country Link
US (1) US7196723B2 (ja)
EP (1) EP1253618B1 (ja)
JP (1) JP4429447B2 (ja)
AU (1) AU2001225491A1 (ja)
DE (1) DE60134719D1 (ja)
WO (1) WO2001052300A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130278A (zh) * 2021-04-21 2021-07-16 中国工程物理研究院激光聚变研究中心 低噪音长阴极扫描变像管

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100423170C (zh) * 2005-04-22 2008-10-01 中国科学院物理研究所 一种电子束产生和控制装置
US8098364B2 (en) * 2007-10-19 2012-01-17 Taiwan Semiconductor Manufacturing Company, Ltd. Exposure apparatus and method for photolithography process
CN101852859B (zh) * 2010-06-21 2012-07-04 西安理工大学 一种基于磁镜的光子计数器及探测光子的方法
CN102024651A (zh) * 2010-10-13 2011-04-20 深圳大学 一种超短电子束团时间聚焦和时间准直方法及装置
JP2018129559A (ja) * 2015-06-19 2018-08-16 江藤 剛治 高速撮像装置
CN107703712B (zh) * 2017-11-13 2023-11-14 中国工程物理研究院激光聚变研究中心 一种硬x射线条纹相机及其探测硬x射线能段的方法
US10197441B1 (en) * 2018-01-30 2019-02-05 Applied Materials Israel Ltd. Light detector and a method for detecting light
US11302510B2 (en) 2018-05-29 2022-04-12 Kla-Tencor Corporation Space charge insensitive electron gun designs
US11268849B2 (en) 2019-04-22 2022-03-08 Applied Materials Israel Ltd. Sensing unit having photon to electron converter and a method
CN110534387B (zh) * 2019-09-06 2024-05-17 湖北大学 一种铁电陶瓷集束电子发射器
WO2022021140A1 (zh) * 2020-07-29 2022-02-03 深圳大学 可见光条纹管及电子光学成像系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636424A (ja) * 1986-06-27 1988-01-12 Hamamatsu Photonics Kk ストリ−ク装置
EP0424148A2 (en) * 1989-10-20 1991-04-24 Hamamatsu Photonics K.K. Image tube device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350919A (en) * 1977-09-19 1982-09-21 International Telephone And Telegraph Corporation Magnetically focused streak tube
GB2133611A (en) 1982-11-29 1984-07-25 Masao Kaneko Radiographic magnifying device
JPS59101134A (ja) * 1982-11-29 1984-06-11 浜松ホトニクス株式会社 放射線像拡大装置
JPS59191244A (ja) * 1983-04-15 1984-10-30 Hamamatsu Photonics Kk 像拡大装置
JPS59191243A (ja) * 1983-04-15 1984-10-30 Hamamatsu Photonics Kk 像拡大管
JPS59194334A (ja) * 1983-04-19 1984-11-05 Hamamatsu Photonics Kk 像拡大装置
FR2615654B1 (fr) * 1987-05-22 1989-07-28 Sodern Tube analyseur d'image a compensation de file
JPH02239554A (ja) * 1989-03-14 1990-09-21 Hamamatsu Photonics Kk ストリーク管
JPH0727762B2 (ja) * 1989-12-01 1995-03-29 浜松ホトニクス株式会社 ストリーク管
JPH0697737B2 (ja) * 1990-01-12 1994-11-30 浜松ホトニクス株式会社 階段波発生回路
JPH062980B2 (ja) 1990-07-13 1994-01-12 株式会社データアクション 繊維の変退色防止方法
US5278403A (en) * 1991-04-29 1994-01-11 Alfano Robert R Femtosecond streak camera
JP3305083B2 (ja) * 1993-12-22 2002-07-22 キヤノン株式会社 光レーダ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636424A (ja) * 1986-06-27 1988-01-12 Hamamatsu Photonics Kk ストリ−ク装置
EP0424148A2 (en) * 1989-10-20 1991-04-24 Hamamatsu Photonics K.K. Image tube device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1253618A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130278A (zh) * 2021-04-21 2021-07-16 中国工程物理研究院激光聚变研究中心 低噪音长阴极扫描变像管

Also Published As

Publication number Publication date
US7196723B2 (en) 2007-03-27
JP2001196018A (ja) 2001-07-19
US20030001496A1 (en) 2003-01-02
EP1253618B1 (en) 2008-07-09
DE60134719D1 (de) 2008-08-21
EP1253618A1 (en) 2002-10-30
JP4429447B2 (ja) 2010-03-10
EP1253618A4 (en) 2003-04-23
AU2001225491A1 (en) 2001-07-24

Similar Documents

Publication Publication Date Title
JP4429447B2 (ja) ストリーク装置
US4350919A (en) Magnetically focused streak tube
JP3324282B2 (ja) カラー受像管装置
EP0430718B1 (en) A streak camera
JP2002324510A (ja) 走査電子顕微鏡
JP3432091B2 (ja) 走査電子顕微鏡
JP5824328B2 (ja) ストリーク管及びそれを含むストリーク装置
JP2572388B2 (ja) ストリ−ク管
US4543508A (en) Cathode ray tube with an electron lens for deflection amplification
US3579010A (en) Elongated aperture electron gun structure for flat cathode-ray tube
US3474275A (en) Image tube having a gating and focusing electrode
JP6401600B2 (ja) ストリーク管及びそれを含むストリーク装置
US4752715A (en) Television camera tube
RU2100867C1 (ru) Импульсный электронно-оптический преобразователь для временного анализа изображений
JPH03295141A (ja) 検出器
KR0173720B1 (ko) 컬러음극선관
US6750601B2 (en) Electron gun for color cathode ray tube
US3562516A (en) Image pickup tube with screen and field grids
US3453484A (en) Storage device
US3437867A (en) Television image pickup tube device
JPS6119034A (ja) ストリ−ク装置
SU1272376A1 (ru) Врем анализирующий электронно-оптический преобразователь изображени
JPH06168684A (ja) 電離放射線コンバータ
JPS61101940A (ja) X線イメ−ジ管
JPH09231927A (ja) X線イメージ管

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001900668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10169861

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001900668

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001900668

Country of ref document: EP