WO2001048467A2 - Verfahren zum betreiben eines sensors zur bestimmung der konzentration oxidierender gase in gasgemischen - Google Patents

Verfahren zum betreiben eines sensors zur bestimmung der konzentration oxidierender gase in gasgemischen Download PDF

Info

Publication number
WO2001048467A2
WO2001048467A2 PCT/DE2000/004550 DE0004550W WO0148467A2 WO 2001048467 A2 WO2001048467 A2 WO 2001048467A2 DE 0004550 W DE0004550 W DE 0004550W WO 0148467 A2 WO0148467 A2 WO 0148467A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
sensor
chamber
electrode
voltages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/DE2000/004550
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2001048467A3 (de
Inventor
Berndt Cramer
Bernd Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to US09/914,208 priority Critical patent/US6767449B2/en
Priority to EP00991104A priority patent/EP1250591B1/de
Priority to JP2001548931A priority patent/JP4638647B2/ja
Priority to DE50015927T priority patent/DE50015927D1/de
Publication of WO2001048467A2 publication Critical patent/WO2001048467A2/de
Anticipated expiration legal-status Critical
Publication of WO2001048467A3 publication Critical patent/WO2001048467A3/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells

Definitions

  • the invention relates to a method for rubbing a sensor for determining the concentration of oxidizing gases, in particular for determining the nitrogen oxide concentration in exhaust gases from internal combustion engines, according to the preamble of claim 1.
  • Such a sensor can be seen, for example, from EP 0 791 826 AI.
  • the method according to the invention with the features mentioned in claim 1 offers the advantage over the fact that the measurement errors resulting from the mutual coupling of the electrodes via electric fields and currents in the solid electrolyte and the measurement errors resulting from the voltage drops at the lead resistances can be eliminated or at least minimized.
  • the functionally applied voltages depending on the currents flowing in the electrode feed lines and / or between the electrodes so that the voltages applied to the electrodes inside the sensor correspond to the specified target values, it is possible to reduce the voltages at the Adjust electrodes precisely without errors being distorted by voltage drops on the electrode leads or due to mutual coupling of the electrodes. It is particularly advantageous that the setting is independent of the current intensity with which the individual electrodes are applied.
  • An advantageous embodiment provides that voltages are added to the voltages at the electrodes, one of which is weighted by factors Correspond to feedback of voltage components that are proportional to the currents.
  • the moving average values of the voltages proportional to the currents and / or their derivation of even higher degrees and / or also their moving average values or linear combinations formed by means of known electrical circuit elements can be fed back therefrom. In this way it is also possible to eliminate capacitive couplings.
  • the voltage at the electrodes is advantageously adjusted by changing these factors, these factors being increased until the system begins to oscillate due to the feedback.
  • the oscillation occurs when the feedback factor is> 1 in magnitude and at the same time the phase is greater than or equal to 180 °.
  • the factors are then reduced slightly, and only to the extent that no more vibration occurs. As a result, almost the entire voltage drops occurring at the electrode feed lines as well as the voltage drops occurring within the solid electrolyte due to a fictitious resistance network can be compensated.
  • FIG. 1 shows a schematic sectional illustration through a sensor known from the prior art for determining oxides in gas mixtures
  • FIG. 2 schematically shows a circuit arrangement known from the prior art for a sensor shown in FIG. 1;
  • Fig. 3 shows an embodiment of a circuit arrangement suitable for carrying out the method according to the invention for a sensor shown in Fig. 1 and
  • Fig. 4 schematically shows the coupling of the voltages / currents applied to the electrodes of a sensor shown in Fig. 1 in matrix form.
  • a double-NOx sensor shown in FIG. 1, has five electrodes, one oxygen pump electrode 9 exposed to the exhaust gas, one arranged in a first chamber 1, the oxygen pump electrode 9 exposed to the exhaust gas essentially opposite, one arranged in a second chamber 2 Oxygen pump electrode 8, an NO pump electrode 10 likewise arranged in the second chamber 2 and an air reference electrode 6 arranged in a third chamber 3.
  • the first chamber 1 is connected to the exhaust gas via a diffusion barrier 4, the second chamber 2 is connected to the first via a further diffusion barrier 5.
  • the third chamber 3 is connected to the atmosphere via a channel.
  • the oxygen pump electrodes 7 and 8 pump oxygen from the first chamber 1 and from the second chamber 2, respectively.
  • the outer pump electrode 9 serves as the counter electrode.
  • Nitrogen oxides are pumped out of the NO pump electrode 10. All electrodes are arranged on an ion-conducting solid electrolyte 20, which may consist of zirconium oxide, for example, and are connected to it in an electrically conductive manner.
  • An insulated heater 11 is provided to heat the sensor to the required operating temperature.
  • An evaluation circuit is used to operate the sensor, which provides various electrical voltages and obtains the measurement signal from a current measurement.
  • a block diagram of such a circuit known from the prior art is shown schematically in FIG. 2.
  • the three voltages for the oxygen pump electrodes 7, 8 located in the first chamber 1 and the second chamber 2 and for the NO pump electrode 10 are determined via voltage references 31, 32, 33 and drivers 41, 42, 43 generated and shifted by the potential of the air reference.
  • the voltage output by driver 40 is added or subtracted to the voltage output by drivers 41, 42, 43 in adder elements 61, 62, 63 in a manner known per se.
  • the potential of the outer pump electrode 9 is set via a two-point controller 50 until the voltage difference between the oxygen pump electrode 7 and the air reference electrode 6 corresponds to a predefinable target value.
  • the other electrode potentials are set directly.
  • the NO pump current can be measured via a current-voltage converter 80 known per se and output as a measurement signal.
  • the basic idea of the invention is to enable the required voltages to be set directly on the electrodes without the voltage drop at the lead resistances R L or the mutual coupling of the electrodes via the resistors R E falsifying these electrode voltages.
  • This is solved by a method for operating a sensor, which is explained below in connection with a circuit shown in FIG. 3.
  • a method for operating a sensor which is explained below in connection with a circuit shown in FIG. 3.
  • FIG. 3 those elements which are identical to those of the circuit shown in FIG. 2 are provided with the same reference numerals, so that with regard to their description, reference is made in full to the explanations regarding the circuit shown in FIG. 2 is taken.
  • the circuit shown in FIG. 3 differs from that in FIG.
  • circuit devices are provided, by means of which the voltages I IPE, ü_NO, U_02 applied to the electrodes 7, 8, 10, 9 are dependent on those in the measuring lines and / or currents flowing between the electrodes are changeable.
  • These circuit devices include current-voltage converters 100, 110, 120 and circuit elements (compensation branches) 201, 202, 203, 204, 205, 206, which are weighted with compensation factors K1, K2, K3, K4, K5, K6, such that one Current proportional portion is fed back to the electrodes in such a way that the portions coupled over in the fixed electrolyte 20 and the lead losses are compensated.
  • the potentials of the electrodes that can be measured on the feed lines become dependent on the currents in the solid electrolyte 20 and the feed lines.
  • the currents in the solid electrolyte 20 are not accessible for measurement, but they result from a linear combination of the currents in the feed lines at each location.
  • the entire system is considered to be electrically linear. tet. Due to the linear combination of the currents at each location, voltages are also obtained at the locations of the electrodes, which depend linearly on the supply currents.
  • the feedback takes place in such a way that the factor Kl is first increased step by step until there is an oscillation due to the feedback. Then factor K1 is again reduced slightly until no more oscillation occurs. If necessary, the other factors K2 to K6 can be used accordingly.
  • Fig. 4 shows schematically the coupling matrix.
  • the rows are formed by the currents of the electrodes I_pump electrode 7, I_02 pump electrode 8 and I_N0 pump electrode 10.
  • the current of the inner oxygen pump electrode I_pump electrode 7 is relatively large compared to the other two and therefore has a noticeable influence on the electrode voltages U_IPE or on the pump electrode 7, U_02 on the pump electrode 8 and U_N0 on the pump electrode 10.
  • the spatial proximity of the oxygen Material pump electrode 8 and the NO pump electrode 10 to each other in the second chamber 2 leads to a pronounced coupling.
  • the occupation of the main diagonal of the coupling matrix results from the lead resistance. Since the matrix is symmetrical, it is sufficient to consider only the compensation factors K2, K3, K5 and Kl, K4, K6 arranged on one side of the main diagonal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
PCT/DE2000/004550 1999-12-23 2000-12-20 Verfahren zum betreiben eines sensors zur bestimmung der konzentration oxidierender gase in gasgemischen Ceased WO2001048467A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/914,208 US6767449B2 (en) 1999-12-23 2000-12-20 Method for operating a sensor for determining the concentration of oxidizing gases in gas mixtures
EP00991104A EP1250591B1 (de) 1999-12-23 2000-12-20 Verfahren zum betreiben eines sensors zur bestimmung der konzentration oxidierender gase in gasgemischen
JP2001548931A JP4638647B2 (ja) 1999-12-23 2000-12-20 混合気中の酸化性ガスの濃度を決定するためのセンサの作動方法
DE50015927T DE50015927D1 (en) 1999-12-23 2000-12-20 Chen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19962912A DE19962912C2 (de) 1999-12-23 1999-12-23 Verfahren zum Betreiben eines Sensors zur Bestimmung der Konzentration oxidierender Gase in Gasgemischen
DE19962912.9 1999-12-23

Publications (2)

Publication Number Publication Date
WO2001048467A2 true WO2001048467A2 (de) 2001-07-05
WO2001048467A3 WO2001048467A3 (de) 2002-07-18

Family

ID=7934429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004550 Ceased WO2001048467A2 (de) 1999-12-23 2000-12-20 Verfahren zum betreiben eines sensors zur bestimmung der konzentration oxidierender gase in gasgemischen

Country Status (5)

Country Link
US (1) US6767449B2 (enExample)
EP (1) EP1250591B1 (enExample)
JP (1) JP4638647B2 (enExample)
DE (2) DE19962912C2 (enExample)
WO (1) WO2001048467A2 (enExample)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10145804B4 (de) 2001-09-17 2007-06-06 Robert Bosch Gmbh Stickoxidsensor mit unterdrückter Sauerstoffabhängigkeit des NO↓X↓-Signals
JP4178885B2 (ja) 2002-08-30 2008-11-12 株式会社デンソー ガス濃度検出装置
DE10316645A1 (de) 2003-04-11 2004-10-28 Robert Bosch Gmbh Vorrichtung zum Betreiben eines Gassensors
DE102004046639A1 (de) 2004-09-25 2006-03-30 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102005042488A1 (de) 2005-09-07 2007-03-08 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102005042487A1 (de) 2005-09-07 2007-03-08 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102005042489A1 (de) 2005-09-07 2007-03-08 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102009001622A1 (de) 2009-03-17 2010-09-23 Robert Bosch Gmbh Messvorrichtung zur Bestimmung einer Gaskomponente mit verringerter Sauerstoff-Querempfindlichkeit
DE102009026918A1 (de) 2009-06-12 2010-12-16 Robert Bosch Gmbh Gassensorelement mit integrierter Abschirmung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635957B2 (ja) * 1986-11-07 1994-05-11 日本碍子株式会社 酸素分析装置
JPH07122626B2 (ja) * 1987-05-08 1995-12-25 日本碍子株式会社 電気化学的装置
JP3511420B2 (ja) * 1995-06-26 2004-03-29 日本碍子株式会社 出力補正機能付きセンサ
JP3671100B2 (ja) * 1996-02-23 2005-07-13 日本碍子株式会社 酸化物センサ
JP3488591B2 (ja) 1996-03-28 2004-01-19 日本碍子株式会社 酸化物センサ
US6228252B1 (en) 1997-02-13 2001-05-08 Ngk Spark Plug Co. Ltd. Apparatus for detecting concentration of nitrogen oxide
JPH1137972A (ja) 1997-07-14 1999-02-12 Ngk Insulators Ltd ガスセンサ
JP3671109B2 (ja) 1998-02-19 2005-07-13 日本碍子株式会社 ガスセンサ
DE19838456C2 (de) * 1998-08-25 2003-12-18 Bosch Gmbh Robert Verfahren zur Temperaturregelung eines Meßfühlers
JP4005273B2 (ja) * 1998-09-16 2007-11-07 株式会社デンソー ガス濃度検出装置
DE19907946C2 (de) 1999-02-24 2003-12-11 Siemens Ag Schaltung für einen NOx-Meßaufnehmer
DE19926505B4 (de) 1999-06-10 2004-02-05 Siemens Ag Schaltung und Betriebsverfahren für einen NOx-Meßaufnehmer

Also Published As

Publication number Publication date
DE19962912C2 (de) 2003-12-04
JP2003518620A (ja) 2003-06-10
EP1250591B1 (de) 2010-05-19
US20020157452A1 (en) 2002-10-31
US6767449B2 (en) 2004-07-27
JP4638647B2 (ja) 2011-02-23
EP1250591A2 (de) 2002-10-23
DE19962912A1 (de) 2001-07-05
DE50015927D1 (en) 2010-07-01
WO2001048467A3 (de) 2002-07-18

Similar Documents

Publication Publication Date Title
DE69713698T2 (de) Gasfühler
DE3010632C2 (enExample)
DE102008000347A1 (de) Gassensor-Regelgerät
DE102004008233B4 (de) Verfahren zur Steuerung des Betriebs eines Gassensorelements
EP2108119A2 (de) Sensorelement mit innen liegender anode
EP0938668A1 (de) Gassensor
EP1250591B1 (de) Verfahren zum betreiben eines sensors zur bestimmung der konzentration oxidierender gase in gasgemischen
DE69826748T2 (de) Gassensor und Verfahren zur Überwachung des Gassensors
DE3905298C2 (enExample)
DE10339685B4 (de) Störsignalfreies Gaskonzentrations-Messgerät
DE3120159A1 (de) Elektrochemischer messfuehler fuer die bestimmung des sauerstoffgehaltes in gasen
EP1110079B1 (de) Elektrochemischer gassensor und verfahren zur bestimmung von gaskomponenten
WO2001023729A2 (de) Verfahren zur funktionsüberwachung und/oder regenerierung einer gassonde
EP1155311A1 (de) Elektrochemischer messfühler
DE3816460A1 (de) Einrichtung zum erfassen eines treibstoff-luft-mischungsverhaeltnisses
EP0941476B1 (de) Verfahren zum betrieb eines gassensors
DE10361033A1 (de) Gaskonzentrationsmessgerät
DE10352062B4 (de) Gassensorelement mit gewährleisteter Messgenauigkeit und Verfahren zu dessen Herstellung
WO2019170639A1 (de) Verfahren zum betreiben eines sensors zum nachweis mindestens eines anteils einer messgaskomponente mit gebundenem sauerstoff in einem messgas
DE10145804A1 (de) Stickoxidsensor mit unterdrückter Sauerstoffabhängigkeit des NO¶¶X¶¶-Signals
EP0893688A1 (de) Heizleiter-Schicht mit veränderlichem elektrischen Widerstand und Verfahren zu ihrer Herstellung
DE4420944C2 (de) Keramischer Heizkörper
DE3313783C2 (enExample)
DE102007042219A1 (de) Verfahren und Sensorelement zur Bestimmung der Wasser- und/oder Kohlendioxid-Konzentration in einem Gas
DE112020003625T5 (de) Gassensorelement und Gassensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000991104

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 548931

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09914208

Country of ref document: US

AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWP Wipo information: published in national office

Ref document number: 2000991104

Country of ref document: EP