WO2001050153A1 - Abstandssensorvorrichtung - Google Patents

Abstandssensorvorrichtung Download PDF

Info

Publication number
WO2001050153A1
WO2001050153A1 PCT/DE2000/004618 DE0004618W WO0150153A1 WO 2001050153 A1 WO2001050153 A1 WO 2001050153A1 DE 0004618 W DE0004618 W DE 0004618W WO 0150153 A1 WO0150153 A1 WO 0150153A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance sensor
distance
sensors
sensor
control device
Prior art date
Application number
PCT/DE2000/004618
Other languages
English (en)
French (fr)
Other versions
WO2001050153A8 (de
Inventor
Juergen Hoetzel
Marco Knoblauch
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP00991564A priority Critical patent/EP1248956A1/de
Priority to US10/169,452 priority patent/US6784808B2/en
Publication of WO2001050153A1 publication Critical patent/WO2001050153A1/de
Publication of WO2001050153A8 publication Critical patent/WO2001050153A8/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/002Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for parking purposes, e.g. for warning the driver that his vehicle has contacted or is about to contact an obstacle
    • B60Q9/004Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for parking purposes, e.g. for warning the driver that his vehicle has contacted or is about to contact an obstacle using wave sensors
    • B60Q9/006Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for parking purposes, e.g. for warning the driver that his vehicle has contacted or is about to contact an obstacle using wave sensors using a distance sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/862Combination of radar systems with sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/28Timers or timing mechanisms used in protocols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/10Automatic or semi-automatic parking aid systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9314Parking operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9317Driving backwards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • the present invention relates to a distance sensor device, in particular as a component of a parking aid or reversing aid for a motor vehicle, with one or more distance sensors and a distance sensor control device for controlling the or the distance sensors via a respective signal line by means of a preferably quasi-digital time-analogous control pulse ,
  • the motor vehicle equipment products parking and reversing aid are generally known. These products consist of a number of up to 10 ultrasonic sensors, an associated control unit and one or more acoustic or opto-acoustic warning elements for the driver.
  • 5 illustrates a known ultrasound distance sensor device for a reversing aid with four ultrasound sensors US and a control device US-SG. Four signal lines as well as a voltage supply line and a ground line run from the control unit US-SG to a distributor V. A signal line as well as the voltage supply line and the ground line to the respective ultrasonic sensor US run from the distributor V.
  • the ultrasound sensors US are controlled via the respective signal lines via a respective bidirectional open collector interface.
  • the transmission is quasi-digital on the part of the amplitude under consideration, but analogous to time.
  • FIG. 6 shows a control pulse generated internally in the control unit for an ultrasonic sensor US of the known ultrasonic distance sensor device according to FIG. 5.
  • Time t is plotted on the x-axis and voltage amplitude U on the y-axis.
  • the duration of this control pulse, which triggers the measurement sequence in the ultrasonic sensor US, is ti - to (typically 300 ⁇ s). At the beginning of the time t 0 , the ultrasound sensor US therefore begins to transmit its ultrasound pulse.
  • Time t is plotted on the x-axis and voltage amplitude U on the y-axis.
  • a comparator (not shown) examines the signal voltage from the ultrasound transducer with regard to a sufficiently high reception amplitude, and the voltage is only evaluated as detection of an object from a certain minimum amplitude in order to mask out noise effects or interference effects.
  • the time between t 2 and t 3 indicates the mechanical oscillation of the sensor membrane as a result of the activation.
  • the time between t 4 and t 5 shows the ultrasonic energy reflected and detected by an object.
  • FIG. 8 shows the signals on the data line between control device US-SG and ultrasound sensor US as a whole for the known ultrasound distance sensor device according to FIG. 5.
  • Time t is plotted on the x-axis and voltage amplitude U on the y-axis.
  • the time interval between t 0 and t 4 represents the distance s between the reflecting object and the ultrasonic sensor US, which is determined in the control unit US-SG. The following applies:
  • the problem underlying the present invention therefore generally consists in creating a more flexible distance sensor device.
  • the distance sensor device according to the invention with the features of claim 1 has the advantage over the known solution approaches that it creates a function and interface compatible distance sensor device with the known ultrasound sensor and the corresponding requirement-specific function control for an expanded functionality via the transmission / reception line by the control device ,
  • the functional and interface identicality of the microwave sensor to the known ultrasonic sensors has the advantage that the control unit and the software for the parking and reversing aid can still be used with the microwave sensors for the current functionality, Further advantages are the possibility of mixing sensors with different physical properties or sensor principles and the possible identical construction of the microwave sensor for different applications with different quantity requirements.
  • Filtering of the measured values when using a microcontroller in the sensor can be carried out, as well as self-diagnosis of the control unit and remote diagnosis of the sensors.
  • the idea on which the present invention is based is that at least one of the distance sensors has two different working modes and a switch between the working modes can be carried out by varying the time duration and / or amplitude of the control pulse from the distance sensor control device.
  • the distance sensors have a plurality of ultrasound sensors and a plurality of microwave sensors, the ultrasound sensors preferably being sensors have one working mode and the microwave sensors have several working modes.
  • the ultrasound sensors preferably being sensors have one working mode and the microwave sensors have several working modes.
  • a microwave sensor with a functionally compatible ultrasonic sensor interface and a switchover option for different requirements can be implemented.
  • EMC electromagnetic compatibility
  • a bidirectional open collector interface is provided between the distance sensor control device and the respective distance sensor. This is a suitable, robust interface known from the ultrasonic sensor control units.
  • the different working modes include measuring range modes and / or signal transmission modes and / or test modes and / or service modes for setting / calibrating the sensor.
  • the working modes include a digital signal transmission mode.
  • the time-analog, preferably quasi-digital interface can be switched over to a bidirectional digital interface with a fixed data format and a fixed protocol by means of a control pulse from the control device.
  • the construction of a data transmission interface with low transmission rates using the sensor is advantageous.
  • the distance sensor control device is a control device common to all distance sensors, which is connected to a respective distance sensor via a single signal line.
  • the known ultrasonic sensor control device can thus be used for the expanded functionality according to the invention.
  • FIG. 1 shows a first embodiment of the distance sensor device according to the invention using microwave sensors with the previous ultrasonic sensor control unit for parking aid and reversing assistance applications;
  • FIG. 2 control pulses generated internally in the control device for a microwave sensor for the distance sensor device according to FIG. 1;
  • FIG. 3 shows a second embodiment of the distance sensor device according to the invention using microwaves and ultrasound sensors with the previous ultrasound sensor control device of parking aid and reversing assistance applications in mixed sensor configuration;
  • FIG. 5 shows a known ultrasonic distance sensor device for a reversing aid with four ultrasonic sensors and a control device
  • FIG. 6 shows a control pulse generated internally in the control device for an ultrasound sensor for the known ultrasound distance sensor device according to FIG.
  • FIG. 8 shows the signals on the data line between the control device and the ultrasonic sensor as a whole for the known ultrasonic distance sensor device according to FIG. 5.
  • FIG. 1 shows a first embodiment of the distance sensor device according to the invention using four microwave sensors ⁇ W with the previous ultrasonic sensor control device US-SG of parking aid and reversing assistance applications.
  • the microwave sensors ⁇ W are controlled via the respective signal lines for each sensor via a bidirectional single-core open collector line.
  • the above- Carrying takes place on the part of the considered amplitude quasi-digital, but time-analog.
  • a sequence control built into the respective microwave sensor ⁇ W or the microcontroller located in the respective microwave sensor ⁇ W checks the control impulse of the request on the transmission / reception line or signal line emitted by the control unit US-SG.
  • a request could also be a request for calibration, display of set parameters or for a reset.
  • FIG. 2 shows control pulses generated internally in the control device for a microwave sensor for the distance sensor device according to FIG. 1.
  • the interface properties are switched to support different functions of the microwave sensors ⁇ W by reducing or varying the duration of the activation pulse.
  • the first basic mechanism is a change in the activation duration while maintaining the measurement data transmission principle listed above.
  • the switchover of the microwave sensors ⁇ W to a measuring range from 0.2 m to 7 m with a measuring duration of 10 ms e measuring range cycle by a control duration of 200 ⁇ s corresponding to (ti '''-to') m Fig. 2 or Switching to a measuring range of 0.2 m to 1.5 m with a measuring range cycle time of 2 ms with a control duration of 100 ⁇ s can be called (t ⁇ '' ⁇ to ') m Fig. 2, (ti''''- t 0 ') in FIG. 2 additionally designates a measurement cycle for ultrasound simulation corresponding to 300 ⁇ s in the range 0.2 to 2 m.
  • the second basic mechanism is the switching of the time-analog, quasi-digital interface into a bidirectional digital interface with a fixed data format and a fixed protocol by means of a control pulse from the control unit US-SG.
  • This control pulse is shorter than the control pulses used for the functional switchover with time-analog measurement data transmission principle.
  • a duration of 52 ⁇ s corresponding to (ti'-t 0 ') has advantageously developed in FIG. 2, which corresponds to a data transmission rate of 19200 BAUD.
  • a request is triggered by the control device US-SG with a command word or a command word and data words, whereupon the microwave sensor ⁇ W with an acknowledgment or a
  • the US-SG control unit can switch the microwave sensor ⁇ W to another functionality by changing the activation duration n.
  • the command words or the command words with data words from the control device can, for. B. have the following content:
  • Measurement request • Measurement type setting (distance by pulse - echo - operation or speed by means of Doppler signal evaluation)
  • the acknowledgment or the acknowledgment with data words from the microwave sensor ⁇ W can e.g. B. have the following content:
  • FIG. 3 shows a second embodiment of the distance sensor device according to the invention using microwave and ultrasonic sensors with the previous ultrasonic sensor control unit of parking aid and reversing aid applications in a mixed sensor configuration. Different control pulse lengths are interpreted differently by the different sensors.
  • FIG. 4 shows control pulses generated internally in the control device for a microwave sensor for the distance sensor device according to FIG. 3.
  • the duration of an actuation pulse which triggers the measurement sequence in the ultrasonic sensor US in a measuring range of 0.2 m to 2 m is ti ** - to * .
  • the duration of a control pulse that triggers the measurement process in the microwave sensor ⁇ W in a measuring range from 0.2 m to 1.5 m is (ti * - t 0 * '
  • the sensor is always operated by the control unit with its interface in bidirectional digital mode, several sensors can be connected to one send / receive line. In this case, a clear sensor identifier must always be contained within the acknowledgment.
  • a sensor ID can be dispensed with for a point-to-point connection between sensor ⁇ -> control unit. You can also imagine a mixture of different modes for the microwave sensors (individually and as specified by the control unit).
  • the invention is also not limited to ultrasonic and microwave sensors, but can be applied to any sensors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Die vorliegende Erfindung schafft eine Abstandssensorvorrichtung, insbesondere als Bestandteil einer Einparkhilfe oder Rückfahrhilfe für ein Kraftfahrzeug, mit einem oder mehreren Abstandssensoren (US=Ultraschall, νW=Mikrowelle) und einer Abstandssensor-Steuereinrichtung (US-SG) zum Ansteueren des oder der Abstandssensoren (US, νW) über eine jeweilige Signalleitung mittels eines vorzugsweise quasidigitalen zeitanalogen Ansteuerimpulses. Mindestens einer der Abstandssensoren (US, νW) weist zwei verschiedene Arbeitsmodi auf. Durch ein Variation der Zeitdauer und/oder Amplitude des Ansteuerimpulses von der Abstandssensor-Steuereinrichtung (US-SG) ist eine Umschaltung zwischen den Arbeitsmodi durchführbar.

Description

AbstandssensorVorrichtung
STAND DER TECHNIK
Die vorliegende Erfindung betrifft eine Abstandssensorvor- richtung, insbesondere als Bestandteil einer Einparkhilfe oder Ruckfahrhilfe für ein Kraftfahrzeug, mit einem oder mehreren Abstandssensoren und einer Abstandssensor-Steuer- emrichtung zum Ansteuern des oαer der Abstandssensoren u- ber eine jeweilige Signalleitung mittels eines vorzugsweise quasidigitalen zeitanalogen Ansteueπmpulses .
Obwohl auf beliebige Abstandssensorvorrichtungen anwendbar, wie z.B. Abstandssensorvorrichtungen für Schiffe, Flugzeuge usw., werden die vorliegende Erfindung sowie die ihr zugrundeliegende Problematik in oezug auf eine Abstandssen- sorvorrichtung als Bestandteil einer Einparkhilfe oder Ruckfahrhilfe für ein Kraftfahrzeug erläutert.
Allgemein bekannt sind die Kraftfahrzeugausstattungsprodukte Einpark- und Ruckfahrhilfe. Diese Produkte bestehen aus einer Anzahl von bis zu 10 Ultraschallsensoren, einem zugehörigen Steuergerat und einem oder mehreren akustischen oder optoakustischen Warnelementen für den Fahrer. Fig. 5 illustriert eine bekannte Ultraschall-Abstands- sensorvorrichtung für eine Rückfahrhilfe mit vier Ultraschallsensoren US und einem Steuergerät US-SG. Vom Steuergerät US-SG laufen vier Signalleitungen sowie eine Span- nungsversorgungsleitung und eine Masseleitung zu einem Verteiler V. Vom Verteiler V laufen jeweils eine Signalleitung sowie die Spannungsversorgungsleitung und die Masseleitung zum jeweiligen Ultraschallsensor US.
Die Ansteuerung der Ultraschallsensoren US über die jeweiligen Signalleitungen erfolgt über eine jeweilige bidirektionale Open-Collektor-Schnittstelle. Die Übertragung erfolgt von Seiten der betrachteten Amplitude quasidigital, aber zeitanalog.
Fig. 6 zeigt einen intern im Steuergerät erzeugten Ansteu- erimpuls für einen Ultraschallsensor US der bekannten Ult- raschall-Abstandssensorvorrichtung nach Fig. 5. Auf der x- Achse ist die Zeit t aufgetragen und auf der y-Achse die Spannungsamplitude U.
Die Dauer dieses AnSteuerimpulses, der den Meßablauf im Ultraschallsensor US auslöst, beträgt ti - to (typischerweise 300 μs) . Mit Beginn der Zeit t0 beginnt der Ultra- schallsensor US also mit der Aussendung seines Ultraschallimpulses.
Fig. 7 zeigt die intern im Ultraschallsensor US erzeugte Signalantwort für einen Ultraschallsensor US der bekannten Ultraschall-Abstandssensorvorrichtung nach Fig. 5. Auf der x-Achse ist die Zeit t aufgetragen und auf der y-Acπse die Spannungsamplitude U.
Ein nicht dargestellter Komparator untersucht die Signalspannung vom Ultraschallwandler hinsichtlich einer ausreichend hohen Empfangsamplitude, und nur ab einer bestimmten Mindestamplitude wird die Spannung als Detektion eines Objektes gewertet, um Rauscheffekte oder Störeffekte auszu- blenden.
Die Zeit zwischen t2 und t3 zeigt das mechanische Schwingen der Sensormembran infolge der Ansteuerung an. Die Zeit zwischen t4 und t5 weist die von einem Objekt reflektierte und detektierte Ultraschallenergie aus.
Fig. 8 zeigt die Signale auf der Datenleitung zwischen Steuergerät US-SG und Ultraschallsensor US insgesamt für die bekannte Ultraschall-Abstandssensorvorrichtung nach Fig. 5. Auf der x-Achse ist die Zeit t aufgetragen und auf der y-Achse die Spannungsamplitude U.
Der zeitliche Abstand zwischen t0 und t4 repräsentiert die Entfernung s zwischen dem reflektierenden Objekt und dem Ultraschallsensor US, die im Steuergerät US-SG ermittelt wird. Es gilt:
s = cs * te/2 (1) mit
te = t4 - t0 ( 2 )
wobei cs die Schallgeschwindigkeit in Luft ist.
Bedauerlicherweise ist der Meßbereich der derzeit am Markt verfugbaren Ultraschallsensoren auf ca. 2 m begrenzt.
Die der vorliegenden Erfindung zugrundeliegende Problematik besteht daher allgemein darin, eine flexiblere Abstandssensorvorrichtung zu schaffen.
VORTEILE DER ERFINDUNG
Die erfindungsgemaße Abstandssensorvorrichtung mit den Merkmalen des Anspruchs 1 weist gegenüber den bekannten Lo- sungsansatzen den Vorteil auf, daß sie eine zum bekannten Ultraschallsensor funktions- und schnittstellenkompatible Abstandssensorvorrichtung und die entsprechende anforderungsspezifische Funktionssteuerung für eine erweiterte Funktionalitat über die Sende-/Empfangsleitung durch das Steuergerat schafft.
Die Funktions- und Schnittstellengleichheit des Mikrowellensensors zu den bekannten Ultraschallsensoren hat den Vorteil, daß das Steuergerat und die Software für die Einpark- und Ruckfahrhilfe unverändert auch mit Mikrowellensensoren für die derzeitige Funktionalitat einzusetzen ist, Weitere Vorteile sind die Möglichkeit der Mischung von Sensoren mit unterschiedlichen physikalischen Eigenschaften oder Sensorprinzipien und die mögliche Baugleichheit des Mikrowellensensors für unterschiedliche Anwendungen mit unterschiedlichen Stückzahlanforderungen.
Eine Meßbereichs- und Meßartumschaltung durch ein Steuergerät für die Anforderungen unterschiedlicher Funktionalitä- ten ist möglich.
Eine Filterung der Meßwerte bei Einsatz eines Mikrocontrol- lers im Sensor kann durchgeführt werden sowie eine Eigendiagnose des Steuergeräts und Ferndiagnose der Sensoren.
Die der vorliegenden Erfindung zugrundeliegende Idee besteht darin, daß mindestens einer der Abstandssensoren zwei verschiedene Arbeitsmodi aufweist und durch eine Variation der Zeitdauer und/oder Amplitude des AnSteuerimpulses von der Abstandssensor-Steuereinrichtung eine Umschaltung zwischen den Arbeitsmodi durchführbar ist.
In den Unteransprüchen finden sich vorteilhafte Weiterbildungen und Verbesserungen der in Anspruch 1 angegebenen Ab- Standssensorvorrichtung.
Gemäß einer bevorzugten Weiterbildung weisen die Abstandssensoren mehrere Ultraschallsensoren und mehrere Mikrowellensensoren aufweisen, wobei vorzugsweise die Ultraschall- sensoren einen Arbeitsmodus und die Mikrowellensensoren mehrere Arbeitsmodi aufweisen. Dies entspricht einer Erweiterung der bekannten Ultraschallsensorvorrichtung auf Mikrowellensensoren, wobei letztere sich besonders für eine Modusumschaltung eignen. So ist also ein Mikrowellensensor mit einer funktionskompatiblen Ultraschallsensorschnittstelle und einer Umschaltmöglichkeit für verschiedene Anforderungen realisierbar. Hierdurch können im Mikrowellensensor die Anforderungen für beispielsweise schnellere Meß- zyklen, höhere Reichweiten, Überwachung eines Entfernungsabschnittes, Ermittlung der Relativgeschwindigkeit, Datenübertragung oder starke EMV - Einstrahlung (EMV = elektromagnetische Verträglichkeit) durch die Steuereinrichtung umgeschaltet werden. Die hardwaremäßige Schnittstelle zur Nachbildung eines Ultraschallsensors für ein Ultraschallsteuergerät kann unverändert bleiben.
Gemäß einer weiteren bevorzugten Weiterbildung ist zwischen der Abstandssensor-Steuereinrichtung und dem jeweiligen Ab- standssensor eine bidirektionale Open-Kollektor-Schnitt- stelle vorgesehen. Dies ist eine geeignete, robuste und von den Ultraschallsensor-Steuergeräten bekannte Schnittstelle.
Gemäß einer weiteren bevorzugten Weiterbildung umfassen die verschiedenen Arbeitsmodi Meßbereichsmodi und/oder Signalübertragungsmodi und/oder Testmodi und/oder Servicemodi zum Einstellen/Kalibrieren des Sensors. Gemäß einer weiteren bevorzugten Weiterbildung umfassen die Arbeitsmodi einen digitalen Signalübertragungsmodus. So läßt sich eine Umschaltung der zeitanalogen, vorzugsweise quasidigitalen Schnittstelle in eine bidirektionale digitale Schnittstelle mit festem Datenformat und festgelegtem Protokoll durch einen Ansteuerimpuls vom Steuergerät realisieren. Insbesondere der Aufbau einer Datenübertragungsschnittstelle niedriger Übertragungsraten mit dem Sensor ist von Vorteil.
Gemäß einer weiteren bevorzugten Weiterbildung ist die Ab- standssensor-Steuereinrichtung ein für alle Abstandssensoren gemeinsames Steuergerät, welches über eine einzige Signalleitung mit einem jeweiligen Abstandssensor verbunden ist. So kann das bekannte Ultraschallsensor-Steuergerät für die erfindungsgemäße erweiterte Funktionalität verwendet werden.
ZEICHNUNGEN
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Es zeigen:
Fig. 1 eine erste Ausführungsform der erfindungsgemäßen Abstandssensorvorrichtung unter Nutzung von Mikrowellensensoren mit dem bisherigen Ultraschall- sensor-Steuergerat von Einparkhilfe- und Ruck- fahrhilfeanwendungen;
Fig. 2 intern im Steuergerat erzeugte AnSteuerimpulse für einen Mikrowellensensor für die Abstandssensorvorrichtung nach Fig. 1;
Fig. 3 eine zweite Ausfuhrungsform der erfmdungsgemaßen Abstandssensorvorrichtung unter Nutzung von Mik- rowellen- und Ultraschallsensoren mit dem bisherigen Ultraschallsensor-Steuergerat von Einparkhilfe- und Ruckfahrhilfeanwendungen in gemischter Sensorbestückung;
Fig. 4 intern im Steuergerat erzeugte Ansteuerimpulse für einen Mikrowellensensor für die Abstandssensorvorrichtung nach Fig. 3 ;
Fig. 5 eine bekannte Ultraschall-Abstandssensorvorrich- tung für eine Ruckfahrhilfe mit vier Ultraschallsensoren und einem Steuergerat;
Fig. 6 einen intern im Steuergerat erzeugten Ansteuerim- puls für einen Ultraschallsensor für die bekannte Ultraschall-Abstandssensorvorrichtung nach Fig.
5;
Fig. 7 die intern im Ultraschallsensor US erzeugte Signalantwort für einen Ultraschallsensor US der be- kannten Ultraschall-Abstandssensorvorrichtung nach Fig. 5; und
Fig. 8 die Signale auf der Datenleitung zwischen Steuer- gerat und Ultraschallsensor insgesamt für die bekannte Ultraschall-Abstandssensorvorrichtung nach Fig. 5.
BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELE
In den Figuren bezeichnen gleiche Bezugszeichen gleiche o- der funktionsgleiche Elemente.
Fig. 1 zeigt eine erste Ausführungsform der erfindungsgema- ßen Abstandssensorvorrichtung unter Nutzung von vier Mikrowellensensoren μW mit dem bisherigen Ultraschallsensor- Steuergerät US-SG von Einparkhilfe- und Ruckf hrhilfeanwendungen .
Vom Steuergerät US-SG laufen vier Signalleitungen sowie eine Ξpannungsversorgungsleitung und eine Masseleitung zu einem Verteiler V. Vom Verteiler V laufen jeweils eine Signalleitung sowie die Spannungsversorgungsleitung und die Masseleitung zum jeweiligen Mikrowellensensor μW.
Die Ansteuerung der Mikrowellensensoren μW über die jeweiligen Signalleitungen erfolgt für jeden Sensor über eine bidirektionale einadrige Open-Kollektor-Leitung. Die Über- tragung erfolgt von Seiten der betrachteten Amplitude quasidigital, aber zeitanalog.
Eine im jeweiligen Mikrowellensensor μW eingebaute Ab- laufSteuerung oder der sich im jeweiligen Mikrowellenser.sor μW befindende MikroController überprüft den vom Steuergerät US-SG abgegebenen Ansteuerimpuls der Anforderung auf der Sende-/Empfangsleitung bzw. Signalleitung. Solch eine Anforderung könnte auch eine Anforderung zur Kalibrierung, Darstellung eingestellter Parameter oder zum Reset sein.
Hat er die Form und Dauer des AnSteuerimpulses eines Steuergerätes für Ultraschallsensoren, so bildet er die Schnittstelle für Ultraschallsensoren nach. Der Sensor startet die Entfernungsmessung und simuliert das typische Nachschwingen des Ultraschallsensors auf der Sende-/ Empfangsleitung. Ist ein Objekt im Meßbereich, so wird die Zeit t4 aus der gemessenen Entfernung und der Festlegung, t0 = 0 = Beginn der Meßanforderung, nach den obigen Formeln (1) und (2) berechnet. Zum Zeitpunkt t4 wird die Sende-/ Empfangsleitung vom Sensor für eine vorher eingestellte Dauer, die ein sicheres Detektieren des Empfangssignals durch das Ultraschallsteuergerät ermöglicht, auf Low bzw. auf Erkennung eines Hindernisses geschaltet. Werden im De- tektionsbereich mehrere Hindernisse in unterschiedlicher. Entfernungen detektiert, so wird die Entfernungsberechnung und Hindernisübertragung mehrfach nach dem eingangs dargestellten Schema durchgeführt. Fig. 2 zeigt intern im Steuergerat erzeugte Ansteueπmpulse für einen Mikrowellensensor für die Abstandssensorvorrichtung nach Fig. 1.
Die Umschaltung des Schnittstelleneigenschaften zur Unter- stutzung unterschiedlicher Funktionalitaten der Mikrowellensensoren μW erfolgt nun durch Verringerung bzw. Variation der zeitlichen Dauer des AnSteuerimpulses .
Besonders zweckmäßig haben sich dabei zwei Grundmecnanismen herausgebildet .
Der erste Grundmechanismus ist eine Veränderung der Ansteu- erdauer bei Beibehaltung des oben aufgeführten Meßdaten- ubertragungsprmzips .
Als Beispiel soll hier die Umschaltung der Mikrowellensensoren μW auf einen Meßbereich von 0,2 m bis 7 m mit einer Meßdauer von 10 ms e Meßbereichszyklus durch eine Ansteuerdauer von 200 μs entsprechend (ti'''- to') m Fig. 2 oder die Umschaltung in einen Meßbereich von 0,2 m bis 1,5 m mit einer Meßbereichszyklenzeit von 2 ms bei einer Ansteuerdauer von 100 μs entsprechend (tι' '~ to') m Fig. 2 genannt werden, (ti''''- t0') in Fig. 2 bezeichnet zusätzlich einen Meßzyklus zur Ultraschallsimulation entsprechend 300 μs im Bereich 0,2 bis 2 m. Der zweite Grundmechanismus ist αie Umschaltung der zeitanalogen, quasidigitalen Schnittstelle in eine bidirektionale digitale Schnittstelle mit festem Datenformat und festgelegtem Protokoll durch einen Ansteuerimpuls vom Steu- ergerat US-SG. Dieser Ansteuerimpuls ist kurzer als die für die funktionale Umschaltung mit zeitanalogem Meßdaten- ubertragungsprmzip verwendeten AnSteuerimpulsen . Vorteilhaft hat sich eine Dauer von 52 μs entsprechend (ti'- t0') in Fig. 2 herausgebildet, was einer Datenübertragungsrate von 19200 BAUD entspricht.
Im festgelegten Datenformat und Protokoll wird eine Anforderung durch das Steuergerat US-SG mit einem Befehlswort oder einem Befehlswort und Datenwortern ausgelost, worauf der Mikrowellensensor μW m t einer Quittierung oder einer
Quittierung mit Datenwortern antworten muß. Beim Reset wird allerdings ausnahmsweise keine Quittierung vorgesehen sein.
Das Steuergerat US-SG kann nach jedem Zyklus (z.B. Befehls- wort vom Steuergerat, Quittierung mit Datenwortern vom Sensor usw. ) den Mikrowellensensor μW durch Veränderung der Ansteuerdauer n eine andere Funktionalitat umschalten.
Die Befehlworte oder die Befehlsworte mit Datenwortern vom Steuergerat können z. B. folgende Inhalte haben:
• Sensormodeauswahl
• Meßaufforderung • Meßarteinstellung (Entfernung durch Puls - Echo - Betrieb oder Geschwindigkeit mittels Dopplersignalauswer- tung)
• Meßbereichseinstellung • Diagnoseaufforderung
• Zeitabgleich für Triangulation und permanenten Empfang
• reiner permanenter Empfang
• Sendung einer Impulsfolge
• Kalibrierung • Reset
Die Quittierung oder die Quittierung mit Datenwörtern vom Mikrowellensensor μW können z. B. folgende Inhalte haben:
• Sensorkennung, Anzahl der Datenwörter und Entfernung zu den nächsten Hindernissen
• Sensorkennung, Anzahl der Datenwörter, Entfernung und Geschwindigkeit der nächsten Hindernisse
• Sensorkennung und Ergebnis Sensordiagnose • Sensorkennung und Umschaltung auf Empfangsmodus
• Sensorkennung und Datenwort einer Impulsfolge
Fig. 3 zeigt eine zweite Ausführungsform der erfindungsgemäßen Abstandssensorvorrichtung unter Nutzung von Mikrowel- len- und Ultraschallsensoren mit dem bisherigen Ultraschallsensor-Steuergerät von Einparkhilfe- und Rückfahrhil- feanwendungen in gemischter Sensorbestückung. Hier werden unterschiedliche Ansteuerimpulslängen von den unterschiedlichen Sensoren unterschiedlich interpretiert.
Fig. 4 zeigt beispielhaft intern im Steuergerät erzeugte Ansteuerimpulse für einen Mikrowellensensor für die Abstandssensorvorrichtung nach Fig. 3.
Die Dauer eines Ansteuerimpulses, der den Meßablauf im Ult- raschallsensor US in einem Meßbereich von 0,2 m bis 2 m auslöst, beträgt ti** - to*.
Die Dauer eines Ansteuerimpulses, der den Meßablauf im Mikrowellensensor μW in einem Meßbereich von 0,2 m bis 1,5 m auslöst, beträgt (ti*- t0 * '
Obwohl die vorliegende Erfindung anhand bevorzugter Ausführungsbeispiele vorstehend beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Weise modifizier- bar.
Wird der Sensor vom Steuergerät immer mit seiner Schnittstelle im bidirektionalen digitalen Modus gefahren, so sind mehrere Sensoren an einer Sende-/ Empfangsleitung an- schließbar. In diesem Fall muß immer innerhalb der Quittierung eine eindeutige Sensorkennung enthalten sein. Auf eine Sensorkennung kann bei einer Punkt zu Punkt - Verbindung Sensor <-> Steuergerät verzichtet werden. Ebenfalls kann man sich eine Mischung unterschiedlicher Modi für die Mikrowellensensoren (einzeln und nach Vorgabe durch das Steuergerät) vorstellen.
Auch ist die Erfindung nicht auf Ultraschall- und Mikrowellensensoren beschränkt, sondern auf beliebige Sensoren anwendbar.

Claims

PATENTANSPRÜCHE
1. Abstandssensorvorrichtung, insbesondere als Bestandteil einer Einparkhilfe oder Ruckfahrhilfe für ein Kraft- fahrzeug, mit:
einem oder mehreren Abstandssensoren (US, μW) ; und
einer Abstandssensor-Steuereinrichtung (US-SG) zum Ansteu- ern des oder der Abstandssensoren (US, μS) über eine jeweilige Signalleitung mittels eines vorzugsweise quasidigitalen zeitanalogen Ansteuerimpulses;
dadurch g e k e n n z e i c h n e t , daß
mindestens einer der Abstandssensoren (US, μW) zwei oder mehr verschiedene Arbeitsmodi aufweist; und
durch eine Variation der Zeitdauer und/oder Amplitude des Ansteuerimpulses von der Abstandssensor-Steuereinrichtung
(US-SG) eine Umschaltung zwischen den Arbeitsmodi durchführbar ist.
2. Abstandssensorvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Abstandssensoren (US, μW) mehrere Ultraschallsensoren (US) und mehrere Mikrowellensensoren
(μW) aufweisen, wobei vorzugsweise die Ultraschallsensoren (US) einen Arbeitsmodus und die Mikrowellensensoren (μW) mehrere Arbeitsmodi aufweisen.
3. Abstandssensorvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zwischen der Abstandssensor- Steuereinrichtung (US-SG) und dem jeweiligen Abstandssensor (US, μW) eine bidirektionale Open-Kollektor-Schnittstelle vorgesehen ist.
4. Abstandssensorvorrichtung nach einem der vorhergehen- den Ansprüche, dadurch gekennzeichnet, daß die verschiedenen Arbeitsmodi umfassen: Meßbereichsmodi und/oder Signalübertragungsmodi und/oder Testmodi und/oder Servicemodi zum Einstellen/Kalibrieren des Sensors.
5. Abstandssensorvorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Arbeitsmodi einen digitalen Signalübertragungsmodus umfassen.
6. Abstandssensorvorrichtung nach einem der vorhergehen- den Ansprüche, dadurch gekennzeichnet, daß die Abstandssensor-Steuereinrichtung (US-SG) ein für alle Abstandssensoren (US, μW) gemeinsames Steuergerät ist, welches über eine einzige Signalleitung mit einem jeweiligen Abstandssensor (US, μW) verbunden ist
PCT/DE2000/004618 1999-12-30 2000-12-22 Abstandssensorvorrichtung WO2001050153A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00991564A EP1248956A1 (de) 1999-12-30 2000-12-22 Abstandssensorvorrichtung
US10/169,452 US6784808B2 (en) 1999-12-30 2000-12-22 Distance sensor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19963755A DE19963755A1 (de) 1999-12-30 1999-12-30 Abstandssensorvorrichtung
DE19963755.5 1999-12-30

Publications (2)

Publication Number Publication Date
WO2001050153A1 true WO2001050153A1 (de) 2001-07-12
WO2001050153A8 WO2001050153A8 (de) 2001-10-04

Family

ID=7934983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004618 WO2001050153A1 (de) 1999-12-30 2000-12-22 Abstandssensorvorrichtung

Country Status (4)

Country Link
US (1) US6784808B2 (de)
EP (1) EP1248956A1 (de)
DE (1) DE19963755A1 (de)
WO (1) WO2001050153A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1544638A1 (de) * 2003-12-16 2005-06-22 Robert Bosch Gmbh Abstandsmessvorrichtung zur Steuerung

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10148202C1 (de) * 2001-09-28 2003-03-13 Audi Ag Vorrichtung und Verfahren zur Bestimmung der Längsneigung eines Fahrzeugs und zur Leuchtweitenregulierung
DE10259947A1 (de) * 2002-12-20 2004-07-01 Robert Bosch Gmbh Verfahren und Anordnung zur Auswertung von Signalen oder Daten eines Objektdetektionssystems
DE10343175A1 (de) * 2003-09-18 2005-04-14 Robert Bosch Gmbh Verfahren zur Abstandsmessung und Messeinrichtung hierzu
US8665325B2 (en) 2003-10-08 2014-03-04 Qwest Communications International Inc. Systems and methods for location based image telegraphy
DE10354290A1 (de) * 2003-11-20 2005-06-02 Daimlerchrysler Ag Fahrspurvorrichtung, Auswahlvorrichtung und Verfahren zur Ermittlung der Fahrspur eines Fahrzeugs
TWI227600B (en) * 2003-12-15 2005-02-01 Sunplus Technology Co Ltd System for real-time detecting moving object status and the method thereof
US7412905B1 (en) 2004-05-31 2008-08-19 Richard Anthony Bishel Paddle sensor
DE102004041878B4 (de) 2004-08-30 2010-01-21 Continental Automotive Gmbh Verfahren zur Eigendiagnose eines Systems
DE102004051963A1 (de) * 2004-10-25 2006-05-04 Robert Bosch Gmbh Verfahren zur Fahrerunterstützung
US20060287829A1 (en) * 2005-06-15 2006-12-21 Dimitri Pashko-Paschenko Object proximity warning system
DE102005059907A1 (de) * 2005-12-15 2007-06-21 Robert Bosch Gmbh Ultraschallsensor
DE102007029959A1 (de) 2007-06-28 2009-01-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erfassung einer Umgebung
DE102007032698B3 (de) 2007-07-13 2008-09-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Ermittlung eines Anzeigebildes
DE102007045561B4 (de) 2007-09-24 2018-02-15 Robert Bosch Gmbh Verfahren zum Betrieb eines Fahrerassistenzsystems
US7772991B2 (en) * 2008-01-09 2010-08-10 Ford Global Technologies, Llc Accident avoidance during vehicle backup
US20090254260A1 (en) * 2008-04-07 2009-10-08 Axel Nix Full speed range adaptive cruise control system
DE102008045190A1 (de) * 2008-08-30 2010-03-04 Valeo Schalter Und Sensoren Gmbh Verfahren zur Steuerung von Sensoren an einem Fahrzeug
US20100188932A1 (en) * 2009-01-28 2010-07-29 Darwin Mitchel Hanks Low Power Sensor System
CN102043152B (zh) * 2009-10-10 2012-11-21 建兴电子科技股份有限公司 超音波感测装置与应用于其上的控制方法
DE102012018346A1 (de) 2012-09-17 2014-03-20 Volkswagen Aktiengesellschaft Sensorsystem für ein Fahrzeug
PL2743399T3 (pl) * 2012-12-14 2016-03-31 Voegele Ag J Maszyna budowlana z regulującym systemem pomocniczym dla jednostki sensorowej
DE102014106179B4 (de) * 2014-05-02 2015-12-03 Coligen (China) Corp. Parkdistanzkontrolle mit reduzierter elektromagnetischer Strahlung
CN105365695B (zh) * 2015-08-31 2018-03-02 珠海上富电技股份有限公司 泊车、盲区及后备箱开启三合一的检测系统及检测方法
CN106226771A (zh) * 2016-08-31 2016-12-14 兰州交通大学 一种定位系统以及方法
GB2584641B (en) 2019-06-04 2021-06-16 Ford Global Tech Llc Parking assistance systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3420004A1 (de) * 1984-05-29 1985-12-05 Bosch Gmbh Robert Abstandsmessvorrichtung fuer kraftfahrzeuge
US5530651A (en) * 1992-08-03 1996-06-25 Mazda Motor Corporation Running-safety system for an automotive vehicle
US5587938A (en) * 1993-09-29 1996-12-24 Robert Bosch Gmbh Method and device for maneuvering a motor vehicle out of a parking space
US5754123A (en) * 1996-05-06 1998-05-19 Ford Motor Company Hybrid ultrasonic and radar based backup aid
DE19702688A1 (de) * 1997-01-25 1998-07-30 Itt Mfg Enterprises Inc Hybridsystem zur Abstandsmessung in Kraftfahrzeugen
DE19902185A1 (de) * 1999-01-21 2000-08-10 Bosch Gmbh Robert Vorrichtung zur Abstandsermittlung und Datenübertragung in einem Kraftfahrzeug

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707717A (en) * 1971-06-25 1972-12-26 Gen Signal Corp Boat berthing monitor incorporating sonar and doppler radar techniques
US3801978A (en) * 1972-07-20 1974-04-02 E Systems Inc Ultrasonic-microwave doppler intrusion alarm system
JPS5937459A (ja) * 1982-08-27 1984-02-29 Automob Antipollut & Saf Res Center 超音波による物体検出装置
US5065370A (en) * 1990-11-28 1991-11-12 The United States Of America As Represented By The Secretary Of The Navy Programmable pulse shaper for sonobouy apparatus
US5587824A (en) * 1991-07-26 1996-12-24 Cybex Computer Products Corporation Open collector communications link
US5206652A (en) * 1991-11-07 1993-04-27 The United States Of America As Represented By The Secretary Of The Army Doppler radar/ultrasonic hybrid height sensing system
DE4333357A1 (de) * 1993-09-30 1995-04-06 Bosch Gmbh Robert Einparkhilfe mit Radsensor
DE19721834C2 (de) * 1997-05-24 2000-05-31 Mannesmann Vdo Ag Schaltungsanordnung zum Betreiben eines Abstandssensors, insbesondere für einen Ultraschallsensor
JPH11301383A (ja) * 1998-04-20 1999-11-02 Matsushita Electric Works Ltd 車載用障害物検知システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3420004A1 (de) * 1984-05-29 1985-12-05 Bosch Gmbh Robert Abstandsmessvorrichtung fuer kraftfahrzeuge
US5530651A (en) * 1992-08-03 1996-06-25 Mazda Motor Corporation Running-safety system for an automotive vehicle
US5587938A (en) * 1993-09-29 1996-12-24 Robert Bosch Gmbh Method and device for maneuvering a motor vehicle out of a parking space
US5754123A (en) * 1996-05-06 1998-05-19 Ford Motor Company Hybrid ultrasonic and radar based backup aid
DE19702688A1 (de) * 1997-01-25 1998-07-30 Itt Mfg Enterprises Inc Hybridsystem zur Abstandsmessung in Kraftfahrzeugen
DE19902185A1 (de) * 1999-01-21 2000-08-10 Bosch Gmbh Robert Vorrichtung zur Abstandsermittlung und Datenübertragung in einem Kraftfahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1248956A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1544638A1 (de) * 2003-12-16 2005-06-22 Robert Bosch Gmbh Abstandsmessvorrichtung zur Steuerung

Also Published As

Publication number Publication date
EP1248956A1 (de) 2002-10-16
WO2001050153A8 (de) 2001-10-04
US6784808B2 (en) 2004-08-31
DE19963755A1 (de) 2001-07-12
US20030128137A1 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
WO2001050153A1 (de) Abstandssensorvorrichtung
EP1478547B1 (de) Verfahren zum einparken eines fahrzeugs
DE19744185B4 (de) Einrichtung zur Abstandsmessung mittels Ultraschall
EP1058126B1 (de) Abstandserfassungsvorrichtung
DE102010034263B4 (de) Verfahren zur Erzeugung einer Schwellwertkurve sowie Verfahren zur Auswertung von Signalen eines Ultraschallsensors und Vorrichtung zur Umfelderfassung
DE10110042A1 (de) Steuerungs-/Auswertungssystem für einen Sensorverbund
DE102004026196A1 (de) Verfahren, Vorrichtung und Sensormodul zum Messen des Abstandes zwischen einem Fahrzeug und einem Hindernis
DE3937585C2 (de) Einrichtung zur Abstandsmessung
DE102009003049A1 (de) Verfahren zur Funktionsprüfung eines Ultraschallsensors an einem Kraftfahrzeug, Verfahren zum Betrieb eines Ultraschallsensors an einem Kraftfahrzeug und Abstandsmessvorrichtung mit mindestens einem Ultraschallsensor zur Verwendung in einem Kraftfahrzeug
WO2007074003A1 (de) Verfahren zur kalibrierung eines sensorsystems
DE102017104147B4 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit verbesserter Signalauswertung, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE10108584A1 (de) Verfahren zum Entstören einer Radareinrichtung und Radareinrichtung
EP2780737B1 (de) Fahrerassistenzeinrichtung für ein kraftfahrzeug, kraftfahrzeug und verfahren zum betreiben einer fahrerassistenzeinrichtung in einem kraftfahrzeug
DE10041094A1 (de) Sensorsystem und Verfharen, insbesondere zur Entfernungsbestimmung
EP1359432A2 (de) Short-Range-Radarsystem mit variabler Pulsdauer
DE102009027231B4 (de) Vorrichtung zur Ortung von Objekten im Umfeld eines Fahrzeuges, insbesondere eines Kraftfahrzeuges, und Verfahren zum Betrieb einer derartigen Vorrichtung
EP2788785A1 (de) Sensorsystem zum betreiben eines sensorsystems
DE102011121463A1 (de) Verfahren zur Kommunikation zwischen einem Sensor und einem Steuergerät in einem Kraftfahrzeug, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE102016101358B4 (de) Verfahren zum Erfassen eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs durch Betreiben eines Ultraschallsensors mit unterschiedlichen Frequenzen, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102017104149B3 (de) Verfahren zum Betreiben einer Sensorvorrichtung für ein Kraftfahrzeug mit unterschiedlichen Betriebsmodi eines Abstandssensors, Sensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
EP1013518A2 (de) Anordnung zur Überwachung des Innenraumes eines Kraftfahrzeuges
DE102019212414A1 (de) Verfahren zur Positionserkennung eines Busteilnehmers
DE19935456A1 (de) Anordnung zur Überwachung des Innenraumes eines Kraftfahrzeuges
WO2006051020A1 (de) Vorrichtung zur entfernungsmessung mittels elektromagnetischer wellen
DE19721834C2 (de) Schaltungsanordnung zum Betreiben eines Abstandssensors, insbesondere für einen Ultraschallsensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

CFP Corrected version of a pamphlet front page

Free format text: REVISED ABSTRACT RECEIVED BY THE INTERNATIONAL BUREAU AFTER COMPLETION OF THE TECHNICAL PREPARATIONS FOR INTERNATIONAL PUBLICATION

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000991564

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000991564

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10169452

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWR Wipo information: refused in national office

Ref document number: 2000991564

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000991564

Country of ref document: EP