WO2001042855A2 - Dispositif de lithographie utilisant une source de rayonnement dans le domaine extreme ultraviolet et des miroirs multicouches a large bande spectrale dans ce domaine - Google Patents

Dispositif de lithographie utilisant une source de rayonnement dans le domaine extreme ultraviolet et des miroirs multicouches a large bande spectrale dans ce domaine Download PDF

Info

Publication number
WO2001042855A2
WO2001042855A2 PCT/FR2000/003429 FR0003429W WO0142855A2 WO 2001042855 A2 WO2001042855 A2 WO 2001042855A2 FR 0003429 W FR0003429 W FR 0003429W WO 0142855 A2 WO0142855 A2 WO 0142855A2
Authority
WO
WIPO (PCT)
Prior art keywords
target
radiation
layers
stack
thickness
Prior art date
Application number
PCT/FR2000/003429
Other languages
English (en)
Other versions
WO2001042855A3 (fr
Inventor
Danièle BABONNEAU
Rémy MARMORET
Laurence Bonnet
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to KR1020027006996A priority Critical patent/KR100695480B1/ko
Priority to EP00988892A priority patent/EP1240551A2/fr
Priority to AU25242/01A priority patent/AU2524201A/en
Priority to JP2001544085A priority patent/JP2003516643A/ja
Priority to US10/130,519 priority patent/US6724465B2/en
Publication of WO2001042855A2 publication Critical patent/WO2001042855A2/fr
Publication of WO2001042855A3 publication Critical patent/WO2001042855A3/fr

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength

Definitions

  • the present invention relates to a lithography device using a source of extreme ultraviolet radiation as well as multilayer mirrors provided for reflecting this extreme ultraviolet radiation which is also called "EUV radiation” or "X-UV radiation”.
  • the wavelength of such radiation is in the range from 8 nm to 25 nm.
  • the invention applies particularly to the manufacture of integrated circuits with a very high degree of integration, the use of EUV radiation making it possible to reduce the etching step of such circuits.
  • the first technique uses a jet of xenon irradiated by a YAG laser whose power is close to 1 kW.
  • vacuum when the nature of the gas and the conditions for expansion in the vacuum (“vacuum”) are well chosen, it is naturally created in the jet, by interaction with several bodies, aggregates (“clusters").
  • macro-particles which can contain up to a million atoms and have a density sufficiently high (about one tenth of the density of the solid) to absorb the laser beam and thus heat the atoms of the surrounding gas which can then , by fluorescence, emit photons.
  • the second technique uses the crown of a plasma of high atomic number, obtained by interaction of a laser beam, which comes from a KrF laser and whose intensity is close to 10 12 W / cm 2 , and a solid target of great thickness (at least 20 ⁇ m).
  • the laser beam is focused on one face of this target, called “front face” and the EUV radiation emitted by this front face and generated by interaction of the laser beam and the material of the target is used.
  • the EUV radiation obtained comprises a continuous energy spectrum and intense emission lines.
  • EUV radiation sources which use the first or second technique have the following disadvantages. These sources have an isotropic emission, therefore having a large angular divergence, and the spectrum of the EUV radiation emitted comprises lines of small spectral width. With each source, it is then necessary to associate complex optical collection means, making it possible to recover the maximum of the wide angular range of emission of the source.
  • FIGS. 1 and 2 A known example of a lithography device using EUV radiation, the wavelengths of which are for example around 10 nm to 14 nm, is schematically represented in FIGS. 1 and 2. Such a device is also called a " EUV lithography ”.
  • This known device is intended to isolate a sample E. It is generally a semiconductor substrate 2 (for example made of silicon) on which is deposited a layer of photosensitive resin
  • Photoresist layer 3 and we want to insulate this layer according to a determined pattern (“pattern”).
  • etch the substrate 2 according to the pattern.
  • the device of FIGS. 1 and 2 comprises: - a support 4 for the sample,
  • a mask 5 comprising the pattern determined in an enlarged form
  • - optical means 7 for collecting and transmitting radiation to the mask 5, the latter providing an image of the pattern in enlarged form, and - optical means 8 for reducing this image and for projecting the reduced image onto layer 3 photosensitive resin (chosen to be sensitive to incident radiation).
  • the known source 6 of EUV radiation comprises means for forming a jet J of aggregates
  • Clusters (“Clusters”) of xenon. Only the nozzle 9 that these training means comprise is shown in FIG. 2.
  • the source also includes a laser (not shown) whose beam F is focused at a point
  • optical collector 11 provided with a central opening 12 for letting the focused laser beam F pass.
  • This optical collector 11 is placed opposite the jet of xenon aggregates and intended for collecting part of the EUV radiation emitted by the xenon aggregates and transmitting this collected radiation 13 to other optical components also forming part of the optical means 7 for collecting and transmitting.
  • optical means 7 for collection and transmission, the mask 5, which is used in reflection, and the optical means 8 for reduction and projection are multilayer mirrors 14 which selectively reflect EUV radiation and are designed in such a way that their responses spectral are centered on the wavelength chosen for the exposure of the photosensitive resin layer 3.
  • the pattern according to which the sample is to be etched is formed on the multilayer mirror corresponding to mask 5, with a magnification factor adapted to the optical reduction and projection means, and this multilayer mirror is covered, except at the level of this pattern, of a layer (not shown) which is able to absorb the incident EUV radiation.
  • the spectral resolution ⁇ / ⁇ of the mirrors is approximately 4%.
  • the width of the spectral range useful for insolation is obtained by convolution of the spectral width of the EUV radiation source and this spectral resolution.
  • These EUV multilayer mirrors also have the drawback of being deformed when they are exposed to significant heat flux coming from the EUV radiation source of the device.
  • An object of the invention is to propose an EUV lithography device much more efficient than the known devices, considered above.
  • the device which is the subject of the invention comprises a source of EUV radiation which is anisotropic. This EUV radiation is emitted from the rear face of a solid target of appropriate thickness on the front face of which a laser beam is focused.
  • Such an anisotropic source makes it possible to increase the useful part of the EUV radiation beam and to simplify the collection of this radiation.
  • the device which is the subject of the invention comprises multilayer mirrors capable of reflecting the EUV radiation generated, each multilayer mirror having a spectral band (also called “spectral width” or “bandwidth”) greater than that of known multilayer mirrors , mentioned above.
  • the source used in the invention, the emission spectrum of which is closer to the black body over a wide spectral range, and the multi-layer mirrors with wide spectral band, also used in the invention, cooperate to lead to a device capable of supplying a more intense EUV radiation to the sample to be exposed than in the prior art.
  • Another object of the invention is to minimize the thermal deformations of the multilayer mirrors which are used in the invention when these multilayer mirrors are exposed to the intense flux of EUV radiation.
  • the subject of the present invention is a lithography device comprising:
  • a mask comprising the determined pattern in an enlarged form, a source of radiation in the extreme ultraviolet range,
  • each multilayer mirror comprising a substrate and, on this substrate, a stack of layers of a first material and layers of a second material which alternate with the layers of the first material, this first material having an atomic number greater than that of the second material, the first and second layers cooperating to reflect the extreme ultraviolet radiation, the stack having a free surface on which the radiation to be reflected arrives,
  • the source comprises at least one solid target, having first and second faces, this target being capable of emitting extreme ultraviolet radiation by interaction with a focused laser beam on the first face of the target, this target being capable of emitting, in an anisotropic manner, part of the extreme ultraviolet radiation from the second face of this target, in that the optical means of collection and transmission are provided for transmitting , with
  • the target contains a material which is capable of emitting extreme ultraviolet radiation by interaction with the laser beam and the thickness of the target is in the range from about 0.05 ⁇ m to about 5 ⁇ m.
  • the target contains a material which is capable of emitting extreme ultraviolet radiation by interaction with the laser beam and whose atomic number belongs to the set of atomic numbers ranging from 28 to 92.
  • this device comprises a plurality of targets which are made integral with each other, the device further comprising means for moving this plurality of targets so that these targets receive successively the laser beam.
  • the device may further comprise support means to which the targets are fixed and which are capable of letting the laser beam pass in the direction of these targets, the displacement means being provided for displacing these support means and therefore the targets.
  • the support means may be able to absorb radiation emitted by the first face of each target which receives the laser beam and to re-emit this radiation towards this target.
  • the support means comprise an opening opposite each target, this opening being delimited by two walls substantially parallel to each other and perpendicular to this target.
  • the support means comprise an opening opposite each target, this opening being delimited by two walls which go towards the target while moving away from one another.
  • the device further comprises fixed auxiliary means which are capable of letting the laser beam pass in the direction of the target, in absorbing the laser beam in the direction of the target, in absorbing radiation emitted by the first face of this target and to re-emit this radiation towards this target.
  • the stack that each multilayer mirror comprises is subdivided into sets of at least one pair of first and second layers and the thickness of these sets is a monotonic function of the depth in l stack, this depth being counted from the free surface of the stack.
  • the increases in thickness of these assemblies form an arithmetic progression.
  • the first and second layers of each set have substantially the same thickness.
  • the first and second materials can be molybdenum and beryllium or molybdenum and silicon respectively.
  • each multilayer mirror is provided with means for cooling this multilayer mirror in order to reduce the deformations during illumination by EUV radiation.
  • these cooling means are provided for cooling the mirror to a temperature approximately equal to 100 K. Use is made, for example, of cooling the mirror with liquid helium, freon, liquid nitrogen or a fluid. coolant cooling at low temperature close to 0 K.
  • the sample to be exposed may include a semiconductor substrate on which is deposited a layer of photosensitive resin which is intended to be exposed according to the determined pattern.
  • FIG. 1 and 2 schematically illustrate a known device for EUV lithography and have already been described
  • 1 Figure 3 is a schematic view of a particular embodiment of the lithography device object of the invention
  • Figure 4 is a schematic perspective view of a ribbon forming a set of targets which can be used in the invention
  • 1 Figures 5 and 6 are schematic and partial perspective views of EUV radiation sources usable in the invention
  • Figure 7 is a schematic and partial perspective view of another EUV radiation source usable in the invention invention
  • • Figure 8 is a schematic sectional view of a known multilayer mirror
  • Figure 9 shows the curve representative of the variations of the reflectivity as a function of energy for this known multilayer mirror (curve I) and for a multilayer mirror usable in the invention (curve II)
  • FIG. 10 is a schematic sectional view of a particular embodiment of a multilayer mirror usable in the invention
  • FIG. 11 schematically illustrates the general curvature undergone by a multilayer mirror subjected to a high thermal flux
  • FIG. 12 schematically illustrates a local deformation undergone by a multilayer mirror subjected to a high thermal flux
  • Figure 13 shows the curve representative of variations in thermal conductivity k
  • FIG. 14 shows the curve representative of the variations in the ratio ⁇ / k as a function of the temperature
  • Figure 15 is a schematic view of cooling means of a multilayer mirror, which can be used in the invention.
  • a plasma created by the interaction of a solid target and a laser beam has several zones. There is certainly the so-called interaction zone
  • the absorption and re-emission zone where the photons of high energies, which arrive from the crown or from the conduction zone, are absorbed by the dense and cold matter and thus contribute to the heating of this matter and therefore to the emission of photons of lower energies.
  • the latter form a radiative wave which has, in the medium, a privileged direction of propagation along the temperature gradient and which can, when the target is not too thick, leave the target by the back face of this one , face which is geometrically opposite to that where the laser interacted.
  • the conversion efficiency on the rear face ratio between the radiative energy, all wavelengths included, to the incident laser energy) can be close to 30%.
  • This emission from the rear face of the target is characterized by a spectral distribution very different from that of the front face because the temperature and density conditions of the zones responsible for the emission of photons are very different.
  • the emitted radiation naturally has an angular distribution, even with a perfectly flat target: this radiation is not isotropic.
  • the characteristic expansion speed of the rear face is lower, by several orders of magnitude, than that of the front face, the majority of the energy being in the form of radiation.
  • the EUV radiation emitted by the rear face of a solid target of appropriate thickness is used, on the front face of which the laser beam is focused. This gives an anisotropic EUV radiation and minimizes material debris.
  • the target preferably contains a material whose atomic number Z is such that 28 ⁇ Z ⁇ 92. It is possible to mix or combine with this material other materials also capable of generating, by interaction with the laser beam, EUV radiation having good spectral characteristics. In addition, it may possibly be associated with one or more other materials intended to filter stray radiation.
  • the thickness of the target, containing the EUV radiation generating material, or active element is preferably between 0.05 ⁇ m and 5 ⁇ m.
  • the target is optimized to obtain an effective emission from the rear face, without the relaxation of the material being too great.
  • We also adapt the characteristics of the laser in particular the duration and the temporal shape of the light pulses it provides, the wavelength and the intensity) to obtain the thermodynamic conditions required in the target for an optimal EUV conversion. on the rear face in the desired wavelength range which goes for example from 10 nanometers to 20 nanometers.
  • This lithography device comprises a support 16 of a semiconductor substrate 18, for example a silicon substrate, on which is deposited a layer 20 of photosensitive resin, intended to be exposed in a determined pattern.
  • the device comprises:
  • - a mask 24 comprising the pattern in an enlarged form, - optical means 26 for collecting and transmitting, to the mask 24, the part of EUV radiation supplied by the rear face of the solid target 28 which the source, the mask 24 providing an image of this pattern in enlarged form, and
  • Optical means 29 for reducing this image and for projecting the reduced image onto the layer 20 of photosensitive resin.
  • the target is for example made of a material such as silver, copper, tin, samarium or rhenium and has a small thickness (for example of the order of 1 ⁇ m).
  • a pulsed beam 34 emitted by a laser is focused on a first face 30 of the target, called “front face”, by means of optical focusing 32 pulsed 35.
  • the target 28 then emits anisotropic EUV radiation 36 from its rear face 37 which is opposite to the front face 30.
  • the source 22, the optical means 26 of collection and transmission, the collector 26, the mask 24, the optical means 29 and the support 16 carrying the substrate 20 are placed in an enclosure (not shown) where one establishes low pressure.
  • the laser beam is sent into this enclosure through an appropriate porthole (not shown).
  • the optical collection means 26 consist of an optical collector which is arranged opposite the rear face 37 of the target 28, designed to collect the EUV radiation emitted anisotropically by this rear face, to format this radiation and send it to the mask 24.
  • the optical collector 26 it is therefore not necessary to provide additional optical means between the collector 26 and the mask 34, hence a simplification of the optical means of the lithography device.
  • the thin target 28 is fixed by its front face 30 to a support 38 provided with an opening 40 allowing the passage of the focused laser beam 34 so that it reaches this front face.
  • FIG. 4 This is schematically illustrated in FIG. 4 where we see a solid target 42 of small thickness (for example 1 ⁇ m) in the form of a ribbon fixed to a flexible support 44 which is for example made of material plastic and provided with a longitudinal opening 46 to allow the focused beam 34 to pass.
  • a solid target 42 of small thickness for example 1 ⁇ m
  • a flexible support 44 which is for example made of material plastic and provided with a longitudinal opening 46 to allow the focused beam 34 to pass.
  • the target-support assembly forms a flexible composite tape which is unwound from a first reel 48 and is wound on a second reel 50 capable of being rotated by appropriate means (not shown), which allows to move the target opposite the focused laser beam whose pulses successively reach different areas of the target.
  • a flexible plastic tape as the target support and to fix several targets at regular intervals on this support, an opening being then provided in the support opposite each target to leave pass the focused beam.
  • a ribbon 52 (FIG. 5), for example made of copper, silver, tin, samarium or rhenium, capable of absorbing, is used as target support.
  • This ribbon 52 has for example a thickness of the order of 5 ⁇ m to 10 ⁇ m.
  • the longitudinal opening allowing the passage of the laser beam 34 which is focused on the target can be delimited by two walls 54 and 56 substantially parallel to each other and substantially perpendicular to the target as seen in Figure 5.
  • the two walls delimiting the opening go away from one of the other towards the target as seen in FIG. 6 where these two walls have the references 55 and 57.
  • the target 42 is fixed to a mobile support 44 of the kind which has been described with reference to FIG. 4.
  • the source of EUV radiation comprises a part 58 fixed relative to the focused laser beam 34 and arranged opposite the front face of the target.
  • This part comprises an opening allowing the passage of the laser beam which is focused on this front face of the target and the opening which this part is provided flares towards the target and therefore comprises two walls 60 and 62 inclined by relative to this target and moving away from one another towards the target.
  • the source used in the present invention preferably comprises a target of small thickness, this thickness being in the range ranging from approximately 0.05 ⁇ m to approximately 5 ⁇ m, this target being made, preferably , of a material whose atomic number Z is much higher than that of aluminum since Z is preferably greater than or equal to 28 (and less than or equal to 92).
  • the preferred material for forming the target used in the present invention is tin for which Z is equal to 50.
  • the rear face of this target (preferably in tin) - the face which emits the EUV radiation used - resting on this substrate. It is also possible to form, on the front face of this target, a layer of gold whose thickness is less than 1000 ⁇ (that is to say 100 nm).
  • the 7 ⁇ m thick aluminum target cannot be envisaged for emission from its rear face when its front face is irradiated with laser radiation from maximum power density lower than the 3 ⁇ 10 13 W / cm 2 mentioned in the article, and this, in particular in the field of microlithography, the maximum power density considered above being for example close to 10 12 W / cm 2 .
  • the transport of the laser energy absorbed in the crown (side where the laser interacts: front face) towards the areas dense and cold (that is to say towards the rear face) is done by electronic thermal conduction. Even in the case where the target is relatively thick like that proposed in the article mentioned above, obtaining an anisotropic emission on the rear face is not at all guaranteed.
  • E 0 is connected to the atomic number Z of the target material, to the atomic mass A of this material, at the temperature T (in ° K) in the medium (which is itself connected to the laser absorbed ⁇ flux expressed in W / cm 2 ), at the wavelength ⁇ of the laser
  • the temperature (in ° K) is proportional to ⁇ a 2/3 and to ⁇ / 3 .
  • the laser flux falling on the target is weak. In nanosecond regime, it does not exceed
  • the above model gives, as the medium temperature which it is possible to reach if all the energy is absorbed, a value of 30 eV.
  • the optimum thickness which optimizes the conversion rate X on the rear face is 0.15 ⁇ m, which is very far from the conditions given in the article mentioned above.
  • the radiation emitted by the rear face of the target does not, a priori, have any angular characteristic: it is substantially isotropic; front face and rear face can therefore be considered equivalent.
  • This known multilayer mirror comprises a substrate 64 for example made of silicon and, on this substrate 64, a stack of layers 66 of a first material and of layers 68 of a second material which alternate with the layers of the first material.
  • This first material for example molybdenum
  • the second material for example silicon
  • the first and second layers cooperate to reflect radiation from the extreme ultraviolet range in a wavelength range centered on a determined wavelength.
  • the stack has a free surface 70 on which the radiation 40 that we want to reflect arrives.
  • the thickness d of the pairs of adjacent layers of the stack is constant. This thickness d is called "the inter-reticular distance”.
  • the angle of attack of a radiation 40 that we want to reflect. This angle is the complement of the angle of incidence of this radiation.
  • the wavelength of the reflected radiation
  • k the order of reflection.
  • the multilayer mirror of FIG. 8 is therefore a periodic structure which has a narrow passband.
  • the inter-reticular distance d is gradually modified when the radiation enters the multilayer. We must therefore choose the nature and successive thicknesses of the deposited layers to adapt the structure of the multilayer mirror.
  • Figure 10 is a schematic longitudinal sectional view of a particular embodiment of multilayer mirrors used in one invention.
  • the multilayer mirror of FIG. 10 comprises a substrate 74 and, on this substrate 74, a stack of layers 76 of a first material and of layers 78 of a second material which alternate with the layers of the first material, this first material, or heavy material, having an atomic number higher than that of the second material, or light material.
  • the first and second layers cooperate to reflect EUV radiation in a wavelength interval centered on a determined wavelength.
  • FIG. 10 also shows the free surface 80 of the stack on which the EUV radiation 82 to be reflected arrives.
  • the thickness of the pairs of adjacent layers of the stack is an increasing function of the depth in the stack, this depth being counted from the free surface 80 of one stack.
  • the first and second materials are still molybdenum and silicon, respectively, and the substrate 74 is made of silicon.
  • the substrate 74 is made of silicon.
  • beryllium could also be used as a second material and the substrate 74 could be made of germanium.
  • the stack is composed of several groups each comprising a plurality of bi-layers (a layer of first material and an adjacent layer of second material), for example seven bi-layers or eight bi-layers layers, and the thickness of these groups increases from the free surface 80 of the stack to the substrate 74.
  • the increases in thickness of the groups form for example an arithmetic progression and, in each group, all the layers have substantially the same thickness.
  • the total thickness of the stack of layers is for example 1 ⁇ m.
  • the thickness of the substrate 74 depends on the shape and the polishing quality of this substrate. This thickness of the substrate 74 is between 5 mm and 40 mm.
  • the design of the multilayer mirrors which can be used in the invention is particular in particular as regards the nature, the thicknesses, the densities, the optical constants of the materials and the quality of the deposits.
  • the multilayer mirrors with which the collector 26, the mask 24 and the optical means 29 for projection and reduction are formed are multilayer mirrors of the kind of that of FIG. 10 and capable of reflecting EUV radiation whose wavelengths are centered on a determined wavelength (for example 12 nm).
  • the collector 26 can be formed by the union of several elementary collectors constituting multilayer mirrors of the kind of that of FIG. 10.
  • FIG. 9 shows the curve II representative of the variations in the reflecting power P (in arbitrary units) as a function of the energy En (in eV), for a multilayer mirror usable in the invention, for example of the kind of that of FIG. 10.
  • any multilayer mirror in particular a multilayer mirror usable in the invention, when this multilayer mirror is exposed to intense EUV radiation.
  • a multilayer mirror usable in the invention, when this multilayer mirror is exposed to intense EUV radiation.
  • one deposits for example, on a silicon substrate, optically polished to the desired shape, a hundred pairs of layers of appropriate thicknesses (the layers of heavy material alternating with the layers of light material), to obtain a total thickness of layers of the order of 1 ⁇ m. This thickness is therefore negligible compared to that of the substrate (for example a few millimeters) which ensures the shape of the multilayer mirror.
  • the deformations of a plane mirror subjected to a heat flux density on its front face are of a geometrical nature. These deformations have two components.
  • the first component is parallel to the surface of the plate forming the mirror.
  • This first component leads to a general spherical curvature by a bimetallic strip effect and results from the temperature difference between the front face and the rear face of the mirror.
  • the second component is perpendicular to the surface of the mirror and causes a local deformation, namely a local increase, in the thickness of the mirror. It is due to the inhomogeneity of the density of the heat flux to which the mirror is subjected.
  • the general curvature (bimetallic strip effect) is schematically illustrated in FIG. 11.
  • the temperature difference ⁇ T ⁇ between the front face and the rear face of the mirror causes a general spherical curvature with an associated maximum slope ⁇ p.
  • ⁇ p C x ( ⁇ / k) x ⁇ x li.
  • This slope associated with the general curvature varies linearly with the incident flux. It is all the greater as the ratio ⁇ / k is large and as the dimensions of the beam on the mirror are important.
  • the slope ⁇ p is independent of the thickness of the mirror and of the angle of attack of the radiation on this mirror.
  • the radius of curvature associated with the deformation of the mirror does not depend on the dimensions of this mirror. This radius of curvature R is expressed by the relation:
  • ⁇ 0 is the flux density at the center of the beam footprint on the multilayer mirror, e the thickness of this mirror, ⁇ the coefficient of thermal expansion, k the thermal conductivity of the mirror and Li the width at mid-height of the beam imprint on the mirror.
  • the slope ⁇ h varies linearly with the incident flux. It is all the greater the higher the ⁇ / k ratio and the lower the impact of the beam on the mirror. This slope varies as the square of the thickness of the mirror.
  • the imprint of the beam on the multilayer mirror must have large dimensions, in order to "extend" the density of heat flux, and a thin mirror, not very absorbent vis-à-vis, is required. radiation screw and having a low ⁇ / k ratio.
  • the beam imprint on the multilayer mirror depends on the angle of attack chosen for the reflection. This angle of attack is close to 90 °, which minimizes the beam footprint.
  • the choices of the nature of the mirror and its thickness depend on the polishing techniques allowing the desired shape and roughness to be obtained.
  • the thermal conductivity k and the coefficient of expansion ⁇ vary depending on the temperature. As shown in Figure 13, in the case of silicon, one can take advantage of the very low coefficient of expansion ⁇ of this material, associated with a high thermal conductivity k when the temperature is close to 125 K.
  • FIG. 14 shows the curve representative of the variations of ⁇ / k (in 10 - ⁇ m / W) as a function of the temperature (in K).
  • the multilayer mirrors are therefore cooled to a low temperature, close to 100 K, in order to minimize the mechanical deformations due to the heat flow during the use of the EUV lithography device, whatever the material of the mirror substrate (silicon or germanium for example).
  • FIG 15 schematically illustrates this.
  • a multilayer mirror which comprises a stack 88 of alternating layers on a substrate 90 and which is cooled. To do this, the mirror is placed on a support 92 in which one circulates liquid nitrogen. As a variant, this support 92 contains a reservoir for liquid nitrogen.
  • the deformations of the multilayer mirror are thus reduced when it receives a large flux of EUV 94 radiation.
  • the thickness of the pairs of adjacent layers of the stack of the multilayer mirror is an increasing function of the depth in the stack.
  • a multilayer mirror usable in one invention and comprising a stack in which the thickness of the pairs of adjacent layers is a decreasing function of the depth in this stack.

Abstract

Dispositif de lithographie utilisant une source de rayonnement dans le domaine extrême ultraviolet et des miroirs multicouches à large bande spectrale dans ce domaine. Chaque miroir (24, 26, 29) comprend un empilement de couches d'un premier matériau et de couches d'un deuxième matériau alternant avec les précédentes. Le premier matériau a un numéro atomique supérieur à celui du deuxième. L'épaisseur de paires de couches adjacentes est une fonction monotone de la profondeur dans l'empilement. La source (22) comprend au moins une cible (28) qui émet le rayonnement par interaction avec un faisceau laser focalisé sur l'une de ses faces. On utilise une partie (36) du rayonnement émise à partir de l'autre face. L'invention s'applique à la fabrication de circuits intégrés à haut degré d'intégration.

Description

DISPOSITIF DE LITHOGRAPHIE UTILISANT UNE SOURCE DE
RAYONNEMENT DANS LE DOMAINE EXTRÊME ULTRAVIOLET ET DES
MIROIRS MULTICOUCHES À LARGE BANDE SPECTRALE DANS CE
DOMAINE
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne un dispositif de lithographie utilisant une source de rayonnement extrême ultraviolet ainsi que des miroirs multicouches prévus pour réfléchir ce rayonnement extrême ultraviolet que l'on appelle aussi « rayonnement EUV » ou « rayonnement X-UV » .
La longueur d'onde d'un tel rayonnement est comprise dans le domaine allant de 8 nm à 25 nm. L'invention s'applique tout particulièrement à la fabrication de circuits intégrés à très haut degré d'intégration, l'utilisation d'un rayonnement EUV permettant de diminuer le pas de gravure de tels circuits.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
On connaît principalement deux techniques de production d'un rayonnement EUV intense. Elles reposent toutes deux sur la collection des photons produits, grâce au processus microscopique d'émission spontanée, par un plasma chaud et peu dense qui est engendré au moyen d'un laser. La première technique utilise un jet de xénon irradié par un laser YAG dont la puissance est voisine de 1 kW. En effet, lorsque la nature du gaz et les conditions de détente dans le vide (« vacuum ») sont bien choisies, il se crée naturellement dans le jet, par interaction à plusieurs corps, des agrégats (« clusters ») . Ce sont des macro-particules qui peuvent contenir jusqu'à un million d'atomes et présentent une densité suffisamment: élevée (environ un dixième de la densité du solide) pour absorber le faisceau laser et chauffer ainsi les atomes du gaz environnant qui peuvent alors, par fluorescence, émettre des photons .
La deuxième technique utilise la couronne d'un plasma de numéro atomique élevé, obtenu par interaction d'un faisceau laser, qui provient d'un laser KrF et dont l'intensité est voisine de 1012 W/cm2, et d'une cible solide de forte épaisseur (au moins 20 μm) . Le faisceau laser est focalisé sur une face de cette cible, appelée « face avant » et l'on utilise le rayonnement EUV émis par cette face avant et engendré par interaction du faisceau laser et du matériau de la cible. Que l'on utilise la première ou la deuxième technique, le rayonnement EUV obtenu comprend un spectre continu en énergie et d'intenses raies d' émission .
Les sources de rayonnements EUV qui mettent en œuvre la première ou la deuxième technique présentent les inconvénients suivants . Ces sources ont une émission isotrope, présentant donc une grande divergence angulaire, et le spectre du rayonnement EUV émis comporte des raies de faible largeur spectrale. A chaque source, il faut alors associer des moyens optiques de collection complexes, permettant de récupérer le maximum du large domaine angulaire d'émission de la source.
Ces moyens optiques formés à partir de miroirs multicouches, doivent être réalisés de façon que leurs réponses spectrales soient centrées sur la raie d'émission choisie pour l'insolation d'un échantillon, en limitant au mieux la perte d'intensité due aux multiples réflexions sur les miroirs multicouches .
Un exemple connu de dispositif de lithographie utilisant des rayonnements EUV, dont les longueurs d'onde se situent par exemple aux environs de 10 nm à 14 nm, est schématiquement représenté sur les figures 1 et 2. Un tel dispositif est également appelé « dispositif de lithographie EUV ».
Ce dispositif connu est destiné à insoler un échantillon E. Il s'agit en général d'un substrat semiconducteur 2 (par exemple en silicium) sur lequel est déposée une couche de résine photosensible
(« photoresist layer ») 3 et l'on veut insoler cette couche suivant un motif (« pattern ») déterminé.
Après insolation de la couche 3 , on développe cette dernière et l'on peut alors graver (« etch ») le substrat 2 suivant le motif.
Le dispositif des figures 1 et 2 comprend : - un support 4 de l'échantillon,
- un masque 5 comprenant le motif déterminé sous une forme agrandie,
- une source 6 de rayonnement dans le domaine extrême ultraviolet (figure 2),
- des moyens optiques 7 de collection et de transmission du rayonnement au masque 5, ce dernier fournissant une image du motif sous forme agrandie, et - des moyens optiques 8 de réduction de cette image et de projection de l'image réduite sur la couche 3 de résine photosensible (choisie de façon à être sensible au rayonnement incident) .
La source connue 6 de rayonnement EUV comprend des moyens de formation d'un jet J d'agrégats
(« clusters ») de xénon. Seule la buse 9 que comprennent ces moyens de formation est représentée sur la figure 2.
La source comprend aussi un laser (non représenté) dont le faisceau F est focalisé en un point
S du jet J par des moyens optiques de focalisation 10.
L'interaction de ce faisceau F et des agrégats de xénon engendre le rayonnement EUV référencé R.
Le point S est visible sur la figure 1 (mais pas la buse ni le jet d'agrégats de xénon) .
Parmi les moyens optiques 7 de collection et de transmission du dispositif se trouve un collecteur optique 11 pourvu d'une ouverture centrale 12 pour laisser passer le faisceau laser focalisé F. Ce collecteur optique 11 est placé en regard du jet d'agrégats de xénon et destiné à collecter une partie du rayonnement EUV émis par les agrégats de xénon et à transmettre ce rayonnement collecté 13 vers d'autres composants optiques faisant également partie des moyens optiques 7 de collection et de transmission.
Ces moyens optiques 7 de collection et de transmission, le masque 5, qui est utilisé en réflexion, et les moyens optiques 8 de réduction et de projection sont des miroirs multicouches 14 qui réfléchissent sélectivement le rayonnement EUV et sont conçus de telle façon que leurs réponses spectrales soient centrées sur la longueur d'onde choisie pour l'insolation de la couche de résine photosensible 3.
On précise que le motif suivant lequel on veut graver l'échantillon est formé sur le miroir multicouches correspondant au masque 5, avec un facteur de grandissement adapté aux moyens optiques de réduction et de projection, et ce miroir multicouches est recouvert, sauf au niveau de ce motif, d'une couche (non représentée) qui est apte à absorber le rayonnement EUV incident.
Dans le domaine des longueurs d'onde des rayonnements EUV, la résolution spectrale Δλ/λ des miroirs vaut environ 4% . La largeur du domaine spectral utile pour l'insolation est obtenue par convolution de la largeur spectrale de la source de rayonnement EUV et de cette résolution spectrale.
Les miroirs multicouches connus, sur lesquels on reviendra par la suite et qui sont utilisés dans le dispositif de lithographie des figures 1 et 2 , présentent en particulier l'inconvénient suivant : leur bande spectrale, qui est centrée sur la longueur d'onde choisie pour l'insolation, est étroite.
Il en résulte une réduction de l'efficacité du dispositif de lithographie.
Ces miroirs multicouches EUV présentent également l'inconvénient de se déformer lorsqu'ils sont exposés au flux thermique important, provenant de la source de rayonnement EUV du dispositif.
EXPOSÉ DE L'INVENTION
Un but de l'invention est de proposer un dispositif de lithographie EUV beaucoup plus efficace que les dispositifs connus, considérés plus haut.
Le dispositif objet de l'invention comprend une source de rayonnement EUV qui est anisotrope. Ce rayonnement EUV est émis par la face arrière d'une cible solide d'épaisseur appropriée sur la face avant de laquelle est focalisé un faisceau laser.
Une telle source anisotrope permet d'augmenter la partie utile du faisceau de rayonnement EUV et de simplifier la collection de ce rayonnement.
De plus, le dispositif objet de l'invention comprend des miroirs multicouches aptes à réfléchir le rayonnement EUV engendré, chaque miroir multicouches ayant une bande spectrale (encore appelée « largeur spectrale » ou « bande passante ») plus importante que celle des miroirs multicouches connus, mentionnés plus haut . La source utilisée dans l'invention, dont le spectre d'émission est plus proche du corps noir sur un large domaine spectral, et les miroirs multicouches à large bande spectrale, également utilisés dans l'invention, coopèrent pour conduire à un dispositif apte à fournir, à l'échantillon que l'on veut insoler, un rayonnement EUV plus intense que dans l'art antérieur .
Un autre but de l'invention est de minimiser les déformations thermiques des miroirs multicouches qui sont utilisés dans l'invention lorsque ces miroirs multicouches sont exposés au flux intense de rayonnement EUV.
De façon précise, la présente invention a pour objet un dispositif de lithographie comprenant :
- un support d'un échantillon destiné à être insolé suivant un motif déterminé,
- un masque comprenant le motif déterminé sous une forme agrandie, - une source de rayonnement dans le domaine extrême ultraviolet,
- des moyens optiques de collection et de transmission du rayonnement au masque, ce dernier fournissant une image du motif sous forme agrandie, et - des moyens optiques de réduction de cette image et de projection de l'image réduite sur l'échantillon, le masque, les moyens optiques de collection et de transmission et les moyens optiques de réduction et de projection comprenant des miroirs multicouches, chaque miroir multicouches comprenant un substrat et, sur ce substrat, un empilement de couches d'un premier matériau et de couches d'un deuxième matériau qui alternent avec les couches du premier matériau, ce premier matériau ayant un numéro atomique supérieur à celui du deuxième matériau, les premières et deuxièmes couches coopérant pour réfléchir le rayonnement extrême ultraviolet, l'empilement ayant une surface libre sur laquelle arrive le rayonnement à réfléchir, ce dispositif étant caractérisé en ce que la source comprend au moins une cible solide, ayant des première et deuxième faces, cette cible étant apte à émettre le rayonnement extrême ultraviolet par interaction avec un faisceau laser focalisé sur la première face de la cible, cette cible étant apte à émettre, de façon anisotrope, une partie du rayonnement extrême ultraviolet à partir de la deuxième face de cette cible, en ce que les moyens optiques de collection et de transmission sont prévus pour transmettre, au masque, la partie du rayonnement extrême ultraviolet provenant de la deuxième face de la cible de la source, et en ce que l'épaisseur de paires de couches adjacentes de l'empilement de couches que comprend chaque miroir est une fonction monotone de la profondeur dans l'empilement, cette profondeur étant comptée à partir de la surface libre de l'empilement. Par « fonction monotone », on entend une fonction qui est soit croissante soit décroissante.
Selon un mode de réalisation préféré du dispositif objet de l'invention, la cible contient un matériau qui est apte à émettre le rayonnement extrême ultraviolet par interaction avec le faisceau laser et l'épaisseur de la cible est comprise dans un intervalle allant d'environ 0,05 μm à environ 5 μm.
De préférence, la cible contient un matériau qui est apte à émettre le rayonnement extrême ultraviolet par interaction avec le faisceau laser et dont le numéro atomique appartient à l'ensemble des numéros atomiques allant de 28 à 92.
Selon un mode de réalisation particulier du dispositif objet de l'invention, ce dispositif comprend une pluralité de cibles qui sont rendues solidaires les unes des autres, le dispositif comprenant en outre des moyens de déplacement de cette pluralité de cibles pour que ces cibles reçoivent successivement le faisceau laser . Le dispositif peut comprendre en outre des moyens de support auxquels sont fixées les cibles et qui sont aptes à laisser passer le faisceau laser en direction de ces cibles, les moyens de déplacement étant prévus pour déplacer ces moyens de support et donc les cibles.
Ces moyens de support peuvent être aptes à absorber des rayonnements émis par la première face de chaque cible qui reçoit le faisceau laser et à réémettre ces rayonnements vers cette cible. Selon un premier mode de réalisation particulier du dispositif objet de l'invention, les moyens de support comprennent une ouverture en regard de chaque cible, cette ouverture étant délimitée par deux parois sensiblement parallèles l'une à l'autre et perpendiculaires à cette cible. Selon un deuxième mode de réalisation particulier, les moyens de support comprennent une ouverture en regard de chaque cible, cette ouverture étant délimitée par deux parois qui vont vers la cible en s ' écartant 1 ' une de 1 ' autre .
Selon un mode de réalisation particulier de l'invention, le dispositif comprend en outre des moyens auxiliaires fixes qui sont aptes à laisser passer le faisceau laser en direction de la cible, à absorber le faisceau laser en direction de la cible, à absorber des rayonnements émis par la première face de cette cible et à réémettre ces rayonnements vers cette cible.
Selon un mode de réalisation préféré de l'invention, l'empilement que comporte chaque miroir multicouches est subdivisé en ensembles d'au moins une paire de première et deuxième couches et l'épaisseur de ces ensembles est une fonction monotone de la profondeur dans l'empilement, cette profondeur étant comptée à partir de la surface libre de l'empilement. Selon un mode de réalisation particulier de l'invention, les accroissements d'épaisseur de ces ensembles forment une progression arithmétique.
De préférence, les première et deuxième couches de chaque ensemble ont sensiblement la même épaisseur.
A titre d'exemple, les premier et deuxième matériaux peuvent être respectivement le molybdène et le béryllium ou le molybdène et le silicium.
Le substrat peut être par exemple en silicium ou en germanium. De préférence, l'épaisseur du substrat est comprise dans l'intervalle allant d'environ 5 mm à environ 40 mm et l'épaisseur de l'empilement vaut environ 1 μm. Selon un mode de réalisation préféré de l'invention, chaque miroir multicouches est muni de moyens de refroidissement de ce miroir multicouches pour en réduire les déformations lors d'un éclairement par le rayonnement EUV. De préférence, ces moyens de refroidissement sont prévus pour refroidir le miroir jusqu'à une température environ égale à 100 K. On utilise par exemple des moyens de refroidissement du miroir par l'hélium liquide, le fréon, l'azote liquide ou un fluide de refroidissement caloporteur à basse température proche de 0 K.
L'échantillon que l'on veut insoler peut comprendre un substrat semiconducteur sur lequel est déposée une couche de résine photosensible qui est destinée à être insolée suivant le motif déterminé.
BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :
" les figures 1 et 2 illustrent schématiquement un dispositif connu de lithographie EUV et ont déjà été décrites, 1 la figure 3 est une vue schématique d'un mode de réalisation particulier du dispositif de lithographie objet de l'invention, " la figure 4 est une vue en perspective schématique d'un ruban formant un ensemble de cibles qui sont utilisables dans l'invention, 1 les figures 5 et 6 sont des vues en perspectives schématiques et partielles de sources de rayonnement EUV utilisables dans l'invention, " la figure 7 est une vue en perspective schématique et partielle d'une autre source de rayonnement EUV utilisable dans l'invention, • la figure 8 est une vue en coupe schématique d'un miroir multicouches connu, " la figure 9 montre la courbe représentative des variations du pouvoir réflecteur en fonction de l'énergie pour ce miroir multicouches connu (courbe I) et pour un miroir multicouches utilisable dans l'invention (courbe II), " la figure 10 est une vue en coupe schématique d'un mode de réalisation particulier d'un miroir multicouches utilisable dans l'invention,
" la figure 11 illustre schématiquement la courbure générale subie par un miroir multicouches soumis à un flux thermique important ,
" la figure 12 illustre schématiquement une déformation locale subie par un miroir multicouches soumis à un flux thermique important, " la figure 13 montre la courbe représentative des variations de la conductivité thermique k
(courbe I) et du coefficient de dilatation thermique α (courbe II) , pour le silicium, en fonction de la température,
" la figure 14 montre la courbe représentative des variations du rapport α/k en fonction de la température, et
" la figure 15 est une vue schématique de moyens de refroidissement d'un miroir multicouches, qui sont utilisables dans l'invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Un plasma créé par interaction d'une cible solide et d'un faisceau laser comporte plusieurs zones. II y a certes la zone d'interaction que l'on appelle
« la couronne » mais il y a aussi, de façon successive et simplifiée :
- une zone appelée « zone de conduction » où le faisceau laser ne pénètre pas et dont l'évolution est commandée par les conductions thermique, électronique et radiative, une partie des photons émis par les ions de la couronne étant émise en direction de la partie froide et dense de la cible, et
- la zone d'absorption et de ré-émission où les photons d'énergies élevées, qui arrivent de la couronne ou de la zone de conduction, sont absorbés par la matière dense et froide et contribuent ainsi au chauffage de cette matière et donc à l'émission de photons d'énergies inférieures. Ces derniers forment une onde radiative qui possède, dans le milieu, une direction privilégiée de propagation le long du gradient de température et qui peut, lorsque la cible n'est pas trop épaisse, sortir de la cible par la face arrière de celle-ci, face qui est géométriquement opposée à celle ou le laser a interagi . L'efficacité de conversion en la face arrière (rapport entre l'énergie radiative, toutes longueurs d'onde comprises, à l'énergie laser incidente) peut être voisine de 30%.
Cette émission à partir de la face arrière de la cible se caractérise par une distribution spectrale très différente de celle de la face avant car les conditions de température et de densité des zones responsables de l'émission de photons sont très différentes. Le rayonnement émis possède naturellement une distribution angulaire, même avec une cible parfaitement plane : ce rayonnement n'est pas isotrope.
De plus, la vitesse caractéristique de détente de la face arrière est inférieure, de plusieurs ordres de grandeur, à celle de la face avant, la majorité de l'énergie étant sous forme de rayonnement.
Ainsi utilise-t-on, dans la présente invention, le rayonnement EUV émis par la face arrière d'une cible solide d'épaisseur appropriée, sur la face avant de laquelle on focalise le faisceau laser. On obtient de cette façon un rayonnement EUV anisotrope et l'on réduit au minimum les débris de matière.
Pour engendrer le rayonnement EUV, la cible contient, de préférence, un matériau dont le numéro atomique Z est tel que 28 < Z < 92. On peut mélanger ou associer à ce matériau d'autres matériaux également aptes à engendrer, par interaction avec le faisceau laser, un rayonnement EUV possédant les bonnes caractéristiques spectrales . En outre, on peut éventuellement lui associer un ou plusieurs autres matériaux destinés à filtrer un rayonnement parasite.
L'épaisseur de la cible, contenant le matériau générateur de rayonnement EUV, ou élément actif, est de préférence comprise entre 0,05 μm et 5 μm.
De préférence, on optimise la cible pour obtenir une émission efficace par la face arrière, sans que la détente de la matière soit trop importante. On adapte aussi les caractéristiques du laser (en particulier la durée et la forme temporelle des impulsions lumineuses qu'il fournit, la longueur d'onde et l'intensité) à l'obtention des conditions thermodynamiques requises dans la cible pour une conversion EUV optimale en la face arrière dans la gamme de longueurs d'onde souhaitée qui va par exemple de 10 nanomètres à 20 nanomètres .
Sur la figure 3 on a représenté schématiquement un mode de réalisation particulier du dispositif de lithographie objet de l'invention.
Ce dispositif de lithographie comprend un support 16 d'un substrat semiconducteur 18, par exemple un substrat de silicium, sur lequel est déposée une couche 20 de résine photosensible, destinée à être insolée suivant un motif déterminé. Outre une source 22 de rayonnement EUV, le dispositif comprend :
- un masque 24, comprenant le motif sous une forme agrandie, - des moyens optiques 26 de collection et de transmission, au masque 24, de la partie de rayonnement EUV fournie par la face arrière de la cible solide 28 que comporte la source, le masque 24 fournissant une image de ce motif sous forme agrandie, et
- des moyens optiques 29 de réduction de cette image et de projection de l'image réduite sur la couche 20 de résine photosensible.
La cible est par exemple faite d'un matériau tel que l'argent, le cuivre, l'étain, le samarium ou le rhénium et a une faible épaisseur (par exemple de 1 ' ordre de 1 μm) .
Pour engendrer le rayonnement EUV destiné à insoler la couche de résine photosensible, on focalise sur une première face 30 de la cible, appelée « face avant », par l'intermédiaire de moyens optiques de focalisation 32, un faisceau puisé 34 émis par un laser puisé 35. La cible 28 émet alors un rayonnement EUV anisotrope 36 à partir de sa face arrière 37 qui est opposée à la face avant 30.
On précise que la source 22, les moyens optiques 26 de collection et de transmission, le collecteur 26, le masque 24, les moyens optiques 29 et le support 16 portant le substrat 20 sont placés dans une enceinte (non représentée) où l'on établit une basse pression. Le faisceau laser est envoyé dans cette enceinte à travers un hublot approprié (non représenté) .
Dans l'exemple de la figure 3, les moyens optiques de collection 26 consistent en un collecteur optique qui est disposé en regard de la face arrière 37 de la cible 28, prévu pour collecter le rayonnement EUV émis de façon anisotrope par cette face arrière, mettre en forme ce rayonnement et l'envoyer vers le masque 24. Dans le dispositif de la figure 3, il n'est donc pas nécessaire de prévoir des moyens optiques supplémentaires entre le collecteur 26 et le masque 34, d'où une simplification des moyens optiques du dispositif de lithographie.
On voit que la cible de faible épaisseur 28 est fixée par sa face avant 30 à un support 38 pourvu d'une ouverture 40 permettant le passage du faisceau laser focalisé 34 pour que celui atteigne cette face avant .
En pratique, étant donné qu'une impulsion laser détruit localement la cible de faible épaisseur, on ne peut pas envoyer deux fois le faisceau laser au même endroit de la cible. C'est pourquoi on munit le support 38 de moyens de déplacement (non représentés sur la figure 3) permettant d'exposer successivement différentes zones de la cible au faisceau laser focalisé .
Ceci est schématiquement illustré par la figure 4 où l'on voit une cible solide 42 de faible épaisseur (par exemple 1 μm) sous forme d'un ruban fixé à un support souple 44 qui est par exemple en matière plastique et pourvu d'une ouverture longitudinale 46 pour laisser passer le faisceau focalisé 34.
L'ensemble cible-support forme un ruban composite souple qui est déroulé à partir d'une première bobine 48 et s'enroule sur une deuxième bobine 50 susceptible d'être mise en rotation par des moyens appropriés (non représentés), ce qui permet de déplacer la cible en regard du faisceau laser focalisé dont les impulsions atteignent successivement différentes zones de la cible. On peut alors considérer qu'on a plusieurs cibles assemblées les unes aux autres.
Dans une variante (non représentée) , on peut encore utiliser un ruban souple en matière plastique en tant que support de cible et fixer plusieurs cibles à intervalles réguliers sur ce support, une ouverture étant alors prévue dans le support en regard de chaque cible pour laisser passer le faisceau focalisé.
De préférence, au lieu d'un ruban en matière plastique, on utilise, en tant que support de cible, un ruban 52 (figure 5) par exemple en cuivre, en argent, en étain, en samarium ou en rhénium, apte à absorber le ou les rayonnements émis par la face avant de la cible 42 sous l'impact du faisceau focalisé 34 et à réémettre ce ou ces rayonnements en direction de cette cible (qui est mobile avec le ruban 52) . Ce ruban 52 a par exemple une épaisseur de l'ordre de 5 μm à 10 μm.
L'ouverture longitudinale permettant le passage du faisceau laser 34 qui est focalisé sur la cible peut être délimitée par deux parois 54 et 56 sensiblement parallèles l'une à l'autre et sensiblement perpendiculaires à la cible comme on le voit sur la figure 5.
Cependant, pour une meilleure absorption du ou des rayonnements émis par la face avant de la cible et une meilleure réémission de ceux-ci vers la cible, il est préférable que les deux parois délimitant l'ouverture aillent en s ' écartant l'une de l'autre vers la cible comme on le voit sur la figure 6 où ces deux parois ont les références 55 et 57.
Dans un autre exemple schématiquement représenté sur la figure 7 la cible 42 est fixée à un support mobile 44 du genre de celui qui a été décrit en faisant référence à la figure 4. De plus, dans l'exemple de la figure 7, la source de rayonnement EUV comprend une pièce 58 fixe par rapport au faisceau laser focalisé 34 et disposée en regard de la face avant de la cible.
Cette pièce comprend une ouverture permettant le passage du faisceau laser que l'on focalise sur cette face avant de la cible et l'ouverture dont est pourvue cette pièce va en s 'évasant vers la cible et comprend donc deux parois 60 et 62 inclinées par rapport à cette cible et allant en s 'éloignant l'une de l'autre vers la cible.
Le ou les rayonnements 64 émis par la face avant de la cible 42 sont alors absorbés par ces parois 60 et 62 et réémis en direction de la face-avant de la cible . Le rayonnement EUV 36 émis par la face arrière de la cible est ainsi plus intense. Certes, on connaît par un article de H. Hirose et al., Prog . Crystal Growth and Charact . , vol.33, 1996, pp.277-280, une source de rayons X utilisant une émission de rayons X par la face arrière d'une cible formée par une feuille d'aluminium dont l'épaisseur vaut 7 μm et dont la face avant est irradiée par un faisceau laser, avec une densité de puissance de 3xl013 W/cm2.
Mais il convient de noter que la source utilisée dans la présente invention comprend de préférence une cible de faible épaisseur, cette épaisseur étant comprise dans l'intervalle allant d'environ 0,05 μm à environ 5 μm, cette cible étant faite, de préférence, d'un matériau dont le numéro atomique Z est très supérieur à celui de l'aluminium puisque Z est de préférence supérieur ou égal à 28 (et inférieur ou égal à 92) .
On précise que le matériau préféré pour former la cible utilisée dans la présente invention est l'étain pour lequel Z vaut 50.
De plus, dans l'invention, on peut utiliser une cible de très faible épaisseur, inférieure ou égale à 1 μm, formée sur un substrat en matière plastique
(par exemple un substrat de CH2 (polyéthylène) de 1 μm d'épaisseur), la face arrière de cette cible (de préférence en étain) - face qui émet le rayonnement EUV utilisé - reposant sur ce substrat. Il est également possible de former, sur la face avant de cette cible, une couche d'or dont l'épaisseur est inférieure à 1000 Â (c'est-à-dire 100 nm) . En revenant à l'article mentionné plus haut, il convient de noter que la cible d'aluminium de 7 μm d'épaisseur n'est pas envisageable pour une émission par sa face arrière lorsqu'on irradie sa face avant par un rayonnement laser de densité de puissance maximale inférieure aux 3xl013 W/cm2 mentionnés dans l'article, et ce, en particulier dans le domaine de la microlithographie, la densité de puissance maximale considérée ci-dessus étant par exemple voisine de 1012 W/cm2.
Il convient également de noter ce qui suit :
Lorsque l'interaction laser a lieu sur un matériau de numéro atomique Z faible, comme l'aluminium (Z=13), le transport de l'énergie laser absorbée dans la couronne (côté où le laser interagit : face avant) vers les zones denses et froides (c'est-à-dire vers la face arrière) se fait par conduction thermique électronique. Même dans le cas où la cible est relativement épaisse comme celle proposée dans l'article mentionné plus haut, l'obtention d'une émission anisotrope en face arrière n'est pas du tout garantie .
Par contre, dans le cas d'un matériau de Z élevé, c'est la conduction radiative qui « pilote » la mise en condition de l'intérieur et de l'arrière de la cible. L' anisotropie qui fait tout l'intérêt de la cible utilisée dans la présente invention est directement liée au débouché de cette onde radiative en face arrière, donc au choix d'une épaisseur, dont une valeur optimisée sera donnée dans ce qui suit. Les profils caractéristiques de températures et de densité électronique dans la cible irradiée par laser sont d'ailleurs très différents suivant que le matériau est de numéro atomique faible ou élevé et également suivant l'épaisseur de cible utilisée .
Un modèle analytique permet de trouver l'épaisseur optimale E0 qui permet d'optimiser le taux de conversion X en face arrière. E0 est reliée au numéro atomique Z du matériau de la cible, à la masse atomique A de ce matériau, à la température T (en °K) dans le milieu (elle-même reliée au flux laser absorbé φa exprimé en W/cm2), à la longueur d'onde λ du laser
(en μm) , à la durée d'impulsion Dt (en secondes) et à la densité massique p(g/cm3) par la formule suivante :
E0(en cm) = 26 , 22 (A/Z) °'5xT°'5xDt/α avec α = p x λ2 x ( 1+0 , 946 (A/Z) °'5)
La température (en °K) est proportionnelle à φa 2/3 et à λ/3. Pour une énergie laser disponible faible
(inférieure à 1J) , ce qui est généralement nécessaire dans le cadre de la lithographie, car une très forte cadence (supérieure à 1 kHz) est demandée pour réaliser une statistique suffisante au niveau de la résine photosensible (et garantir ainsi que le seuil d'insolation est atteint), et une taille de zone émissive (imposée par un couplage optimum avec le système optique utilisé) donnée (par exemple proche de
300 μm de diamètre), le flux laser tombant sur la cible est faible. En régime nanoseconde, il ne dépasse pas
1012 W/cm2 à 1,06 μm. De plus, à l'heure actuelle, il n'est pratiquement pas envisageable de fabriquer des lasers à ces cadences reposant sur un train d'impulsions de 100 ps .
Dans ces conditions, le modèle ci-dessus donne, comme température de milieu qu'il est possible d'atteindre si toute l'énergie est absorbée, une valeur de 30 eV.
Dans ces conditions, pour l'aluminium, l'épaisseur optimale qui optimise le taux de conversion X en face arrière vaut 0,15 μm, ce qui est très éloigné des conditions données dans l'article mentionné plus haut. De plus, avec un matériau tel que l'aluminium, de numéro atomique faible, le rayonnement émis par la face arrière de la cible ne présente pas, a priori, de particularité angulaire : il est sensiblement isotrope ; face avant et face arrière peuvent donc être considérées comme équivalentes .
Avec l'exemple de l'or, on trouve, toujours dans les mêmes conditions, moins de 0,1 μm. En revenant à l'exemple donné plus haut d'une cible en étain, formée sur un substrat en CH2 (polyéthylène) , on donne les précisions suivantes : le polyéthylène, que l'on peut mettre sur la face arrière d'une mince feuille d' étain, et l'or que l'on peut mettre sur la face avant de cette feuille, servent tous deux à limiter l'expansion du matériau émetteur constitué par l'étain avant son chauffage par l'onde radiative, ceci de façon à mieux « enfoncer » les photons dans la zone d'intérêt de la cible. Le polyéthylène en face arrière, qui est légèrement chauffé, est transparent au rayonnement et limite également la détente et donc un petit peu l'émission de débris de matière.
Avant de décrire un exemple de miroir multicouches utilisable dans l'invention, on revient sur un miroir multicouches connu, destiné à réfléchir des rayonnements du domaine extrême ultraviolet, en faisant référence à la figure 8.
Ce miroir multicouches connu comprend un substrat 64 par exemple en silicium et, sur ce substrat 64, un empilement de couches 66 d'un premier matériau et de couches 68 d'un deuxième matériau qui alternent avec les couches du premier matériau.
Ce premier matériau (par exemple le molybdène) a un numéro atomique supérieur à celui du deuxième matériau (par exemple le silicium) .
Les premières et deuxièmes couches coopèrent pour réfléchir les rayonnements du domaine extrême ultraviolet dans un intervalle de longueurs d'onde centré sur une longueur d'onde déterminée. L'empilement a une surface libre 70 sur laquelle arrivent les rayonnements 40 que l'on veut réfléchir .
Dans ce miroir multicouches connu, l'épaisseur d des paires de couches adjacentes de l'empilement est constante. Cette épaisseur d s'appelle « la distance inter-réticulaire ».
On note θ l'angle d'attaque d'un rayonnement 40 que l'on veut réfléchir. Cet angle est le complémentaire de l'angle d'incidence de ce rayonnement. En outre on note λ la longueur d'onde du rayonnement réfléchi et k l'ordre de réflexion. L'alternance des couches du premier matériau, ou matériau lourd, et des couches du deuxième matériau, ou matériau léger, induit une variation périodique de 1 ' indice optique en fonction de l'épaisseur. Cette variation permet de réfléchir sélectivement les rayonnements incidents .
En effet, si une onde électromagnétique frappe un grand nombre de couches réfléchissantes équidistantes , les interférences sont partout destructives dans la direction des ondes réfléchies sauf si la différence de marche est égale à un nombre entier de longueurs d'onde.
Ce phénomène de réflexion sélective peut être décrit par une loi analogue à la loi de Bragg :
2d x sinθ = k x λ.
Sur la figure 9, on a tracé la courbe I représentative des variations du pouvoir réflecteur P (en unités arbitraires) d'un miroir multicouches du genre de celui de la figure 8 en fonction de l'énergie En (en eV) du rayonnement incident, pour des valeurs déterminées de k et θ. La largeur à mi-hauteur de cette courbe I vaut environ 6 eV.
Le miroir multicouches de la figure 8 est donc une structure périodique qui possède une bande passante étroite.
Dans la présente invention, on souhaite utiliser des miroirs multicouches dont la bande passante est large, afin de collecter des flux de photons aussi grands que possible. Pour obtenir cette augmentation de la bande passante, conformément à l'invention on modifie graduellement la distance inter-réticulaire d lorsque le rayonnement pénètre dans la multicouche. On doit donc choisir la nature et les épaisseurs successives des couches déposées pour adapter la structure du miroir multicouches.
L'optimisation de ce miroir multicouches
(en ce qui concerne la nature et les épaisseurs des couches déposées) s'effectue à l'aide d'un code de calcul récursif de transport du faisceau de rayonnement
EUV dans l'empilement des couches.
La figure 10 est une vue en coupe longitudinale schématique d'un mode de réalisation particulier de miroirs multicouches utilisables dans 1 ' invention.
Le miroir multicouches de la figure 10 comprend un substrat 74 et, sur ce substrat 74, un empilement de couches 76 d'un premier matériau et de couches 78 d'un deuxième matériau qui alternent avec les couches du premier matériau, ce premier matériau, ou matériau lourd, ayant un numéro atomique supérieur à celui du deuxième matériau, ou matériau léger.
Les premières et deuxièmes couches coopèrent pour réfléchir des rayonnements EUV dans un intervalle de longueur d'onde centrée sur une longueur d'onde déterminée.
On voit aussi sur la figure 10 la surface libre 80 de l'empilement sur laquelle arrive le rayonnement EUV 82 à réfléchir. Contrairement au miroir multicouches connu de la figure 8, dans le miroir multicouches de la figure 10, l'épaisseur des paires de couches adjacentes de l'empilement est une fonction croissante de la profondeur dans l'empilement, cette profondeur étant comptée à partir de la surface libre 80 de 1 ' empilement .
Dans l'exemple représenté sur la figure 10, les premier et deuxième matériaux sont encore respectivement le molybdène et le silicium et le substrat 74 est en silicium. Cependant, on pourrait aussi utiliser le béryllium en tant que deuxième matériau et le substrat 74 pourrait être en germanium. Dans l'exemple de la figure 10, l'empilement est composé de plusieurs groupes comprenant chacun une pluralité de bi-couches (une couche de premier matériau et une couche adjacente de deuxième matériau) , par exemple sept bi-couches ou huit bi-couches, et l'épaisseur de ces groupes va en augmentant depuis la surface libre 80 de l'empilement jusqu'au substrat 74. Les accroissements d'épaisseur des groupes forment par exemple une progression arithmétique et, dans chaque groupe, toutes les couches ont sensiblement la même épaisseur. A titre d'exemple, on trouve en allant de la surface libre 80 jusqu'au substrat 74, sept paires ayant une épaisseur totale El puis sept paires ayant une épaisseur totale El+ΔE puis sept paires ayant une épaisseur totale E1+2ΔE et ainsi de suite jusqu'au substrat 74. Dans le miroir multicouches de la figure 10, l'épaisseur totale de l'empilement de couches vaut par exemple 1 μm.
Le rayonnement EUV 82 se réfléchit sur les dioptres consécutifs formés entre le matériau lourd et le matériau léger. Si la condition d'interférence constructive entre les ondes réfléchies sur les différents dioptres est réalisée (2d x sinθ = kxλ) , le rayonnement sort de la multicouches (loi de Bragg) . L'épaisseur du substrat 74 dépend de la forme et de la qualité de polissage de ce substrat. Cette épaisseur du substrat 74 est comprise entre 5 mm et 40 mm.
Pour fabriquer un empilement du genre de celui de la figure 10, on dépose successivement toutes les couches 78 et 76, avec les épaisseurs souhaitées, sur le substrat 74, par exemple au moyen d'une technique de pulvérisation cathodique (« cathodic sputtering ») . Certes, il est connu d'utiliser des multicouches ayant une configuration comparable à celle de la figure 10 mais pour un tout autre domaine de longueurs d'onde et pour une tout autre fonction : ces empilements multicouches connus servent de filtres passe-bande pour des rayonnements du domaine visible.
Il convient de noter que, dans le domaine EUV, la conception des miroirs multicouches utilisables dans l'invention est particulière notamment en ce qui concerne la nature, les épaisseurs, les densités, les constantes optiques des matériaux et la qualité des dépôts . Dans le dispositif de lithographie de la figure 3 les miroirs multicouches avec lesquels sont formés le collecteur 26, le masque 24 et les moyens optiques 29 de projection et de réduction sont des miroirs multicouches du genre de celui de la figure 10 et aptes à réfléchir des rayonnements EUV dont les longueurs d'onde sont centrées sur une longueur d'onde déterminée (par exemple 12 nm) .
En particulier le collecteur 26 peut être formé par la réunion de plusieurs collecteurs élémentaires constituant des miroirs multicouches du genre de celui de la figure 10.
La figure 9 montre la courbe II représentative des variations du pouvoir réflecteur P (en unités arbitraires) en fonction de l'énergie En (en eV) , pour un miroir multicouches utilisable dans l'invention, par exemple du genre de celui de la figure 10.
On voit l'augmentation importante de la largeur à mi-hauteur qui vaut 9 eV pour la courbe II, par rapport à un miroir multicouches de l'art antérieur (courbe I) .
Dans l'invention on augmente donc bien la bande passante des miroirs multicouches pour rayonnement EUV.
On explique maintenant une manière de minimiser les déformations thermiques subies par un miroir multicouches quelconque, en particulier un miroir multicouches utilisable dans l'invention, lorsque ce miroir multicouches est exposé à un rayonnement EUV intense. Pour obtenir un tel miroir, on dépose par exemple, sur un substrat en silicium, poli optiquement à la forme désirée, une centaine de paires de couches d'épaisseurs appropriées (les couches de matériau lourd alternant avec les couches de matériau léger) , pour obtenir une épaisseur totale de couches de l'ordre de 1 μm. Cette épaisseur est donc négligeable par rapport à celle du substrat (par exemple quelques millimètres) qui assure la forme du miroir multicouches. Les déformations d'un miroir plan soumis à une densité de flux thermique sur sa face avant sont de nature géométrique. Ces déformations ont deux composantes .
La première composante est parallèle à la surface de la plaque formant le miroir. Cette première composante conduit à une courbure sphérique générale par un effet de bilame et résulte de la différence de température entre la face avant et la face arrière du miroir . La deuxième composante est perpendiculaire à la surface du miroir et provoque une déformation locale, à savoir une augmentation locale, de l'épaisseur du miroir. Elle est due à 1 ' inhomogénéité de la densité du flux thermique auquel est soumis le miroir.
La courbure générale (effet de bilame) est schématiquement illustrée par la figure 11. On voit le rayonnement EUV 84 incident sur le miroir multicouches 86. La différence de température ΔTΞ entre la face avant et la face arrière du miroir provoque une courbure générale sphérique avec une pente maximale associée Δp .
Pour un miroir non refroidi, dont les bords sont libres, cette pente s'exprime par l'équation suivante où φ est la densité de flux thermique (en W/mm ) , a le coefficient de dilatation thermique du miroir, k la conductivité thermique du miroir, C une constante qui vaut 1 pour une courbure sphérique et 1/2 dans le cas d'une courbure cylindrique et li la moitié de la longueur du miroir :
Δp = C x (α/k) x φ x li.
Cette pente associée à la courbure générale varie de manière linéaire avec le flux incident. Elle est d'autant plus grande que le rapport α/k est grand et que les dimensions du faisceau sur le miroir sont importantes .
La pente Δp est indépendante de l'épaisseur du miroir et de l'angle d'attaque du rayonnement sur ce miroir. Le rayon de courbure associé à la déformation du miroir ne dépend pas des dimensions de ce miroir. Ce rayon de courbure R s'exprime par la relation :
R = φ-1 x (k/α) .
On considère maintenant la déformation locale qui est schématiquement illustrée sur la figure 12. Cette déformation locale est due à la dilatation du miroir perpendiculairement à sa surface. Elle est due à 1 ' inhomogénéité du flux incident sur le miroir. Cette inhomogénéité est induite par la divergence angulaire du faisceau 84 qui peut par exemple suivre une loi de distribution gaussienne. La pente maximale Δh associée à cette déformation locale s'exprime par la relation suivante : Δh = 2 x (α/k) x (e2/Li) x φ0. Dans cette formule, φ0 est la densité de flux au centre de l'empreinte du faisceau sur le miroir multicouches, e l'épaisseur de ce miroir, α le coefficient de dilatation thermique, k la conductivité thermique du miroir et Li la largeur à mi-hauteur de l'empreinte du faisceau sur le miroir. La pente Δh varie de manière linéaire avec le flux incident. Elle est d'autant plus grande que le rapport α/k est grand et que l'impact du faisceau sur le miroir est faible. Cette pente varie comme le carré de l'épaisseur du miroir. Pour réduire les effets de ces déformations mécaniques il faut que l'empreinte du faisceau sur le miroir multicouches ait de grandes dimensions, pour « étendre » la densité de flux thermique, et il faut un miroir de faible épaisseur, peu absorbant vis-à-vis du rayonnement et possédant un faible rapport α/k.
L'empreinte du faisceau sur le miroir multicouches dépend de l'angle d'attaque choisi pour la réflexion. Cet angle d'attaque est voisin de 90°, ce qui minimise l'empreinte du faisceau. Les choix de la nature du miroir et de son épaisseur dépendent des techniques de polissage permettant d'obtenir la forme et la rugosité souhaitées .
La conductivité thermique k et le coefficient de dilatation α varient en fonction de la température. Comme le montre la figure 13, dans le cas du silicium, on peut profiter du très faible coefficient de dilatation α de ce matériau, associé à une forte conductivité thermique k lorsque la température est voisine de 125 K.
On voit sur cette figure 13 la courbe II représentative des variations du coefficient α de dilatation thermique du silicium (en 10"5 K"1) en fonction de la température T (en K) et la courbe I représentative des variations de la conductivité thermique k (en W/m.K) en fonction de la température (en K) .
Dans ce cas, le rapport α/k tend vers 0 quand la température tend vers zéro, ce qui minimise les déformations mécaniques dues au flux thermique. On se reportera à la figure 14 qui montre la courbe représentative des variations de α/k (en 10 m/W) en fonction de la température (en K) .
De préférence, dans l'invention, on refroidit donc les miroirs multicouches par exemple du genre de celui de la figure 10, à une basse température, voisine de 100 K, pour minimiser les déformations mécaniques dues au flux thermique lors de l'utilisation du dispositif de lithographie EUV, quel que soit le matériau du substrat du miroir (silicium ou germanium par exemple) .
La figure 15 illustre schématiquement cela. On y voit un miroir multicouches qui comprend un empilement 88 de couches alternées sur un substrat 90 et qui est refroidi. Pour ce faire, le miroir est placé sur un support 92 dans lequel on fait circuler de l'azote liquide. En variante, ce support 92 contient un- réservoir d'azote liquide.
On réduit ainsi les déformations du miroir multicouches lorsqu'il reçoit un flux important de rayonnement EUV 94.
Revenons à la figure 10. Dans l'exemple de cette figure 10, l'épaisseur des paires de couches adjacentes de l'empilement du miroir multicouches est une fonction croissante de la profondeur dans l'empilement. Cependant on obtient encore un miroir multicouches utilisable dans 1 ' invention et comprenant un empilement dans lequel l'épaisseur des paires de couches adjacentes est une fonction décroissante de la profondeur dans cet empilement.

Claims

REVENDICATIONS
1. Dispositif de lithographie comprenant :
- un support (16) d'un échantillon destiné à être insolé suivant un motif déterminé, - un masque (24) comprenant le motif déterminé sous une forme agrandie,
- une source (22) de rayonnement dans le domaine extrême ultraviolet,
- des moyens optiques (26) de collection et de transmission du rayonnement au masque, ce dernier fournissant une image du motif sous forme agrandie, et
- des moyens optiques (29) de réduction de cette image et de projection de l'image réduite sur l'échantillon, le masque, les moyens optiques de collection et de transmission et les moyens optiques de réduction et de projection comprenant des miroirs multicouches, chaque miroir multicouches comprenant un substrat (74) et, sur ce substrat, un empilement de couches (76) d'un premier matériau et de couches (78) d'un deuxième matériau qui alternent avec les couches du premier matériau, ce premier matériau ayant un numéro atomique supérieur à celui du deuxième matériau, les premières et deuxièmes couches coopérant pour réfléchir le rayonnement extrême ultraviolet, l'empilement ayant une surface libre (80) sur laquelle arrive le rayonnement à réfléchir, ce dispositif étant caractérisé en ce que la source comprend au moins une cible solide (28), ayant des première et deuxième faces, cette cible étant apte à émettre le rayonnement extrême ultraviolet par interaction avec un faisceau laser (34) focalisé sur la première face (30) de la cible, cette cible étant apte à émettre de façon anisotrope, une partie (36) du rayonnement extrême ultraviolet à partir de la deuxième face (37) de cette cible, en ce que les moyens optiques (26) de collection et de transmission sont prévus pour transmettre, au masque (24), la partie (36) du rayonnement extrême ultraviolet provenant de la deuxième face (37) de la cible de la source, et en ce que l'épaisseur de paires de couches adjacentes (76, 78) de l'empilement de couches que comprend chaque miroir est une fonction monotone de la profondeur dans l'empilement, cette profondeur étant comptée à partir de la surface libre (80) de l'empilement.
2. Dispositif selon la revendication 1, dans lequel la cible (28) contient un matériau qui est apte à émettre le rayonnement extrême ultraviolet par interaction avec le faisceau laser et l'épaisseur de la cible est comprise dans un intervalle allant d'environ 0,05 μm à environ 5 μm.
3. Dispositif selon l'une quelconque des revendications 1 et 2, dans lequel la cible (28) contient un matériau qui est apte à émettre le rayonnement extrême ultraviolet par interaction avec le faisceau laser et dont le numéro atomique appartient à l'ensemble des numéros atomiques allant de 28 à 92.
4. Dispositif selon l'une quelconque des revendications 1 à 3, comprenant une pluralité de cibles (42) qui sont rendues solidaires les unes des autres, le dispositif comprenant en outre des moyens (48, 50) de déplacement de cette pluralité de cibles pour que ces cibles reçoivent successivement le faisceau laser (34) .
5. Dispositif selon la revendication 4, comprenant en outre des moyens de support (38, 44, 52) auxquels sont fixées les cibles (42) et qui sont aptes à laisser passer le faisceau laser en direction de ces cibles, les moyens de déplacement (48, 50) étant prévus pour déplacer ces moyens de support et donc les cibles.
6. Dispositif selon la revendication 5, dans lequel les moyens de support (52) sont aptes à absorber des rayonnements émis par la première face de chaque cible qui reçoit le faisceau laser et à réémettre ces rayonnements vers cette cible.
7. Dispositif selon l'une quelconque des revendications 5 et 6, dans lequel les moyens de support comprennent une ouverture (40, 46) en regard de chaque cible, cette ouverture étant délimitée par deux parois (54, 56) sensiblement parallèles l'une à l'autre et perpendiculaires à cette cible.
8. Dispositif selon l'une quelconque des revendications 5 et 6, dans lequel les moyens de support comprennent une ouverture en regard de chaque cible, cette ouverture étant délimitée par deux parois (55, 57) qui vont vers la cible en s ' écartant l'une de l'autre.
9. Dispositif selon l'une quelconque des revendications 1 à 5, comprenant en outre des moyens auxiliaires fixes (58) qui sont aptes à laisser passer le faisceau laser (34) en direction de la cible, à absorber des rayonnements émis par la première face de cette cible et à réémettre ces rayonnements vers cette cible.
10. Dispositif selon l'une quelconque des revendications 1 à 9, dans lequel l'empilement est subdivisé en ensembles d'au moins une paire de première et deuxième couches (76, 78) et l'épaisseur de ces ensembles est une fonction monotone de la profondeur dans l'empilement, cette profondeur étant comptée à partir de la surface libre (80) de l'empilement.
11. Dispositif selon la revendication 10, dans lequel les accroissements d'épaisseur de ces ensembles forment une progression arithmétique.
12. Dispositif selon l'une quelconque des revendications 10 et 11, dans lequel les première et deuxième couches (76, 78) de chaque ensemble ont sensiblement la même épaisseur.
13. Dispositif selon l'une quelconque des revendications 1 à 12 , dans lequel les premier et deuxième matériaux sont respectivement le molybdène et le béryllium ou le molybdène et le silicium.
14. Dispositif selon l'une quelconque des revendications 1 à 13 , dans lequel le substrat (74) est fait d'un matériau qui est choisi parmi le silicium et le germanium.
15. Dispositif selon l'une quelconque des revendications 1 à 14, dans lequel l'épaisseur du substrat (74) est comprise dans l'intervalle allant d'environ 5 mm à environ 40 mm et l'épaisseur de l'empilement vaut environ 1 μm.
16. Dispositif selon l'une quelconque des revendications 1 à 15, dans lequel chaque miroir multicouches est muni de moyens (92) de refroidissement de ce miroir multicouches pour en réduire les déformations lors d'un éclairement par le rayonnement extrême ultraviolet.
17. Dispositif selon la revendication 16, dans lequel les moyens de refroidissement (92) sont prévus pour refroidir le miroir multicouches jusqu'à une température environ égale à 100 K.
18. Dipositif selon l'une quelconque des revendication 16 et 17, dans lequel les moyens de refroidissement (92) sont des moyens de refroidissement par l'hélium liquide, le fréon, l'azote liquide ou un fluide de refroidissement caloporteur à basse température proche de 0 K.
19. Dispositif selon l'une quelconque de revendications 1 à 18, dans lequel l'échantillon comprend un substrat semiconducteur (18) sur lequel est déposée une couche (20) de résine photosensible qui est destinée à être insolée suivant le motif déterminé.
PCT/FR2000/003429 1999-12-08 2000-12-07 Dispositif de lithographie utilisant une source de rayonnement dans le domaine extreme ultraviolet et des miroirs multicouches a large bande spectrale dans ce domaine WO2001042855A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020027006996A KR100695480B1 (ko) 1999-12-08 2000-12-07 극 자외선 범위에 있는 광선의 소스 및 이 범위에서 넓은스펙트럼 밴드를 가지고 있는 다층 거울들을 사용하는리소그라피 장치
EP00988892A EP1240551A2 (fr) 1999-12-08 2000-12-07 Dispositif de lithographie utilisant une source de rayonnement dans le domaine extreme ultraviolet et des miroirs multicouches a large bande spectrale dans ce domaine
AU25242/01A AU2524201A (en) 1999-12-08 2000-12-07 Lithography device which uses a source of radiation in the extreme ultraviolet range and multi-layered mirrors with broad spectral band in this range
JP2001544085A JP2003516643A (ja) 1999-12-08 2000-12-07 極短紫外領域の放射の光源を用いるリソグラフィ装置、およびこの領域内で広いスペクトル帯域を有する多層膜反射鏡
US10/130,519 US6724465B2 (en) 1999-12-08 2000-12-07 Lithography device which uses a source of radiation in the extreme ultraviolet range and multi-layered mirrors with a broad spectral band in this range

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9915470A FR2802311B1 (fr) 1999-12-08 1999-12-08 Dispositif de lithographie utilisant une source de rayonnement dans le domaine extreme ultraviolet et des miroirs multicouches a large bande spectrale dans ce domaine
FR99/15470 1999-12-08

Publications (2)

Publication Number Publication Date
WO2001042855A2 true WO2001042855A2 (fr) 2001-06-14
WO2001042855A3 WO2001042855A3 (fr) 2001-12-27

Family

ID=9553016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003429 WO2001042855A2 (fr) 1999-12-08 2000-12-07 Dispositif de lithographie utilisant une source de rayonnement dans le domaine extreme ultraviolet et des miroirs multicouches a large bande spectrale dans ce domaine

Country Status (10)

Country Link
US (1) US6724465B2 (fr)
EP (1) EP1240551A2 (fr)
JP (1) JP2003516643A (fr)
KR (1) KR100695480B1 (fr)
CN (1) CN1222829C (fr)
AU (1) AU2524201A (fr)
FR (1) FR2802311B1 (fr)
RU (1) RU2249840C2 (fr)
TW (1) TW539911B (fr)
WO (1) WO2001042855A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003982A1 (fr) * 2002-06-28 2004-01-08 Canon Kabushiki Kaisha Appareil a miroir de reflexion, appareil d'exposition et procede de fabrication de dispositif
CN100375238C (zh) * 2002-04-26 2008-03-12 佳能株式会社 曝光设备以及使用该曝光设备的器件制造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2801113B1 (fr) * 1999-11-15 2003-05-09 Commissariat Energie Atomique Procede d'obtention et source de rayonnement extreme ultra violet, application en lithographie
US20040130693A1 (en) * 2002-10-31 2004-07-08 Asml Netherlands B.V. Lithographic apparatus, optical element and device manufacturing method
DE10318562A1 (de) * 2003-04-24 2004-11-11 Carl Zeiss Sms Gmbh Anordnung zur Inspektion von Objekten, insbesondere von Masken in der Mikrolithographie
EP2490227B1 (fr) * 2003-06-02 2014-11-19 Nikon Corporation Réflecteur à films multicouche et système d'exposition aux rayons X
FR2859545B1 (fr) * 2003-09-05 2005-11-11 Commissariat Energie Atomique Procede et dispositif de lithographie par rayonnement dans l'extreme utraviolet
JP4466566B2 (ja) * 2003-10-15 2010-05-26 株式会社ニコン 多層膜反射鏡、多層膜反射鏡の製造方法、及び露光装置
CN100449690C (zh) * 2003-10-15 2009-01-07 株式会社尼康 多层膜反射镜、多层膜反射镜的制造方法及曝光系统
EP1624467A3 (fr) * 2003-10-20 2007-05-30 ASML Netherlands BV Appareil lithographique et procédé de fabrication d'un composant
DE10359102A1 (de) * 2003-12-17 2005-07-21 Carl Zeiss Smt Ag Optische Komponente umfassend ein Material mit einer vorbestimmten Homogenität der thermischen Längsausdehnung
JP4532991B2 (ja) * 2004-05-26 2010-08-25 キヤノン株式会社 投影光学系、露光装置及びデバイス製造方法
FR2871622B1 (fr) * 2004-06-14 2008-09-12 Commissariat Energie Atomique Dispositif de generation de lumiere dans l'extreme ultraviolet et application a une source de lithographie par rayonnement dans l'extreme ultraviolet
US7336416B2 (en) * 2005-04-27 2008-02-26 Asml Netherlands B.V. Spectral purity filter for multi-layer mirror, lithographic apparatus including such multi-layer mirror, method for enlarging the ratio of desired radiation and undesired radiation, and device manufacturing method
JP5339056B2 (ja) * 2006-07-14 2013-11-13 株式会社ニコン 露光装置及びデバイス製造方法
WO2010091907A1 (fr) 2009-02-13 2010-08-19 Asml Netherlands B.V. Miroir multicouches et appareil lithographique
DE102011010462A1 (de) * 2011-01-28 2012-08-02 Carl Zeiss Laser Optics Gmbh Optische Anordnung für eine EUV-Projektionsbelichtungsanlage sowie Verfahren zum Kühlen eines optischen Bauelements
FR2984584A1 (fr) * 2011-12-20 2013-06-21 Commissariat Energie Atomique Dispositif de filtrage des rayons x
RU2510641C2 (ru) * 2012-04-19 2014-04-10 Рубен Павлович Сейсян Фильтр спектральный очистки для эуф-нанолитографа и способ его изготовления
TWI558044B (zh) * 2014-12-09 2016-11-11 國立清華大學 連續光譜產生裝置及其組裝方法
EP3145036B1 (fr) 2015-09-17 2020-03-18 Academia Sinica Appareil et procédé de génération de supercontinuum
FR3059434B1 (fr) * 2016-11-29 2019-05-17 Centre National De La Recherche Scientifique - Cnrs Composant de selection spectrale pour radiations xuv
US11720034B2 (en) * 2017-04-11 2023-08-08 Asml Netherlands B.V. Lithographic apparatus and cooling method
US10613444B2 (en) * 2018-08-28 2020-04-07 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor apparatus and method of operating the same
FR3088514B1 (fr) * 2018-11-12 2020-11-20 Centre Tech Alphanov Source et procede de generation de rayons x par interaction laser avec une cible

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004665A1 (fr) * 1994-08-01 1996-02-15 Osmic, Inc. Element optique a mince film multicouche pour rayons x et neutrons

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684565A (en) * 1984-11-20 1987-08-04 Exxon Research And Engineering Company X-ray mirrors made from multi-layered material
US5310603A (en) * 1986-10-01 1994-05-10 Canon Kabushiki Kaisha Multi-layer reflection mirror for soft X-ray to vacuum ultraviolet ray
JP2576278B2 (ja) * 1990-08-31 1997-01-29 株式会社島津製作所 X線発生装置
JP3127511B2 (ja) * 1991-09-19 2001-01-29 株式会社日立製作所 露光装置および半導体装置の製造方法
JP3385644B2 (ja) * 1993-03-26 2003-03-10 株式会社ニコン レーザープラズマx線源
JPH11126745A (ja) * 1997-10-24 1999-05-11 Toyota Max:Kk X線縮小露光リソグラフ用光源装置
US6228512B1 (en) * 1999-05-26 2001-05-08 The Regents Of The University Of California MoRu/Be multilayers for extreme ultraviolet applications
JP2001027699A (ja) * 1999-07-14 2001-01-30 Nikon Corp 多層膜反射鏡および反射光学系
JP2001057328A (ja) * 1999-08-18 2001-02-27 Nikon Corp 反射マスク、露光装置および集積回路の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004665A1 (fr) * 1994-08-01 1996-02-15 Osmic, Inc. Element optique a mince film multicouche pour rayons x et neutrons

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOBKOWSKI R ET AL: "Development of a 0.1 micron linewidth fabrication process for X-ray lithography with a laser plasma source and application to SAW device fabrication" , EMERGING LITHOGRAPHIC TECHNOLOGIES III, SANTA CLARA, CA, USA, 15-17 MARCH 1999 , PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 1999, SPIE-INT. SOC. OPT. ENG, USA, PAGE(S) 392 - 399 XP002147242 ISSN: 0277-786X *
HIROSE H ET AL: "NOVEL X-RAY SOURCE USING REAR SIDE X-RAY EMISSION FROM THE FOIL TARGET" PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS,ELSEVIER PUBLISHING, BARKING,GB, vol. 33, no. 1/03, 1996, pages 277-280, XP000929483 ISSN: 0960-8974 *
STEARNS D G ET AL: "MULTILAYER MIRROR TECHNOLOGY FOR SOFT-X-RAY PROJECTION LITHOGRAPHY" APPLIED OPTICS,US,OPTICAL SOCIETY OF AMERICA,WASHINGTON, vol. 32, no. 34, 1 décembre 1993 (1993-12-01), pages 6952-6960, XP000414602 ISSN: 0003-6935 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100375238C (zh) * 2002-04-26 2008-03-12 佳能株式会社 曝光设备以及使用该曝光设备的器件制造方法
WO2004003982A1 (fr) * 2002-06-28 2004-01-08 Canon Kabushiki Kaisha Appareil a miroir de reflexion, appareil d'exposition et procede de fabrication de dispositif
US7349063B2 (en) 2002-06-28 2008-03-25 Canon Kabushiki Kaisha Reflection mirror apparatus, exposure apparatus and device manufacturing method
CN100377303C (zh) * 2002-06-28 2008-03-26 佳能株式会社 反射镜设备、曝光设备以及器件制造方法

Also Published As

Publication number Publication date
JP2003516643A (ja) 2003-05-13
RU2249840C2 (ru) 2005-04-10
WO2001042855A3 (fr) 2001-12-27
US6724465B2 (en) 2004-04-20
EP1240551A2 (fr) 2002-09-18
CN1433531A (zh) 2003-07-30
FR2802311B1 (fr) 2002-01-18
AU2524201A (en) 2001-06-18
US20020171817A1 (en) 2002-11-21
RU2002118110A (ru) 2004-03-20
CN1222829C (zh) 2005-10-12
FR2802311A1 (fr) 2001-06-15
KR20030009329A (ko) 2003-01-29
TW539911B (en) 2003-07-01
KR100695480B1 (ko) 2007-03-14

Similar Documents

Publication Publication Date Title
WO2001042855A2 (fr) Dispositif de lithographie utilisant une source de rayonnement dans le domaine extreme ultraviolet et des miroirs multicouches a large bande spectrale dans ce domaine
EP0046104B1 (fr) Procédé thermo-optique d&#39;inscription d&#39;information, support d&#39;information destiné à la mise en oeuvre de ce procédé et dispositif de lecture de ce support d&#39;information
WO2006000718A1 (fr) Dispositif de generation de lumiere dans l&#39; extreme ultraviolet et application a une source de lithographie par rayonnement dans l&#39;extreme ultraviolet
EP1468428B1 (fr) Ensemble optique et procede associe
WO2006114540A2 (fr) Detecteur optique ultrasensible a grande resolution temporelle
EP1230828B1 (fr) Procede d&#39;obtention et source de rayonnement extreme ultraviolet, et son application en lithographie
EP1929539A1 (fr) Detecteur optique ultrasensible, a grande resolution temporelle, utilisant un mode a fuites d&#39;un guide d&#39;onde plan, et procedes de fabrication de ce detecteur
EP2846201B1 (fr) Dispositif émissif lumineux à structures diffractives et à hologramme synthétique
WO2001050554A1 (fr) Structure de reseau par holographie de volume a forte dispersion
EP3924757B1 (fr) Métasurfaces optiques, procédés et systèmes de fabrication associés
WO2006092518A1 (fr) Source monochromatique de rayons x et microscope a rayons x mettant en oeuvre une telle source
FR2899698A1 (fr) Dispositif de collecte de flux de rayonnement electromagnetique dans l&#39;extreme ultraviolet
FR2961627A1 (fr) Ecran phosphore a fibres optiques comportant un filtre angulaire.
EP1397813B1 (fr) Composant optique hybride pour applications rayons x, et procede associe
EP3650836B1 (fr) Dispositif de mesure basé sur une mesure optique dans une cavité opto-mécanique
CA2887442C (fr) Photocathode semi-transparente a taux d&#39;absorption ameliore
FR2504308A1 (fr) Instrument et procede pour focaliser des rayons x, des rayons gamma et des neutrons
JP2005083862A (ja) 光学薄膜およびこれを用いたミラー
FR2985604A1 (fr) Dispositif de photodetection.
FR2748604A1 (fr) Photodetecteur a structure optique resonnante avec un reseau
FR2754102A1 (fr) Procede de generation d&#39;un microfaisceau de rayons x et dispositif pour celui-ci
FR2536911A1 (fr) Photodetecteur
FR2957686A1 (fr) Photorepeteur pour la lithographie en extreme ultra-violet
WO2005041369A1 (fr) Dispositif de pompage optique par diodes laser et procede de pompage optique associe
FR2858104A1 (fr) Ensemble optique et procede associe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2000988892

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10130519

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027006996

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 544085

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: RU

Ref document number: 2002 2002118110

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 008188807

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000988892

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020027006996

Country of ref document: KR