WO2001051647A2 - Verfahren zur erhöhung des gehalts an fettsäuren in pflanzen und mikroorganismen - Google Patents

Verfahren zur erhöhung des gehalts an fettsäuren in pflanzen und mikroorganismen Download PDF

Info

Publication number
WO2001051647A2
WO2001051647A2 PCT/EP2001/000289 EP0100289W WO0151647A2 WO 2001051647 A2 WO2001051647 A2 WO 2001051647A2 EP 0100289 W EP0100289 W EP 0100289W WO 0151647 A2 WO0151647 A2 WO 0151647A2
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
nucleotide sequence
dna
plants
kas
Prior art date
Application number
PCT/EP2001/000289
Other languages
English (en)
French (fr)
Other versions
WO2001051647A3 (de
Inventor
Friedrich Spener
Amine Abbadi
Monika Brummel
Original Assignee
GVS Gesellschaft für Erwerb und Verwertung von Schutzrechten mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GVS Gesellschaft für Erwerb und Verwertung von Schutzrechten mbH filed Critical GVS Gesellschaft für Erwerb und Verwertung von Schutzrechten mbH
Priority to CA002399626A priority Critical patent/CA2399626A1/en
Priority to AU37288/01A priority patent/AU784223B2/en
Priority to EP01909608A priority patent/EP1246928A2/de
Publication of WO2001051647A2 publication Critical patent/WO2001051647A2/de
Publication of WO2001051647A3 publication Critical patent/WO2001051647A3/de
Priority to US10/194,919 priority patent/US20030145350A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition

Definitions

  • the invention relates to DNA sequences which code for a protein with the enzymatic activity of a ⁇ -ketoacyl-ACP synthase (KAS) from the enzyme complex of fatty acid synthase (FAS).
  • KAS ⁇ -ketoacyl-ACP synthase
  • FOS fatty acid synthase
  • the invention further relates to transgenic plants and microorganisms which contain nucleic acid sequences which code for proteins with the activity of a ⁇ -ketoacyl-ACP ( ⁇ cy / camer /? Red / w) synthase from the enzyme complex of the fatty acid synthase.
  • the invention further relates to a method for influencing the fatty acid pattern and / or increasing the fatty acid content, in particular the content of short- and medium-chain fatty acids, in plants, in particular in seed tissues and other triacylglycerol-synthesizing and / or storing tissues, and in microorganisms, in particular in bacteria and algae, comprising the expression of proteins with the activity of a KAS from the enzyme complex of fatty acid synthase in transgenic plants or microorganisms.
  • the fatty acid and triacylglycerol biosynthesis can be regarded as separate biosynthetic pathways due to the compartmentalization, but with regard to the end product as a biosynthetic pathway.
  • the de novo biosynthesis of fatty acids takes place in the plastids and is essentially catalyzed by three enzymes or enzyme systems, namely acetyl-CoA carboxylase, fatty acid synthase and acyl-ACP thioesterases.
  • the end products of this reaction sequence in most organisms are palmitate, stearate and, after desaturation, oleate.
  • the fatty acid synthase consists of an enzyme complex of dissociable single enzymes, comprising malonyl-CoA: ACP transferase; ⁇ -ketoacyl-ACP synthases, which consist of chain-length-specific ⁇ -acyl-ACP: malonyl-ACP-condensing enzymes (KAS I, II, IV) and the acetyl-CoA: malonyl-ACP-condensing enzyme (KAS III); ⁇ -ketoacyl-ACP reductase; ⁇ -Hydroxyacyl-ACP dehydratase and enoyl-ACP reductase.
  • malonyl-CoA ACP transferase
  • ⁇ -ketoacyl-ACP synthases which consist of chain-length-specific ⁇ -acyl-ACP: malonyl-ACP-condensing enzymes (KAS I, II, IV) and the acetyl-CoA: malon
  • the start of fatty acid synthesis in oilseed seeds begins with the KAS III-catalyzed reaction of acetyl-CoA and malonyl-ACP, the formation of the latter being catalyzed by the malonyl-CoA: ACP transferase.
  • the keto group of the ß-ketobutyryl-ACP formed is reduced to a methylene group, first reducing to D-ß-hydroxybutyryl-ACP and then from the D-ß-hydroxybutyryl-ACP resulting in the elimination of water crotonyl-ACP.
  • crotonyl-ACP is reduced to butyryl-ACP, completing the first extension cycle.
  • butyryl-ACP condenses with malonyl-ACP to give C6-ß-ketoacyl-ACP.
  • Subsequent reduction, elimination of water and a second reduction convert the intermediate C6- ⁇ -ketoacyl-ACP to C6-acyl-ACP, which is provided for a third round of extension.
  • extension cycles continue up to palmitoyl and stearoyl ACP.
  • These products are hydrolyzed to palmitate, stearate and ACP, but stearoyl-ACP is mostly desaturated to oleoyl-ACP and then also hydrolyzed.
  • acyl-ACP thioesterases which are specific for short and medium chain acyl derivatives.
  • fatty acids includes saturated or unsaturated, short, medium or long-chain, straight-chain or branched, even-numbered or odd-numbered fatty acids.
  • Short-chain fatty acids are generally referred to as fatty acids with up to 6 carbon atoms. These include butyric acid, valeric acid and caprylic acid.
  • medium-chain fatty acids includes C 8 to C 4 fatty acids, ie primarily caproic acid, lauric acid and myristic acid.
  • long-chain fatty acids include those with at least 16 carbon atoms, in particular palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid.
  • C -C 8 fatty acids are often referred to as short-chain and C 6 -C ⁇ 0 fatty acids as medium-chain. It is therefore not a matter of rigid definitions, but rather of a classification with smooth transitions.
  • Fatty acids which are found in all vegetable and animal fats and especially in vegetable oils and fish oils as well as in microorganisms, can be used in many ways. For example, a lack of essential fatty acids, i.e. fatty acids that cannot be synthesized in the organism and therefore have to be supplied with food, can lead to skin changes and growth disorders, which is why fatty acids, among other things. used for eczema, psoriasis, burns and the like, as well as in cosmetics. Fatty acids and oils can also be found in washing and cleaning agents, as detergents, as color additives, lubricants and lubricants, processing aids, emulsification aids, hydraulic oils and as carrier oils in pharmaceutical and cosmetic products
  • Natural fats and oils of animal (e.g. tallow) and vegetable (e.g. coconut, palm kernel or rapeseed) oil are used as renewable raw materials in the chemical-technical sector.
  • the areas of application of vegetable oils have been significantly expanded in the past twenty years.
  • environmentally friendly lubricants and hydraulic oils were developed.
  • Fatty acids and fats as foodstuffs or food additives, for example in parenteral nutrition, in baking aids, in baby, senior and sports food, in chocolate masses, cocoa powder and as shortening fats, for the production of soaps, ointments, candles, paints and textile paints, varnishes , Heating and lighting equipment.
  • Plant breeding goals are in particular to increase the content of fatty acids in seed oils.
  • industrial rapeseed and alternative production areas for agriculture there is a breeding goal in the production of rapeseed oil with fatty acids of medium chain length, since this is particularly important in the
  • fatty acids which can be used industrially for example as raw materials for plasticizers, lubricants, pesticides, surfactants, cosmetics etc. and / or are valuable in terms of food technology.
  • One way to provide fatty acids is to extract the fatty acids from plants or microorganisms that have particularly high levels of the desired fatty acids.
  • the increase in the content of, for example, medium-chain fatty acids in plants in the traditional way, that is to say by breeding plants which produce these fatty acids to an increased extent, has hitherto been achieved only to a limited extent.
  • One is therefore particularly interested in modern, biotechnological approaches in plant breeding. For example, from German patent application No.
  • nucleic acids which code for proteins with the activity of the ⁇ -ketoacyl-ACP synthases I, II and IV. Plants that contain these nucleic acids have an overall increased fatty acid content. It is therefore an object of the invention to provide transgenic plants and microorganisms which produce fatty acids which, in their wild types, they can produce to a lesser extent or not at all. In particular, it is an object of the invention to provide plants and microorganisms which have an increased content of short- and medium-chain fatty acids compared to wild type plants.
  • a further object is to provide methods for increasing the content of fatty acids, in particular short and medium-chain fatty acids, in plants, here in particular in seed tissues and other triacylglycerol-synthesizing and / or storing tissues, and in microorganisms, in particular in bacteria and algae ,
  • KAS III ß-ketoacyl-ACP synthase III
  • the product of this first extension cycle is the substrate for the condensation with malonyl-ACP in the next cycles, which is catalyzed by several acyl-ACP-specific condensation enzymes.
  • a DNA sequence which codes for a protein with the enzymatic activity of a KAS III from Brassica napus.
  • the DNA sequence which codes for a protein with the enzymatic activity of a KAS III from Brassica napus is selected from the group consisting of:
  • DNA sequences which comprise a nucleotide sequence which the in SEQ ID NO. 2 encode specified amino acid sequence or fragments thereof b) DNA sequences which the SEQ ID No. 1 nucleotide sequence specified or parts thereof, c) DNA sequences which comprise a nucleotide sequence which hybridizes with a complementary strand of the nucleotide sequence of a) or b) or parts of this nucleotide sequence, d) DNA sequences which comprise a nucleotide sequence is degenerate to a nucleotide sequence of c), or comprise parts of this nucleotide sequence, e) DNA sequences which are a derivative, analog or fragment of a nucleotide sequence of a), b), c) or d).
  • a DNA sequence which codes for a protein with the enzymatic activity of a ⁇ -ketoacyl-ACP synthase III from Cuphea lanceolata.
  • the last-mentioned DNA sequence according to the invention is particularly preferably selected from the group consisting of: a) DNA sequences which comprise a nucleotide sequence which the in SEQ ID NO. 4 encode the specified amino acid sequence or fragments thereof, b) DNA sequences which the SEQ ID No.
  • DNA sequences which comprise a nucleotide sequence which hybridizes with a complementary strand of the nucleotide sequence of a) or b) or parts of this nucleotide sequence c) DNA sequences which comprise a nucleotide sequence which hybridizes with a complementary strand of the nucleotide sequence of a) or b) or parts of this nucleotide sequence, d) DNA sequences which comprise a nucleotide sequence is degenerate to a nucleotide sequence of c), or comprise parts of this nucleotide sequence, e) DNA sequences which are a derivative, analog or fragment of a nucleotide sequence of a), b), c) or d).
  • hybridization means hybridization under conventional hybridization conditions, preferably under stringent conditions, as described, for example, in Sambrook et al. (1989), Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  • Plant enzymes with the activity of a ⁇ -ketoacyl-ACP synthase III have a highly effective regulatory function for the control of
  • a DNA sequence is thus provided which is suitable for a protein with the enzymatic activity of a ⁇ - Ketoacyl-ACP synthase III encoded, the protein not being regulated by acyl-ACPs, in particular not being inhibitable.
  • DNA sequences are provided which are modified compared to the wild-type sequence of KAS III by at least one mutation in the region coding for the amino acid sequence motif GNTSAAS (shown in bold in Figure 1).
  • a DNA sequence in which the mutation leads to an exchange of the amino acid N to D and / or the amino acid A (first alanine of the motif) to S within the amino acid motif GNTSAAS from KAS III is particularly preferred.
  • a DNA sequence which codes for a protein with the enzymatic activity of a KAS III from Brassica napus, Cuphea lanceolata or Cuphea wrightii, wherein the protein cannot be regulated, in particular cannot be inhibited, by acyl-ACPs ,
  • this DNA sequence according to the invention is selected from the group consisting of:
  • DNA sequences which comprise a nucleotide sequence which the in SEQ ID NO. 6 encode the given amino acid sequence or fragments thereof b) DNA sequences which contain the sequence shown in SEQ ID No. 5 specified nucleotide sequence or parts thereof, c) DNA sequences which comprise a nucleotide sequence which hybridizes with a complementary strand of the nucleotide sequence of a) or b) or parts of this nucleotide sequence, d) DNA sequences which comprise a nucleotide sequence is degenerate to a nucleotide sequence of c), or comprise parts of this nucleotide sequence, e) DNA sequences which are a derivative, analog or fragment of a nucleotide sequence of a), b), c) or d).
  • a recombinant nucleic acid molecule comprising:
  • Plant cells can serve.
  • recombinant nucleic acid molecules are provided in which the DNA sequence is in the antisense orientation.
  • the nucleic acid sequence is preferably present in the recombinant nucleic acid molecule according to the invention with a promoter active in plants, particularly preferably with a promoter active in triacylglycerols which synthesizes or stores tissue.
  • the triacyglycerol-synthesizing and / or storing tissue is primarily seed tissue. However, other vegetable tissues, such as the pulp in oil plants, are also possible here.
  • the nucleic acid sequence in the recombinant nucleic acid molecule according to the invention is additionally present in combination with enhancer sequences, sequences coding for signal peptides and / or other regulatory sequences.
  • the present invention further provides vectors which comprise the DNA sequence according to the invention described above or the recombinant nucleic acid molecule according to the invention described above.
  • a recombinant protein of the enzymatic activity of a KAS III, derived from Cuphea lanceolata in particular a protein with the in SEQ ID NO. 4 amino acid sequence provided.
  • Another object of the present invention relates to a recombinant protein with the enzymatic activity of a KAS III, wherein the protein cannot be regulated, in particular cannot be inhibited, by acyl ACPs.
  • the protein according to the invention described above comes from Cuphea lanceolata and particularly preferably has the one in SEQ ID NO. 6 indicated amino acid sequence.
  • the invention further relates to a method for increasing the content of short-chain and / or medium-chain fatty acids in plants, comprising the steps:
  • the invention further relates to methods for increasing the content of short-chain and / or medium-chain fatty acids in microorganisms, in particular bacteria and algae, comprising the steps:
  • a nucleic acid sequence which codes for a protein with the enzymatic activity of a ⁇ -ketoacyl-ACP synthase III the ⁇ -ketoacyl-ACP synthase III not being regulatable, in particular not inhibiting, by acyl-ACPs, and which at least comprises the following components, which are lined up in the 5 '-3' orientation: a promoter active in the respective microorganism, at least one nucleic acid sequence which is necessary for a protein with the enzymatic
  • the ⁇ -ketoacyl-ACP- Synthase III cannot be regulated by acyl-ACPs, in particular cannot be inhibited, or encodes an active fragment thereof and, if appropriate, a termination signal for the termination of the transcription and the addition of a poly-A tail to the corresponding transcript and, if appropriate, DNA sequences derived therefrom; and b) transfer of the nucleic acid sequences from a) to the respective microorganism.
  • the method according to the invention for increasing the content of short-chain and / or medium-chain fatty acids in plants or microorganisms after step a) given above comprises the following steps b) - c) for microorganisms or b) -d) for plants: b) destruction of the acyl-ACP binding site of the ⁇ -ketoacyl-ACP synthase III by in v vo mutation, c) transfer of the nucleic acid sequences from a) or b), and d) insofar as the nucleic acid sequences in step c) onto plant cells were transferred, if necessary regeneration of completely transformed plants and, if desired, propagation of the plants.
  • the present invention furthermore relates to transgenic plants and microorganisms which contain a DNA sequence according to the invention described above or a recombinant nucleic acid molecule according to the invention described above.
  • the invention relates to transgenic plants, plant cells and
  • Microorganisms which contain a nucleic acid sequence which codes for a protein with the activity of a .beta.-ketoacyl-ACP synthase III, the .beta.-ketoacyl-ACP synthase III not being regulable, in particular not inhibiting, by acyl-ACPs.
  • Studies of the influence of acyl-ACPs of different chain lengths on the activity of KAS III using the example of Cuphea showed that the KAS III enzymes of Cuphea are involved in regulating the biosynthesis of medium-chain fatty acids via a strong feedback inhibition, which is caused by the medium-chain acyl-ACP - End products are exercised, which are produced in the pasties of the corresponding seeds.
  • Our kinetic studies with recombinant KAS III from Cuphea wrightii further showed that there are different binding sites for the inhibitory C 2 -ACP and the substrates acetyl-CoA and malonyl-ACP.
  • the plants and microorganisms according to the invention thus contain a nucleic acid sequence which codes for a KAS III mutant in which the regulatory function is deactivated by one or more mutations at the binding site of the acyl-ACPs, but at the same time the catalytic activity in the Condensation reaction of acetyl-CoA and malonyl-ACP is maintained.
  • KAS III mutants from Cuphea there is thus an uninhibited synthesis of acyl-ACPs, which in turn is the enzyme KAS IV, which is responsible for the synthesis of medium-chain fatty acids, and the enzyme KAS II, which is responsible for the synthesis of long-chain fatty acids is inhibit.
  • Cuphea is shifted to short-chain fatty acids, in particular to C 4 -C 8 fatty acids, while in rapeseed the synthesis to medium-chain fatty acids, in particular to C6-C ⁇ 0 fatty acids, is shifted.
  • the plants and microorganisms according to the invention contain nucleic acid sequences which are opposite to the
  • Wild-type sequence of KAS III from C. wrightii (Slabaugh et al. 1995, Plant Physiol. 108, 343-444) are changed by at least one mutation in the region coding for the amino acid sequence motif G 357 NTSAAS 63 .
  • the amino acid sequence motif G 357 NTSAAS 363 from C. wrightii is a motif conserved in KAS III enzymes.
  • This motif GNTSAAS lies in the KAS III from C. wrightii between amino acids 357 and 363, calculated from the beginning of the presequence which codes for a pre-KAS III including a signal peptide responsible for the transport into the plastids.
  • the amino acid motif is located between amino acid 290 and amino acid 296.
  • the exact position of the amino acid motif GNTSAAS according to the invention in KAS III enzymes from various organisms can be seen in Figure 1.
  • the motif GNTSAAS is also spoken of in the following, without specifying certain amino acid positions ( Figure 1 and supplementary , sequence alignments that can be easily created by a person skilled in the art).
  • the KAS HI sequences for use in the method according to the invention for increasing the content of short- and / or medium-chain fatty acids are expressed in plant cells under the control of seed-specific regulatory elements, in particular promoters.
  • the above-mentioned DNA sequences are present in a preferred embodiment in combination with promoters which are particularly active in triacyglycerol-synthesizing or storing tissue such as, for example, embryonic tissue or pulp in oil plants.
  • promoters are the USP promoter (Bäumlein et al. 1991, Mol. Gen. Genet. 225: 459-467), the Hordein promoter (Brandt et al. 1985, Carlsberg Res. Commun. 50: 333-345 ), and the napin promoter, the ACP promoter and the FatB3 and FatB4 promoters, which are well known to the person skilled in the field of plant molecular biology.
  • nucleic acid sequences for use in the method according to the invention can be supplemented by enhancer sequences or other regulatory sequences.
  • the regulatory sequences also contain, for example, signal sequences which ensure that the gene product is transported to a specific compartment. Signal sequences that direct the gene product to the site of plant fatty acid synthesis, namely the plastids, should be mentioned here in particular. If use is made of the chloroplast transformation, the nucleic acid sequence coding for KAS III is incorporated directly into the plastid genome, so that corresponding signal sequences or peptides can generally be dispensed with here.
  • the present invention also relates to nucleic acid molecules which contain the abovementioned nucleic acid sequences or parts thereof, ie also vectors, in particular plasmids, cosmids, viruses, bacteriophages and other vectors which are conventional in genetic engineering and which are suitable for the transfer of the abovementioned mentioned nucleic acid molecules can be used on plants or plant cells.
  • vectors in particular plasmids, cosmids, viruses, bacteriophages and other vectors which are conventional in genetic engineering and which are suitable for the transfer of the abovementioned mentioned nucleic acid molecules can be used on plants or plant cells.
  • the plants which are transformed according to the invention and in which a modified amount of fatty acids are synthesized on the basis thereof can in principle be any plant. It is preferably a monocot or dicot crop, and particularly preferably an oil plant. Examples include rapeseed, sunflower, soybean, peanut, coconut, rumpet, cotton and oil palms. Other plants that can be used for the production of fatty acids and fat or are useful as foods with an increased fatty acid content are flax, poppy, olive, cocoa, corn, almond, sesame, mustard and castor oil.
  • the invention also relates to propagation material from plants according to the invention, for example seeds, fruits, cuttings, tubers, rhizomes, etc., and parts of these plants, such as protoplasts, plant cells and calli.
  • the microorganisms which are transformed according to the invention and in which a modified amount of fatty acids are synthesized can be any microorganism. It is preferably bacteria or algae.
  • the transgenic plants and microorganisms contain a nucleic acid sequence which codes for a protein with the activity of a ⁇ -ketoacyl-ACP synthase III from Brassica napus, Cuphea lanceolata or Cuphea wrightii, the ⁇ -ketoacyl-ACP synthase III cannot be regulated by acyl-ACPs, in particular cannot be inhibited.
  • the KAS III nucleic acid molecules which can be used in the context of the invention also include fragments, derivatives and allelic variants of those described above DNA sequences coding for a KAS III or a biologically, ie enzymatically active fragment thereof. Fragments are understood to mean parts of the nucleic acid molecules that are long enough to encode a polypeptide or protein with the enzymatic activity of a KAS III or a comparable enzymatic activity.
  • the term derivative means that the sequences of these molecules differ from the sequences of the abovementioned nucleic acid molecules at one or more positions and have a high degree of homology to these sequences.
  • Homology means a sequence identity of at least 80%, 90% and 92%, in particular an identity of at least 94% and 96%, preferably over 98% and particularly preferably over 99%, or that the homologous sequence under stringent conditions, which the person skilled in the art are hybridized with the above-mentioned KAS HI sequences.
  • the deviation from the nucleic acid molecules described above may have resulted from deletion, addition, substitution, insertion or recombination.
  • Homology also means that there is functional and / or structural equivalence between the nucleic acid molecules in question or the proteins encoded by them.
  • nucleic acid molecules which are homologous to the above-mentioned molecules and which are derivatives of these molecules are generally
  • Variations on these molecules that represent modifications that perform the same biological function. This can involve both naturally occurring variations, for example sequences from other organisms, or mutations, it being possible for these modifications to have occurred naturally or to be introduced by targeted mutagenesis. Furthermore, the variations can be synthetically produced sequences.
  • the allelic variants can be both naturally occurring and synthetically produced variants or those produced by recombinant DNA techniques.
  • the KAS III proteins encoded by the different variants of the nucleic acid sequences that can be used in the context of the invention usually have certain common characteristics. This can include, for example, enzyme activity, molecular weight, immunological reactivity, conformation, etc.
  • plants or plant cells can be modified using conventional genetic engineering transformation methods in such a way that the new nucleic acid molecules are integrated into the plant genome, i.e. that stable transformants are generated.
  • a nucleic acid molecule mentioned above, the presence and optionally expression of which in the plant cell causes an altered fatty acid content can be contained in the plant cell or the plant as a self-replicating system.
  • a large number of cloning vectors are available to prepare the introduction of foreign genes into higher plants, their replication signals for E. coli and a marker gene for the selection of transformed bacterial cells.
  • examples of such vectors are pBR322, pUC series, M13mp series, pACYC184, pBlueSfi etc.
  • the desired sequence can be introduced into the vector in a suitable restriction site.
  • the plasmid obtained is then used for the transformation of E.co// cells.
  • Transformed E.co/7 cells are grown in an appropriate medium and then harvested and lysed, and the plasmid is recovered.
  • analysis methods for characterizing the plasmid DNA obtained are Restriction analyzes, gel electrophoresis and other biochemical-molecular biological methods are used. After each manipulation, the plasmid DNA can be cleaved and DNA fragments obtained can be linked to other DNA sequences.
  • a large number of known techniques are available for introducing DNA into a plant host cell, and the person skilled in the art can determine the appropriate method in each case without difficulty. These techniques include transforming plant cells with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as
  • Transformation agents the fusion of protoplasts, the direct gene transfer of isolated DNA into protoplasts, the electroporation of DNA, the introduction of DNA using the biolistic method and other possibilities.
  • plasmids When injecting and electroporation of DNA into plant cells, there are no special requirements per se for the plasmids used. The same applies to direct gene transfer. Simple plasmids, e.g. pUC and pBlueScript derivatives can be used. However, if whole plants are to be regenerated from such transformed cells, the presence of a selectable marker gene is necessary.
  • the gene selection markers are known to the person skilled in the art and it is not a problem for him to select a suitable marker.
  • the Ti or Ri plasmid is used for the transformation of the plant cell, at least the right boundary, but often the right and left boundary of the T-DNA contained in the Ti or Ri plasmid, must be connected as a flank region to the genes to be introduced become.
  • the DNA to be introduced must be cloned into special plasmids, either in an intermediate or in a binary vector.
  • the intermediate vectors can be integrated into the Ti or Ri plasmid of the agrobacteria on the basis of sequences which are homologous to sequences in the T-DNA by homologous recombination.
  • Intermediate vectors cannot replicate in agrobacteria. Using a helper plasmid, the intermediate vector can be transferred to Agrobacterium tumefaciens (conjugation).
  • Binary vectors can replicate in E. coli as well as in Agrobacteria. They contain a selection marker gene and a linker or polylinker, which are framed by the right and left T-DNA border region. They can be transformed directly into the agrobacteria.
  • the agrobacterium serving as the host cell is said to contain a plasmid which carries a v / r region. The v / r region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be present.
  • the agrobacterium transformed in this way is used to transform plant cells.
  • T-DNA for the transformation of plant cells has been intensively investigated and has been sufficiently described in well-known overview articles and manuals for plant transformation.
  • plant explants can expediently be cultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes. From the infected plant material (e.g. leaf pieces, stem segments, roots, but also protoplasts or suspension cultivated
  • Plant cells can then be regenerated again in a suitable medium, which may contain antibiotics or biocides for the selection of transformed cells.
  • the plants are regenerated using conventional regeneration methods using known nutrient media.
  • the plants thus obtained can then be examined for the presence of the introduced DNA become.
  • Other ways of introducing foreign DNA using the biolistic method or by protoplast transformation are also known and have been described many times.
  • the introduced DNA is integrated in the genome of the plant cell, it is generally stable there and is also retained in the progeny of the originally transformed cell. It usually contains a selection marker that gives the transformed plant cells resistance to a biocide or an antibiotic such as kanamycin, G418, bleomycin, hygromycin, methotrexate, glyphosate, streptomycin, sulfonylurea, gentamycin or phosphinotricin and others. taught.
  • the individually selected marker should therefore allow the selection of transformed cells from cells that lack the inserted DNA.
  • Alternative markers are also suitable for this, such as nutritional markers, screening
  • markers such as GFP, green fluorescent protein.
  • selection markers can also be completely dispensed with, which, however, involves a rather high screening effort.
  • the transformed cells grow within the plant in the usual way.
  • the resulting plants can be grown normally and crossed with plants that have the same transformed genetic makeup or other genetic makeup.
  • the resulting hybrid individuals have the corresponding phenotic properties. Seeds can be obtained from the plant cells.
  • transgenic lines which are homozygous for the new nucleic acid molecules can be determined by customary methods, and their phenotypic behavior with regard to an altered fatty acid content can be examined and compared with that of hemizygotic lines.
  • the detection of the expression of the non-regulable proteins with KAS III activity can be carried out with the aid of conventional molecular biological and biochemical methods. These techniques are known to the person skilled in the art and he is easily able to choose a suitable detection method, for example a Northern blot analysis for the detection of KAS-specific RNA or for determining the level of accumulation of KAS-specific RNA, a Southern blot analysis. Analysis for the identification of DNA sequences coding for KAS III or a Western blot analysis for the detection of the KAS III protein coded by the DNA sequences according to the invention.
  • the detection of the enzymatic activity of KAS III can be determined using the fatty acid pattern or an enzyme assay, as described, for example, in the examples below.
  • Example 1 Targeted mutagenesis of the Cuphea wrightii KAS IIIa cDNA
  • the mutagenized codons are underlined.
  • the target area intended for the introduction of mutations (base pairs 734-1014) of the cDNA of the presumably mature cwKAS purple (starting with the codon coding for amino acid G to the stop codon) was initially in the form of a mutation cassette in the pGEM-T Easy vector (Promega , Heidelberg) cloned. This construct is referred to below as K3MK-pGEMT.
  • the mutation cassette was constructed by means of a PCR reaction using the primers Fse5 and Xho3, whereby a 280 base pair long fragment was amplified.
  • the conditions for the PCR were as follows: initial denaturation at 95 ° C for 30 seconds, followed by 25 cycles of annealing at 55 ° C for 30 seconds, strand extension at 72 ° C for 1 minute and denaturation at 95 ° C for 30 seconds.
  • the last DNA synthesis step was carried out at 72 ° C for 5 minutes.
  • the amplification of the DNA fragment was carried out with 50 pmol primer, 1.3 U proof-reading Pfu polymerase, 2 ng pET15b-cwKASIIIa plasmid as a template and 200 ⁇ M dNTPs in a total volume of 50 ⁇ l.
  • the resulting DNA fragment was inserted into the pGEM-T Easy Sequencing vector (Promega, Heidelberg, Germany) according to the manufacturer's protocol. The entire sequence of the Muationskassette was confirmed by DNA sequencing.
  • the reaction mixture contained a flanking primer (Fse5 or Xho3) and the corresponding mutation primer.
  • the conditions for the PCR were as follows: denaturation at 94 ° C for 2 minutes, followed by 30 cycles at 94 ° C for 30 seconds, 55 ° C for one minute and 72 ° C for one minute and a final extension step at 72 ° C for 10 minutes.
  • 2.0 ng of the gel-purified overlapping DNA fragments were used in a second reaction with 50 pmol each of the flanking primers Fse5 and Xho3, 200 ⁇ M dNTPs and 2.5 U Pfu polymerase in a total reaction volume of 50 ⁇ l.
  • the PCR conditions were as follows: denaturation at 94 ° C for 2 minutes followed by 30 cycles of 94 ° C for 30 seconds, 50 ° C for one minute and 72 ° C for one minute and a final extension step at 72 ° C for 10 minutes.
  • the sequence of the mutant constructs was confirmed by DNA sequencing after ligation into the pGEM-T easy sequencing vector.
  • the cDNAs of the KAS IIIa mutants were subcloned into the Fsel and Xhol restriction sites of the pETl 5b-cwKAS Illa plasmid.
  • the deletion mutant of KAS III was obtained by complete deletion of the amino acid motif Gly 357 Asn 358 Thr 359 Ser 360 of the wild-type KAS purple.
  • the amplification of the overlapping DNA fragments was carried out in two separate reactions with 2 ng K3MK-pGEMT plasmid as template, 2.5 U proof-reading Pfu polymerase, 200 ⁇ M dNTPs and 50 pmol of each primer in a total volume of 50 ⁇ l.
  • the primer pairs Fse5 / Del3 and Xho3 / Del5 were used.
  • the conditions for the PCR were as follows: denaturation at 94 ° C for 2 minutes, followed by 30 cycles at 94 ° C for 30 seconds, 55 ° C for one minute and 72 ° C for one minute and a final extension step at 72 ° C for 10 minutes.
  • the complete mutant DNA fragment was obtained in a second reaction with 2.0 ng of the gel-purified overlapping DNA fragments, each with 50 pmol of the primers Fse5 and Xho3, 200 ⁇ M dNTPs and 2.5 U Pfu polymerase in a total reaction volume of 50 ⁇ l generated.
  • the resulting DNA fragment was sequenced and subcloned in the same manner as described above for the other mutant constructs.
  • Example 2 Expression and purification of recombinant wild-type KAS purple and KAS purple mutants
  • the wild-type KAS purple and KAS IIIa mutants provided with an N-terminal His 6 tag were expressed in the E. co / z strain BL21 (DE3) pLysS (Novagen, Madison, USA) and purified by nickel affinity chromatography. The purity of the KAS IIIs generated was assessed by SDS-PAGE. The KAS III concentration was determined by the method of Bradford (MM Bradford (1976), Anal. Biochem. 72, pp. 248-254).
  • the activity of KAS purple was by incorporation of radioactive acetate from [l- 14 C] acetyl-CoA in acetoacetyl-ACP examined (Bridge et al. (1996), Planta 198, pp 271 -278).
  • the reaction mixture (50 ul) contained 100 mM sodium phosphate, pH 7.6, 10 .mu.M [1- 14 C] acetyl-CoA, 20 uM malonyl-ACP and 2 ng of recombinant KAS purple or the respective KAS IIIa mutant.
  • the reaction was started by the addition of the enzyme and carried out at 30 ° C. for 5 minutes.
  • Example 4 Synthesis of the acyl-ACPs in plant extracts which were supplemented with non-regulable KAS IIIa mutant Asn 358 Asp
  • a FAS preparation from C. lanceolata seeds was obtained from cell-free extracts by ammonium sulfate precipitation (0 to 65% saturation) (Brück et al., Supra).
  • the FAS preparation from rapeseed was carried out according to MacKintosh et al. (1989, BBA 1002, 114-124). All preparations were stored at -70 ° C. Before use, an aliquot of the thawed batch was dissolved in 1 ml of 100 mM sodium phosphate (pH 7.6) and centrifuged (10000 x g, 5 minutes, 4 ° C) to eliminate any insoluble material.
  • Reaction batch and the affinity-purified KAS IIIa mutant Asn 358 Asp in a final concentration of 7.1 1 ng protein per ⁇ l reaction batch.
  • the control reactions were carried out by adding wild-type KAS purple instead of the Asn 358 Asp mutant and without enzyme supplementation. Additional control reactions were carried out by adding 10 ⁇ M decanoyl-ACP to the reaction batches. Samples (50 ⁇ l) were taken within 30 minutes at different time intervals and the reaction was carried out by precipitating the acyl ACPs with trichloroacetic acid at a Final concentration of 10 vol .-% ended.
  • the precipitated acyl-ACPs were washed as described in Bschreib et al., Supra, dissolved in 18.7 ⁇ l MES (pH 6.8) and by 2.5 M and 5.0 M urea PAGE according to Post- Beittenmiller et al. (1991, J. Biol. Chem. 266, 1858-1865) separately, transferred to Immobilon P (Millipore, Eschborn, Germany) and by autoradiography as in Bschreib et al. (1996, supra) described visualized (see Figure 4).
  • the extension products were densitometrically quantified using an Ultroscan XL device (Pharmacia, Freiburg, Germany).
  • Table 3 shows the total enrichment of FAS products by the preparations from C. lanceolata and rapeseed as a function of the enzyme added.
  • the synthesis of FAS-products was as described above by the incorporation of [l- 14 C] acetate and measured by a scintillation counter.
  • the acyl groups are defined by the number of carbon atoms: number of double bonds.
  • Rapeseed + 17.3 ⁇ 2.3 19.6 ⁇ 3.1 23.7 ⁇ 4.2 12.8 ⁇ 3.6 11.0 ⁇ 3.2 7.5 ⁇ 1.7 6.1 ⁇ 1, 8 2.0 ⁇ 0.2 Asn 358 Asp nd not detected
  • the kinetic data show that the recombinant wild-type KAS purple has an individual binding site for the regulatory acyl-ACP, the binding not being covalent.
  • the fact that the Asn 358 Asp and Ala 361 Ser mutants are not inhibited by acyl ACPs is probably a result of the change in the charge and / or polarity of the side chains of the corresponding amino acids, which hinders the docking of the acyl ACP ,
  • l ⁇ nceol ⁇ t ⁇ extract increased the synthesis of C -C 6 acyl ACPs by 50% (at the expense of medium-chain acyl ACPs, especially Cio and C ] ), - In the rapeseed extract, the synthesis of medium-chain acyl-ACPs (C 6 -C 10 ) also increased by over 50%, here at the expense of long-chain acyl-ACPs, in particular the C M - to -C 8 -acyl-ACPs (see Table 4).
  • RNA samples from developing seeds of Cuphea lanceolata and Brassica napus were used according to Voetz et al. (1994, Plant Physiol. 106: 785-786) total RNA isolated.
  • the mRNA was extracted using oligo-dT cellulose (Qiagen, Hilden, Germany) according to the manufacturer's protocol.
  • the cDNA sequences were obtained by means of RT-PCR of mRNA preparations with Not ID- 8 primers (see Table 5) using the "first strand synthesis" kit (Pharmacia, Freiburg, Germany).
  • the degenerate oligonucleotides 5a / 3a and 5b / 3b based on conserved regions of the KAS III-encoding genes were used as primers to amplify overlapping cDNA fragments by PCR (see Fig. 1).
  • the PCR reaction mixture contained 200 ⁇ M dNTPs, 100 pmol of each primer, 1.5 ⁇ l of the cDNA pool, 2.5 U Taq DNA polymerase with a total volume of 50 ⁇ l.
  • the following temperature program was used: Initial denaturation for 3 min at 94 ° C, followed by 35 cycles of denaturation for 1 min. at 94 ° C, annealing for 1 min at 52 ° C and extension for 1 min at 72 ° C, followed by a final extension step of 10 min at 72 ° C.
  • the KAS III DNA sequence of the resulting overlapping 923 bp and 1013 bp fragments was verified by automatic DNA sequencing and alignment of the derived amino acid sequences with known KAS III protein sequences.
  • Adapter primers and clKAS III sequence-specific internal primers which were derived from the sequence information obtained from the overlapping cDNA fragments, were determined.
  • the PCR conditions for 3'-RACE were as follows: 200 ⁇ M dNTPs, 40 pmol sequence-specific primer Cl-3'-RACE, 80 pmol Not I-dT ig adapter primer, 5 ⁇ l cDNA pool, 5 U Taq DNA polymerase in a total volume of 50 ⁇ l.
  • the temperature program was as follows: initial denaturation for 3 minutes at 94 ° C, followed by 35 cycles of denaturation for 1 minute at 94 ° C, annealing for 2 minutes at 55 ° C and extension for 2 minutes at 72 ° C , followed by a final extension step of 10 min at 72 ° C.
  • the resulting fragment was cloned into a sequencing vector and sequenced by automatic DNA sequencing.
  • a rapeseed KAS III cDNA (Brassica napus) was used using the same strategy as described above for Cuphea lanceolata and the same degenerate primer pairs (5a / 3a and 5b / 3b) for the amplification of the overlapping cDNA fragments from a rapeseed cDNA Pool cloned, with the deviation of a rape sequence-specific primer (Bn-3'-RACE) for the 3'-RACE-PCR.
  • cDNAs of theoretically full length, including the start and stop codon were used for clKAS III (see SEQ ID NO. 3) and bn KAS III (see SEQ ID NO . 1) determined.
  • the mature protein (the beginning of the mature protein was based on a sequence comparison with KAS III from E.coli and P.umbilicalis, see Fig. 1) coding cDNA amplified by PCR with accompanying introduction of 5'-Nde I and 3'-Xho I restriction sites for subcloning.
  • the PCR reaction mixture contained 200 ⁇ M dNTPs, primer pairs Cl 5'-Nde I / Cl 3'-Xho I and Bn 5'-Nde I / Bn 3'-Xho I (50 pmol each), 2 ⁇ l cDNA pool, 2 , 5 U proof-reading Pfu DNA polymerase with a total volume of 50 ⁇ l.
  • the following temperature program was used: Initial denaturation for 3 minutes at 94 ° C, followed by 35 cycles of denaturation for 1 minute at 95 ° C, annealing for 1 minute at 55 ° C and extension for 2 minutes at 72 ° C and a final extension step of 10 minutes at 72 ° C.
  • Two "precursor" vector constructs namely a) the full length of the wild-type cDNA, coding for the pre-sequence and the mature protein in a reading frame and b) the corresponding one served as starting material for the production of vector constructs for the plant transformation with mutagenized cl KAS III Targeted full-length mutagenized cDNA.
  • the prepeptide Since the prepeptide is required for the correct transport of the cl KAS III in plastids, it had to be integrated into vector constructs which are used for the plant transformation with cl KAS III.
  • a "chimeric" cl KAS III gene including the cl KAS III pre-sequence was produced by precise gene fusion based on overlapping PCR according to Yon and Fried (1989, Nucleic acid research 17: 4895).
  • Overlapping cDNA fragments were amplified in two separate reactions and the PCR conditions were as follows: 200 ⁇ d NTPs, primer pairs clprae-5 / cloverl-3 and cloverl-5 / clctrm-3 (each 50 pmol) (see Table 5 ), 2 ng template (the 1011 bp DNA fragment described above comprising the cl KAS III presequence or the 1009 bp fragment encoding the mature cl KAS III) and 2.5 U proof-reading DNA polymerase. The DNA was amplified with an initial denaturation for 2 min at 94 ° C, followed by 30 cycles
  • the reaction mixture contained 200 ⁇ M dNTPs, each 50 pmol of the flanking primers clprae-5 and clcterm-3, each 2 ng of the DNA fragment amplified in the first PCR reactions and 2.5 U proof-reading Pfu DNA polymerase in a final volume of 50 ⁇ l.
  • the temperature program for full length DNA amplification was as follows: initial denaturation for 3 min at 94 ° C, followed by 30 cycles of denaturation for 0.5 min, annealing for 1 min at 55 ° C and extension for 3 Min. At 72 ° C and a final extension step for 10 min. At 72 ° C.
  • the nucleotide sequence was verified by automatic DNA sequencing.
  • Asparagine 358 from cl KAS III was prepared by aspartate using PCR-based targeted mutagenesis using the "Quick Change" kit from Stratagene (Heidelberg, Germany) according to the manufacturer's protocol.
  • the desired mutation was introduced using a sense mutant primer (Clmut-sense, see Table 5) and an antisense mutant primer (Clmut antisense, see Table 5), and the entire plasmid comprising the mutagenized cl KAS III cDNA was amplified by PCR.
  • the reaction conditions for the amplification were as follows: 250 ⁇ M dNTPs, 100 ng wild-type cl KAS III plasmid, 25 pmole sense and antisense mutant primers in each case and 2.5 U proof-reading Pfu DNA polymerase in a final volume of 50 ⁇ l.
  • the following optimized temperature program was Uses: Initial denaturation for 2 min at 95 ° C, 30 cycles denaturation for 0.75 min, annealing for 1 min at 67 ° C, extension for 9 min at 72 ° C.
  • the methylated master template plasmid was digested with methyl-DNA-specific restriction endonuclease Dpn I for one hour at 37 ° C and the single-stranded (nicked) PCR-amplified muntant plasmid, which is unmethylated and therefore resistant to Dpn I digestion , was used to transform competent E. co // ' cells.
  • Figure 1 Sequence comparison of the KAS Ill primary structures, including that of the prepeptides.
  • a ß-ketoacyl-acyl carrier protein synthase III gene (fabH) is encoded on the chloroplast of the red alga Porphyra umbilicalis. Plant Mol. Biol. 21, 185-189
  • Figure 3 Inhibition of KAS III mutants by dodecanoyl-ACP.
  • Figure 4 Supplementation assays of FAS extracts from C. lanceolata (A) and rapeseed (B). The FAS reactions from the FAS preparations were supplemented with the KAS IIIa mutant Asn 358 Asp and 10 ⁇ M decanoyl-ACP as shown.
  • the control reactions were carried out without the addition of exogenous KAS IIIs.
  • the reaction products were analyzed by the Inko ⁇ oration [l- 14 C] acetate from [1- 14 C] acetyl-CoA in acyl-ACPs determined. Samples were removed after 20 min and analyzed by separation of the acyl ACPs in the 5.0 M urea PAGE, followed by electroblotting on Immobilon P and visualization by autoradiography.
  • Figure 5 CD spectra of the wild-type KAS purple (•), Asn 358 Asp ( ⁇ ), Ala 361 Ser (A), Ala 362 Pro (O) and the deletion mutant (T). Plot EUipticity ( ⁇ ) versus wavelength ( ⁇ )

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Nutrition Science (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Die Erfindung betrifft DNA-Sequenzen, die für ein Protein mit der enzymatischen Aktivität einer β-Ketoacyl-ACP-Synthase (KAS) aus dem Enzymkomplex der Fettsäuresynthase (FAS) kodieren. Ferner betrifft die Erfindung transgene Pflanzen und Mikroorganismen, die Nuklkeinsäuresequenzen enthalten, welche für Proteine mit der Aktivität eine β-Ketoacyl-ACP(acyl carrier protein)-Synthase (KAS) aus dem Enzymkomplex der Fettsäuresynthase (FAS) kodieren. Weiter betrifft die Erfindung ein Verfahren zur Beeinflussung des Fettsäuremusters und/oder Erhöhung des Fettsäuregehalts, insbesondere des Gehalts an kurz- und mittelkettigen Fettsäuren, in Pflanzen, insbesondere in Samengeweben und anderen Triacylglycerine synthetisierenden und/oder speichernden Geweben, sowie in Mikroorganismen, insbesondere in Bakterien und Algen, umfassend die Expression von Proteinen mit der Aktivität einer KAS aus dem Enzymkomplex der Fettsäuresynthase in transgenen Pflanzen bzw. Mikroorganismen.

Description

Verfahren zur Erhöhung des Gehalts an Fettsäuren in Pflanzen und Mikroorganismen
Die Erfindung betrifft DNA-Sequenzen, die für ein Protein mit der enzymatischen Aktivität einer ß-Ketoacyl-ACP-Synthase (KAS) aus dem Enzymkomplex der Fettsauresynthase (FAS) kodieren. Ferner betrifft die Erfindung transgene Pflanzen und Mikroorganismen, die Nukleinsäuresequenzen enthalten, welche für Proteine mit der Aktivität einer ß-Ketoacyl-ACP(αcy/ camer /?rote/w)-Synthase aus dem Enzymkomplex der Fettsauresynthase kodieren. Weiter betrifft die Erfindung ein Verfahren zur Beeinflussung des Fettsäuremusters und/oder Erhöhung des Fettsäuregehalts, insbesondere des Gehalts an kurz- und mittelkettigen Fettsäuren, in Pflanzen, insbesondere in Samengeweben und anderen Triacylglycerine synthetisierenden und/oder speichernden Geweben, sowie in Mikroorganismen, insbesondere in Bakterien und Algen, umfassend die Expression von Proteinen mit der Aktivität einer KAS aus dem Enzymkomplex der Fettsauresynthase in transgenen Pflanzen bzw. Mikroorganismen.
Die Fettsäure- und Triacylglycerinbiosynthese lassen sich aufgrund der Kompartimentierung als getrennte Biosynthesewege, jedoch im Hinblick auf das Endprodukt als ein Biosyntheseweg ansehen. Die de novo Biosynthese von Fettsäuren erfolgt in den Piastiden und wird im wesentlichen von drei Enzymen bzw. Enzymsystemen katalysiert, nämlich der Acetyl-CoA-Carboxylase, der Fettsauresynthase und der Acyl-ACP-Thioesterasen. Die Endprodukte dieser Reaktionsfolge sind in den meisten Organismen Palmitat, Stearat und, nach einer Desaturierung, Oleat.
Die Fettsauresynthase besteht aus einem Enzymkomplex dissoziierbarer Einzelenzyme, umfassend Malonyl-CoA:ACP-Transferase; ß-Ketoacyl-ACP- Synthasen, die aus kettenlängenspezifischen ß-Acyl-ACP:Malonyl-ACP- kondensierenden Enzymen (KAS I, II, IV) und dem Acetyl-CoA:Malonyl-ACP kondensierenden Enzym (KAS III) bestehen; ß-Ketoacyl-ACP Reduktase; ß- Hydroxyacyl-ACP-Dehydratase und Enoyl-ACP-Reduktase. Der Start der Fettsäuresynthese in Samen von Ölsaaten beginnt mit der KAS III- katalysierten Reaktion von Acetyl-CoA und Malonyl-ACP, wobei die Bildung des letzteren durch die Malonyl-CoA:ACP-Transferase katalysiert wird. In den nächsten Schritten der Fettsäuresynthese wird die Ketogruppe des gebildeten ß-Ketobutyryl- ACP zu einer Methylengruppe reduziert, wobei zuerst zu D-ß-Hydroxybutyryl-ACP reduziert und anschließend aus dem D-ß-Hydroxybutyryl-ACP durch Wasserabspaltung Crotonyl-ACP ensteht. Im letzten Schritt des Zyklus wird Crotonyl-ACP zu Butyryl-ACP reduziert, wodurch der erste Verlängerungszyklus abgeschlossen ist. In der zweiten Runde der Fettsäuresynthese kondensiert Butyryl- ACP mit Malonyl-ACP zu C6-ß-Ketoacyl-ACP. Anschließende Reduktion, Wassersabpaltung und eine zweite Reduktion überführen das Zwischenprodukt C6- ß-Ketoacyl-ACP zu C6-Acyl-ACP, das für eine dritte Verlängerungsrunde bereitgestellt wird. Diese Verlängerungszyklen laufen weiter bis zu Palmitoyl- und Stearoyl-ACP. Diese Produkte werden zu Palmitat, Stearat und ACP hydrolysiert, Stearoyl-ACP jedoch überwiegend zu Oleoyl-ACP desaturiert und dann ebenfalls hydrolysiert.
Bei der Synthese kurz- und mittelkettiger Fettsäuren erfolgt die Hydrolyse durch Acyl-ACP Thioesterasen, die spezifisch für kurz- und mittelkettige Acylderivate sind.
Nach Export der Fettsäuren in das Cytoplasma erfolgt im sogenannten Kennedy- Pathway am endoplasmatischen Retikulum die Triacylglycerinbiosynthese aus Glycerin-3 -Phosphat und Fettsäuren, die zuvor zu den Acyl-CoA Substraten aktiviert werden. Unter den Begriff Fettsäuren fallen gesättigte oder ungesättigte, kurz-, mittel- oder langkettige, geradkettige oder verzweigte, geradzahlige oder ungeradzahlige Fettsäuren. Als kurzkettige Fettsäuren werden allgemein Fettsäuren mit bis zu 6 Kohlenstoffatomen bezeichnet. Hierzu zählen somit Buttersäure, Valeriansäure und Caprylsäure. Unter die Bezeichnung mittelkettige Fettsäuren fallen C8- bis Cι4- Fettsäuren, also in erster Linie Capronsäure, Laurinsäure und Myristinsäure. Schließlich zählt man zu den langkettigen Fettsäuren solche mit mindestens 16 Kohlenstoffatomen, also vor allem Palmitinsäure, Stearinsäure, Ölsäure, Linolsäure und Linolensäure. Allerdings werden häufig auch C -C8-Fettsäuren als kurzkettig und C6-Cι0-Fettsäuren als mittelkettig bezeichnet. Es handelt sich somit nicht um starre Definitionen, sondern eher um eine Klassifizierung mit fließenden Übergängen.
Fettsäuren, die in sämtlichen pflanzlichen und tierischen Fetten und vor allem in pflanzlichen Ölen und Fischölen sowie in Mikroorganismen vorkommen, sind vielseitig einsetzbar. Beispielsweise kann ein Mangel an essentiellen Fettsäuren, also Fettsäuren, die im Organismus nicht synthetisiert werden können und daher mit der Nahrung zugeführt werden müssen, zu Hautveränderungen und Wachstumsstörungen führen, weshalb Fettsäuren u.a. bei Ekzemen, Psoriasis, Verbrennungen und dergleichen, sowie auch in der Kosmetik eingesetzt werden. Weiter finden Fettsäuren und Öle in Wasch- und Reinigungsmitteln, als Detergentien, als Farbzusätze, Schmier- und Gleitstoffe, Verarbeitungshilfen, Emulgationshilfen, Hydrauliköle und als Trägeröle in pharmazeutischen und kosmetischen Erzeugnissen
Anwendung. Als nachwachsende Rohstoffe im chemisch-technischen Sektor werden natürliche Fette und Öle tierischen (beispielsweise Talg) und pflanzlichen (beispielsweise Kokosnuß-, Palmkern- oder Rapsöl) Ursprungs eingesetzt. Die Einsatzbereiche pflanzlicher Öle wurden in den letzten zwanzig Jahren deutlich erweitert. Mit steigendem Umweltbewußtsein entwickelte man beispielsweise umweltverträgliche Schmierstoffe und Hydrauliköle. Weitere Anwendungen finden Fettsäuren und Fette als Nahrungsmittel bzw. Nahrungsmittelzusatz, beispielsweise in der parenteralen Ernährung, bei Backhilfen, in der Baby-, Senioren- und Sportlerkost, in Schokoladenmassen, Kakaopulver und als Backfette, zur Herstellung von Seifen, Salben, Kerzen, Malerfarben und Textilfarben, Firnissen, Heiz- und Beleuchtungsmitteln.
Pflanzenzüchterische Ziele sind insbesondere die Erhöhung des Gehalts von Fettsäuren in Samenölen. So besteht in Bezug auf Industrieraps und alternative Produktionsbereiche für die Landwirtschaft ein Zuchtziel in der Gewinnung von Rapsöl mit Fettsäuren mittlerer Kettenlänge, da diese besonders in der
Tensidherstellung begehrt sind. Neben dem Gedanken, pflanzliche Öle als Industrierohstoffe zu verwenden, besteht die Möglichkeit, sie als Biotreibstoff einzusetzen.
Es besteht daher allgemein ein Bedarf an der Bereitstellung von Fettsäuren, die beispielsweise als Grundstoffe für Weichmacher, Schmierstoffe, Pestizide, Tenside, Kosmetika usw. industriell einsetzbar und/oder nahrungsmitteltechnologisch wertvoll sind. Eine Möglichkeit zur Bereitstellung von Fettsäuren besteht in der Extraktion der Fettsäuren aus Pflanzen oder Mikroorganismen, die besonders hohe Gehalte an den erwünschten Fettsäuren aufweisen. Die Erhöhung des Gehalts an beispielsweise mittelkettigen Fettsäuren in Pflanzen auf klassischem Wege, also durch Züchtung von Pflanzen, die in erhöhtem Maße diese Fettsäuren produzieren, konnte bisher nur bedingt erreicht werden. Man ist daher besonders an modernen, biotechnologischen Ansätzen in der Pflanzenzüchtung interessiert. So sind beispielsweise aus der Deutschen Patentanmeldung Nr. 199 26 456.2 Nukleinsäuren bekannt, die für Proteine mit der Aktivität der ß-Ketoacyl-ACP-Synthasen I, II und IV kodieren. Pflanzen, die diese Nukleinsäuren enthalten, weisen einen insgesamt erhöhten Gehalt an Fettsäuren auf. Es ist daher eine Aufgabe der Erfindung, transgene Pflanzen und Mikroorganismen bereitzustellen, die Fettsäuren produzieren, die sie in ihren Wildtypen in eher geringem Maße oder gar nicht produzieren können. Insbesondere ist es Aufgabe der Erfindung, Pflanzen und Mikroorganismen bereitzustellen, die einen gegenüber Wildtyppflanzen erhöhten Gehalt an kurz- und mittelkettigen Fettsäuren aufweisen.
Eine wesentliche Aufgabe der Erfindung ist es damit auch, DNA-Sequenzen bereitzustellen, die für Proteine kodieren, welche aufgrund ihrer enzymatischen Aktivität das Fettsäuremuster und/oder den Fettsäuregehalt in Pflanzen und/oder Mikroorganismen beeinflussen.
Eine weitere Aufgabe besteht darin, Verfahren zur Erhöhung des Gehalts an Fettsäuren, insbesondere von kurz- und mittelkettigen Fettsäuren, in Pflanzen, hier insbesondere in Samengeweben und anderen Triacylglycerine synthetisierenden und/oder speichernden Geweben, sowie in Mikroorganismen, insbesondere in Bakterien und Algen, bereitzustellen.
Zur Lösung dieser Aufgaben dienen die Merkmale der unabhängigen Schutzansprüche.
Vorteilhafte Ausgestaltungen sind in den jeweiligen Unteransprüchen definiert.
Es ist jetzt gelungen, dem an der Fettsäuresynthese beteiligten Enzym ß-Ketoacyl- ACP-Synthase III (KAS III) eine genaue Substratspezifität zuzuordnen. KAS III katalysiert die Kondensation von Acetyl-CoA mit Malonyl-ACP zu ß-Ketobutyryl- ACP, welches durch die folgende Wirkung einer Enzymkaskade zu Butyryl-ACP reduziert wird. Das Produkt dieses ersten Verlängerungszyklus ist das Substrat für die Kondensation mit Malonyl-ACP in den nächsten Zyklen, die durch mehrere Acyl-ACP-spezifische Kondensationsenzyme katalysiert wird. In herkömmlichen Pflanzen führt dies zu einer Anreicherung von hauptsächlich Cι6- und Cι8-Acyl- ACPs, die im folgenden durch eine Acyl-ACP-Thioesterase hydrolysiert werden.
Insbesondere wird im Rahmen der vorliegenden Erfindung erstmals eine DNA- Sequenz offenbart, die für ein Protein mit der enzymatischen Aktivität einer KAS III aus Brassica napus kodiert.
In einer bevorzugten Ausführungsform ist die DNA-Sequenz, die für ein Protein mit der enzymatischen Aktivität einer KAS III aus Brassica napus kodiert, ausgewählt aus der Gruppe, bestehend aus:
a) DNA-Sequenzen, die eine Nukleotidsequenz umfassen, die die in SEQ ID NO. 2 angegebene Aminosäuresequenz oder Fragmente davon kodieren, b) DNA- Sequenzen, die die in SEQ ID No. 1 angegebene Nukleotidsequenz oder Teile davon umfassen, c) DNA-Sequenzen, die eine Nukleotidsequenz, die mit einem komplementären Strang der Nukleotidsequenz von a) oder b) hybridisiert, oder Teile dieser Nukleotidsequenz umfassen, d) DNA-Sequenzen, die eine Nukleotidsequenz, die zu einer Nukleotidsequenz von c) degeneriert ist, oder Teile dieser Nukleotidsequenz umfassen, e) DNA-Sequenzen, die ein Derivat, Analog oder Fragment einer Nukleotidsequenz von a), b), c) oder d) darstellen.
Bei einer weiteren Ausführungsform der vorliegenden Erfindung wird eine DNA- Sequenz bereitgestellt, die für ein Protein mit der enzymatischen Aktivität einer ß- Ketoacyl-ACP-Synthase III aus Cuphea lanceolata kodiert.
Besonders bevorzugt wird die letztgenannte erfindungsgemäße DNA-Sequenz ausgewählt aus der Gruppe, bestehend aus: a) DNA-Sequenzen, die eine Nukleotidsequenz umfassen, die die in SEQ ID NO. 4 angegebene Aminosäuresequenz oder Fragmente davon kodieren, b) DNA-Sequenzen, die die in SEQ ID No. 3 angegebene Nukleotidsequenz oder Teile davon umfassen, c) DNA-Sequenzen, die eine Nukleotidsequenz, die mit einem komplementären Strang der Nukleotidsequenz von a) oder b) hybridisiert, oder Teile dieser Nukleotidsequenz umfassen, d) DNA-Sequenzen, die eine Nukleotidsequenz, die zu einer Nukleotidsequenz von c) degeneriert ist, oder Teile dieser Nukleotidsequenz umfassen, e) DNA-Sequenzen, die ein Derivat, Analog oder Fragment einer Nukleotidsequenz von a), b), c) oder d) darstellen.
Der Begriff "Hybridisierung" bedeutet im Rahmen der vorliegenden Erfindung eine Hybridisierung unter konventionellen Hybridisierungsbedingungen, vorzugsweise unter stringenten Bedingungen, wie sie beispielsweise in Sambrook et al. (1989), Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York, beschrieben sind.
Pflanzliche Enzyme mit der Aktivität einer ß-Ketoacyl-ACP-Synthase III (KAS III) besitzen eine hochwirksame regulatorische Funktion für die Steuerung der
Fettsäurebiosynthese. Basierend auf diesem Wissen wurde jetzt überraschenderweise gefunden, dass durch Mutationen im Bereich der für die regulatorische Funktion verantwortlichen Region der KAS III eine Erhöhung des Gehalts an kurz- und/oder mittelkettigen Fettsäuren in Pflanzen oder Mikroorganismen mittels Übertragung von Sequenzen für derartige KAS III-Mutanten möglich ist. Diese Beobachtung wird gemäß der vorliegenden Erfindung zur Erhöhung des Gehalts an kurz- und/oder mittelkettigen Fettsäuren in Pflanzen und Mikroorganismen genutzt.
Bei einem wesentlichen Aspekt der vorliegenden Erfindung wird somit eine DNA- Sequenz bereitgestellt, die für ein Protein mit der enzymatischen Aktivität einer ß- Ketoacyl-ACP-Synthase III kodiert, wobei das Protein nicht durch Acyl-ACPs regulierbar, insbesondere nicht inhibierbar ist.
Bei einer bevorzugten Ausführungsform werden DNA-Sequenzen bereitgestellt, die gegenüber der Wildtypsequenz von KAS III durch mindestens eine Mutation in dem für das Aminosäuresequenzmotiv GNTSAAS (fett unterlegt in Abbildung 1) kodierenden Bereich verändert sind.
Besonders bevorzugt ist eine DNA-Sequenz, bei der die Mutation zu einem Austausch der Aminosäure N zu D und/oder der Aminosäure A (erstes Alanin des Motivs) zu S innerhalb des Aminosäuremotivs GNTSAAS von KAS III führt.
Bei einer speziellen Ausführungsform der vorliegenden Erfindung wird eine DNA- Sequenz bereitgestellt, die für ein Protein mit der enzymatischen Aktivität einer KAS III aus Brassica napus, Cuphea lanceolata oder Cuphea wrightii kodiert, wobei das Protein nicht durch Acyl-ACPs regulierbar, insbesondere nicht inhibierbar ist.
Insbesondere ist diese erfindungsgemäße DNA-Sequenz ausgewählt aus der Gruppe, bestehend aus:
a) DNA-Sequenzen, die eine Nukleotidsequenz umfassen, die die in SEQ ID NO. 6 angegebene Aminosäuresequenz oder Fragmente davon kodieren, b) DNA-Sequenzen, die die in SEQ ID No. 5 angegebene Nukleotidsequenz oder Teile davon umfassen, c) DNA-Sequenzen, die eine Nukleotidsequenz, die mit einem komplementären Strang der Nukleotidsequenz von a) oder b) hybridisiert, oder Teile dieser Nukleotidsequenz umfassen, d) DNA-Sequenzen, die eine Nukleotidsequenz, die zu einer Nukleotidsequenz von c) degeneriert ist, oder Teile dieser Nukleotidsequenz umfassen, e) DNA-Sequenzen, die ein Derivat, Analog oder Fragment einer Nukleotidsequenz von a), b), c) oder d) darstellen.
Schließlich erfolgt erfindungsgemäß die Bereitstellung chimärer Genkonstrukte, in denen KAS Ill-kodierende DNA-Sequenzen unter Kontrolle von regulatorischen Sequenzen stehen, die eine spezifische Transkription gewährleisten, mittels konventioneller Klonierungsmethoden (siehe beispielsweise Sambrook et al., siehe oben). Erfindungsgemäß wird somit ferner ein rekombinantes Nukleinsäuremolekül bereitgestellt, umfassend:
a) eine Promotorregion; b) operativ damit verknüpft eine vorstehend beschriebene erfindungsgemäße DNA- Sequenz; und c) optional operativ damit verknüpft regulatorische Sequenzen, die als Transkriptions-, Terminations- und/oder Polyadenylierungssignale in
Pflanzenzellen dienen können.
Bei alternativen Ausführungsformen der vorliegenden Erfindung werden rekombinante Nukleinsäuremoleküle bereitgestellt, in denen die DNA-Sequenz in antisense-Orientierung vorliegt.
Vorzugsweise liegt die Nukleinsäuresequenz in dem erfindungsgemäßen rekombinanten Nukleinsäuremolekül mit einem in Pflanzen aktiven Promoter, besonders bevorzugt mit einem in Triacylglycerine synthetisierendem bzw. speicherndem Gewebe aktiven Promoter vor. Bei dem Triacyglycerine synthetisierendem und/oder speicherndem Gewebe handelt es sich in erster Linie um Samengewebe. Aber auch andere pflanzliche Gewebe, wie z.B. das Fruchtfleisch in Ölpflanzen kommen hier in Frage. Ferner kann es bevorzugt sein, daß die Nukleinsäuresequenz in dem erfindungsgemäßen rekombinanten Nukleinsäuremolekül zusätzlich in Kombination mit Enhancer-Sequenzen, für Signalpeptide kodierende Sequenzen und/oder anderen regulatorischen Sequenzen vorliegt.
Ferner werden durch die vorliegende Erfindung Vektoren bereitgestellt, die die vorstehend beschriebene erfindungsgemäße DNA-Sequenz bzw. das vorstehend beschriebene erfindungsgemäße rekombinante Nukleinsäuremolekül umfassen.
Bei einem weiteren Gegenstand der vorliegenden Erfindung wird ein rekombinantes Protein mit der enzymatischen Aktivität einer ß-Ketoacyl-ACP-Synthase III, aus Brassica napus stammend, insbesondere ein Protein mit der in SEQ ID NO. 2 angegebenen Aminosäuresequenz, bereitgestellt.
Des weiteren wird erfindungsgemäß ein rekombinantes Protein der enzymatischen Aktivität einer KAS III, aus Cuphea lanceolata stammend, insbesondere ein Protein mit der in SEQ ID NO. 4 angegebenen Aminosäuresequenz, bereitgestellt.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein rekombinantes Protein mit der enzymatischen Aktivität einer KAS III, wobei das Protein nicht durch Acyl-ACPs regulierbar, insbesondere nicht inhibierbar ist. Bei einer speziellen Ausführungsform stammt das vorstehend beschriebene erfindungsgemäße Protein aus Cuphea lanceolata und weist besonders bevorzugt die in SEQ ID NO. 6 angegebene Aminosäuresequenz auf.
Die Erfindung betrifft ferner ein Verfahren zur Erhöhung des Gehalts an kurzkettigen und/oder mittelkettigen Fettsäuren in Pflanzen, umfassend die Schritte:
a) Herstellung einer Nukleinsäuresequenz, welche für ein Protein mit der enzymatischen Aktivität einer ß-Ketoacyl-ACP-Synthase III kodiert, wobei die ß- Ketoacyl-ACP-Synthase III nicht durch Acyl-ACPs regulierbar, insbesondere nicht inhibierbar ist, und welche mindestens die folgenden Bestandteile umfaßt, die in der 5 '-3 '-Orientierung aneinandergereiht sind: ein in Pflanzen, insbesondere in Triacyglycerine synthetisierendem und/oder speicherndem Gewebe aktiver Promotor, mindestens eine Nukleinsäuresequenz, die für ein Protein mit der enzymatischen Aktivität einer ß-Ketoacyl-ACP-Synthase III kodiert, wobei die ß-Ketoacyl-ACP- Synthase III nicht durch Acyl-ACPs regulierbar, insbesondere nicht inhibierbar ist, oder ein aktives Fragment davon kodiert und gegebenenfalls ein Terminationssignal für die Termination der Transkription und die Addition eines Poly-A-Schwanzes an das entsprechende Transkript sowie gegebenenfalls davon abgeleitete DNA-Sequenzen; b) Übertragung der Nukleinsäuresequenzen aus a) auf pflanzliche Zellen und c) gegebenenfalls Regeneration vollständig transformierter Pflanzen und, falls erwünscht, Vermehrung der Pflanzen.
Weiter betrifft die Erfindung Verfahren zur Erhöhung des Gehalts an kurzkettigen und/oder mittelkettigen Fettsäuren in Mikroorganismen, insbesondere Bakterien und Algen, umfassend die Schritte:
a) Herstellung einer Nukleinsäuresequenz, welche für ein Protein mit der enzymatischen Aktivität einer ß-Ketoacyl-ACP-Synthase III kodiert, wobei die ß- Ketoacyl-ACP-Synthase III nicht durch Acyl-ACPs regulierbar, insbesondere nicht inhibierbar ist, und welche mindestens die folgenden Bestandteile umfaßt, die in der 5 '-3 '-Orientierung aneinandergereiht sind: ein in dem jeweiligen Mikroorganismus aktiver Promotor, mindestens eine Nukleinsäuresequenz, die für ein Protein mit der enzymatischen
Aktivität einer ß-Ketoacyl-ACP-Synthase III kodiert, wobei die ß-Ketoacyl-ACP- Synthase III nicht durch Acyl-ACPs regulierbar, insbesondere nicht inhibierbar ist, oder ein aktives Fragment davon kodiert und gegebenenfalls ein Terminationssignal für die Termination der Transkription und die Addition eines Poly-A-Schwanzes an das entsprechende Transkript sowie gegebenenfalls davon abgeleitete DNA-Sequenzen; und b) Übertragung der Nukleinsäuresequenzen aus a) auf den jeweiligen Mikroorgani smus .
In einer bevorzugten Ausführungsform umfasst das erfindungsgemäße Verfahren zur Erhöhung des Gehalts an kurzkettigen und/oder mittelkettigen Fettsäuren in Pflanzen bzw. Mikroorganismen nach dem oben angegebenen Schritt a) folgende Schritte b)- c) für Mikroorganismen bzw. b)-d) für Pflanzen: b) Zerstörung der Acyl-ACP-Bindungsstelle der ß-Ketoacyl-ACP-Synthase III durch in v vo-Mutation, c) Übertragung der Nukleinsäuresequenzen aus a) oder b), und d) soweit die Nukleinsäuresequenzen in Schritt c) auf pflanzliche Zellen übertragen wurden, ggf. Regeneration vollständig transformierter Pflanzen und, falls erwünscht, Vermehrung der Pflanzen.
Ein weiterer Gegenstand der vorliegenden Erfindung sind transgene Pflanzen und Mikroorganismen, die eine vorstehend beschriebene erfindungsgemäße DNA- Sequenz bzw. ein vorstehend beschriebenes erfindungsgemäßes rekombinantes Nukleinsäuremolekül enthalten.
Insbesondere betrifft die Erfindung transgene Pflanzen, pflanzliche Zellen und
Mikroorganismen, die eine Nukleinsäuresequenz enthalten, welche für ein Protein mit der Aktivität einer ß-Ketoacyl-ACP-Synthase III kodiert, wobei die ß-Ketoacyl- ACP-Synthase III nicht durch Acyl-ACPs regulierbar, insbesondere nicht inhibierbar ist. Untersuchungen des Einflusses von Acyl-ACPs unterschiedlicher Kettenlängen auf die Aktivität von KAS III am Beispiel von Cuphea zeigten, daß die KAS III-Enzyme von Cuphea in die Regulierung der Biosynthese mittelkettiger Fettsäuren über eine starke Rückkopplungsinhibierung involviert sind, die durch die mittelkettigen Acyl- ACP-Endprodukte ausgeübt wird, die in den Piastiden der entsprechenden Samen hergestellt werden. Unsere kinetischen Studien mit rekombinanter KAS III aus Cuphea wrightii zeigten weiter, daß unterschiedliche Bindungsstellen für das inhibitorische Cι2-ACP und die Substrate Acetyl-CoA und Malonyl-ACP vorliegen.
In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Pflanzen und Mikroorganismen somit eine Nukleinsäuresequenz, die für eine KAS III- Mutante kodiert, bei der durch eine oder mehrere Mutationen an der Bindungsstelle der Acyl-ACPs die regulatorische Funktion ausgeschaltet ist, gleichzeitig aber die katalytische Aktivität bei der Kondensationsreaktion von Acetyl-CoA und Malonyl- ACP aufrecht erhalten ist. Im Fall von KAS III-Mutanten aus Cuphea kommt es somit zu einer ungehemmten Synthese von Acyl-ACPs, die wiederum das Enzym KAS IV, das für die Synthese mittelkettiger Fettsäuren verantwortlich ist, und das Enzym KAS II, das für die Synthese langkettiger Fettsäuren verantwortlich ist, hemmen. Auf diese Weise wird die Synthese in Cuphea zu kurzkettigen Fettsäuren, insbesondere zu C4-C8-Fettsäuren, verschoben, während in Raps die Synthese zu mittelkettigen Fettsäuren, insbesondere zu C6-Cι0-Fettsäuren, verschoben wird.
In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäßen Pflanzen und Mikroorganismen Nukleinsäuresequenzen, die gegenüber der
Wildtypsequenz von KAS III aus C. wrightii (Slabaugh et al. 1995, Plant Physiol. 108, 343-444) durch mindestens eine Mutation in dem für das Aminosäuresequenzmotiv G357NTSAAS 63 kodierenden Bereich verändert sind. Wie weiter unten noch näher erklärt werden wird, handelt es sich bei dem Aminosäuresequenzmotiv G357NTSAAS363 aus C. wrightii um ein in KAS III- Enzymen konserviertes Motiv. Dieses Motiv GNTSAAS liegt in der KAS III aus C. wrightii zwischen den Aminosäuren 357 und 363, gerechnet vom Beginn der Präsequenz, die für eine Prä-KAS III einschließlich eines für den Transport in die Piastiden verantwortlichen Signalpeptids kodiert. Bei Betrachtung des reifen KAS III-Proteins aus C. wrightii ist das Aminosäuremotiv zwischen Aminosäure 290 und Aminosäure 296 lokalisiert. Die genaue Position des erfindungsgemäßen Aminosäuremotivs GNTSAAS in KAS III-Enzymen aus diversen Organismen ist aus Abbildung 1 entnehmbar.
Da die Lage des Motivs GNTSAAS in den diversen KAS III verschieden ist, wird - sofern nicht konkret das KAS-Enzym aus C. wrightii gemeint ist - im folgenden auch allgemein von dem Motiv GNTSAAS gesprochen, ohne Angabe bestimmter Aminosäurepositionen (die Abbildung 1 und ergänzenden, vom Fachmann auf einfache Weise erstellbaren Sequenz-Alignments entnommen werden können).
Insbesondere mit Hilfe der Mutanten Asn358Asp (im reifen Protein N291D) und Ala361Ser (im reifen Protein A294S) der rekombinanten C. wrightii KAS III wurde im Rahmen der vorliegenden Erfindung durch kinetische Untersuchungen nachgewiesen, daß durch diese Mutationen an der regulatorischen Bindungsstelle diese Enzyme durch Acyl-ACPs nicht mehr inhibiert werden, katalytisch jedoch voll aktiv sind. Bei erfindungsgemäß mit der KAS III-Mutante Asn358Asp transformierten Pflanzen konnte gezeigt werden, daß die Mutante nicht nur die Synthese von C4-ACP erheblich stimulierte, sondern auch beispielsweise in Cuphea lanceolata die Synthese von C4-C6 Acyl ACPs um 50 % auf Kosten mittelkettiger Acyl-ACPs steigerte. In transgenem Raps, der die vorstehend genannten KAS III-Mutanten exprimierte, wurde die Synthese mittelkettiger Acyl-ACPs (C6-Cι0) ebenfalls um über 50 % auf Kosten langkettiger Acyl-ACPs gesteigert. In einer bevorzugten Ausführungsform werden die KAS HI-Sequenzen für die Verwendung in dem erfindungsgemäßen Verfahren zur Erhöhung des Gehalts an kurz- und/oder mittelkettigen Fettsäuren unter Kontrolle samenspezifischer Regulationselemente, insbesondere Promotoren, in Pflanzenzellen exprimiert. So liegen die vorstehend genannten DNA-Sequenzen in einer bevorzugten Ausführungsform in Kombination mit Promotoren vor, die besonders in Triacyglycerine synthetisierendem bzw. speicherndem Gewebe wie z.B. embryonalem Gewebe oder Fruchtfleisch in Ölpflanzen aktiv sind. Beispiele für solche Promotoren sind der USP-Promotor (Bäumlein et al. 1991, Mol. Gen. Genet. 225:459-467), der Hordein-Promotor (Brandt et al. 1985, Carlsberg Res. Commun. 50:333-345), sowie der Napin-Promotor, der ACP-Promotor und die FatB3- und FatB4-Promotoren, die dem auf dem Gebiet der pflanzlichen Molekularbiologie tätigen Fachmann wohl bekannt sind.
Gegebenenfalls können die Nukleinsäuresequenzen für die Verwendung in dem erfindungsgemäßen Verfahren durch Enhancer-Sequenzen oder andere regulatorische Sequenzen ergänzt sein. Die regulatorischen Sequenzen beinhalten beispielsweise auch Signalsequenzen, die für den Transport des Genprodukts zu einem bestimmten Kompartiment sorgen. Hier sind besonders solche Signalsequenzen zu nennen, die das Genprodukt zum Ort der pflanzlichen Fettsäuresynthese, nämlich den Piastiden, lenken. Sofern von der Chloroplastentransformation Gebrauch gemacht wird, erfolgt der Einbau der für KAS III kodierenden Nukleinsäuresequenz unmittelbar in das Piastidengenom, so daß hier in der Regel auf entsprechende Signalsequenzen bzw. -peptide verzichtet werden kann.
Die vorliegende Erfindung betrifft auch Nukleinsäuremoleküle, die die vorstehend genannten Nukleinsäuresequenzen oder Teile davon enthalten, d.h. auch Vektoren, insbesondere Plasmide, Cosmide, Viren, Bakteriophagen und andere in der Gentechnik gängige Vektoren, die gegebenenfalls für den Transfer der vorstehend genannten Nukleinsäuremoleküle auf Pflanzen bzw. Pflanzenzellen eingesetzt werden können.
Bei den Pflanzen, die erfindungsgemäß transformiert sind und in denen aufgrund dessen eine veränderte Menge an Fettsäuren synthetisiert wird, kann es sich im Prinzip um jede beliebige Pflanze handeln. Vorzugsweise ist es eine monokotyle oder dikotyle Nutzpflanze und besonders bevorzugt eine Ölpflanze. Als Beispiele sind hier insbesondere Raps, Sonnenblume, Sojabohne, Erdnuß, Kokos, Rüpsen, Baumwolle und Ölpalmen zu nennen. Weitere Pflanzen, die der Fettsäure- und Fettgewinnung dienen können oder als Nahrungsmittel mit erhöhtem Fettsäuregehalt nützlich sind, sind Lein, Mohn, Olive, Kakao, Mais, Mandel, Sesam, Senf und Ricinus.
Gegenstand der Erfindung sind ferner Vermehrungsmaterial von erfindungsgemäßen Pflanzen, beispielsweise Samen, Früchte, Stecklinge, Knollen, Wurzelstöcke etc., sowie Teile dieser Pflanzen wie Protoplasten, Pflanzenzellen und Kalli.
Bei den Mikroorganismen, die erfindungsgemäß transformiert sind und in denen aufgrund dessen eine veränderte Menge an Fettsäuren synthetisiert wird, kann es sich im Prinzip um jeden beliebigen Mikroorganismus handeln. Vorzugsweise sind es Bakterien oder Algen.
Bei einer bevorzugten Ausführungsform enthalten die transgenen Pflanzen und Mikroorganismen eine Nukleinsäuresequenz, welche für ein Protein mit der Aktivität einer ß-Ketoacyl-ACP-Synthase III aus Brassica napus, Cuphea lanceolata oder Cuphea wrightii kodiert, wobei die ß-Ketoacyl-ACP-Synthase III nicht durch Acyl- ACPs regulierbar, insbesondere nicht inhibierbar ist.
Die mit den im Rahmen der Erfindung einsetzbaren KAS III-Nukleinsäuremolekülen umfassen auch Fragmente, Derivate und allelische Varianten der oben beschriebenen DNA-Sequenzen, die für eine KAS III kodieren oder ein biologisch, d.h. enzymatisch aktives Fragment davon. Unter Fragmenten werden dabei Teile der Nukleinsäuremoleküle verstanden, die lang genug sind, um ein Polypeptid oder Protein mit der enzymatischen Aktivität einer KAS III oder einer vergleichbaren enzymatischen Aktivität zu kodieren. Der Ausdruck Derivat bedeutet in diesem Zusammenhang, daß die Sequenzen dieser Moleküle sich von den Sequenzen der oben genannten Nukleinsäuremoleküle an einer oder mehreren Positionen unterscheiden und einen hohen Grad an Homologie zu diesen Sequenzen aufweisen. Homologie bedeutet dabei eine Sequenzidentität von mindestens 80 %, 90 % und 92 %, insbesondere eine Identität von mindestens 94 % und 96 %, vorzugsweise über 98 % und besonders bevorzugt über 99 %, oder daß die homologe Sequenz unter stringenten Bedingungen, die dem Fachmann geläufig sind, mit den vorstehend genannten KAS HI-Sequenzen hybridisiert. Die Abweichung zu den oben beschriebenen Nukleinsäuremolekülen können dabei durch Deletion, Addition, Substitution, Insertion oder Rekombination entstanden sein. Homologie bedeutet ferner, daß funktioneile und/oder strukturelle Äquivalenz zwischen den betreffenden Nukleinsäuremolekülen oder den durch sie kodierten Proteinen besteht.
Bei den Nukleinsäuremolekülen, die homolog zu den oben genannten Molekülen sind und Derivate dieser Moleküle darstellen, handelt es sich in der Regel um
Variationen dieser Moleküle, die Modifikationen darstellen, die dieselbe biologische Funktion ausüben. Es kann sich dabei sowohl um natürlicherweise auftretende Variationen handeln, beispielsweise um Sequenzen aus anderen Organismen, oder um Mutationen, wobei diese Modifikationen auf natürliche Weise aufgetreten sein können oder durch gezielte Mutagenese eingeführt werden. Ferner kann es sich bei den Variationen um synthetisch hergestellte Sequenzen handeln. Bei den allelischen Varianten kann es sich sowohl um natürlich auftretende als auch um synthetisch hergestellte oder durch rekombinante DNA-Techniken erzeugte Varianten handeln. Üblicherweise weisen die von den verschiedenen Varianten der im Rahmen der Erfindung einsetzbaren Nukleinsäuresequenzen kodierten KAS III-Proteine bestimmte gemeinsame Charakteristika auf. Dazu können z.B. Enzymaktivität, Molekulargewicht, immunologische Reaktivität, Konformation etc. gehören. Weitere gemeinsame Charakteristika können physikalische Eigenschaften wie z.B. das Laufverhalten in der Gelelektrophorese, chromatographisches Verhalten, Sedimentationskoeffizienten, Löslichkeit, spektroskopische Eigenschaften, Stabilität, pH-Optimum, Temperatur-Optimum etc. darstellen. Des weiteren können natürlich die Produkte der von den KAS III-Enzymen katalysierten Reaktionen gemeinsame oder ähnliche Merkmale aufweisen.
Zur Erzeugung der erfindungsgemäßen Pflanzen bieten sich verschiedene Methoden an. Zum einen können Pflanzen bzw. Pflanzenzellen mit Hilfe herkömmlicher gentechnologischer Transformationsmethoden derart verändert werden, dass die neuen Nukleinsäuremoleküle in das pflanzliche Genom integriert werden, d.h., dass stabile Transformanten erzeugt werden. Zum anderen kann ein vorstehend genanntes Nukleinsäuremolekül, dessen Anwesenheit und gegebenenfalls Expression in der Pflanzenzelle einen veränderten Fettsäuregehalt bewirkt, in der Pflanzenzelle bzw. der Pflanze als selbstreplizierendes System enthalten sein.
Zur Vorbereitung der Einführung fremder Gene in höhere Pflanzen stehen eine große Anzahl von Klonierungsvektoren zur Verfügung, deren Replikationssignale für E.coli und ein Markergen zur Selektion transformierter Bakterienzellen enthalten. Beispiele für derartige Vektoren sind pBR322, pUC-Serien, M13mp-Serien, pACYC184, pBlueSfi usw. Die gewünschte Sequenz kann in einer passenden Restriktionsschnittstelle in den Vektor eingeführt werden. Das erhaltene Plasmid wird dann für die Transformation von E.co//-Zellen verwendet. Transformierte E.co/7-Zellen werden in einem geeigneten Medium gezüchtet und anschließend geerntet und lysiert, und das Plasmid wird wiedergewonnen. Als Analysenmethode zur Charakterisierung der gewonnenen Plasmid-DNA werden im allgemeinen Restriktionsanalysen, Gelelektrophoresen und weitere biochemisch- molekularbiologische Methoden eingesetzt. Nach jeder Manipulation kann die Plasmid-DNA gespalten und gewonnene DNA-Fragmente mit anderen DNA- Sequenzen verknüpft werden.
Für die Einführung von DNA in eine pflanzliche Wirtszelle stehen eine Vielzahl bekannter Techniken zur Verfügung, wobei der Fachmann die jeweils geeignete Methode ohne Schwierigkeiten ermitteln kann. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA unter Verwendung von Agrobacterium tumefaciens oder Agrobacterium rhizogenes als
Transformationsmittel, die Fusion von Protoplasten, den direkten Gentransfer isolierter DNA in Protoplasten, die Elektroporation von DNA, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten.
Bei der Injektion und Elektroporation von DNA in Pflanzenzellen werden per se keine speziellen Anforderungen an die verwendeten Plasmide gestellt. Ähnliches gilt für den direkten Gentransfer. Es können einfache Plasmide, wie z.B. pUC- und pBlueScript-Derivate, verwendet werden. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist die Anwesenheit eines selektierbaren Markergens notwendig. Dem Fachmann sind die Genselektionsmarker bekannt, und es stellt für ihn kein Problem dar, einen geeigneten Marker auszuwählen.
Je nach Einführungsmethode gewünschter Gene in die Pflanzenzelle können weitere DNA-Sequenzen erforderlich sein. Werden beispielsweise für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muß mindestens die rechte Begrenzung, häufig jedoch die rechte und linke Begrenzung der im Ti- bzw. Ri- Plasmid enthaltenen T-DNA als Flankenbereich mit den einzuführenden Genen verbunden werden. Werden für die Transformation Agrobakterien verwendet, muß die einzuführende DNA in spezielle Plasmide kloniert werden, und zwar entweder in einen intermediären oder in einen binären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Ti- oder Ri-Plasmid der Agrobakterien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige vir- Region. Intermediäre Vektoren können nicht in Agrobakterien replizieren. Mittels eines Helferplasmids kann der intermediäre Vektor auf Agrobacterium tumefaciens übertragen werden (Konjugation). Binäre Vektoren können sowohl in E. coli als auch in Agrobakterien replizieren. Sie enthalten ein Selektionsmarker-Gen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA-Grenzregion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden. Das als Wirtszelle dienende Agrobakterium soll ein Plasmid, das eine v/r-Region trägt, enthalten. Die v/r-Region ist für den Transfer der T-DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig transformierte Agrobakterium wird zur Transformation von Pflanzenzellen verwendet.
Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in allseits bekannten Übersichtsartikeln und Handbüchern zur Pflanzentransformation beschrieben worden.
Für den Transfer der DNA in die Pflanzenzelle können Pflanzen-Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kultiviert werden. Aus dem infizierten Pflanzenmaterial (z.B. Blattstücke, Stengelsegmente, Wurzeln, aber auch Protoplasten oder Suspensions-kultivierte
Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Selektion transformierter Zellen enthalten kann, wieder ganze Pflanzen regeneriert werden. Die Regeneration der Pflanzen erfolgt nach üblichen Regenerationsmethoden unter Verwendung bekannter Nährmedien. Die so erhaltenen Pflanzen können dann auf Anwesenheit der eingeführten DNA untersucht werden. Andere Möglichkeiten der Einführung fremder DNA unter Verwendung des biolistischen Verfahrens oder durch Protoplasten-Transformation sind ebenfalls bekannt und vielfach beschrieben.
Ist die eingeführte DNA einmal im Genom der Pflanzenzelle integriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle erhalten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum wie Kanamycin, G418, Bleomycin, Hygromycin, Methotrexat, Glyphosat, Streptomycin, Sulfonyl-Harnstoff, Gentamycin oder Phosphinotricin und u.a. vermittelt. Der individuell gewählte Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten. Hierzu sind auch alternative Marker geeignet, wie nutritive Marker, Screening-
marker (wie GFP, green fluorescent protein). Selbstverständlich kann auch vollkommen auf Selektionsmarker verzichtet werden, was allerdings mit einem ziemlich hohen Screeningaufwand einhergeht.
Die transfomierten Zellen wachsen innerhalb der Pflanze in der üblichen Weise. Die resultierenden Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen besitzen, gekreuzt werden. Die daraus entstehenden hybriden Individuen haben die entsprechenden phänotyischen Eigenschaften. Von den Pflanzenzellen können Samen gewonnen werden.
Es sollten zwei oder mehrere Generationen herangezogen werden, um sicherzustellen, daß das phänotypische Merkmal stabil beibehalten und vererbt wird. Auch sollten Samen geerntet werden, um sicherzustellen, daß der entsprechende Phänotyp oder andere Eigenarten erhalten geblieben sind. Ebenso können nach üblichen Methoden transgene Linien bestimmt werden, die für die neuen Nukleinsäuremoleküle homozygot sind, und ihr phänotypisches Verhalten hinsichtlich eines veränderten Fettsäuregehalts untersucht und mit dem von hemizygoten Linien verglichen werden.
Der Nachweis der Expression der nicht regulierbaren Proteine mit KAS III- Aktivität kann mit Hilfe herkömmlicher molekularbiologischer und biochemischer Methoden erfolgen. Dem Fachmann sind diese Techniken bekannt und er ist problemlos in der Lage, eine geeignete Nachweismethode zu wählen, beispielsweise eine Northern Blot- Analyse zum Nachweis KAS-spezifischer RNA bzw. zur Bestimmung der Höhe der Akkumulation von KAS-spezifischer RNA, eine Southern Blot-Analyse zur Identifizierung von für KAS III-kodierenden DNA-Sequenzen oder eine Western Blot-Analyse zum Nachweis des durch die erfindungsgemäßen DNA-Sequenzen kodierten KAS III-Proteins. Der Nachweis der enzymatischen Aktivität der KAS III kann anhand des Fettsäuremusters oder eines Enzymassays, wie beispielsweise in den nachfolgenden Beispielen beschrieben, bestimmt werden.
Die Erfindung basiert auf der erfolgreichen Herstellung und Charakterisierung neuer KAS HI-Sequenzen und KAS III-Mutanten und der hier erstmals gelungenen Zuordnung konkreter Substratspezifitäten sowie der Aufklärung der KAS III-
Regulationsmechanismen, die in den nachfolgenden Beispielen beschrieben werden.
Die nachfolgenden Beispiele dienen der Erläuterung der Erfindung.
Beispiele:
Beispiel 1 : Zielgerichtete Mutagenese der Cuphea wrightii KAS IIIa-cDNA
Standard-DNA-Manipulationsverfahren wurden nach Sambrook et al. (J. Sambrook, E.F. Fritsch, T. Maniatis (1989), Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor, NY) durchgeführt. Als Ausgangsplasmid für die Herstellung der KAS III Mutanten diente cwKAS IIIa-cDNA (cwKAS = Cuphea wrightii KAS), die über Ndel- und Xhol-Restriktionsschnittstellen in den Expressionsvektor pET 15b (Novagen, MA, USA) kloniert worden war. Die mutierte DNA wurde unter Verwendung des PCR-basierten overlap-extension- Verfahrens erzeugt (R. Higuchi, B. Krummel, R. K. Seiki (1988), Nucl. Acids Res. 16, S. 7351 bis 7367). Die Sequenzen der als Primer für die PCR-Reaktion verwendeten Oligonukleotide sind in Tabelle 1 angegeben.
Tabelle 1
Primer Sequenz
5 '-flankierender Primer Fse5 5'-TGGAAAGGCCGGCCTTAATG-3'
3 '-flankierender Primer Xho3 5 ' -CTCGAGTTATCCCC ACCTGAT-3 '
5'-Mutations-Primer Asn 758" Asp-5 5 ' - AACTACGGGGAC ACT AGTGC-3 '
3'-Mutations-Primer Asn 338- Asp-3 5'-GCACTAGTGTCCCCGTAGTT-3'
5'-Mutations-Primer Ala361Ser-5 5'-AACACTAGTTCGGCATCCATT-3
3'-Mutations-Primer AlaJ0'Ser-3 5 '-AATGGATGCCGAACTAGTGTT-3 '
5'-Mutations-Primer Ala 3J6t 2ΪPro-5 5 '-CACTAGTGCGCCATCC ATTC-3 '
3'-Mutations-Primer Ala 62Pro-3 5 '-GAATGGATGGCGC ACTAGTG-3 '
5'-Mutations-Primer Deletion-5 5 '-GCAAACTACGCGGCATCCA-3 '
3'-Mutations-Primer Deletion-3 5 '-TGGATGCCGCGTAGTTGGC-3 '
Die mutagenisierten Codons sind unterstrichen. Der für die Einführung von Mutationen vorgesehene Zielbereich (Basenpaare 734- 1014) der cDNA der vermutlich reifen cwKAS lila (angefangen bei dem für die Aminosäure G kodierenden Codon bis zum Stopcodon) wurde zunächst in Form einer Mutationskassette in den pGEM-T Easy Vektor (Promega, Heidelberg) kloniert. Dieses Konstrukt wird im folgenden als K3MK-pGEMT bezeichnet. Die Mutationskassette wurde mittels PCR-Reaktion unter Verwendung der Primer Fse5 und Xho3 konstruiert, wobei ein 280 Basenpaar langes Fragment amplifiziert wurde. Die Bedingungen für die PCR waren wie folgt: Anfängliche Denaturierung bei 95°C für 30 Sekunden, gefolgt von 25 Zyklen Annealing bei 55°C für 30 Sekunden, Strangverlängerung bei 72°C für 1 Minute und Denaturierung bei 95°C für 30 Sekunden. Der letzte DNA-Syntheseschritt wurde bei 72°C für eine Dauer von 5 Minuten durchgeführt. Die Amplifizierung des DNA Fragments wurde mit jeweils 50 pmol Primer, 1,3 U proof-reading Pfu-Polymerase, 2 ng pET15b-cwKASIIIa- Plasmid als Template und 200μM dNTPs in einem Gesamtvolumen von 50 μl durchgeführt. Das resultierende DNA-Fragment wurde durch Ligation in den pGEM- T Easy Sequencing- Vektor (Promega, Heidelberg, Deutschland) entsprechend dem Protokoll des Herstellers eingefügt. Die gesamte Sequenz der Muationskassette wurde durch DNA-Sequenzierung bestätigt.
Anschließend wurden drei punktmutierte KAS IIIs durch Austausch von
Asparagin zu Aspartat, Alanin zu Serin und Alanin zu Prolin erzeugt. Die Amplifizierung der überlappenden DNA Fragmente der KAS III-Mutanten wurde in zwei getrennten Reaktionen durchgeführt, die jeweils 2 ng K3MK-pGEMT-Plasmid als Template, 2,5 U proof-reading Pfu-Polymerase, 200μM dNTPs und 50 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl enthielten. Jeder
Reaktionsansatz enthielt einen flankierenden Primer (Fse5 oder Xho3) und den entsprechenden Mutations-Primer. Die Bedingungen für die PCR waren wie folgt: Denaturierung bei 94°C für 2 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für eine Minute und 72°C für eine Minute und einen letzten Verlängerungsschritt bei 72°C für 10 Minuten. Zur Erzeugung der Gesamtlänge der mutagenisierten DNAs wurden 2,0 ng der gelgereinigten überlappenden DNA- Fragmente in einer zweiten Reaktion mit jeweils 50 pmol der flankierenden Primer Fse5 und Xho3, 200 μM dNTPs und 2,5 U Pfu-Polymerase in einem Gesamtreaktionsvolumen von 50 μl verwendet. Die PCR-Bedingungen waren wie folgt: Denaturierung bei 94°C für 2 Minuten, gefolgt von 30 Zyklen von 94°C für 30 Sekunden, 50°C für eine Minute und 72°C für eine Minute und ein letzter Verlängerungsschritt bei 72°C für 10 Minuten. Die Sequenz der Mutanten- Konstrukte wurde durch DNA-Sequenzierung nach der Ligation in den pGEM-T Easy Sequencing- Vektor bestätigt. Für die Proteinexpression wurden die cDNAs der KAS IIIa-Mutanten in die Fsel- und Xhol-Restriktionsschnittstellen des pETl 5b- cwKAS Illa-Plasmids subkloniert.
Die Deletionsmutante von KAS III wurde durch vollständige Deletion des Aminosäuremotivs Gly357Asn358Thr359Ser360 der Wildtyp-KAS lila erhalten. Die Amplifizierung der überlappenden DNA-Fragmente wurde in zwei getrennten Reaktionen mit 2 ng K3MK-pGEMT-Plasmid als Template, 2,5 U proof-reading Pfu-Polymerase, 200μM dNTPs und 50 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Um die mutagenisierten überlappenden DNA-Fragmente zu amplifizieren, wurden die Primerpaare Fse5/Del3 und Xho3/Del5 verwendet. Die Bedingungen für die PCR waren wie folgt: Denaturierung bei 94°C für 2 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für eine Minute und 72°C für eine Minute und einen letzten Verlängerungsschritt bei 72°C für 10 Minuten. Das vollständige Mutanten-DNA-Fragment wurde in einer zweiten Reaktion mit 2,0 ng der gelgereinigten überlappenden DNA-Fragmente mit jeweils 50 pmol der Primer Fse5 und Xho3, 200 μM dNTPs und 2,5 U Pfu- Polymerase in einem Gesamtreaktionsvolumen von 50 μl erzeugt. Das resultierende DNA-Fragment wurde auf die gleiche Weise sequenziert und subkloniert wie vorstehend für die anderen Mutantenkonstrukte beschrieben. Beispiel 2: Expression und Reinigung von rekombinanten Wildtyp-KAS lila und KAS lila- Mutanten
Die mit einem N-terminalen His6-tag versehenen Wildtyp-KAS lila und KAS IIIa- Mutanten wurden im E. co/z-Stamm BL21(DE3)pLysS (Novagen, Madison, USA) exprimiert und durch Nickelaffinitäts-Chromatographie gereinigt. Die Reinheit der erzeugten KAS IIIs wurde durch SDS-PAGE beurteilt. Die KAS III-Konzentration wurde durch das Verfahren von Bradford (M.M. Bradford (1976), Anal. Biochem. 72, S. 248-254) bestimmt.
Beispiel 3: Enzymassays und Inhibierungsstudien
Die Aktivität von KAS lila wurde durch Inkorporation von radioaktivem Acetat aus [l-14C]Acetyl-CoA in Acetoacetyl-ACP untersucht (Brück et al. (1996), Planta 198, S. 271 -278). Der Reaktionsansatz (50 μl) enthielt 100 mM Natriumphosphat, pH 7,6, 10 μM [1-14C] Acetyl-CoA, 20 μM Malonyl-ACP und 2 ng der rekombinanten KAS lila bzw. der jeweiligen KAS IIIa-Mutante. Die Reaktion wurde durch die Zugabe des Enzyms gestartet und für eine Dauer von 5 Minuten bei 30°C durchgeführt.
Für die Inhibierungsstudien der Wildtyp-KAS lila wurde bezüglich der Substrate Acetyl-CoA und Malonyl-ACP unter Sättigungsbedingungen gearbeitet, bezüglich der Inhibitoren wurden nicht radioaktive Acyl-ACPs (C2-C16) oder Acyl-CoAs (C3- C12) mit variierenden Konzentrationen zugegeben. Die erhaltenen Daten wurden durch das Verfahren von Lineweaver-Burk analysiert. Für die Inhibierungsstudien der KAS IIIa-Mutanten mit Acyl-ACP wurden 10 μM nicht-radioaktives Dodecanoyl-ACP eingesetzt (siehe Abb. 3). Tabelle 2 zeigt die Ergebnisse der Inhibierung von Wildtyp-KAS lila durch Acyl- ACPs und Acyl-CoAs. Die KAS III-Aktivität wurde wie vorstehend beschrieben in Anwesenheit variierender Acyl-ACP-Konzentrationen (5-25 μM) oder Acyl-CoA- Konzentrationen (10-50 μM) gemessen.
Tabelle 2
Kettenlänge Acyl-ACPs Acyl-CoAs
Kohlenstoffatome Kj [μM]
2 2,16 ± 0,4 nicht bestimmt
3 nicht bestimmt 20,80 ± 0,51
4 2,9 ± 0,3 91,9 ± 0,9
6 8,0 ± 0,2 42,7 ± 0,3
8 4,1 ± 0,3 24,4 ± 0,6
10 4,1 ± 0,4 12,5 ± 0,6
12 0,4 ± 0,1 20,0 ± 0,7
14 4,0 ± 0,1 nicht bestimmt
16 1,3 ± 0,1 nicht bestimmt
Beispiel 4: Synthese der Acyl-ACPs in Pflanzenextrakten, die mit nicht regulierbarer KAS IIIa-Mutante Asn358Asp supplementiert wurden
Für Supplementierungsexperimente wurde eine FAS-Präparation aus C. lanceolata- Samen aus zellfreien Extrakten durch Ammoniumsulfatausfällung (0 bis 65 % Sättigung) gewonnen (Brück et al., supra). Die FAS-Präparation aus Rapssamen wurde nach MacKintosh et al. (1989, BBA 1002, 114-124) erhalten. Alle Präparationen wurden bei -70°C gelagert. Vor der Verwendung wurde ein Aliquot des aufgetauten Ansatzes in 1 ml 100 mM Natriumphosphat (pH 7,6) gelöst und zentrifugiert (10000 x g, 5 Minuten, 4°C), um jegliches unlösliches Material zu eliminieren.
Anschließend wurde in Präparationen von C. lanceolata-Samen und Rapssamen der Einfluß supplementierter KAS IIIa-Mutanten auf das Acyl-ACP-Muster durch die Inkorporation von [l-14C]Acetat aus [1-14C] Acetyl-CoA in Acyl-ACPs untersucht. Die Assays wurden wie von Schutt et al. (Planta 205 (1998), S. 263-268) beschrieben durchgeführt. Die Reaktion (200 μl) enthielt 100 mM Natriumphosphat (pH 7,6), 10 μM [l-14C]Acetyl-CoA, 20 μM Malonyl-CoA, 10 μM ACP aus E. coli, 1 mM NADH, 2 mM NADPH, 2 mM DTT, FAS-Präparation (0,205 μg Protein pro μl
Reaktionsansatz) und die affinitätsgereinigte KAS IIIa-Mutante Asn358Asp in einer Endkonzentration von 7,1 1 ng Protein pro μl Reaktionsansatz. Die Kontrollreaktionen wurden durch Zugabe von Wildtyp-KAS lila anstelle der Asn358Asp-Mutante und ohne Enzymsupplementierung durchgeführt. Zusätzliche Kontrollreaktionen wurden durch Zugabe von 10 μM Decanoyl-ACP zu den Reaktionsansätzen durchgeführt. Innerhalb von 30 Minuten wurden bei unterschiedlichen Zeitintervallen Proben (50 μl) entnommen, und die Reaktion wurde durch Ausfällung der Acyl-ACPs mit Trichloressigsäure bei einer Endkonzentration von 10 Vol.-% beendet. Die ausgefällten Acyl-ACPs wurden, wie bei Brück et al., supra, beschrieben, gewaschen, in 18,7 μl MES (pH 6,8) gelöst und durch 2,5 M und 5,0 M Harnstoff-PAGE nach Post-Beittenmiller et al. (1991, J. Biol. Chem. 266, 1858-1865) getrennt, auf Immobilon P (Millipore, Eschborn, Deutschland) übertragen und durch Autoradiographie wie bei Brück et al. (1996, supra) beschrieben sichtbar gemacht (siehe Abbildung 4). Die Verlängerungsprodukte wurden densitometrisch unter Verwendung eines Ultroscan XL-Geräts (Pharmacia, Freiburg, Deutschland) quantifiziert.
In Tabelle 3 ist die Gesamtanreicherung von FAS-Produkten durch die Präparationen aus C. lanceolata und Raps als Funktion des zugegebenen Enzyms gezeigt. Die Synthese von FAS-Produkten wurde wie vorstehend beschrieben durch den Einbau von [l-14C]Acetat und mittels eines Szintillationszählers gemessen.
Tabelle 3
FAS-Präparation Gesamtmenge an FAS-Produkten (bezogen auf pmol inkorporiertes
Acetat)
FAS FAS + wtKAS III FAS + Asn^Asp
C. lanceolata-Samen 158,0 ± 8,6 nicht bestimmt 184,4 ± 4,7 Raps-Samen 82,5 ± 7,3 85,1 ± 4,8 105,4 ± 5,1
Das erhaltene ACP-Muster ist in Tabelle 4 dargestellt. In Tabelle 4 sowie in
Abbildung 4 sind die Acylgruppen durch die Zahl an Kohlenstoffatomen : Zahl der Doppelbindungen definiert.
Tabelle 4
Figure imgf000032_0001
FAS-Präparation Acyl-ACP (mol %)
4:0 6:0 8:0 10:0 12:0 14:0 16:0 18:0
C. lanceolata-Samen 25,1 ±3,1 18,4 ±4,2 25,5 ± 4,9 14,6 ±3,9 9,3 ± 1,9 2,0 ± 0,6 2,7 ± 0,4 2,4 ± 0,9
C. lαnceolαtα-Samcn 32,8 ±4,7 48,6 ±6,1 20,3 ±4,1 2,3 ±0,6 2,0 ± 0,5 n.d. n.d. n.d. + Asn358Asp
Rapssamen 13,2 ±2,7 13,4 ±3,4 19,1 ±2,2 11,3 ±1,8 11,7 ± 1,7 11,1 ±2,3 14,4 ±3,6 5,8 ±1,1
Rapssamen + 14,8 ±1,5 14,5 ±2,8 18,1 ±2,8 11,9 ±2,3 12,3 + 2,3 11,6 ±2,7 12,6 ±4,1 4,2 ± 0,4 wtKASIII
Rapssamen + 17,3 ±2,3 19,6 ±3,1 23,7 ± 4,2 12,8 ±3,6 11,0 ±3,2 7,5 ±1,7 6,1 ± 1,8 2,0 ± 0,2 Asn358Asp n.d. = nicht detektiert
Die kinetischen Untersuchungen mit rekombinanter KAS lila aus C. wrightii ergaben, daß die Inhibierung dieses kondensierenden Enzyms durch Dodecanoyl- ACP nicht kompetitiv bezüglich Acetyl-CoA bzw. Malonyl-ACP ist (siehe Abbildung 2). Dies weist daraufhin, daß für das inhibitorische C12-ACP andere Bindungsstellen als für Acetyl-CoA und Malonyl-ACP vorliegen. Um die an der regulatorischen Region von KAS III beteiligten Aminosäuren zu identifizieren, wurde ein Aminosäuresequenz-Alignment von den erfindungsgemäßen sowie bekannten KAS HI-Sequenzen aus Pflanzen, Rotalge (Porphyra umbilicalis) und E. coli durchgeführt (Referenzen siehe unten im Zusammenhang mit Abbildung 1). Die Analyse der in Abbildung 1 dargestellten Primärstrukturen im Vergleich zeigt die Existenz einer hochkonservierten C-terminalen Region G NTSAAS an.
Die Deletion des gesamten Peptids Gly357Asn358Thr359Ser360 führte zu einem vollständigen Verlust der enzymatischen Aktivität. Untersuchungen der Sekundärstruktur dieser Mutante zeigten, daß dieser Aktivitätsverlust eher auf eine Veränderung der Gesamtstruktur im Vergleich zu der der aktiven Konformation der Wildtyp-KAS III als auf katalytische Eigenschaften dieses Motivs zurückzuführen ist.
Um den Beitrag bestimmter Aminosäuren an der regulatorischen Funktion zu untersuchen, wurden drei Mutanten Asn Asp, Ala Ser und Ala Pro erzeugt. Die Sekundärstrukturanalyse dieser Mutanten unter Verwendung von CD-Spektroskopie zeigte, daß die Spektren der Asn358Asp- und Ala361Ser-Mutanten im wesentlichen dieselben Spektren ergaben wie das der Wildtyp-KAS lila, während die Sekundärstruktur der Ala Pro-Mutante verändert war, was sich in einer verminderten kondensierenden Aktivität äußerte (siehe Abbildung 5).
Die Inhibierung der Asn358Asp- und Ala361Ser-Mutanten mit Dodecanoyl-ACP zeigten, daß die Mutanten nahezu überhaupt nicht durch dieses Acyl-ACP inhibiert wurden (siehe Abbildung 2). Die Mutanten behielten etwa 85% der ursprünglichen Aktivität in Gegenwart einer Sättigungskonzentration (10 μM) von Dodecanoyl-ACP bei.
Die kinetischen Daten zeigen, daß die rekombinante Wildtyp-KAS lila eine individuelle Bindungsstelle für das regulatorische Acyl-ACP aufweist, wobei die Bindung nicht kovalent erfolgt. Die Tatsache, daß die Asn358Asp- und Ala361Ser- Mutanten nicht durch Acyl-ACPs inhibiert werden, ist wahrscheinlich eine Folge der Änderung der Ladung und/oder Polarität der Seitenketten der entsprechenden Aminosäuren, wodurch das Andocken des Acyl-ACP behindert wird.
Die mit den FAS-Präparationen aus C. lanceolata- und Rapssamenextrakten erhaltenen Ergebnisse ergaben Unterschiede in der Gesamtanreicherung der FAS- Produkte als Funktion des supplementierten Enzyms (Tabelle 3). Die Supplementierung mit der Asn358Asp-Mutante führte zu einer 1,2-fachen Anreicherung an FAS-Produkten in C. lanceolata- und Rapssamenextrakten. Um nachzuweisen, ob dieser Effekt durch die KAS III-Aktivität, d.h. die Produktion von Butyryl-ACP, oder durch den Knockout einer regulatorischen Stelle des FAS- Enzymkomplexes begründet ist, wurden die Rapssamenextrakte mit derselben Menge an Wildtyp-KAS III wie im Fall der Mutante supplementiert. Dabei konnten keine bedeutsamen Unterschiede in der Gesamtmenge an FAS-Produkten verglichen mit der ohne Supplementierung beobachtet werden, was daraufhinweist, daß die Asn358Asp-Mutante einen Einfluß auf die Gesamt- Acyl-ACP-Synthese besitzt.
Der Zusatz der KAS IIIa-Mutante Asn358Asp im Überschuß zu Extrakten aus C. lanceolata-Samen und aus Rapssamen zeigte, daß die Mutante wie erwartet nicht nur die Synthese von C -ACP in beiden Extrakten erheblich stimulierte, sondern auch - im C. lαnceolαtα-Extrakt die Synthese von C -C6 Acyl-ACPs um 50% steigerte (auf Kosten mittelkettiger Acyl-ACPs, insbesondere Cio und C] ), - im Rapssamenextrakt die Synthese mittelkettiger Acyl-ACPs (C6-C10) ebenfalls um über 50% steigerte, hier auf Kosten der langkettigen Acyl-ACPs, insbesondere der CM- bis Cι8-Acyl-ACPs (siehe Tabelle 4).
Derartige Veränderungen in der Acyl-ACP-Zusammensetzung spiegeln die
Veränderungen in der Regulation und Steuerung der Fettsäurebiosynthese wider. Diese Veränderungen werden wahrscheinlich durch eine Änderung in dem stöchiometrischen Verhältnis einiger Acyl-ACPs hervorgerufen, was wiederum andere kondensierende Enzyme des FAS- Enzymkomplexes beeinflussen könnte.
Beispiel 5: Klonierung von KAS III cDNAs aus Cuphea lanceolata und Brassica napus
Aus Embryonen von sich entwickelnden Samen von Cuphea lanceolata und Brassica napus wurde gemäß Voetz et al. (1994, Plant Physiol. 106: 785 - 786) Gesamt-RNA isoliert. Die mRNA wurde unter Verwendung von Oligo-dT-Cellulose (Qiagen, Hilden, Deutschland) gemäß dem Protokoll des Herstellers extrahiert. Die cDNA-Sequenzen wurden mittels RT-PCR von mRNA-Präparationen mit Not I- dTι8-Primern (siehe Tabelle 5) unter Verwendung des "first Strand synthesis"-Kits (Pharmacia, Freiburg, Deutschland) erhalten. Die degenerierten Oligonukleotide 5a/3a bzw. 5b/3b basierend auf konservierten Bereichen der KAS III-kodierenden Gene (siehe Tabelle 5) wurden als Primer verwendet, um überlappende cDNA- Fragmente durch PCR zu amplifizieren (siehe Abb. 1).
Das PCR-Reaktionsgemisch enthielt 200 μM dNTPs, 100 pMol eines jeden Primers, 1,5 μl des cDNA-Pools, 2,5 U Taq DNA-Polymerase mit einem Gesamtvolumen von 50 μl. Das folgende Temperaturprogramm wurde verwendet: Anfängliche Denaturierung für 3 Min. bei 94°C, gefolgt von 35 Zyklen Denaturierung für 1 Min. bei 94°C, Annealing für 1 Min. bei 52°C und Verlängerung für 1 Min. bei 72°C, gefolgt von einem abschließenden Verlängerungsschritt von 10 Min. bei 72°C.
Die KAS III-DNA-Sequenz der resultierenden überlappenden 923 bp- und 1013 bp- Fragmente wurde durch automatische DNA-Sequenzierung und Alignment der abgeleiteten Aminosäuresequenzen mit bekannten KAS III-Proteinsequenzen verifiziert.
Sequenzinformationen über den verbleibenden noch unbekannten 3'-Bereich wurden durch 3'-RACE (Rapid Amplification of cDNA Ends) mit dem Not I-dT18-
Adapterprimer und clKAS Ill-sequenzspezifischen internen Primern, die von der aus den überlappenden cDNA-Fragmenten erhaltenen Sequenzinformation abgeleitet wurden, ermittelt.
Die PCR-Bedingungen für 3'-RACE waren wie folgt: 200 μM dNTPs, 40 pMol sequenzspezifischer Primer Cl-3'-RACE, 80 pMol Not I-dT ig- Adapterprimer, 5 μl cDNA-Pool, 5 U Taq DNA-Polymerase in einem Gesamtvolumen von 50 μl. Das Temperaturprogramm war wie folgt: anfängliche Denaturierung für 3 Min. bei 94°C, gefolgt von 35 Zyklen Denaturierung für 1 Min. bei 94°C, Annealing für 2 Min. bei 55°C und Verlängerung für 2 Min. bei 72°C, gefolgt von einem abschließenden Verlängerungsschritt von 10 Min. bei 72°C. Das resultierende Fragment wurde in einen Sequenzierungvektor kloniert und durch automatische DNA-Sequenzierung sequenziert.
Des weiteren wurde eine KAS III-cDNA aus Raps {Brassica napus) unter Verwendung derselben wie vorstehend für Cuphea lanceolata beschriebenen Strategie und derselben degenerierten Primerpaare (5a/3a und 5b/3b) für die Amplifizierung der überlappenden cDNA-Fragmente aus einem Raps-cDNA-Pool kloniert, mit der Abweichung eines Raps-sequenzspezifischen Primers (Bn-3'- RACE) für die 3'-RACE-PCR. Gemäß den aus den überlappenden Fragmenten und den 3'-RACE-Fragmenten erhaltenen Sequenzinformationen wurden cDNAs mit theoretisch vollständiger Länge, umfassend das Start- und Stopkodon, für clKAS III (siehe SEQ ID NO. 3) und bn KAS III (siehe SEQ ID NO. 1) ermittelt. Die cDNAs kodieren für ein
Polypeptid von 402 Aminosäuren im Fall von clKAS III (siehe SEQ ID NO. 4) und 404 Aminosäuren im Fall von bn KAS III (siehe SEQ ID NO. 2).
Für die heterologe Expression von cl KAS III und bn KAS III in einem E. coli pET 15b- Vektorsystem und weitere in vitro-Experimente mit dem rekombinanten Enzym wurde die das reife Protein (der Anfang des reifen Proteins wurde basierend auf einem Sequenzvergleich mit KAS III aus E.coli und P.umbilicalis festgelegt, siehe Abb. 1) kodierende cDNA durch PCR mit begleitender Einführung von 5'-Nde I- und 3'-Xho I-Restriktionsstellen für die Subklonierung amplifiziert.
Das PCR-Reaktionsgemisch enthielt 200 μM dNTPs, Primerpaare Cl 5'-Nde I/Cl 3'- Xho I und Bn 5'-Nde I/Bn 3'-Xho I (jeweils 50 pMol), 2 μl cDNA-Pool, 2,5 U proof- reading Pfu-DNA-Polymerase mit einem Gesamtvolumen von 50 μl. Das folgende Temperaturprogramm wurde verwendet: Anfängliche Denaturierung für 3 Min. bei 94°C, gefolgt von 35 Zyklen Denaturierung für 1 Min. bei 95°C, Annealing für 1 Min. bei 55°C und Verlängerung für 2 Min. bei 72°C und einem abschließenden Verlängerungsschritt von 10 Min. bei 72°C.
Die DNA-Sequenzierung der resultierenden 1023 bp- (cl KAS III) und 1026 bp- (bn KAS III)-PCR-Produkte zeigte, daß sie mit den entsprechenden Sequenzen der überlappenden DNA-Fragmente, die vorstehend beschrieben wurden, identisch sind. Beispiel 6: Klonierung und Mutagenese der cl KAS III cDNA
Als Ausgangsmaterial für die Herstellung von Vektorkonstrukten für die Pflanzentransformation mit mutagenisierter cl KAS III dienten zwei "Precursor"- Vektorkonstrukte, nämlich a) die volle Länge der Wildtyp-cDNA, kodierend für die Präsequenz und das reife Protein in einem Leserahmen und b) die entsprechende zielgerichtet mutagenisierte cDNA in voller Länge.
a) Konstruktion der cl KAS III cDNA in voller Länge einschließlich der Präsequenz
Da das Präpeptid für den korrekten Transport der cl KAS III in Plastide erforderlich ist, mußte es in Vektorkonstrukte, die für die Pflanzentransformation mit cl KAS III verwendet werden, integriert werden. Zu diesem Zweck wurde ein "chimäres" cl KAS III-Gen einschließlich der cl KAS Ill-Präsequenz durch präzise Genfusion basierend auf überlappender PCR gemäß Yon und Fried hergestellt (1989, Nucleic acid research 17: 4895).
In zwei getrennten Reaktionen wurden überlappende cDNA-Fragmente amplifiziert, und die PCR-Bedingungen waren wie folgt: 200 μd NTPs, Primerpaare clprae- 5/cloverl-3 bzw. cloverl-5/clctrm-3 (jeweils 50 pMol) (siehe Tabelle 5), 2 ng Template (das vorstehend beschriebene 1011 bp DNA-Fragment umfassend die cl KAS Ill-Präsequenz bzw. das die reife cl KAS III kodierende 1009 bp-Fragment) und 2,5 U proof-reading DNA-Polymerase. Die Amplifizierung der DNA erfolgte bei einer anfänglichen Denaturierung für 2 Min. bei 94°C, gefolgt von 30 Zyklen
Denaturierung für 0,5 Min., Annealing für 1 Min. bei 52°C und Verlängerung für 2,5 Min. bei 72°C und einem abschließenden Verlängerungsschritt von 10 Min. bei 72°C. Die resultierenden auf einer Länge von 6 Basenpaaren überlappenden 204 bp- und 1017 bp-Fragmente wurden als Template in einer zweiten PCR verwendet. Das Reaktionsgemisch enthielt 200 μM dNTPs, jeweils 50 pMol der flankierenden Primer clprae-5 und clcterm-3, jeweils 2 ng des in den ersten PCR-Reaktionen amplifizierten DNA-Fragments und 2,5 U proof-reading Pfu DNA-Polymerase in einem Endvolumen von 50 μl. Das durchgeführte Temperaturprogramm zur Amplifizierung der DNA in voller Länge war wie folgt: Anfängliche Denaturierung für 3 Min. bei 94°C, gefolgt von 30 Zyklen Denaturierung für 0,5 Min., Annealing für 1 Min. bei 55°C und Verlängerung für 3 Min. bei 72°C und einem abschließenden Verlängerungsschritt für 10 Min. bei 72°C.
Nach der Ligierung der resultierenden 1209 bp-DNA in einen Sequenzierungsvektor wurde die Nukleotidsequenz durch automatische DNA-Sequenzierung verifiziert.
b) Zielgerichtete Mutagenese der cl KAS III
Asparagin358 von cl KAS III (die Position 358 basiert auf der Proteinsequenz einschließlich des Präpeptids und entspricht Asparagin von reifer cw KAS III) wurde durch Aspartat mittels PCR-basierter zielgerichteter Mutagenese unter Verwendung des "Quick-Change"-Kits von Stratagene (Heidelberg, Deutschland) gemäß dem Protokoll des Herstellers ausgetauscht. Die gewünschte Mutation wurde unter Verwendung eines sense-Mutanten-Primers (Clmut-sense, siehe Tabelle 5) und eines antisense-Mutanten-Primers (Clmut-antisense, siehe Tabelle 5) eingeführt, und das gesamte Plasmid umfassend die mutagenisierte cl KAS III-cDNA wurde durch PCR amplifiziert.
Die Reaktionsbedingungen für die Amplifizierung waren wie folgt: 250 μM dNTPs, 100 ng Wildtyp-cl KAS III-Plasmid, jeweils 25 pMol sense- und antisense- Mutanten-Primer und 2,5 U proof-reading Pfu-DNA-Polymerase in einem Endvolumen von 50 μl. Das folgende optimierte Temperaturprogramm wurde verwendet: Anfängliche Denaturierung für 2 Min. bei 95°C, 30 Zyklen Denaturierung für 0,75 Min., Annealing für 1 Min. bei 67 °C, Verlängerung für 9 Min. bei 72°C.
Das methylierte Stammtemplate-Plasmid wurde mit Methyl-DNA-spezifischer Restriktionsendonuklease Dpn I für eine Stunde bei 37°C verdaut und das mit Einzelstrangbrüchen versehene (nicked) PCR-amplifizierte Muntanten-Plasmid, das unmethyliert ist und deswegen resistent gegen Dpn I- Verdauung ist, wurde verwendet, um kompetente E. co//'-Zellen zu transformieren.
Schließlich wurde die Sequenz der Mutanten-cl KAS III-cDNA durch automatische DNA-Sequenzierung verifiziert (siehe SEQ ID NO. 5). Die abgeleitete Aminosäuresequenz von cl KAS III N358D ist in SEQ ID NO. 6 gezeigt.
Tabelle 5: Für die PCR in den Beispielen 5 und 6 verwendete Primer-Sequenzen
Primer Sequenz a, b
Not I dTis 5'-AACTGGAAGAATTCGCGGCCGCAGGAAT-3'
5a 5 ' -ATGGCNAA YGCNTYNGGSTT-3 '
3a 5'-ATYCTCTGRTTNGCYTGRTG-3 '
5b 5 '-GAYGTNGAYATGGTNYTNATG-3 '
3b 5 ' -A YAATNGCNCCCC ANGT-3 '
Not I dT]8 adapter 5 ' -TTCCTGCGGCCGCGAATTCTTCC AGTT-3 '
Cl-3' RACE 5 '-CATAGCGATGGAGATGGGCAA-3
Bn-3'RACE 5 '-CATTCAGATGGCGATGGTCAG-3 '
Cl 5'-Nde I 5 '-C ATATGAGAGGATGC AAATTG-3 '
Cl 3'-Xho I 5'-CTCGAGTCATCCCCATCTGAC-3 '
Bn 5 '-Nde I 5 '-CATATGCGCGGTTGC AAGCTA-3 '
Bn 3'-Xho I 5 '-CTCGAGTCAACCCCACTTGAC-3 '
Clprae-5 5 '-ATGGCGAATGCTTTGGGGTT-3 '
Clcterm-3 5 '-TC ATCCCCATCTGAC AATGG-3 '
Cloverl-5 5 '-GTGAGTAGAGGATGCAAATTG-3 '
Cloverl-3 5 -TCCTCTACTCACAAACCTCGG-3 '
Clmut-sense 5'-CTTGGCGAATTATGGGGACACAAGCGCTGCATC
Clmut-antisense 5'-GATGCAGCGCTTGTGTCCCCATAATTCGCCAAG-
amutagenisierte Codons sind fett gedruckt bErkennungsstellen für Nde I- and Xho I- Restriktionsendonucleasen sind unterstrichen.
Abkürzungen: cl = Cuphea lanceolata cw = Cuphea wrightii bn = Brassica napus Beschreibung der Abbildungen:
Abbildung 1 : Sequenzvergleich der KAS Ill-Primärstrukturen, einschließlich der der Präpeptide.
Regulatorische Stellen sind fett hervorgehoben. Sequenzbereiche für die Konstruktion von PCR-Primern für die Klonierung von KAS III aus C. lanceolata und B. napus sind hellgrau hinterlegt. Zielbereiche für das Genetic Engineering von clKAS III sind dunkelgrau hinterlegt. Der Pfeil zeigt den Beginn des reifen Proteins und Sterne markieren das Stopkodon.
Die Referenzen und Accession Nos. für die jeweiligen Sequenzen sind, soweit bereits zum Stand der Technik gehörend, wie folgt:
Cuphea wrightii; GenBank Accession No.: U15935 (cwKAS lila); U15934 (cwKAS
Illb)
Slabaugh, M.B., Tai, H., Jaworski, J.G. and Knapp, S.J. (1995) cDNA clones encoding ß-ketoacyl-acyl carrier protein synthase III from Cuphea wrghtii. Plant Physiol. 108, 343-444.
Spinacia oleracea; EMBL Accession No.: Z22771
Tai, H. and Jaworski, J. G. (1993) 3-Ketoacyl-Acyl Carrier Protein Synthase III from Spinach {Spinacia oleracea) is not similar to other Condensing Enzymes of Fatty Acid Synthase. Plant Physiol. 103, 1361-1367.
Arabidopsis ; GenBank Accession No.: L31891
Tai, H., Post-Beittenmiller, D. and Jaworski, J.G. (1994) Cloning of a cDNA encoding 3-ketoacyl-acyl carrier protein synthase III from Arabidopsis. Plant Physiol. 108, 343-444. Allium sativum; GenBank Accession No.: U306000
Chen, J. and Post-Beittenmiller, D. (1996) Molecular cloning of a cDNA encoding 3- ketoacyl-acyl carrier protein synthase III from leek. Gene 182, 45-52.
Porphyra umbilicalis; GenBank Accession No.: 438804
Reith, M. (1993) A ß-ketoacyl-acyl carrier protein synthase III gene (fabH) is encoded on the chloroplast of the red alga Porphyra umbilicalis. Plant Mol. Biol. 21, 185-189
Escherichia coli, GenBank Accession No.: M77744
Tsay, J.T., Oh, W., Larson, T.J., Jackowski, S. and Rock, C. O. (1992) Isolation and characterization of the ß-ketoacyl-acyl carrier protein synthase-III gene (fabH) from Escherichia coli K-12. J. Biol. Chem. 267, 6807-6814
Abbildung 2: Kinetik der Inhibierung von Wildtyp-KAS III durch Dodecanoyl-ACP. Doppelt reziproke Auftragung der Konzentration von Acetyl-CoA (A) und Malonyl- ACP (B) gegen die Aktivität von KAS III in Abwesenheit (•) und Gegenwart von 1 μM (A), 2,5 μM (■) und 5 μM (T) Dodecanoyl-ACP. Der jeweilige Substratpartner wurde bei 10 μM [1-I4C] Acetyl-CoA und 20 μM Malonyl-ACP konstant gehalten. Die Enzymaktivität wurde durch Verfolgung der Inkorporation von [l-,4C]acetat aus [1-14C] Acetyl-CoA in ß-Ketobutyryl-ACP (n=8).
Abbildung 3: Inhibierung von KAS III-Mutanten durch Dodecanoyl-ACP. Die Enzymaktivität wurde durch Verfolgung der Inkorporation von [l-I4C]Acetat aus [1- 14C] Acetyl-CoA in ß-Ketobutyryl-ACP in Anwesenheit von 10 μM nichtradioaktivem Dodecanoyl-ACP bestimmt (n=4). Abbildung 4: Supplementierungsassays von FAS-Extrakten aus C. lanceolata (A) und Rapssamen (B). Die FAS-Reaktionen von den FAS-Präparationen wurden mit der KAS IIIa-Mutante Asn358Asp und 10 μM Decanoyl-ACP wie gezeigt supplementiert. Die Kontrollreaktionen wurden ohne Zugabe von exogenen KAS IIIs durchgeführt. Die Reaktionsprodukte wurden durch die Inkoφoration [l-14C]acetat aus [1-14C] Acetyl-CoA in Acyl-ACPs bestimmt. Proben wurden nach 20 min entnommen und durch Auftrennung der Acyl-ACPs in der 5,0 M-Harnstoff-PAGE analysiert, gefolgt von Elektroblotting auf Immobilon P und Visualisierung durch Autoradiographie. Die Acylreste sind durch die Zahl an Kohlenstoffatomen:Zahl der Doppelbindungen defeniert (n=3).
Abbildung 5: CD-Spektren der Wildtyp-KAS lila (•), Asn358Asp (■), Ala361Ser (A), Ala362Pro (O) und der Deletionsmutante (T). Auftragung der EUiptizität (θ) gegen die Wellenlänge (λ)

Claims

A n s p r ü c h e
1. DNA-Sequenz, die für ein Protein mit der enzymatischen Aktivität einer ß-Ketoacyl-ACP-Synthase III (KAS III) aus Brassica napus kodiert.
2. DNA-Sequenz nach Anspruch 1 , ausgewählt aus der Gruppe, bestehend aus a) DNA-Sequenzen, die eine Nukleotidsequenz umfassen, die die in SEQ ID NO. 2 angegebene Aminosäuresequenz oder Fragmente davon kodieren, b) DNA-Sequenzen, die die in SEQ ID No. 1 angegebene Nukleotidsequenz oder Teile davon umfassen, c) DNA-Sequenzen, die eine Nukleotidsequenz, die mit einem komplementären Strang der Nukleotidsequenz von a) oder b) hybridisiert, oder Teile dieser Nukleotidsequenz umfassen, d) DNA-Sequenzen, die eine Nukleotidsequenz, die zu einer Nukleotidsequenz von c) degeneriert ist, oder Teile dieser Nukleotidsequenz umfassen, e) DNA-Sequenzen, die ein Derivat, Analog oder Fragment einer Nukleotidsequenz von a), b), c) oder d) darstellen.
3. DNA-Sequenz, die für ein Protein mit der enzymatischen Aktivität einer ß-Ketoacyl-ACP-Synthase III (KAS III) aus Cuphea lanceolata kodiert.
4. DNA-Sequenz nach Anspruch 3, ausgewählt aus der Gruppe, bestehend aus a) DNA-Sequenzen, die eine Nukleotidsequenz umfassen, die die in SEQ ID NO. 4 angegebene Aminosäuresequenz oder Fragmente davon kodieren, b) DNA-Sequenzen, die die in SEQ ID No. 3 angegebene Nukleotidsequenz oder Teile davon umfassen, c) DNA-Sequenzen, die eine Nukleotidsequenz, die mit einem komplementären Strang der Nukleotidsequenz von a) oder b) hybridisiert, oder Teile dieser Nukleotidsequenz umfassen, d) DNA-Sequenzen, die eine Nukleotidsequenz, die zu einer Nukleotidsequenz von c) degeneriert ist, oder Teile dieser Nukleotidsequenz umfassen, e) DNA-Sequenzen, die ein Derivat, Analog oder Fragment einer Nukleotidsequenz von a), b), c) oder d) darstellen.
5. DNA-Sequenz, die für ein Protein mit der enzymatischen Aktivität einer ß-Ketoacyl-ACP-Synthase III (KAS III) kodiert, wobei das Protein nicht durch Acyl-ACPs regulierbar, insbesondere nicht inhibierbar ist.
6. DNA-Sequenz nach Anspruch 5, welche gegenüber der
Wildtypsequenz von KAS III durch mindestens eine Mutation in dem für das Aminosäuresequenzmotiv GNTSAAS kodierenden Bereich verändert ist.
7. DNA-Sequenz nach Anspruch 5 oder 6, worin die Mutation innerhalb des Aminosäuremotivs GNTSAAS von KAS III zu einem Austausch der
Aminosäure N zu D und/oder der Aminosäure A (erstes Alanin des Motivs) zu S führt.
8. DNA-Sequenz nach einem der Ansprüche 5 bis 7, die für ein Protein mit der enzymatischen Aktivität einer ß-Ketoacyl-ACP-Synthase III (KAS III) aus
Brassica napus, Cuphea lanceolata oder Cuphea wrigthii kodiert.
9. DNA-Sequenz nach einem der Ansprüche 5 bis 8, ausgewählt aus der Gruppe, bestehend aus a) DNA-Sequenzen, die eine Nukleotidsequenz umfassen, die die in SEQ ID NO. 6 angegebene Aminosäuresequenz oder Fragmente davon kodieren, b) DNA-Sequenzen, die die in SEQ ID No. 5 angegebene Nukleotidsequenz oder Teile davon umfassen, c) DNA- Sequenzen, die eine Nukleotidsequenz, die mit einem komplementären Strang der Nukleotidsequenz von a) oder b) hybridisiert, oder Teile dieser Nukleotidsequenz umfassen, d) DNA-Sequenzen, die eine Nukleotidsequenz, die zu einer Nukleotidsequenz von c) degeneriert ist, oder Teile dieser Nukleotidsequenz umfassen, e) DNA-Sequenzen, die ein Derivat, Analog oder Fragment einer Nukleotidsequenz von a), b), c) oder d) darstellen.
10. Rekombinantes Nukleinsäuremolekül, umfassend a) eine Promotorregion; b) operativ damit verknüpft eine DNA-Sequenz nach einem der Ansprüche 1 bis 9; und c) optional operativ damit verknüpft regulatorische Sequenzen, die als
Transkriptions-, Terminations- und/oder Polyadenylierungssignale in Pflanzenzellen dienen können.
11. Rekombinantes Nukleinsäuremolekül nach Anspruch 10, in dem die Nukleinsäuresequenz in Kombination mit einem in Pflanzen aktiven Promotor vorliegt.
12. Rekombinantes Nukleinsäuremolekül nach einem der Ansprüche 10 bis 11, in denen die Nukleinsäuresequenz in Kombination mit einem in Triacyglycerine synthetisierendem bzw. speicherndem Gewebe aktiven Promotor vorliegt.
13. Rekombinantes Nukleinsäuremolekül nach einem der Ansprüche 10 bis 12, in denen die Nukleinsäuresequenz zusätzlich in Kombination mit Enhancer- Sequenzen, für Signalpeptide kodierenden Sequenzen und/oder anderen regulatorischen Sequenzen vorliegt.
14. Vektor, umfassend eine DNA-Sequenz nach einem der Ansprüche 1 bis 9 oder ein rekombinantes Nukleinsäuremolekül nach einem der Ansprüche 10 bis 13.
15. Rekombinantes Protein mit der enzymatischen Aktivität einer ß-
Ketoacyl-ACP-Synthase III (KAS III), aus Brassica napus stammend.
16. Rekombinantes Protein nach Anspruch 15 mit der in SEQ ID No. 2 angegebenen Aminosäuresequenz.
17. Rekombinantes Protein mit der enzymatischen Aktivität einer ß- Ketoacyl-ACP-Synthase III (KAS III), aus Cuphea lanceolata stammend.
18. Rekombinantes Protein nach Anspruch 17 mit der in SEQ ID No. 4 angegebenen Aminosäuresequenz.
19. Rekombinantes Protein mit der enzymatischen Aktivität einer ß- Ketoacyl-ACP-Synthase III (KAS III), wobei das Protein nicht durch Acyl-ACPs regulierbar, insbesondere nicht inhibierbar ist.
20. Rekombinantes Protein nach Anspruch 19, aus Cuphea lanceolata stammend.
21. Rekombinantes Protein nach Anspruch 19, aus Cuphea wrightii oder Brassica napus stammend.
22. Rekombinantes Protein nach Anspruch 20 mit der in SEQ ID No. 6 angegebenen Aminosäuresequenz.
23. Transgene Pflanzen und Mikroorganismen, die eine DNA-Sequenz nach einem der Ansprüche 1 bis 9 oder ein rekombinantes Nukleinsäuremolekül nach einem der Ansprüche 10 bis 13 enthalten.
24. Pflanzen und Mikroorganismen nach Anspruch 23, die einen gegenüber Wildtyppflanzen bzw. Wildtypmikroorganismen veränderten Fettsäuregehalt und/oder eine gegenüber Wildtyppflanzen bzw. Wildtypmikroorganismen veränderte Fettsäurezusammensetzung aufweisen.
25. Pflanzen und Mikroorganismen nach Anspruch 23 oder 24, die einen gegenüber Wildtyppflanzen bzw. Wildtypmikroorganismen erhöhten Gehalt an mittelkettigen Fettsäuren aufweisen.
26. Pflanzen und Mikroorganismen nach einem der Ansprüche 23 bis 25, die einen gegenüber Wildtyppflanzen bzw. Wildtypmikroorganismen erhöhten Gehalt an kurzkettigen Fettsäuren aufweisen.
27. Pflanzen nach einem der Ansprüche 23 bis 26, bei denen es sich um Ölsaaten, insbesondere Raps, Sonnenblume, Sojabohne, Erdnuß, Kokos, Baumwolle, Lein, handelt.
28. Mikroorganismen nach einem der Ansprüche 23 bis 26, bei denen es sich um Bakterien und Algen handelt.
29. Verfahren zur Erhöhung des Gehalts an kurz- und/oder mittelkettigen Fettsäuren in Pflanzen, insbesondere in Triacylglycerine synthetisierenden und/oder speichernden Geweben, umfassend die Schritte: a) der Herstellung einer Nukleinsäuresequenz, welche für ein Protein mit der enzymatischen Aktivität einer KAS III kodiert, wobei das Protein nicht durch Acyl- ACPs regulierbar, insbesondere nicht inhibierbar ist, mindestens umfassend die folgenden Bestandteile, die in der 5 '-3 '-Orientierung aneinandergereiht sind:
- ein in Pflanzen aktiver Promotor,
- mindestens eine Nukleinsäuresequenz nach einem der Ansprüche 5 bis 9, und - gegebenenfalls ein Terminationssignal für die Termination der Transkription und die Addition eines Poly-A-Schwanzes an das entsprechende Transkript, sowie gegebenenfalls davon abgeleitete DNA Sequenzen; b) der Übertragung der Nukleinsäuresequenz aus a) auf pflanzliche Zellen und c) gegebenenfalls der Regeneration vollständig transformierter Pflanzen und, falls erwünscht, der Vermehrung der Pflanzen.
30. Verfahren zur Erhöhung des Gehalts an kurz- und/oder mittelkettigen Fettsäuren in Mikroorganismen, umfassend die Schritte: a) der Herstellung einer Nukleinsäuresequenz, welche für ein Protein mit der enzymatischen Aktivität einer KAS III kodiert, wobei das Protein nicht durch Acyl- ACPs regulierbar, insbesondere nicht inhibierbar ist, mindestens umfassend die folgenden Bestandteile, die in der 5 '-3 '-Orientierung aneinandergereiht sind:
- ein in dem jeweiligen Mikroorganismus aktiver Promotor,
- mindestens eine Nukleinsäuresequenz nach einem der Ansprüche 5 bis 9, und - gegebenenfalls ein Terminationssignal für die Termination der Transkription und die Addition eines Poly-A-Schwanzes an das entsprechende Transkript, sowie gegebenenfalls davon abgeleitete DNA Sequenzen; und b) der Übertragung der Nukleinsäuresequenz aus a) auf den jeweiligen Mikroorganismus.
31. Verfahren nach Anspruch 29 oder 30, bei dem zwischen Schritt a) und b) die Acyl-ACP-Bindungsstelle der ß-Ketoacyl-ACP-Synthase III durch in vivo- Mutation zerstört wird.
32. Verwendung von gemäß Anspruch 29 hergestellten Pflanzen bzw. Mikroorganismen zur Gewinnung von Fettsäuren und Ölen mit erhöhtem Gehalt an kurz- und/oder mittelkettigen Fettsäuren.
PCT/EP2001/000289 2000-01-12 2001-01-11 Verfahren zur erhöhung des gehalts an fettsäuren in pflanzen und mikroorganismen WO2001051647A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002399626A CA2399626A1 (en) 2000-01-12 2001-01-11 Method for increasing the content of fatty acids in plants and micro-organisms
AU37288/01A AU784223B2 (en) 2000-01-12 2001-01-11 Method for increasing the content of fatty acids in plants and micro-organisms
EP01909608A EP1246928A2 (de) 2000-01-12 2001-01-11 Verfahren zur erhöhung des gehalts an fettsäuren in pflanzen und mikroorganismen
US10/194,919 US20030145350A1 (en) 2000-01-12 2002-07-12 Method for increasing the content of fatty acids in plants and micro-organisms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10000978A DE10000978A1 (de) 2000-01-12 2000-01-12 Verfahren zur Erhöhung des Gehalts an Fettsäuren in Pflanzen und Mikroorganismen
DE10000978.6 2000-12-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/194,919 Continuation US20030145350A1 (en) 2000-01-12 2002-07-12 Method for increasing the content of fatty acids in plants and micro-organisms

Publications (2)

Publication Number Publication Date
WO2001051647A2 true WO2001051647A2 (de) 2001-07-19
WO2001051647A3 WO2001051647A3 (de) 2002-04-11

Family

ID=7627282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/000289 WO2001051647A2 (de) 2000-01-12 2001-01-11 Verfahren zur erhöhung des gehalts an fettsäuren in pflanzen und mikroorganismen

Country Status (6)

Country Link
US (1) US20030145350A1 (de)
EP (1) EP1246928A2 (de)
AU (1) AU784223B2 (de)
CA (1) CA2399626A1 (de)
DE (1) DE10000978A1 (de)
WO (1) WO2001051647A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894044A (zh) * 2006-05-19 2015-09-09 Reg生命科学有限责任公司 脂肪酸及其衍生物的制备
EP3112458A1 (de) * 2015-06-29 2017-01-04 Johann Wolfgang Goethe-Universität Frankfurt am Main Mikrobiologische herstellung von kurzen fettsäuren und verwendungen davon

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765661B (zh) * 2007-06-01 2014-08-06 索拉兹米公司 在微生物中生产油
US20090176272A1 (en) * 2007-09-12 2009-07-09 Kuehnle Agrosystems, Inc. Expression of nucleic acid sequences for production of biofuels and other products in algae and cyanobacteria
US20090148928A1 (en) * 2007-11-29 2009-06-11 Hackworth Cheryl A Heterotrophic Shift
US20090209015A1 (en) * 2008-02-15 2009-08-20 Ramesha Chakkodabylu S Compositions and methods for production of biofuels
JP6109475B2 (ja) 2008-11-28 2017-04-05 テラヴィア ホールディングス, インコーポレイテッド 従属栄養微生物における、用途に応じた油の生産
CA3039432A1 (en) 2010-05-28 2011-12-01 Corbion Biotech, Inc. Tailored oils produced from recombinant heterotrophic microorganisms
SG190154A1 (en) 2010-11-03 2013-06-28 Solazyme Inc Microbial oils with lowered pour points, dielectric fluids produced therefrom, and related methods
DK2465868T3 (en) 2010-12-17 2016-05-17 Neste Oyj Enhancement of lipid production
US9249436B2 (en) 2011-02-02 2016-02-02 Solazyme, Inc. Tailored oils produced from recombinant oleaginous microorganisms
KR20140033378A (ko) 2011-05-06 2014-03-18 솔라짐, 인코포레이티드 자일로오스를 대사시키는 유전자 조작된 미생물
US9719114B2 (en) 2012-04-18 2017-08-01 Terravia Holdings, Inc. Tailored oils
KR20150001830A (ko) 2012-04-18 2015-01-06 솔라짐, 인코포레이티드 맞춤 오일
US9809804B2 (en) 2013-01-23 2017-11-07 Iowa State University Research Foundation, Inc. Materials and methods for characterizing and using KASIII for production of bi-functional fatty acids
US10184140B2 (en) 2013-01-23 2019-01-22 Iowa State University Research Foundation, Inc. Materials and methods for production of bi-functional fatty acids in recombinant bacteria
US9567615B2 (en) 2013-01-29 2017-02-14 Terravia Holdings, Inc. Variant thioesterases and methods of use
US9816079B2 (en) 2013-01-29 2017-11-14 Terravia Holdings, Inc. Variant thioesterases and methods of use
US9783836B2 (en) 2013-03-15 2017-10-10 Terravia Holdings, Inc. Thioesterases and cells for production of tailored oils
US9290749B2 (en) 2013-03-15 2016-03-22 Solazyme, Inc. Thioesterases and cells for production of tailored oils
US10053715B2 (en) 2013-10-04 2018-08-21 Corbion Biotech, Inc. Tailored oils
ES2764273T3 (es) 2014-07-10 2020-06-02 Corbion Biotech Inc Nuevos genes de cetoacil ACP sintasa y uso de los mismos
US9765368B2 (en) 2014-07-24 2017-09-19 Terravia Holdings, Inc. Variant thioesterases and methods of use
CN107208103A (zh) 2014-09-18 2017-09-26 泰拉瑞亚控股公司 酰基‑acp硫酯酶及其突变体
EP3075848A1 (de) 2015-04-01 2016-10-05 Johann Wolfgang Goethe-Universität Frankfurt am Main Mikrobiologische herstellung von kurzen fettsäuren und verwendungen davon
JP2017029122A (ja) * 2015-08-06 2017-02-09 花王株式会社 脂質の製造方法
US10655150B2 (en) 2016-01-07 2020-05-19 Conagen Inc. Methods of making capsinoids by biosynthetic processes
AU2017299615A1 (en) 2016-07-19 2019-01-17 Conagen Inc. Method for the microbial production of specific natural capsaicinoids
WO2018119343A1 (en) * 2016-12-22 2018-06-28 Conagen Inc. Method for the microbial production of 8-methyl nonanoic acid
JP7025154B2 (ja) * 2017-09-11 2022-02-24 花王株式会社 脂質の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046776A2 (en) * 1997-04-11 1998-10-22 Calgene Llc Plant fatty acid synthases and use in improved methods for production of medium-chain fatty acids

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046776A2 (en) * 1997-04-11 1998-10-22 Calgene Llc Plant fatty acid synthases and use in improved methods for production of medium-chain fatty acids

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ABBADI AMINE ET AL: "Knockout of the regulatory site of 3-ketoacyl-ACP synthase III enhances short- and medium-chain acyl-ACP synthesis." PLANT JOURNAL, Bd. 24, Nr. 1, Oktober 2000 (2000-10), Seiten 1-9, XP000961631 ISSN: 0960-7412 *
ABBADI AMINE ET AL: "Reaction mechanism of recombinant 3-oxoacyl-(acyl-carrier-protein) synthase III from Cuphea wrightii embryo, a fatty acid synthase type II condensing enzyme." BIOCHEMICAL JOURNAL., Bd. 345, Nr. 1, 1. Januar 2000 (2000-01-01), Seiten 153-160, XP002173070 ISSN: 0264-6021 *
BRUECK FRITZI M ET AL: "In-vitro evidence for feed-back regulation of beta-ketoacyl-acyl carrier protein synthase III in medium-chain fatty acid biosynthesis." PLANTA (HEIDELBERG), Bd. 198, Nr. 2, 1996, Seiten 271-278, XP001015303 ISSN: 0032-0935 *
DATABASE EMBL SEQUENCE DATABASE [Online] 29. November 1999 (1999-11-29) FOURMANN, M., ET AL.: "amplified consensus genemarkers: tools designing for a genetic map of Arabidopsis-known-function genes in Brassica" XP002173073 *
DEHESH ET AL: "Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase from Cuphea hookeriana" PLANT JOURNAL,GB,BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, Bd. 9, Nr. 2, 1996, Seiten 167-172, XP002081430 ISSN: 0960-7412 *
LEONARD ET AL: "A Cuphea beta-ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases" PLANT JOURNAL,GB,BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, Bd. 13, Nr. 5, 1. M{rz 1998 (1998-03-01), Seiten 621-628, XP002081429 ISSN: 0960-7412 in der Anmeldung erw{hnt *
SLABAUGH MARY B ET AL: "CDNA clones encoding beta-ketoacyl-acyl carrier protein synthase III from Cuphea wrightii." PLANT PHYSIOLOGY (ROCKVILLE), Bd. 108, Nr. 1, 1995, Seiten 443-444, XP002173072 ISSN: 0032-0889 in der Anmeldung erw{hnt *
TAI HEEYOUNG ET AL: "3-Ketoacyl-acyl carrier protein synthase III from spinach (Spinacia oleracea) is not similar to other condensing enzymes of fatty acid synthase." PLANT PHYSIOLOGY (ROCKVILLE), Bd. 103, Nr. 4, 1993, Seiten 1361-1367, XP002173069 ISSN: 0032-0889 in der Anmeldung erw{hnt *
TAI HEEYOUNG ET AL: "Cloning of a cDNA encoding 3-ketoacyl-acyl carrier protein synthase III from Arabidopsis." PLANT PHYSIOLOGY (ROCKVILLE), Bd. 106, Nr. 2, 1994, Seiten 801-802, XP002173071 ISSN: 0032-0889 in der Anmeldung erw{hnt *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894044A (zh) * 2006-05-19 2015-09-09 Reg生命科学有限责任公司 脂肪酸及其衍生物的制备
EP3112458A1 (de) * 2015-06-29 2017-01-04 Johann Wolfgang Goethe-Universität Frankfurt am Main Mikrobiologische herstellung von kurzen fettsäuren und verwendungen davon
WO2017001333A1 (en) * 2015-06-29 2017-01-05 Johann Wolfgang Goethe-Universität Frankfurt am Main Microbiological production of short fatty acids and uses thereof

Also Published As

Publication number Publication date
EP1246928A2 (de) 2002-10-09
AU3728801A (en) 2001-07-24
DE10000978A1 (de) 2001-07-26
WO2001051647A3 (de) 2002-04-11
CA2399626A1 (en) 2001-07-19
US20030145350A1 (en) 2003-07-31
AU784223B2 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
EP1246928A2 (de) Verfahren zur erhöhung des gehalts an fettsäuren in pflanzen und mikroorganismen
DE69133283T2 (de) Dna, die für pflanzliche thioesterasen kodiert
DE60037735T2 (de) Pflanzen mit veränderten mehrfachungesättigten fettsäuren
DE69103753T3 (de) Nukleotidsequenz des gens für stearoyl-acp-desaturase aus soja.
DE69113635T2 (de) Nukleotidsequenzen der sojabohnen-acyl-acp-thioesterasegene.
DE60034224T2 (de) Nukleinsäuresequenzen für proteine die an der isoprenoid-synthese beteiligt sind
DE69832283T2 (de) Herstellung von thioesterasen aus pflanzen und offenbarung von thioesterasen aus pflanzen mit neuer substratspezifität
DE69020151T2 (de) Genetisch geformte neue pflanzenphenotypen.
DE69933391T2 (de) Diacylglyzerin-acyltransferase gen aus pflanzen
DE69636623T2 (de) Modifizierung von pflanzlichen lipiden und von samenölen unter verwendung von hefe-slc-genen
EP1222297B1 (de) Elongasepromotoren für gewebespezifische expression von transgenen in pflanzen
DE69333996T2 (de) Für flavonol-synthaseenzyme kodierende, genetische sequenzen und ihre verwendung
EP0716708A1 (de) Mittelkettenspezifische thioesterasen
DE60129011T2 (de) Nukleinsäuresequenzen für proteine, die an der tocopherolbiosynthese beteiligt sind
DE102005053318A1 (de) Verfahren zur Erhöhung des Gesamtölgehaltes in Ölpflanzen
EP1185670B1 (de) Verfahren zur erhöhung des fettsäuregehalts in pflanzensamen
EP1301610B1 (de) Verfahren zur beeinflussung des sinapingehalts in transgenen pflanzenzellen und pflanzen
WO2013034648A1 (de) Erhöhung des lipidgehalts in mikroalgen durch genetische manipulation einer tria-cylglycerin (tag)-lipase
DE19752647C1 (de) Reduktiion des Chlorophyllgehaltes in Ölpflanzensamen
DE69534849T2 (de) Herstellung von hydroxylierten fettsäuren in genetisch veränderten pflanzen
EP0782623A1 (de) Nukleinsäurefragment und daraus abgeleitete produkte
WO1995006733A2 (de) Glycerin-3-phosphat-dehydrogenase (gpdh)
EP1492872B1 (de) Expression von phospholipid:diacylglycerin-acyltransferase (pdat) zur herstellung von pflanzlichen speicherlipiden enthaltend mehrfach ungesättigte fettsäuren
EP1025248A1 (de) Reduktion des chlorophyllgehaltes in ölpflanzensamen
DE10026845A1 (de) Triacylglycerol-Lipasen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001909608

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 37288/01

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10194919

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2399626

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2001909608

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001909608

Country of ref document: EP