WO2001042790A2 - Mittel und verfahren zur diagnose von lyme borreliose sowie borreliose-impfstoff - Google Patents

Mittel und verfahren zur diagnose von lyme borreliose sowie borreliose-impfstoff Download PDF

Info

Publication number
WO2001042790A2
WO2001042790A2 PCT/EP2000/012454 EP0012454W WO0142790A2 WO 2001042790 A2 WO2001042790 A2 WO 2001042790A2 EP 0012454 W EP0012454 W EP 0012454W WO 0142790 A2 WO0142790 A2 WO 0142790A2
Authority
WO
WIPO (PCT)
Prior art keywords
protein
borrelia
burgdorferii
fragment
borrelia burgdorferii
Prior art date
Application number
PCT/EP2000/012454
Other languages
English (en)
French (fr)
Other versions
WO2001042790A3 (de
Inventor
Peter Jungblut
Aydan Dilgimen
Sascha Thies
Brigitte Wittmann
Original Assignee
Wita Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wita Gmbh filed Critical Wita Gmbh
Priority to EP00991154A priority Critical patent/EP1238280A2/de
Publication of WO2001042790A2 publication Critical patent/WO2001042790A2/de
Publication of WO2001042790A3 publication Critical patent/WO2001042790A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/20Assays involving biological materials from specific organisms or of a specific nature from bacteria from Spirochaetales (O), e.g. Treponema, Leptospira
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to an agent and a method for diagnosing Lyme disease and a Lyme vaccine.
  • the following antigens of Lyme disease could be identified, which are characterized by high specificity and sensitivity: GAPDH, oligopeptide permease, oligopeptide ABC transporter periplasmic BP (oppA-2) (Bb), glycosyl transferase IgtD homolog, heat shock protein 90, VLSE fragment , (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii, Flagellin Protein Borrelia garinii, (AE001578) conserved hypothetical protein cp32-6 Borrelia burgdorferii, membrane assoc. protein p66 percursor Borrelia burgdoferii, oligopeptide ABC transporter periplasmic BP
  • RNA polymerase (rpoA) homologous, P66 protein (fragment), flagellin (fragment), DNA direct.
  • RNA polymerase integral outer membrane protein p66, pyruvate kinase (pyk) homolog, phosphoglycerate kinase (pgk) and / or BBU28760 NID.
  • pyk pyruvate kinase
  • pgk phosphoglycerate kinase
  • BBU28760 NID One of the most common transmitted by ticks
  • LM lymphadenosis cutis benigna
  • the species of the Borrelia burgdorferi complex (also known as Borrelia burgdorferi sensu lato) are divided into three main genus species, B. burgdorferi sensu stricto, B. garinii and B. afzelii.
  • OspA outer-surface lipoproteine
  • a test antigen known for Lyme disease a corresponding vaccine could be provided in the USA.
  • This polyvalent vaccine OspA protects mice against B. Burgdorferi sensu stricto, B. garinii and B. afzelii. (Gern, L. Vaccine 1997, 15 1551-1557, see also Appendix 1).
  • a vaccine must therefore contain other or further proteins and / or peptides in order to enable broad protection.
  • the object of the invention was to find further antigens for the diagnosis of LM and to provide a corresponding vaccine which allows a wide range of applications.
  • glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
  • Oligopeptide permease oligopeptide ABC transporter periplasmic BP (oppA-2) (Bb), glycosyl transferase IgtD homolog, heat shock protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii, Flagellin Protein Borrelia garinii, (AE001578) conserved hypothetical protein cp32-6 Borrelia burgdorferii, membrane assoc.
  • fragment fragment
  • flagellin fragment
  • DNA direct.
  • RNA polymerase integral outer membrane protein p66
  • pyruvate kinase pyk homolog
  • the term pharmaceutical or diagnostic composition means a substance which is suitable for the diagnosis and / or treatment of diseases, in particular diseases related to Lyme disease, preferably in an amount sufficient to do so To achieve effect.
  • pharmaceutical or diagnostic composition used in the present description means both the active substance itself and the active substance in connection with pharmaceutical compatible carriers, adjuvants, other active ingredients, etc.
  • treatment means the prophylactic and / or therapeutic effect of a medicinal substance.
  • borreliosis antigens relates to both naturally occurring borreliosis antigens and all modifications, mutants or derivatives of the borreliosis antigens, borreliosis antigens produced by recombination techniques, the amino acid modifications, such as inversions, deletions, insertions, Deposits etc. are included, provided that at least some of the essential functions of the wild-type Lyme disease antigens are present.
  • Lyme disease antigens may also include unusual amino acids and / or modifications such as alkylation, oxidation, thiol modification, denaturation and oligomerization and the like.
  • Lyme disease antigens can in particular be proteins and / or peptides and / or fusion peptides which, in addition to other proteins, peptides or parts thereof, contain Lyme disease antigens in whole or in part.
  • the Lyme antigens are shortened forms of the naturally occurring Lyme antigens, such as small peptides.
  • promoter means a DNA sequence that is mostly upward (5 ') from the coding sequence of a structural gene and which controls expression of the coding region, in particular a Lyme antigen, by providing a recognition sequence for an RNA polymerase and / or for other factors which are required for the transcription to start in the correct place. Promoter sequences are necessary, but not always sufficient to control the expression of the gene.
  • nucleic acid means a large molecule which can be single-stranded or double-stranded and consists of monomers (nucleotides) which contain a sugar unit, a phosphate unit and either a purine or a pyrimidine residue.
  • the nucleic acid can be cDNA, genomic DNA or RNA, for example mRNA.
  • nucleic acid sequence means a natural or synthetic polymer of single- or double-stranded DNA or RNA which alternatively contains synthetic, non-natural or modified nucleotide bases which can be incorporated into DNA or RNA polymers.
  • gene means a DNA sequence encoding a specific protein and regulatory elements which control the expression of this DNA sequence.
  • the term coding sequence relates to the part of a gene which codes for a protein, a polypeptide or a part thereof, the regulatory sequences and / or elements which control the initiation or termination of the transcription.
  • the coding sequence and / or regulatory element can be one that is normally found in the cell, in which case it is referred to as autologous or endogenous, or one that is not normally found in the cell Cell is localized, in which case it is referred to as heterologous.
  • a heterologous gene can also consist of autologous elements that are arranged in an order and / or orientation that is normally not found in the cell to which the gene is transferred.
  • a heterologous gene may be derived in whole or in part from any source known in the art, including a bacterial or viral genome or episome, core eucaryotic or plasmid DNA, cDNA, or chemically synthesized DNA.
  • the structural gene can form a continuous coding region or can comprise one or more introns which are delimited by suitable splice connections.
  • the structural gene can be composed of sections that come from different, naturally occurring or synthetic sources.
  • a detectable gene product is a nucleotide or amino acid sequence, in particular a borreliosis antigen, which can be detected using a test.
  • expression of a detectable gene product imparts a feature to the cell that is a simple selection of the cell from other cells allowed that do not express the detectable gene product.
  • vector means a recombinant DNA construct, which can be a plasmid, virus or an autonomously replicating sequence, a phage or a nucleotide sequence, which is linear or circular, consisting of single or double stranded DNA or RNA, in which a series of nucleotide sequences have been linked or recombined into a unique construction and which can introduce a promoter fragment and a DNA sequence of a selected gene product in sense or antisense orientation together with suitable untranslated 3 'sequences into a cell.
  • Plasmids are genetic elements that are stably inherited without being part of the chromosome of their host cell. They can include DNA or RNA and be linear and circular. Plasmids encode molecules that ensure their replication and stable inheritance during cell replication and can encode products of considerable importance to medicine, agriculture and the environment. For example, they code for toxins that greatly increase the virulence of pathogenic bacteria. You can also encode genes that confer resistance to antibiotics. In molecular biology, plasmids are generally used as vectors for cloning and expression of recombinant genes. According to the rules of the standard designation familiar to the person skilled in the art, plasmids are generally designated with the lowercase letter p, the uppercase letter and / or numbers precede or follow.
  • plasmids disclosed in the present specification are either commercially available, open to the public, or can be constructed from available plasmids using routine, well-known, published methods. Many plasmids and other cloning and expression vectors that can be used in the present invention are well known and readily available to those skilled in the art. In addition, those skilled in the art can readily construct any number of other plasmids suitable for use in the invention. From the present disclosure, the properties, construction and use of both such plasmids and other vectors are readily apparent to the person skilled in the art.
  • expression used in the present description is intended to describe the transcription and / or coding of the sequence of the gene product, for example of Lyme antigens.
  • a DNA chain encoding the sequence of a gene product is first transcribed into a complementary RNA, which is often an mRNA, and then the mRNA so transcribed is translated into the gene product mentioned above, if it is the gene product is a protein.
  • the expression also includes the transcription of a DNA which has been inserted with respect to its regulatory elements in the antisense direction.
  • An expression that is constitutive and possibly further increased by an externally controlled promoter fragment can produce multiple copies of mRNA and large amounts of the selected gene product can also include the overproduction of a gene product.
  • the peptides or proteins of the invention are isolated.
  • isolated used in the present description means, in connection with proteins, a polypeptide which is present without the material with which it is associated in its natural state or at most with a part thereof. Based on the weight of the total protein in a particular sample, the isolated protein is at least 0.5%, preferably at least 5%, more preferably at least 25% and even more preferably at least 50%. Most preferably, the isolated protein is essentially free of other proteins, lipids, carbohydrates or other substances with which it is naturally associated and forms a single major band on a polyacrylamide gel and a single protein spot on a two-dimensional gel. Substantially free means that the protein is at least 75%, preferably at least 85%, more preferably at least 95% and most preferably at least 99% free of other proteins, lipids, carbohydrates or other substances with which it is naturally associated ,
  • Antibody means a polypeptide that is essentially derived from an immunoglobulin gene or immunoglobin genes is encoded, or fragments thereof that specifically bind / bind and recognize an analyte (antigen).
  • Known immunoglobin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu genes for the constant region as well as the innumerable genes for the variable immunoglobulin region.
  • Antibodies occur, for example, as intact immunoglobulins or as a series of well-characterized fragments that are generated by cleavage with various peptidases.
  • Antibody also means modified antibodies (eg oligomeric, reduced, oxidized and labeled antibodies).
  • antibody used in the present description also includes antibody fragments which have been generated either by modification of whole antibodies or by means of de novo synthesis using recombinant DNA techniques.
  • the term antibody includes both intact molecules and fragments thereof, such as Fab, F (ab ') 2 and Fv, which can bind the epitope determinant.
  • the ability of the antibody to selectively bind its antigen or receptor has been partially retained in these fragments, the fragments being defined as follows:
  • Fab the fragment containing a monovalent antigen binding fragment of an antibody molecule
  • Fab can be produced by cleavage of an entire antibody with the enzyme papain, whereby an intact light chain and part of a heavy chain are obtained
  • the Fab 'fragment of an antibody molecule can be obtained by treating an entire antibody with pepsin and then reducing it, whereby an intact light chain and part of the heavy chain are obtained; two Fab 'fragments are obtained per antibody molecule;
  • F (ab ') 2 the fragment of the antibody which can be obtained by treating an entire antibody with the enzyme pepsin without subsequent reduction;
  • F (ab ') 2 is a dimer of two Fab' -
  • Fv defined as a genetically modified fragment that covers the variable range of light
  • Chain and the variable region of the heavy chain contains and is expressed in the form of two chains;
  • Single chain antibody defined as a genetically engineered molecule containing the light chain variable region and the heavy chain variable region, linked by a suitable polypeptide linker to a genetically fused single chain molecule
  • epitope used in the present invention means any antigen determinant on antigens, particularly those associated with Lyme disease to which the paratope of an antibody binds.
  • Epitope determinants usually consist of chemically active surface groupings of molecules, such as amino acids or sugar side chains, and usually have both specific features of the three-dimensional structure and specific charge features.
  • the antibodies according to the invention have an additional benefit in that they can be used as reagents in immunoassays, such as RIA, ELISA and the like. They can also be used to isolate Lyme disease antigens or domains from cells or other biological samples.
  • the antibodies could e.g. B. to establish a tissue culture-based test to find, isolate or modify novel Lyme disease antigens or novel compounds that modify the interaction of Lyme disease antigens and receptors and / or targets.
  • the humanized or chimeric antibodies can include parts derived from two different types (e.g. human constant area and mouse binding area).
  • the parts originating from two different types can be chemically combined using conventional methods or can be produced as a single fusion protein using genetic engineering methods.
  • a DNA that contains the proteins of the two parts of the Chimeric antibody encoded can be expressed as a single fusion protein.
  • an antibody specifically binds to a protein, e.g. a different biological structure, or shows a specific immunoreactivity if the antibody performs its function in a binding reaction in the presence of a heterogeneous population of proteins and other biological substances, which can be used to decide whether the protein or there is another biological structure.
  • the specified antibodies preferably bind to a specific protein, while there is no significant binding to other proteins present in the sample. Specific binding to a protein under such conditions requires an antibody that has been selected for a specific protein because of its specificity.
  • Various immunoassay embodiments can be used to select antibodies which show a specific immunoreactivity with a special protein.
  • Immune test refers to a test in which an antibody is used to specifically bind an analyte.
  • the immunoassay is characterized in that specific binding properties of a specific antibody are used to isolate the analyte, to test it in a targeted manner and / or to determine it quantitatively.
  • vaccination is a way of preventing diseases associated with Lyme disease.
  • the development of a vaccine involves the identification of factors that are decisive for virulence, or of structures or borreliosis antigens that are particularly accessible to the human immune system to eliminate a pathogen.
  • antigens are usually associated with the membrane of the borreliosis pathogen.
  • protein used in the present invention with the immunogenic properties of borreliosis antigens or borreliosis pathogens refers to any protein, polypeptide or peptide which (1) can serve as an antigen for antibodies that are linked to borreliosis antigens or borreliosis - Specifically bind pathogens or (2) when administered as a vaccine, have a protective effect against infection with Lyme disease antigens or Lyme pathogens.
  • the person skilled in the art can use conventional methods to determine proteins, peptides or polypeptides which have such properties.
  • these proteins, polypeptides or peptides have 50%, 60%, 70% or 80%, preferably 90%, more preferably 95% and most preferably 98% homology to the proteins or peptides which are identified as Lyme disease antigens, this homology, for example, using the “Smith-Waterman” homology search algorithm, for example using the “MPSRCH” program (Oxford Molecular) can be determined using an affinity gap search with the following parameters gap open penalty 12, gap extension penalty 1.
  • hybridize used in the present invention refers to conventional hybridization conditions in which 5x SSPE, 1% SDS, 1x Denhardts solution are used as the solution and the hybridization temperatures are between 35 ° C. and 70 ° C., preferably 65 ° C.
  • washing is preferably carried out first with 2xSSC, 1% SDS and then with 0.2x SSC at temperatures between 35 ° C and 70 ° C, preferably at 65 ° C (for the definition of SSPE, SSC and Denhardts solution see Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY (1989)).
  • Fragment includes DNA and / or protein molecules that differ from the original sequence
  • the antigens and their fragments react specifically specifically with anti-B. garinii-, anti-B. burgdorferii- and / or anti-B. afzelii antibodies and have no cross-reactivity with other non-Lyme borreliosis (LM) specific antibodies. They have a high sensitivity and specificity (their signal frequency is more than 50%). All proteins (see Table 3) were not previously known as immune-relevant Lyme antigens.
  • LM non-Lyme borreliosis
  • LM which is known in Europe in particular through the widespread strains B. burgdoferii, B. garnii and B. afzelii are induced, diagnosed and treated.
  • the invention therefore relates to diagnostic agents or a diagnostic composition for Detection of Lyme disease, which antigens glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
  • GPDH glyceraldehyde-3-phosphate dehydrogenase
  • Oligopeptide permease oligopeptide ABC transporter periplasmic BP (oppA-2) (Bb), glycosyl transferase IgtD homolog, heat shock protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii, Flagellin Protein Borrelia garinii, (AE001578) conserved hypothetical protein Borrelia burgdorferii, membrane assoc.
  • RNA polymerase homologous, P66 protein (fragment), flagellin (fragment), DNA direct.
  • RNA polymerase integral outer membrane protein p66, pyruvate kinase (pyk) homologous, phosphoglycerate kinase (pgk) and / or BBU28760 NID and / or their fragments.
  • pyk pyruvate kinase
  • pgk phosphoglycerate kinase
  • BBU28760 NID / or their fragments.
  • antigens preferably react specifically with anti-B. garinii-, anti-B. burgdorferii- and / or anti-B. afzelii antibodies.
  • the subject matter of the invention also encompasses the nucleic acid sequences which code for the antigens and / or fragments and which express the antigens.
  • the antigens can be obtained from B.
  • B. garnii and / or B. afzelii can be isolated and purified or according to known techniques chemically or genetically as recombinant proteins or in the form of their genes (DNA, cDNA), including regulatory units known to the person skilled in the art, such as promoters and nucleic acids or nucleic acid sequences, in particular in the form of plasmids and vectors Are made available that represent coding sequences for the proteins or antigens and thus form detectable gene products.
  • the present invention therefore also relates to a diagnostic method for the detection of an acute, chronic or previous infection with Lyme pathogens, in which antibodies against Lyme disease from a sample, a fragment thereof or protein are brought into contact with its immunogenic properties and then determined whether these are bound to the antigen.
  • the detection takes place by detecting antibodies against Lyme pathogens produced by the host in the sample (by means of the antigens according to the invention).
  • a blood or lymph sample is taken, for example, the serum or the lymph is obtained and brought into contact with the antigens according to the invention and then it is determined whether antibodies from the serum are bound to the antigen.
  • the diagnostic method according to the invention can be designed as an ELISA, RIA or another common detection method, in which, for example, the antibody bound from the serum or the lymph is used of a second antibody.
  • the antigen or a fragment thereof can be immobilized, ie adsorbed, for example, on the wall of a plastic shell in such a way that the specific binding specificity is retained.
  • the identification of the antigens from B. garnii, B. burgdorferii and / or B. afzelii takes place e.g. by combining high-resolution two-dimensional electrophoresis with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS).
  • MALDI-MS matrix-assisted laser desorption ionization mass spectrometry
  • the antigens according to the invention are preferably immobilized in the agent according to the invention on a solid support.
  • All solid phases known per se which are in the form of membranes, gels, test strips, paper, film, filters, plates or spheres, act as solid carriers.
  • Immobilization places the antigens in a reaction space-limited state.
  • immobilization is understood to mean all methods which lead to a restriction of the mobility of the antigens by biological, chemical or physical means.
  • the carrier or the solid phase on which the antigens are immobilized can also be membranes, braids and / or fibrils, for example, in addition to those already mentioned.
  • the antigens can be immobilized on a support directly or via spacers. Spacer in All spacers are within the meaning of the invention, which can form, for example, a short molecular chain between antigen and carrier. For example, hydroxylated chains can be used to avoid specific hydrophobic interactions. However, it is also possible to immobilize the antigens via selected acceptor molecules.
  • the acceptor molecules have the properties necessary for this, such as, for example, molecular charge, chemically modifiable groups and / or immune or nucleic acid, hybridization affinities, etc.
  • the acceptor molecules have the properties necessary for this, such as, for example, molecular charge, chemically modifiable groups and / or immune or nucleic acid, hybridization affinities, etc.
  • the immobilization can be carried out by different methods, such as, for example, the binding of the antigens to one another or to supports, by holding onto the network of a polymeric matrix or by means of membranes.
  • the immobilization not only makes the antigens reusable, but they can also be easily separated again after the process of interaction with the biological sample. They can be used in much higher local concentrations and in continuous flow systems.
  • the binding or immobilization of the antigens to the carrier can be by direct carrier connection and by Cross-linking takes place.
  • the carrier bond is either ionic / adsorptive or by covalent bond.
  • Cross-linking in the sense of the invention is, for example, cross-linking of the antigens with one another or with other polymers.
  • the inclusion of the antigens is also possible, for example, if the carriers are sintered glass sponges, which in particular enables the Lyme antigens to be concentrated. Furthermore, immobilization on the support is possible by the gel inclusion in carrageenan, by the inclusion in polyacrylamide, by the gel inclusion in alginate, in ENT polymers on ceramics with polyamine and the crosslinking by glutaraldehyde.
  • the presence of functional groups on the support can be a prerequisite for successful covalent fixation of the Lyme disease antigens.
  • a possible activation method for example in the case of dextran gel, is the reaction with cyanogen bromide.
  • various types of bonds can be formed, for example ethers, thioethers, esters etc.
  • Coupling methods for the covalent attachment of antigens to agar, agarose and Sephadex carriers and to silanized surfaces of porous glasses are also known to the person skilled in the art.
  • Possible changes in the activity of the antigens can be avoided or reduced by spacing the antigens onto the carrier be immobilized. The spacers give the antigens the necessary flexibility for optimal binding to the antibody and for optimal recognition of the binding partner to be analyzed.
  • the invention also relates to the use of the antigens glyceralaldehyde-3-phosphate dehydrogenase (GAPDH), oligopeptide permease, oligopeptide ABC transporter periplasmic BP (oppA-2) (Bb), glycosyl transferase IgtD homolog, heat shock protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii, Flagellin Protein Borrelia garinii, (AE001578) conserved hypothetical protein Borrelia burgdorferii, membrane assoc.
  • GPDH glyceralaldehyde-3-phosphate dehydrogenase
  • oligopeptide permease oligopeptide ABC transporter periplasmic BP
  • oppA-2 oligopeptide ABC transporter periplasmic BP
  • oppA-2 oligopeptide ABC transporter periplasmic BP
  • GPDH
  • RNA polymerase homologous, P66 protein (fragment), flagellin (fragment), DNA direct.
  • RNA polymerase integral outer membrane protein p66, pyruvate kinase (pyk) homologous, phosphoglycerate kinase (pgk) and / or BBU28760 NID and / or its fragments and / or the nucleic acid sequences coding for the antigens and / or fragments for diagnosis and / or therapy from Lyme disease.
  • the invention also relates to the use of the antigens glyceraldehyde-3-phosphate dehydrogenase, oligopeptide permease, oligopeptide ABC transporter periplasmic BP (oppA-2) (Bb), glycosyl transferase IgtD homolog, heat shock protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii, Flagellin Protein Borrelia garinii, (AE001578) conserved hypothetical protein Borrelia burgdorferii, membrane assoc.
  • RNA polymerase homologous, P66 protein (fragment), flagellin (fragment), DNA direct.
  • RNA polymerase integral outer membrane protein p66, pyruvate kinase (pyk) homologous, phosphoglycerate kinase (pgk) and / or BBU28760 NID and / or their fragments and / or the nucleic acid sequences coding for the antigens and / or fragments for the production of an agent for diagnosis and / or therapy for Lyme disease.
  • the invention further relates to a method for detecting Lyme disease, which is characterized in that the antigens GAPDH,
  • Oligopeptide permease oligopeptide ABC transporter periplasmic BP (oppA-2) (Bb), glycosyl transferase IgtD homolog, heat shock protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii, Flagellin Protein Borrelia garinii, (AE001578) conserved hypothetical protein Borrelia burgdorferii, membrane assoc. protein p66 percursor Borrelia burgdoferii, oligopeptide ABC transporter periplasmic BP
  • RNA polymerase (rpoA) homologous, P66 protein (fragment), flagellin (fragment), DNA direct.
  • RNA polymerase integral outer membrane protein p66, pyruvate kinase (pyk) homologous, phosphoglycerate kinase (pgk) and / or BBU28760 NID and / or their fragments with a biological sample containing Lyme disease antibody under conditions that cause the formation of an antigen -Antibody complex allow, is brought into contact, and after an incubation period the complex formation of an antibody with the antigen is detected.
  • pyk pyruvate kinase
  • pgk phosphoglycerate kinase
  • BBU28760 NID fragments with a biological sample containing Lyme disease antibody under conditions that cause the formation of an antigen -Antibody complex allow
  • the detection of the Lyme antibodies is preferably carried out in an immunoassay, preferably in a solid phase immunoassay, with direct or indirect coupling of a reaction partner with an easily detectable labeling substance.
  • detection can preferably be carried out in an ELISA, a RIA or a fluorescence immunoassay.
  • the implementation of these detection methods is well known to the person skilled in the art.
  • the antigen in this case e.g. GAPDH, oligopeptide ABC transporter periplasmic BP (oppA-2) (Bb), glycosyl transferase IgtD homolog, heat shock protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii, Flagellin Protein Borrelia garinii, (AE001578) conserved hypothetical protein Borrelia burgdorferii, membrane assoc.
  • GAPDH oligopeptide ABC transporter periplasmic BP
  • Bb glycosyl transferase IgtD homolog
  • heat shock protein 90 VLSE fragment
  • putative vls rec. casette Vls6 Borrelia burgdorferii, Flagellin Protein Borrelia garinii, (AE001578) conserved hypothetical protein Borrelia burgdorferii, membrane assoc.
  • RNA polymerase integral outer membrane protein p66, pyruvate kinase (pyk) homologous, phosphoglycerate kinase (pgk) and / or BBU28760 NID bound directly or indirectly to a carrier substance, such as polystyrene.
  • a carrier substance such as polystyrene.
  • antigen-bound antibodies become direct or indirect detected by means of enzyme-coupled substances.
  • These substances can be antibodies, fragments of antibodies or high-affinity ligands such as avidin, which binds to a biotin label.
  • Suitable enzymes are peroxidase, alkaline phosphatase, ⁇ -galactosidase, urease or glucose oxidase.
  • the bound enzymes and thus for example the bound antibodies can be quantified by adding a chromogenic substrate.
  • the antigen e.g. GAPDH, oligopeptide ABC transporter periplasmic BP (oppA-2) (Bb), glycosyl transferase IgtD homolog, heat shock protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii, Flagellin Protein Borrelia garinii, (AE001578) conserved hypothetical protein Borrelia burgdorferii, membrane assoc.
  • GAPDH oligopeptide ABC transporter periplasmic BP
  • oppA-2 oligopeptide ABC transporter periplasmic BP
  • IgtD homolog glycosyl transferase IgtD homolog
  • heat shock protein 90 VLSE fragment
  • putative vls rec. casette Vls6 Borrelia burgdorferii, Flagellin Protein Borrelia garinii, (AE001578) conserved hypothetical protein Borrelia burgdorferii, membrane assoc.
  • RNA polymerase homologous, P66 protein (fragment), flagellin (fragment), DNA direct.
  • RNA polymerase integral outer membrane protein p66, pyruvate kinase (pyk) homolog, phosphoglycerate kinase (pgk) and / or BBU28760 NID directly or indirectly bound to a carrier substance such as polystyrene.
  • a carrier substance such as polystyrene.
  • antigen-bound antibodies are detected by means of substances which carry a radioactive label, for example 125 l.
  • These substances can be antibodies, fragments of antibodies or high-affinity ligands such as avidin, which binds to a biotin label.
  • the bound radioactivity can be quantified using a suitable measuring device.
  • the antigen-bound antibodies are detected in a fluorescence immunoassay by means of substances which carry a fluorescence label, for example fluorescein isothiocyanates (FITC).
  • FITC fluorescein isothiocyanates
  • These substances can be antibodies, fragments of antibodies or high affinity ligands such as e.g. Avidin that binds to a biotin label.
  • the bound amount of fluorescent dye is then quantified using a suitable measuring device.
  • Antibodies of the patient and thus the infection can be detected directly.
  • animal or human liquids such as e.g. Blood, plasma, serum, urine, CSF and synovial fluid understood.
  • the detection of Lyme disease in humans is preferably carried out by detecting Lyme antibodies in the serum.
  • the invention further relates to a Lyme vaccine or a pharmaceutical composition, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)., Oligopeptide ABC transporter periplasmic BP (oppA-2) (Bb), Glycosyl transferase IgtD homolog, heat shock protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii, Flagellin Protein Borrelia garinii, (AE001578) conserved hypothetical protein Borrelia burgdorferii, membrane assoc.
  • GPDH glyceraldehyde-3-phosphate dehydrogenase
  • RNA polymerase homologous, P66 protein (fragment), flagellin (fragment), DNA direct.
  • RNA polymerase integral outer membrane protein p66, pyruvate kinase (pyk) homologous, phosphoglycerate kinase (pgk) and / or BBU28760 NID and / or its fragments or the DNA coding for these proteins and / or fragments.
  • the vaccine according to the invention can comprise defined pathogen products, dead vaccines, live vaccines, synthetic peptides, recombinant proteins, deletion mutants, recombinant vaccine strains and anti-idiotypic vaccines.
  • Vaccination with defined pathogen products advantageously represents a simple vaccination against the Lyme disease pathogen or Lyme disease.
  • the immune response can include both an immune response against the pathogen and against pathogen products formed by it.
  • Vaccination with dead vaccines in the sense of the invention comprises vaccination with killed Lyme pathogens, whereby pathogens can be both the complete organisms and individual antigenic structures thereof.
  • Vaccination with live vaccines advantageously leads to a strong induction of sufficient resistance to Lyme disease.
  • An antigen or a molecule that the protective Epitope responsible for the immune response can advantageously also contain further areas.
  • the peptide responsible for the protection can be used detached from the harmful molecular segments. It is advantageously possible to couple the peptides to a carrier molecule. Of course, it is also possible to produce artificial polypeptides which consist of repeating subunits of protective peptides. Vaccination with recombinant antigens, or peptides or proteins in the sense of the invention advantageously allows the suitable polypeptides to be produced on a large scale and thus ensures that sufficient amounts of vaccine are provided, even in the case of pathogen strains or pathogen modifications which are difficult or impossible to cultivate. In this way, any contamination from harmful pathogen products is advantageously excluded as long as they are not encoded by the same gene.
  • Appropriate measures can be taken to change the genome of the pathogen so that it is no longer able to cause disease in the host. This is advantageously achieved by deleting genes that are required for virulence or survivability in the host. Since these metabolites are essential for the pathogen, but are not provided by the patient's organism, the pathogen in the patient advantageously dies after consuming its own reserves. However, the survival time in the host is long enough to elicit a protective immune response. Recombinant vaccines are an advantage if this is the case protective antigen or the Lyme pathogen, which is in recombinant form, but alone is not able to induce protection. This is particularly important if the protection is primarily carried by different lymphocyte populations.
  • the gene responsible for the protective antigen can be cloned in a suitable carrier, which makes it possible to elicit a suitable immune response against the recombinant molecule.
  • the concept of an anti-idiotypic vaccine in the sense of the invention is based on the fact that anti-idiotypic antibodies, which are recognized by protective antibodies, are able to stimulate their synthesis.
  • anti-idiotypic antibodies which are recognized by protective antibodies, are able to stimulate their synthesis.
  • the production of molecular antibodies can advantageously be less expensive than the production of the antigen itself.
  • the immunity caused by anti-idiotypic antibodies can advantageously be controlled in a different way than that against the nominal antigen.
  • Anti-idiotypic vaccines or vaccines can therefore advantageously provide adequate protection even in small children.
  • the present invention thus also relates to an immunogenic composition, preferably a vaccine, which contains the above-described borreliosis antigens, a fragment thereof and / or protein with its immunogenic properties or antibodies which are directed against the antigens.
  • the vaccine according to the invention optionally additionally contains a pharmaceutically acceptable carrier.
  • Suitable carriers and the formulation of such vaccines are known to the person skilled in the art. Suitable carriers include, for example, phosphate-buffered saline solutions, water, emulsions, for example oil / water emulsions, wetting agents, sterile solutions, etc.
  • the vaccine can be administered orally or parenterally, for example intradermally, subcutaneously or intramuscularly.
  • the appropriate dosage is determined by the attending physician and depends on various factors, for example the type of administration, the age and weight of the recipient, etc. It can range from 1 ⁇ g to 200 ⁇ g per patient. In children the dose is reduced to 5 ⁇ g and in hemodialysis patients the dose is increased to 50-300 ⁇ q.
  • the supernatants which contain the total protein mixture, were each determined by high-resolution two-dimensional polyacrylamide gel electrophoresis (2DE gels) (according to Jungblut P., Grabher, G., Stöffler, G., Electrophoresis 20, 3611-3622, 1999; and Klose and Kobaltz, 1995, Electrophoresis 16, 1043-1049).
  • 2DE gels high-resolution two-dimensional polyacrylamide gel electrophoresis
  • the proteins were separated in a preparative 2DE gel, stained with Coomassie, punched out and cleaved with trypsin. The resulting tryptic peptides were eluted and desalted and analyzed by MALDI mass spectrometry. By comparing the Mass data ("mass fingerprints" of the tryptic peptides) with the existing databases (SWISSPROT, PIR), the proteins were identified using the Mascot mass comparison program and provided with the protein spot numbers (see Tables 1, 2 and 3).
  • Table 2 shows which proteins reacted positively with which sera. Serum 5 was very weak and therefore gave a positive reaction only with protein 1, 3, 6, 19 from B.. Burgdorferii and with protein 1, 19 from B. garinii VS286 and with protein 24 from B. garinii 20047. It is It is likely that the identified proteins with a negative reaction with patient sera will also react positively if further sera are measured.
  • Table 3 lists the names of the identified proteins, or their associated genes, and the access numbers (“accession” numbers) of these proteins in the databases (S.Pt: SwissProt database; PIR BLS: PIR database) Table 3 lists the possible cell or plasmid positions of the genes and, where known, the functions of the proteins (Fraser et al., Nature 390, 580-586, 1997).
  • Proteins include:
  • RNA polymerase rpoA
  • P66 protein fragment
  • proteins are four hypothetical proteins which have so far only been characterized as ORFs / "open reading frames", which have thus far not been isolated and characterized at the protein level (protein spots 2, 4, spot 9, spot 16 and spot 38 ).
  • Antigens are of importance for diagnosis and vaccine development.
  • the positively identified antigens confirm the antigens identified according to Jungblut et al. , 1999 (proteins p83 / l00, flagellin,
  • these proteins were identified in the following way: They were punched out of small 2DE gels and identified by mass spectrometry or by special antibodies; the serum diagnosis was carried out by ELISA tests such as under routine laboratory conditions or on one-dimensional gels with rabbit antisera or human sera. Under these conditions, in addition to the known antigens (e.g. OspA, outer-surface lipoprotein), two new antigens were identified, namely GAPDH and ABC Transporter Oligopeptide Permease.
  • OspA outer-surface lipoprotein
  • Table 1 Important Borrelia proteins on 2DE gels Analytical 2DE gels were produced from the 5 different Borrelia strains and stained with silver.
  • Table 2 Immunological test against 9 patient sera. Analytical 2DE gels from the various Borrelia strains were transferred undyed to PVDF membranes. All of these membranes were incubated with the 9 different sera from neuroborreliosis patients.
  • Name of the identified protein (see Table 2)
  • Fiaser CM Casjens S, Hua ⁇ g WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum 1) "Zhang.J -R., Hardliam J., M., Barbour A., G. And Norris S. Antigenic Variation in lyme A, Dodson R, Hickey EK, G inn M, Dougherty B, Tomb JF, Fleischmann RD, Richardson disease borreliae by pro recombination of VMP-like sequence casettes. " Cell 89 (2), 275-285
  • Bui dorferi HSP70 homolog Characterization o immunoreactive stress protein "mfecUmmim 60 (9), 3704-3713 (1992).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Die Erfindung betrifft Mittel zur Diagnose und/oder Therapie von Lyme Borreliose enthaltend die Antigene Glyceraldehyd-3-phosphat-Dehydrogenase (GAPDH), Oligopeptid-Permease, Oligopeptid ABC transporter periplasmic BP(oppA-2)(Bb), Glycosyl transfase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative v1s rec. casette V1s6 Borrelia burgdorferii, Flagellin Protein Borrelia garinii, (AE001578) conserved hypothetical protein cp32-6 Borrelia burgdorferii, membrane assoc. protein p66 precursor Borrelia burgdoferii, Oligopeptid ABC transporter periplasmic BP (oppA-4)(Bc), Fructose-biphosphate aldose (fba) Borrelia burgdorferii, DNAK Protein Heat Shock Protein 70 Borrelia burgdorferii, orfE Borrelia burgdorferii, Outer surface protein B precursor Borrelia burgdorferii, L-lactate dehydrogenase (ldh), P83/100 gene Borrelia burgdorferii, Enolase 2phosphoglycerat Borrelia burgdorferii, Flagellin Protein Borrelia garinii, hypothetical protein BBE28 Borrelia burgdorferii, DNA direct. RNA polymase (rpoA) homolog, P66 protein (fragment), Flagellin (fragment), DNA direct. RNA polymase, integral outer membran protein p66, pyruvate kinase (pyk) homolog; Phosphoglycerat kinase (pgk) und/oder BBU28760 NID und/oder deren Fragmente und/oder für die Antigene und/oder Fragmente codierenden Nucleinsäuresequenzen.

Description

Mittel und Verfahren zur Diagnose von Lyme Borreliose sowie Borreliose-Impfstoff
Die Erfindung betrifft ein Mittel und ein Verfahren zur Diagnose von Lyme Borreliose sowie einen Borreliose- Impfstoff. Es konnten folgende Antigene der Borreliose identifiziert werden, die durch hohe Spezififtät und Sensivität gekennzeichnet sind: GAPDH, Oligopeptid- Permease, Oligopeptid ABC transporter periplasmic BP(oppA-2) (Bb) , Glycosyl transferase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii , Flagellin Protein Borrelia garinii , (AE001578) conserved hypothetical protein cp32-6 Borrelia burgdorferii , membrane assoc. protein p66 percursor Borrelia burgdoferii , Oligopeptid ABC transporter periplasmic BP
(oppA-4) (Bc) , Fructose-biphosphate aldose (fba)
Borrelia burgdorferii , DNAK Protein Heat Shock Protein
70 Borrelia burgdorferii , orfE Borrelia burgdorferii , Outer surface protein B precursor Borrelia burgdorferii , L-lactate dehydrogenase (ldh) , P83/100 gene Borrelia burgdorferii , Enolase 2phosphoglycerat Borrelia burgdorferii , Flagellin Protein Borrelia garinii , hypothetical protein BBE28 Borrelia burgdorferii , DNA direct. RNA polymerase (rpoA) homolog, P66 protein (fragment) , Flagellin (fragment) , DNA direct. RNA polymerase, integral outer membran protein p66, pyruvate kinase (pyk) homolog, Phosphoglycerat kinase (pgk) und/oder BBU28760 NID. Eine der häufigsten von Zecken übertragenen
Infektionskrankheiten des Menschen ist Lyme Borreliose
(LM) . Die Krankheit wird durch Spirochäten des Borrelia burgdorferi Komplexes hervorgerufen. Die Krankheit kommt in verschiedenen Manifestationen vor, so z.B. Erythema migrans (EM), Neuroborreliose, Akrodermatiits chronica atrophicans (ACA) , Lymphadenosis cutis benigna
(LCB) , Lymphozytäre Meningoradikulitis (Bannwarth-
Syndrom) .
Die Species des Borrelia burgdorferi Komplexes (auch anders Borrelia burgdorferi sensu lato genannt) werden in drei Hauptgenospezies eingeteilt, B . burgdorferi sensu stricto, B. garinii und B . afzelii .
Balmelli, T. und Piffaretti, J.C. ( Int. J. Syst. Bacteriol . 1996, 46, 167-172) sowie Valsangiacomo, C. et al . ( Int. Syst. Bacteriol. 1997, 47, 1-10) haben noch eine Untereinteilung in fünf Spezies vorgenommen.
Während B . burgdorferi sensu stricto hauptsächlich in Nordamerika vorkommt, ist in Europa B . gariniee und in Asien B . afzelii am häufigsten vertreten. Seren von Lyme Borreliose-Patienten enthalten in der Regel nur Antikörper gegen eine der drei bekannten Spezies, die jedoch kreuzreagieren können.
Mit dem immunogenen Protein OspA (outer-surface lipoproteine) , einem für die Borreliose bekannten Testantigen, konnte in den USA eine entsprechende Vakzine bereitgestellt werden. Diese polyvalente Vakzine OspA schützt Mäuse gegen B . burgdorferi sensu stricto, B . garinii und B . afzelii . (Gern, L. Vaccine 1997, 15 1551-1557, vergleiche auch Anlage 1) .
Da es aber signifikante Unterschiede von OspA in den verschiedenen Borreliaspezies gibt, inbesondere außerhalb Nordamerikas, ist es als Testantigen und zum Einsatz in dianostischen Kits nur bedingt geeignet.
So sind nach wie vor für die in Europa und Asien hauptsächlich vorkommenden B . burgdorferii , B . garinii und B . afzelii multiple Vakzine notwendig, die gegen die europäischen und asiatischen Borreliaspecies gerichtet sind. Eine Vakzine muss deshalb andere bzw. weitere Proteine und/oder Peptide enthalten, um einen breiten Schutz zu ermöglichen.
Der Erfindung lag die Aufgabe zugrunde, weitere Antigene zur Diagnose von LM aufzufinden und einen entsprechenden Impfstoff bereitzustellen, der ein breites Anwendungsspektrum gestattet .
Überraschend wurden mit dem glykolytischen Enzym Glyceraldehyd-3 -phosphat-Dehydrogenase (GAPDH) ,
Oligopeptid-Permease, Oligopeptid ABC transporter periplasmic BP (oppA-2 ) (Bb) , Glycosyl transferase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii , Flagellin Protein Borrelia garinii , (AE001578) conserved hypothetical protein cp32-6 Borrelia burgdorferii , membrane assoc. protein p66 percursor Borrelia burgdoferii , Oligopeptid ABC transporter periplasmic BP (oppA-4) (Bc) , Fructose-biphosphate aldose (fba) Borrelia burgdorferii , DNAK Protein Heat Shock Protein 90 und/oder 70 Borrelia burgdorferii , orfE Borrelia burgdorferii , Outer surface protein B precursor Borrelia burgdorferii , L-lactate dehydrogenase (ldh) , P83/100 gene Borrelia burgdorferii , Enolase 2phosphoglycerat Borrelia burgdorferii , Flagellin Protein Borrelia garinii , hypothetical protein BBE28 Borrelia burgdorferii , DNA direct. RNA polymerase (rpoA) homolog, P66 protein
(fragment), Flagellin (fragment), DNA direct. RNA polymerase, integral outer membran protein p66, pyruvate kinase (pyk) homolog, Phosphoglycerat kinase
(pgk) und/oder BBU28760 NID Antigene gefunden, die sowohl zum Nachweis von Borreliose im frühen als auch im späten Krankheitsstadium erfolgreich eingesetzt werden können.
Im Zusammenhang mit der vorliegenden Erfindung sollte eine Reihe allgemeiner Begriffe wie folgt verwendet werden:
Im Zusammenhang mit der vorliegenden Erfindung bedeutet der Begriff pharmazeutische oder diagnostische Zusammensetzung eine Substanz, die zur Diagnose und/oder Behandlung von Krankheiten, insbesondere von mit der Borreliose im Zusammenhang stehenden Krankheiten, geeignet ist, vorzugsweise in einer Menge, die ausreicht, um eine solche Wirkung zu erzielen. Der in der vorliegenden Beschreibung verwendete Begriff „pharmazeutische oder diagnostische Zusammensetzung" bedeutet sowohl den Wirkstoff selbst als auch den Wirkstoff in Verbindung mit pharmazeutisch verträglichen Trägern, Adjuvantien, anderen Wirkstoffen, usw.
Im Zusammenhang mit der vorliegenden Erfindung bedeutet der Begriff Behandlung die prophylaktische und/oder therapeutische Wirkung eines Arzneistoffes .
Im Zusammenhang mit der vorliegenden Erfindung betrifft der Begriff Borreliose-Antigene sowohl natürlich vorkommende Borreliose-Antigene als auch alle Modifikationen, Mutanten oder Derivate der Borreliose- Antigene, mittels Rekombinationstechniken hergestellte Borreliose-Antigene, die Aminosäure-Modifikationen, wie Inversionen, Deletionen, Insertionen, Anlagerungen usw. enthalten, sofern zumindest ein Teil der essentiellen Funktionen der Wildtyp-Borreliose-Antigene vorhanden sind. Solche Borreliose-Antigene können auch ungewöhnliche Aminosäuren und/oder Modifikationen, wie eine Alkylierung, Oxidation, Thiol-Modifikation, Denaturierung und Oligomerisation und dergleichen umfassen. Im Zusammenhang mit der vorliegenden Erfindung können Borreliose-Antigene insbesondere Proteine und/oder Peptide sein und/oder Fusionspeptide, die neben anderen Proteinen, Peptiden oder Teilen davon Borreliose-Antigene insgesamt oder teilweise enthalten. In einer weiteren Ausführungsform der vorliegenden Erfindung sind die Borreliose-Antigene verkürzte Formen der natürlich vorkommenden Borreliose- Antigene wie kleine Peptide.
Der Begriff Promotor bedeutet eine DNA-Sequenz, die sich meistens aufwärts (5') von der codierenden Sequenz eines Strukturgens befindet und die die Expression des codierenden Bereichs, insbesondere eines Borreliose- Antigens, kontrolliert, indem eine Erkennungssequenz für eine RNA-Polymerase und/oder für andere Faktoren, die erforderlich sind, damit die Transkription an der richtigen Stelle beginnt, bereitgestellt wird. Promotersequenzen sind notwendig, jedoch nicht immer ausreichend, um die Expression des Gens zu steuern.
Nucleinsäure bedeutet im Sinne der Erfindung ein großes Molekül, das einzel- oder doppelstrangig sein kann und aus Monomeren (Nucleotiden) besteht, die eine Zuckereinheit, eine Phosphateinheit und entweder einen Purin- oder einen Pyrimidin-Rest enthalten. Bei der Nucleinsäure kann es sich um cDNA, genomische DNA oder RNA, beispielsweise mRNA, handeln.
Der Begriff Nucleinsäuresequenz bedeutet ein natürliches oder synthetisches Polymer einzel- oder doppelsträngiger DNA oder RNA, die alternativ synthetische, nich -natürliche oder veränderte Nucleotidbasen enthält, die in DNA- oder RNA-Polymere eingebaut werden können.
Der Begriff Gen bedeutet eine ein spezifisches Protein codierende DNA-Sequenz und Regulationselemente, die die Expression dieser DNA-Sequenz kontrollieren.
Der Begriff codierende Sequenz bezieht sich erfindungsgemäß auf den Teil eines Gens, der ein Protein, ein Polypeptid oder einen Teil davon codiert, wobei die Regulationssequenzen und/oder -elemente, die die Initiation oder Termination der Transkription steuern, ausgeschlossen werden. Die codierende Sequenz und/oder das Regulationselement kann eine/eines sein, die/das normalerweise in der Zelle zu finden ist, wobei sie/es in diesem Fall als autolog oder als endogen bezeichnet wird, oder eine/eines, die normalerweise nicht in der Zelle lokalisiert ist, wobei es/sie in diesem Fall als heterolog bezeichnet wird.
Auch ein heterologes Gen kann aus autologen Elementen bestehen, die in einer Reihenfolge und/oder Orientierung angeordnet sind, die in der Zelle, in die das Gen übertragen wird, normalerweise nicht zu finden ist . Ein heterologes Gen kann insgesamt oder teilweise aus einer beliebigen dem Fachgebiet bekannten Quelle stammen, wozu ein bakterielles oder virales Genom oder Episom, eukaryontische Kern- oder Plasmid-DNA, cDNA oder chemisch synthetisierte DNA gehören. Das Strukturgen kann einen ununterbrochenen codierenden Bereich bilden oder kann ein oder mehrere Introns umfassen, die durch geeignete Spleißverbindungen begrenzt sind. Das Strukturgen kann aus Abschnitten zusammengesetzt sein, die aus unterschiedlichen, natürlich vorkommenden oder synthetischen Quellen stammen.
Ein nachweisbares Genprodukt ist eine Nucleotid- oder Aminosäuresequenz, insbesondere eines Borreliose- Antigens, die sich mit Hilfe eines Tests nachweisen lässt . Vorzugsweise verleiht die Expression eines nachweisbaren Genprodukts der Zelle ein Merkmal, das eine einfache Selektion der Zelle aus anderen Zellen erlaubt, die das nachweisbare Genprodukt nicht exprimieren.
Der Begriff Vektor bedeutet ein rekombinantes DNA- Konstrukt, das ein Plasmid, Virus oder eine autonom replizierende Sequenz, ein Phage oder eine Nucleotidsequenz sein kann, das linear oder zirkulär ist, das aus einzel- oder doppelsträngiger DNA oder RNA besteht, bei dem eine Reihe von Nucleotidsequenzen zu einer einzigartigen Konstruktion verknüpft oder rekombiniert worden sind und das ein Promoterfragment und eine DNA-Sequenz eines ausgewählten Genprodukts in Sense- oder Antisense-Orientierung zusammen mit geeigneten untranslatierten 3' -Sequenzen in eine Zelle einschleusen kann.
Plasmide sind genetische Elemente, die stabil vererbt werden, ohne ein Teil des Chromosoms ihrer Wirtszelle zu sein. Sie können DNA oder RNA umfassen und linear und zirkulär sein. Plasmide codieren Moleküle, die ihre Replikation und stabile Vererbung während der Zellreplikation sicherstellen, und können Produkte mit beträchtlicher Bedeutung für Medizin, Landwirtschaft und Umwelt codieren. Beispielsweise codieren sie Toxine, die die Virulenz pathogener Bakterien stark erhöhen. Sie können auch Gene codieren, die Resistenz gegenüber Antibiotika verleihen. Plasmide werden in der Molekularbiologie allgemein als Vektoren zur Klonierung und Expression rekombinanter Gene verwendet . Entsprechend den dem Fachmann vertrauten Regeln der Standardbezeichnung werden Plasmide allgemein mit dem Kleinbuchstaben p bezeichnet, dem Großbuchstaben und/oder Ziffern vorangestellt sind oder folgen. In der vorliegenden Beschreibung offenbarte Ausgangsplasmide sind entweder im Handel erhältlich, der Öffentlichkeit zugänglich oder können aus verfügbaren Plasmiden mittels routinemäßiger Anwendung wohlbekannter veröffentlichter Verfahren konstruiert werden. Viele Plasmide und andere Klonierungs- und Expressionsvektoren, die erfindungsgemäß verwendet werden können, sind wohlbekannt und für den Fachmann ohne weiteres erhältlich. Außerdem kann der Fachmann ohne weiteres eine beliebige Anzahl anderer Plasmide konstruieren, die zur Verwendung in der Erfindung geeignet sind. Aus der vorliegenden Offenbarung erschließen sich dem Fachmann ohne weiteres die Eigenschaften, Konstruktion und Verwendung sowohl solcher Plasmide als auch anderer Vektoren.
Der in der vorliegenden Beschreibung verwendete Begriff Expression soll die Transkription und/oder Codierung der Sequenz des Genprodukts, z.B. von Borreliose- Antigenen, beschreiben. Bei der Expression wird zuerst eine DNA-Kette, die die Sequenz eines Genprodukts codiert, in eine komplementäre RNA transkribiert, bei der es sich häufig um eine mRNA handelt, und dann wird die so transkribierte mRNA in das vorstehend erwähnte Genprodukt translatiert , wenn es sich bei dem Genprodukt um ein Protein handelt . Die Expression umfasst jedoch auch die Transkription einer DNA, die in Bezug auf ihre Regulationselemente in Antisense- Richtung insertiert worden ist. Eine Expression, die konstitutiv verläuft und möglicherweise durch ein von außen kontrolliertes Promotorfragment weiter gesteigert werden kann, wobei mehrere mRNA-Kopien und große Mengen des ausgewählten Genprodukts erzeugt werden, kann auch die Überproduktion eines Genprodukts umfassen.
Die erfindungsgemäßen Peptide oder Proteine, insbesondere der Borreliose-Antigene bzw. Proteine, die nicht in ihrer natürlichen (zellulären) Umgebung vorkommen, sind isoliert. Der in der vorliegenden Beschreibung verwendete Begriff isoliert bedeutet im Zusammenhang mit Proteinen ein Polypeptid, das ohne das Material, mit dem es in seinem natürlichen Zustand assoziiert ist, vorliegt oder höchstens mit einem Teil davon. Bezogen auf das Gewicht des Gesamtproteins in einer bestimmten Probe macht das isolierte Protein mindestens 0,5%, vorzugsweise mindestens 5%, bevorzugter mindestens 25% und noch bevorzugter mindestens 50% aus. Am bevorzugtesten ist das isolierte Protein im wesentlichen frei von anderen Proteinen, Lipiden, Kohlenhydraten oder anderen Substanzen, mit denen es natürlicherweise assoziiert ist, und bildet auf einem Polyacrylamid-Gel eine einzige Hauptbande und auf einem zweidimensionalen Gel einen einzigen Proteinfleck. Im wesentlichen frei bedeutet, dass das Protein zu mindestens 75%, vorzugsweise zu mindestens 85%, bevorzugter zu mindestens 95% und am bevorzugtesten zu mindestens 99% frei von anderen Proteinen, Lipiden, Kohlenhydraten oder anderen Substanzen ist, mit denen es natürlicherweise assoziiert ist.
Antikörper bedeutet ein Polypeptid, das im wesentlichen von einem Immunglobulin-Gen oder Immunglobin-Genen codiert wird, oder Fragmente davon, das/die einen Analyten (Antigen) spezifisch bindet/binden und erkennt/erkennen. Bekannte Immunglobin-Gene umfassen sowohl die kappa- , lambda- , alpha-, gamma- , delta- , epsilon- und mu-Gene für den konstanten Bereich als auch die unzähligen Gene für den variablen Immunglobulin-Bereich. Antikörper kommen beispielsweise als intakte Immunglobuline oder als eine Reihe gut charakterisierter Fragmente vor, die mittels Spaltung mit verschiedenen Peptidasen erzeugt werden. Antikörper bedeutet auch modifizierte Antikörper (z.B. oligomere, reduzierte, oxidierte und markierte Antikörper) . Der in der vorliegenden Beschreibung verwendete Begriff Antikörper umfasst auch Antikörper-Fragmente, die entweder mittels Modifikation ganzer Antikörper oder mittels de novo-Synthese unter Verwendung von DNA- Rekombinationstechniken erzeugt worden sind. Der Begriff Antikörper umfasst sowohl intakte Moleküle als auch Fragmente davon, wie Fab, F(ab')2 und Fv, die die Epitop-Determinante binden können. Bei diesen Fragmenten ist die Fähigkeit des Antikörpers zur selektiven Bindung seines Antigens oder Rezeptors teilweise erhalten geblieben, wobei die Fragmente wie folgt definiert sind:
(1) Fab, das Fragment, das ein monovalentes Antigenbindungsfragment eines Antikörper-Moleküls enthält, lässt sich mittels Spaltung eines ganzen Antikörpers mit dem Enzym Papain erzeugen, wobei eine intakte leichte Kette und ein Teil einer schweren Kette erhalten werden; (2) das Fab' -Fragment eines Antikörper-Moleküls lässt sich mittels Behandlung eines ganzen Antikörpers mit Pepsin und anschließender Reduktion gewinnen, wobei eine intakte leichte Kette und ein Teil der schweren Kette erhalten werden; pro Antikörper- Molekül werden zwei Fab' -Fragmente erhalten;
(3) F(ab')2, das Fragment des Antikörpers, das sich mittels Behandlung eines ganzen Antikörpers mit dem Enzym Pepsin ohne anschließende Reduktion erhalten lässt; F(ab')2 ist ein Dimer von zwei Fab' -
Fragmenten, die durch zwei Disulfid-Bindungen zusammengehalten werden;
(4) Fv, definiert als gentechnisch verändertes Fragment, das den variablen Bereich der leichten
Kette und den variablen Bereich der schweren Kette enthält und in Form von zwei Ketten exprimiert wird; und
(5) Einzelketten-Antikörper („SCA") , definiert als gentechnisch verändertes Molekül, das den variablen Bereich der leichten Kette und den variablen Bereich der schweren Kette enthält, die durch einen geeigneten Polypeptid-Linker zu einem genetisch fusionierten Einzelketten-Molekül verbunden sind.
Die Verfahren zur Herstellung dieser Fragmente sind auf dem Fachgebiet bekannt (vgl. beispielsweise Harlow und Lane, Antibodies: A Laboratory Manual, (1988), Cold Spring Harbor Laboratory, New York) . Der in der vorliegenden Erfindung verwendete Begriff Epitop bedeutet eine beliebige Antigen-Determinante auf Antigenen, insbesondere solchen, die mit Borreliose assoziert sind, an die das Paratop eines Antikörpers bindet. Epitop-Determinanten bestehen normalerweise aus chemisch aktiven Oberflächen-Gruppierungen von Molekülen, wie Aminosäuren oder Zucker-Seitenketten, und besitzen normalerweise sowohl spezifische Merkmale der dreidimensionalen Struktur als auch spezifische Ladungsmerkmale .
Der Fachmann kann leicht monoklonale Antikörper im Sinne der Erfindung gegen die erfindungsgemäßen Proteine und die Fragmente davon bzw. andere biologische Strukturen herstellen. Die allgemeinen Methoden zur Herstellung monoklonaler Antikörper unter Verwendung von Hybridom-Techniken sind wohlbekannt. Immortalisierte, Antikörper produzierende Zellinien können mittels Zellfusion und auch mittels anderer Verfahren, wie direkter Transformation von B- Lymphocyten mit onkogener DNA oder Transfektion mit dem Epstein-Barr-Virus, erzeugt werden. Vgl. beispielsweise M. Schreier et al . , „Hybridoma Techniques", (1980); Hammerling et al . , „Monoclonal Antibodies and T-cell Hybridomas", (1981); Kennet et al . , „Monoclonal Antibodies", (1980); vgl. auch die US-Patente 4,341,761, 4,399,121, 4,427,783, 4,444,887, 4,452,570, 4,466,917, 4,472,500, 4,491,632 und 4,493,890. Gruppen von gegen das interessierende Protein erzeugten monoklonalen Antikörpern oder Fragmenten davon können im Hinblick auf verschiedene Eigenschaften, nämlich Isotop, Epitop, Affinität, usw., gescreent werden. In einer anderen Ausführungsform können Gene, die monoklonale Antikörper von Interesse codieren, mit Hilfe von auf dem Fachgebiet bekannten PCR-Verfahren aus Hybridomen isoliert und in geeigneten Vektoren cloniert und exprimiert werden. Bei Verwendung von Immunaffinitätsverfahren eignen sich monoklonale Antikörper zur Aufreinigung der einzelnen Proteine, gegen die sie gerichtet sind. Ungeachtet, ob es sich um monoklonale oder polyclonale Antikörper handelt, weisen die erfindungsgemäßen Antikörper insofern einen zusätzlichen Nutzen auf, als sie als Reagenzien bei Immuntests, wie RIA, ELISA und ähnlichen, eingesetzt werden können. Außerdem können sie zur Isolierung der Borreliose-Antigene oder Domänen aus Zellen oder anderen biologische Proben verwendet werden. Die Antikörper könnten z. B. zur Etablierung eines auf einer Gewebekultur basierenden Tests verwendet werden, um neuartige Borreliose-Antigene oder neuartige Verbindungen, die die Wechselwirkung von Borreliose- Antigenen und Rezeptoren und/oder Zielorten modifizieren, zu finden, zu isolieren oder zu modifizieren .
Die humanisierten oder chimären Antikörper können Teile umfassen, die von zwei unterschiedlichen Arten stammen (z. B. menschlicher konstanter Bereich und Maus- Bindungsbereich) . Die von zwei unterschiedlichen Arten stammenden Teile können mittels herkömmlicher Verfahren chemisch verbunden oder unter Verwendung gentechnischer Verfahren als einzelnes Fusionsprotein hergestellt werden. Eine DNA, die die Proteine der beiden Teile des Chimären Antikörpers codiert, kann als einzelnes Fusionsprotein exprimiert werden.
Ein Antikörper bindet spezifisch an ein Protein beispielsweise eine andere biologische Struktur oder zeigt damit eine spezifische Immunreaktivität, wenn der Antikörper in Gegenwart einer heterogenen Population von Proteinen und anderen biologischen Substanzen in einer Bindungsreaktion seine Funktion ausübt, anhand der sich entscheiden lässt, ob das Protein oder eine andere biologische Struktur vorliegt. Unter den festgelegten Bedingungen eines Immuntests binden die angegebenen Antikörper vorzugsweise an ein spezielles Protein, während keine signifikante Bindung an andere in der Probe vorhandene Proteine erfolgt . Eine spezifische Bindung an ein Protein unter solchen Bedingungen erfordert einen Antikörper, der aufgrund seiner Spezifität für ein spezielles Protein selektiert worden ist. Zur Selektion von Antikörpern, die mit einem speziellen Protein eine spezifische Immunreaktivität zeigen, können verschiedene Immuntest- Ausführungsformen verwendet werden. Beispielsweise werden Festphasen-ELISA- Immuntests routinemäßig zur Selektion monoklonaler Antikörper verwendet, die eine spezifische Immunreaktivität mit einem Protein zeigen. Bei Harlow und Lane, Antibodies, A Laboratory Manual, (1988) , Cold Spring Harbor Publications, New York, findet man eine Beschreibung von Immuntest- Ausführungsformen und Bedingungen, die sich zur Bestimmung einer spezifischen Immunreaktivität verwenden lassen. Immuntest betrifft einen Test, bei dem ein Antikörper zur spezifischen Bindung eines Analyten verwendet wird. Der Immuntest ist dadurch charakterisiert, dass spezifische Bindungseigenschaften eines speziellen Antikörpers genutzt werden, um den Analyten zu isolieren, zielgerichtet zu testen und/oder quantitativ zu bestimmen.
Eine Impfung ist erfindungsgemäß ein Weg, um Borreliose-assoziierte Krankheiten zu verhindern. Dabei beinhaltet die Entwicklung eines Impfstoffs die Identifikation von Faktoren, die für die Virulenz ausschlaggebend sind, bzw. von Strukturen oder Borreliose-Antigenen, die insbesondere für das menschliche Immunsystem zur Eliminierung eines Erregers zugänglich sind. Solche Antigene sind in der Regel mit der Membran des Borreliose-Erregers assoziiert.
Der in der vorliegenden Erfindung verwendete Ausdruck Protein mit den immunogenen Eigenschaften von Borreliose-Antigenen bzw. Borreliose-Erregern bezieht sich auf jedes Protein, Polypeptid oder Peptid, das (1) als Antigen für Antikörper dienen kann, die an Borreliose-Antigene bzw. Borreliose-Erreger spezifisch binden oder (2) bei der Verabreichung als Impfstoff eine Schutzwirkung gegenüber einer Infektion mit Borreliose-Antigenen bzw. Borreliose-Erregern hervorrufen. Der Fachmann kann mittels üblicher Verfahren Proteine, Peptide oder Polypeptide bestimmen, die solche Eigenschaften aufweisen. Beispielsweise besitzen diese Proteine, Polypeptide oder Peptide 50%, 60%, 70% oder 80%, vorzugsweise 90%, stärker bevorzugt 95% und am meisten bevorzugt 98% Homologie zu den Proteinen bzw. Peptiden, die als Borreliose-Antigene identifiziert sind, wobei diese Homologie beispielsweise durch den „Smith-Waterman"- Homologiesuche-Algorithmus, beispielsweise mit dem „MPSRCH"-Programm (Oxford Molecular) , bestimmt werden kann, wobei eine affinity gap search (affine Lückensuche) mit den folgenden Parametern verwendet wird gap open penalty 12, gap extension penalty 1.
Der in der vorliegenden Erfindung verwendete Begriff hybridisieren bezieht sich auf konventionelle Hybridisierungsbedingungen, bei denen als Lösung 5x SSPE, 1% SDS, lx Denhardts-Lösung verwendet werden und die Hybridisierungstemperaturen zwischen 35°C und 70°C, vorzugsweise bei 65 °C liegen. Nach der Hybridisierung wird vorzugsweise zuerst mit 2xSSC, 1% SDS und danach mit 0,2x SSC bei Temperaturen zwischen 35°C und 70°C, vorzugsweise bei 65 °C gewaschen (zur Definition von SSPE, SSC und Denhardts-Lösung siehe Sambrook et al . , Molecular Cloning: A Laboratory Manual, 2. Ausgabe, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY (1989) ) .
Besonders bevorzugt sind stringente Hybridisierungsbedingungen, wie sie beispielsweise in Sambrook et al . , supra, beschrieben sind.
Der in der vorliegenden Erfindung verwendete Begriff
Fragment umfasst DNA- und/oder Proteinmoleküle, die sich gegenüber der ursprünglichen Sequenz durch
Deletion (en) , Insertion (en) , Austausch (e) und/oder andere im Stand der Technik bekannte Modifikationen unterscheiden bzw. ein Fragment des ursprünglichen Aminosäure- und/oder Nucleinsäuremoleküls umfassen, wobei das durch diese Moleküle codierte Protein noch die vorstehend erwähnten Eigenschaften aufweist . Dazu zählen auch Allelvarianten und Modifikationen. Verfahren zur Erzeugung der vorstehenden Änderungen in der Aminosäuresequenz und/oder Nucleinsäuresequenz sind dem Fachmann bekannt und in Standardwerken der Molekularbiologie beschrieben, beispielsweise in Sambrook et al . , supra. Der Fachmann ist auch in der Lage, zu bestimmen, ob ein von einer so veränderten Nucleinsäuresequenz codiertes Protein noch über die vorstehend erwähnten Eigenschaften verfügt.
Die Antigene sowie ihre Fragmente reagieren insbesondere spezifisch mit anti-B. garinii-, anti-B. burgdorferii- und/oder anti-B. afzelii Antikörpern und weisen keine Kreuzreaktivität mit anderen nicht Lyme Borreliose (LM) spezifischen Antikörpern auf. Sie besitzen eine hohe Sensitivität und Spezifität (ihre Signal-Frequenz liegt bei mehr als 50%) . Alle Proteine (vergleiche Tabelle 3) waren bisher nicht als immunrelevante Borreliose Antigene bekannt.
Mit der vorliegenden Erfindung kann LM, welche in Europa insbesondere durch die weit verbreiteten Stämme B . burgdoferii , B . garnii und B . afzelii induziert werden, diagnostiziert und therapiert werden.
Gegenstand der Erfindung sind deshalb diagnostische Mittel bzw. eine diagnostische Zusammensetzung zum Nachweis von Lyme Borreliose, welche die Antigene Glyceraldehyd-3 -phosphat-Dehydrogenase (GAPDH) ,
Oligopeptid-Permease, Oligopeptid ABC transporter periplasmic BP(oppA-2) (Bb) , Glycosyl transferase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii , Flagellin Protein Borrelia garinii , (AE001578) conserved hypothetical protein Borrelia burgdorferii , membrane assoc. protein p66 percursor Borrelia burgdoferii , Oligopeptid ABC transporter periplasmic BP (oppA-4) (Bc) , Fructose-biphosphate aldose (fba) Borrelia burgdorferii , DNAK Protein Heat Shock Protein 70 Borrelia burgdorferii , orfE Borrelia burgdorferii , Outer surface protein B precursor Borrelia burgdorferii , L-lactate dehydrogenase (ldh) , P83/100 gene Borrelia burgdorferii , Enolase 2phosphoglycerat Borrelia burgdorferii , Flagellin Protein Borrelia garinii , hypothetical protein BBE28 Borrelia burgdorferii , DNA direct. RNA polymerase (rpoA) homolog, P66 protein (fragment) , Flagellin (fragment) , DNA direct. RNA polymerase, integral outer membran protein p66, pyruvate kinase (pyk) homolog, Phosphoglycerat kinase (pgk) und/oder BBU28760 NID und/oder deren Fragmente enthalten. In bevorzugter Weise reagieren diese Antigene spezifisch mit anti-B. garinii- , anti-B. burgdorferii- und/oder anti-B. afzelii-Antikörpern. Der Gegenstand der Erfindung umfasst auch die für die Antigene und/oder Fragmente codierenden Nucleinsäurensequenzen, die die Antigene exprimieren. Die Antigene können aus B . burgdorferii , B . garnii und/oder B . afzelii isoliert und gereinigt werden oder nach an sich bekannten Techniken chemisch oder gentechnisch als rekombinante Proteine oder in Form ihrer Gene (DNA, cDNA) , einschließlich dem Fachmann bekannter Regulierungseinheiten wie z.B. Promotoren sowie Nucleinsäuren oder Nucleinsäuresequenzen, insbesondere in Form von Plasmiden und Vektoren, zur Verfügung gestellt werden, die codierende Sequenzen für die Proteine oder Antigene darstellen und so nachweisbare Genprodukte bilden. Die vorliegende Erfindung betrifft also auch ein Diagnoseverfahren zum Nachweis einer akuten, chronischen oder früheren Infektion mit Borreliose-Erregern, bei denen man gegen Borreliose gerichtete Antikörper aus einer Probe, einem Fragment davon oder Protein mit dessen immunogenen Eigenschaften in Berührung bringt und sodann bestimmt, ob diese an das Antigen gebunden sind. Dabei findet der Nachweis dadurch statt, daß in der Probe vom Wirt erzeugte Antikörper gegen Borreliose-Erreger nachgewiesen werden (mittels der erfindungsgemäßen Antigene) .
Bei diesem Diagnoseverfahren wird z.B. eine Blut- oder Lymphprobe entnommen, das Serum oder die Lymphe gewonnen und mit den erfindungsgemäßen Antigenen in Berührung gebracht und sodann bestimmt, ob Antikörper aus dem Serum an das Antigen gebunden sind. Die erfindungsgemäße Diagnoseverfahren kann als ELISA, RIA oder ein anderes gängiges Nachweisverfahren ausgestaltet sein, bei dem beispielsweise der aus dem Serum oder der Lymphe gebundene Antikörper mit Hilfe eines Zweitantikörpers nachzuweisen ist. Selbstverständlich kann in dem erfindungsgemäßen Diagnoseverf hrens das Antigen oder ein Fragment davon immobilisiert sein, d.h. beispielsweise an der Wand einer Plastikschale so adsorbiert, daß die spezifische Bindungsspezifität erhalten bleiben.
Die Identifizierung der Antigene aus B . garnii , B . burgdorferii und/oder B. afzelii erfolgt z.B. durch die Kombination der hochauflösenden zweidimensionalen Elektrophorese mit der Matrixunterstützten Laserdesorptions-Ionisationsmassenspektrometrie (MALDI- MS) .
Die erfindungsgemäßen Antigene liegen in dem erfindungsgemäßen Mittel bevorzugt an einen festen Träger immobilisiert vor. Als feste Träger fungieren alle an sich bekannten festen Phasen, die in Form von Membranen, Gelen, Teststreifen, Papier, Film, Filter, Platten oder Kugeln vorliegen.
Durch die Immobilisierung werden die Antigene in einen reaktionsraumbegrenzten Zustand versetzt. Unter Immobilisierung werden im Sinne der Erfindung alle Methoden verstanden, die zur Einschränkung der Beweglichkeit der Antigene auf biologischem, chemischem oder physikalischem Wege führen. Der Träger oder die feste Phase, auf dem die Antigene immobilisiert werden, können neben den bereits genannten beispielsweise auch Membranen, Geflechte und/oder Fibrillen sein. Die Immobilisierung der Antigene an einen Träger kann direkt oder über Spacer vorgenommen werden. Spacer im Sinne der Erfindung sind alle Abstandhalter, die beispielsweise eine kurze Molekülkette zwischen Antigen und Träger ausbilden können. Es können beispielsweise hydroxilierte Ketten eingesetzt werden, um spezifische hydrophobe Wechselwirkungen zu vermeiden. Es ist jedoch auch möglich, die Antigene über ausgewählte Akzeptormoleküle zu immobilisieren. Bei einer Immobilisierung der Antigene mit Hilfe der Akzeptormoleküle ist vorgesehen, daß die Akzeptormoleküle die hierfür nötigen Eigenschaften aufweisen, wie beispielsweise Molekülladung, chemisch modifizierbare Gruppen und/oder Immun- bzw. Nukleinsäure- , Hybridisierungs-Affinitäten u.a. Durch die Immobilisierung der Antigene mit Hilfe der Akzeptormoleküle muß eine Immobilisierung mit Hilfe der Spacer nicht zwingend vorgenommen werden. Selbstverständlich kann auch vorgesehen sein, die Antigene über Bindungsstellen auf die Oberfläche direkt an die Träger zu immobilisieren.
Die Immobilisierung kann durch unterschiedliche Methoden erfolgen, wie z.B. der Bindung der Antigene untereinander oder an Träger, durch Festhalten im Netzwerk einer polymeren Matrix oder Umschließen durch Membranen. Durch die Immobilisierung werden die Antigene nicht nur wiederverwendbar, sondern können nach dem Prozeß der Interaktion mit der biologischen Probe leicht wieder abgetrennt werden. Sie lassen sich in sehr viel höheren lokalen Konzentrationen und in kontinuierlichen Durchflußsystemen einsetzen. Die Bindung bzw. die Immobilisierung der Antigene an den Träger kann durch direkte Trägerverbindung und durch Quervernetzung erfolgen. Die Trägerbindung erfolgt gemäß der Erfindung entweder ionisch/adsorptiv oder durch kovalente Bindung. Die Quervernetzung im Sinne der Erfindung ist z.B. eine Vernetzung der Antigene untereinander oder mit anderen Polymeren. Bei der Immobilisierung durch Einschluß werden die Antigene in Gelstrukturen bzw. in Membranen eingeschlossen.
Der Einschluß der Antigene ist beispielsweise auch dann möglich, wenn die Träger Sinterglasschwämme sind, wodurch insbesondere eine Aufkonzentrierung der Borreliose-Antigene möglich ist. Weiterhin ist eine Immobilisierung an den Träger durch den Geleinschluß in Carrageen, durch den Einschluß in Polyacrylamid, durch den Geleinschluß in Alginat, in ENT-Polymeren auf Keramik mit Polyamin und der Quervernetzung durch Glutaraldehyd möglich.
Voraussetzung für eine erfolgreiche kovalente Fixierung der Borreliose-Antigene kann die Anwesenheit von funktionellen Gruppen auf dem Träger sein. Ein mögliches Aktivierungsverfahren, beispielsweise bei Dextrangelen, ist die Umsetzung mit Bromcyan. Entsprechend der chemischen Natur der funktionellen Gruppen können sich so verschiedene Bindungstypen ausbilden, zum Beispiel Ether, Thioether, Ester usw. Dem Fachmann sind weiterhin Kopplungsverfahren zur kovalenten Anknüpfung von Antigenen an Agar- , Agarose- und Sephadexträger sowie an silanisierte Oberflächen von porösen Gläsern bekannt . Mögliche Änderungen der Aktivität der Antigene können umgangen oder reduziert werden, indem die Antigene über Spacer an den Träger immobilisiert werden. Die Spacer verleihen den Antigenen die notwendige Flexibilität zur optimalen Bindung an den Antikörper und zur optimalen Erkennung der zu analysierenden Bindungspartner.
Die Erfindung betrifft auch die Verwendung der Antigene Glyceralaldehyd-3 -phosphat-Dehydrogenase (GAPDH) , Oligopeptid-Permease, Oligopeptid ABC transporter periplasmic BP(oppA-2) (Bb) , Glycosyl transferase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii , Flagellin Protein Borrelia garinii , (AE001578) conserved hypothetical protein Borrelia burgdorferii , membrane assoc. protein p66 percursor Borrelia burgdoferii , Oligopeptid ABC transporter periplasmic BP (oppA-4) (Bc) , Fructose-biphosphate aldose (fba) Borrelia burgdorferii , DNAK Protein Heat Shock Protein 70 Borrelia burgdorferii , orfE Borrelia burgdorferii , Outer surface protein B precursor Borrelia burgdorferii , L-lactate dehydrogenase (ldh) , P83/100 gene Borrelia burgdorferii , Enolase 2phosphoglycerat Borrelia burgdorferii , Flagellin Protein Borrelia garinii , hypothetical protein BBE28 Borrelia burgdorferii , DNA direct. RNA polymerase (rpoA) homolog, P66 protein (fragment) , Flagellin (fragment) , DNA direct. RNA polymerase, integral outer membran protein p66, pyruvate kinase (pyk) homolog, Phosphoglycerat kinase (pgk) und/oder BBU28760 NID und/oder deren Fragmenten und/oder die für die Antigene und/oder Fragmente codierenden Nucleinsäuresequenzen zur Diagnose und/oder Therapie von Lyme Borreliose. Die Erfindung betrifft auch die Verwendung der Antigene Glyceraldehyd-3 -phosphat-Dehydrogenase, Oligopeptid- Permease, Oligopeptid ABC transporter periplasmic BP(oppA-2) (Bb) , Glycosyl transferase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii , Flagellin Protein Borrelia garinii , (AE001578) conserved hypothetical protein Borrelia burgdorferii , membrane assoc. protein p66 percursor Borrelia burgdoferii , Oligopeptid ABC transporter periplasmic BP (oppA- 4) (Bc) , Fructose-biphosphate aldose (fba) Borrelia burgdorferii , DNAK Protein Heat Shock Protein 70 Borrelia burgdorferii, orfE Borrelia burgdorferii , Outer surface protein B precursor Borrelia burgdorferii , L-lactate dehydrogenase (ldh) , P83/100 gene Borrelia burgdorferii , Enolase 2phosphoglycerat Borrelia burgdorferii , Flagellin Protein Borrelia garinii , hypothetical protein BBE28 Borrelia burgdorferii , DNA direct. RNA polymerase (rpoA) homolog, P66 protein (fragment) , Flagellin (fragment) , DNA direct. RNA polymerase, integral outer membran protein p66, pyruvate kinase (pyk) homolog, Phosphoglycerat kinase (pgk) und/oder BBU28760 NID und/oder deren Fragmente und/oder die für die Antigene und/oder Fragmente codierenden Nucleinsäuresequenzen zur Herstellung eines Mittels zur Diagnose und/oder Therapie von Lyme Borreliose.
Gegenstand der Erfindung ist weiterhin ein Verfahren zum Nachweis von Lyme Borreliose, welches dadurch gekennzeichnet ist, dass die Antigene GAPDH,
Oligopeptid-Permease, Oligopeptid ABC transporter periplasmic BP(oppA-2) (Bb) , Glycosyl transferase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii , Flagellin Protein Borrelia garinii , (AE001578) conserved hypothetical protein Borrelia burgdorferii , membrane assoc. protein p66 percursor Borrelia burgdoferii , Oligopeptid ABC transporter periplasmic BP
(oppA-4) (Bc) , Fructose-biphosphate aldose (fba)
Borrelia burgdorferii , DNAK Protein Heat Shock Protein
70 Borrelia burgdorferii , orfE Borrelia burgdorferii , Outer surface protein B precursor Borrelia burgdorferii , L-lactate dehydrogenase (ldh) , P83/100 gene Borrelia burgdorferii , Enolase 2phosphoglycerat Borrelia burgdorferii , Flagellin Protein Borrelia garinii , hypothetical protein BBE28 Borrelia burgdorferii , DNA direct. RNA polymerase (rpoA) homolog, P66 protein (fragment) , Flagellin (fragment) , DNA direct. RNA polymerase, integral outer membran protein p66, pyruvate kinase (pyk) homolog, Phosphoglycerat kinase (pgk) und/oder BBU28760 NID und/oder deren Fragmente mit einer biologischen Probe, die Borreliose-Antikörper enthält, unter Bedingungen, die die Bildung eines Antigen-Antiköper-Komplexes gestatten, in Kontakt gebracht wird, und nach einer Inkubationszeit die Komplexbildung eines Antikörpers mit dem Antigen nachgewiesen wird.
Erfindungsgemäß bevorzugt erfolgt der Nachweis der Borreliose-Antikörper in einem Immunoassay, bevorzugt in einem Festphasenimmunoassay, unter direkter oder indirekter Kopplung eines Reaktionspartners mit einer gut nachweisbaren Markierungssubstanz . Besonders bevorzugt kann der Nachweis in einem ELISA, einem RIA oder einem Fluoreszenzimmunoassay erfolgen. Die Durchführung dieser Nachweisverfahren ist dem Fachmann gut bekannt .
So wird z.B. in einem ELISA das Antigen, im vorliegenden Fall z.B GAPDH, Oligopeptid ABC transporter periplasmic BP(oppA-2) (Bb) , Glycosyl transferase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii , Flagellin Protein Borrelia garinii , (AE001578) conserved hypothetical protein Borrelia burgdorferii , membrane assoc. protein p66 percursor Borrelia burgdoferii , Oligopeptid ABC transporter periplasmic BP (oppA-4) (Bc) , Fructose- biphosphate aldose (fba) Borrelia burgdorferii , DNAK Protein Heat Shock Protein 70 Borrelia burgdorferii , orfE Borrelia burgdorferii , Outer surface protein B precursor Borrelia burgdorferii , L-lactate dehydrogenase (ldh) , P83/100 gene Borrelia burgdorferii , Enolase 2phosphoglycerat Borrelia burgdorferii , Flagellin Protein Borrelia garinii , hypothetical protein BBE28 Borrelia burgdorferii , DNA direct. RNA polymerase (rpoA) homolog, P66 protein
(fragment), Flagellin (fragment), DNA direct. RNA polymerase, integral outer membran protein p66, pyruvate kinase (pyk) homolog, Phosphoglycerat kinase (pgk) und/oder BBU28760 NID direkt oder indirekt an eine Trägersubstanz , wie beispielsweise Polystyrol, gebunden. Nach Inkubation mit den nachzuweisenden Antikörpern, z.B. aus dem Serum von Patienten, werden Antigen-gebundene Antikörper direkt oder indirekt mittels Enzym-gekoppelter Substanzen nachgewiesen. Diese Substanzen können Antikörper, Fragmente von Antikörpern oder hochaffine Liganden wie z.B. Avidin, das an eine Biotin-Markierung bindet, sein. Als Enzyme kommen beispielsweise die Peroxidase, alkalische Phosphatase, ß-Galaktosidase, Urease oder Glucoseoxidase in Betracht. Durch Zugabe eines chromogenen Substrats können die gebundenen Enzyme und damit beispielsweise die gebundenen Antikörper quantifiziert werden.
Auch in einem Radio- Immunoassay ist das Antigen, z.B. GAPDH, Oligopeptid ABC transporter periplasmic BP(oppA- 2) (Bb) , Glycosyl transferase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii , Flagellin Protein Borrelia garinii , (AE001578) conserved hypothetical protein Borrelia burgdorferii , membrane assoc. protein p66 percursor Borrelia burgdoferii , Oligopeptid ABC transporter periplasmic BP (oppA-4) (Bc) , Fructose- biphosphate aldose (fba) Borrelia burgdorferii , DNAK Protein Heat Shock Protein 70 Borrelia burgdorferii , orfE Borrelia burgdorferii , Outer surface protein B precursor Borrelia burgdorferii , L-lactate dehydrogenase (ldh) , P83/100 gene Borrelia burgdorferii , Enolase 2phosphoglycerat Borrelia burgdorferii , Flagellin Protein Borrelia garinii , hypothetical protein BBE28 Borrelia burgdorferii , DNA direct. RNA polymerase (rpoA) homolog, P66 protein (fragment), Flagellin (fragment), DNA direct. RNA polymerase, integral outer membran protein p66, pyruvate kinase (pyk) homolog, Phosphoglycerat kinase (pgk) und/oder BBU28760 NID direkt oder indirekt an eine Trägersubstanz, wie beispielsweise Polystyrol, gebunden. Nach Inkubation mit den nachzuweisenden Antikörpern, z.B. aus dem Serum von Patienten, werden Antigen-gebundene Antikörper mittels Substanzen nachgewiesen, die eine radioaktive Markierung, beispielsweise 125I, tragen. Diese Substanzen können Antikörper, Fragmente von Antikörpern oder hochaffine Liganden wie z.B. Avidin, das an eine Biotin-Markierung bindet, sein. Die gebundene Radioaktivität kann mittels eines geeigneten Meßgeräts quantifiziert werden.
Nach dem gleichen Prinzip werden in einem Fluoreszenzimmunoassay die Antigen-gebundenen Antikörper mittels Substanzen nachgewiesen, die eine Fluoreszenz-Markierung, beispielsweise Fluorescein- Isothiocyanate (FITC) tragen. Diese Substanzen können Antikörper, Fragmente von Antikörpern oder hochaffine Liganden wie z.B. Avidin, das an eine Biotin-Markierung bindet, sein. Die gebundene Menge an Fluoreszenzfarbstoff wird dann mittels eines geeigneten Meßgeräts quantifiziert.
Es ist selbstverständlich auch möglich, den Nachweis von Lyme Borreliase mit Biochips durchzuführen, z.B.:
a) Immobilisierung spezifischer Antikörper gegen die bakteriellen Protein-Antigene auf einem Chip, um damit die Bakterien im Menschen direkt nachzuweisen; b) Immobilisierung spezifisch bindender Peptide und/oder Nukleinsäuren, die per Evolutionsmethode, insbesondere durch „phage display", gewonnen werden und direkter Nachweis der Bakterien c) Immobilisierung charakterisierter Proteine oder deren Peptidfragmente auf dem Chip, um die
Antikörper des Patienten und somit die Infektion direkt nachzuweisen.
Als biologische Probe werden im Sinne der Erfindung tierische oder menschliche Flüssigkeiten wie z.B. Blut, Plasma, Serum, Urin, Liquor und Synovialflüssigkeit verstanden. Der Borreliose-Nachweis beim Menschen wird vorzugsweise durch Nachweis von Borreliose-Antikörpern im Serum durchgeführt .
Gegenstand der Erfindung ist weiterhin ein Borreliose- Impfstoff bzw. eine pharmazeutische Zusammensetzung, die Glyceraldehyd- 3 -phosphat-Dehydrogenase (GAPDH)., Oligopeptid ABC transporter periplasmic BP(oppA-2) (Bb) , Glycosyl transferase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii , Flagellin Protein Borrelia garinii , (AE001578) conserved hypothetical protein Borrelia burgdorferii , membrane assoc. protein p66 percursor Borrelia burgdoferii , Oligopeptid ABC transporter periplasmic BP (oppA-4) (Bc) , Fructose- biphosphate aldose (fba) Borrelia burgdorferii , DNAK Protein Heat Shock Protein 70 Borrelia burgdorferii , orfE Borrelia burgdorferii , Outer surface protein B precursor Borrelia burgdorferii , L-lactate dehydrogenase (ldh) , P83/100 gene Borrelia burgdorferii , Enolase 2phosphoglycerat Borrelia burgdorferii , Flagellin Protein Borrelia garinii , hypothetical protein BBE28 Borrelia burgdorferii , DNA direct. RNA polymerase (rpoA) homolog, P66 protein (fragment), Flagellin (fragment), DNA direct. RNA polymerase, integral outer membran protein p66, pyruvate kinase (pyk) homolog, Phosphoglycerat kinase (pgk) und/oder BBU28760 NID und/oder deren Fragmente bzw. die für diese Proteine und/oder Fragmente codierende DNA enthält.
Der Impfstoff gemäß der Erfindung kann definierte Erregerprodukte, Totimpfstoffe, Lebendimpfstoffe, synthetische Peptide, rekombinante Proteine, Deletionsmutanten, rekombinante Impfstämme und anti- idiotypische Impfstoffe umfassen.
Die Impfung mit definierten Erregerprodukten stellt vorteilhafterweise eine einfache Impfung gegen die Borreliose-Erreger bzw. Lyme Borreliose dar. Die Immunantwort kann sowohl eine Immunantwort gegen den Erreger als auch gegen von ihm gebildete Erregerprodukte umfassen. Die Impfung mit Totimpfstoffen im Sinne der Erfindung umfaßt die Impfung mit abgetöteten Borreliose-Erregern, wobei Erreger sowohl die vollständigen Organismen als auch einzelne antigene Strukturen dieser sein können. Die Impfung mit Lebendimpfstoffen führt vorteilhafterweise zu einer starken Induktion einer ausreichenden Resistenz gegen Lyme Borreliose. Vorteilhafterweise ist es möglich, auch mit synthetischen Peptiden zu impfen, die den Vorteil haben, daß sie den kleinsten benötigten Bestandteil des Erregers darstellen. Ein Antigen bzw. ein Molekül, welches das für die protektive Immunantwort verantwortliche Epitop trägt, kann vorteilhafterweise zusätzlich noch weitere Bereiche enthalten. Durch die Synthese des für die Protektion verantwortlichen Peptids kann man dieses losgelöst von den schädlichen Molekülabschnitten einsetzen. Mit Vorteil ist es möglich, die Peptide an ein Trägermolekül zu koppeln. Selbstverständlich ist es auch möglich, künstliche Polypeptide herzustellen, welche aus sich wiederholenden Untereinheiten protektiver Peptide bestehen. Die Impfung mit rekombinanten Antigenen, bzw. Peptiden oder Proteinen im Sinne der Erfindung erlaubt vorteilhafterweise die geeigneten Polypetide im Großmaßstab zu produzieren und gewährleistet so die Bereitstellung ausreichender Impfstoffmengen, selbst bei schwer oder nicht anzüchtbaren Erregerstämmen bzw. Erregermodifikationen. Mit Vorteil wird auf diese Weise jegliche Kontamination durch schädliche Erregerprodukte ausgeschlossen, solange diese nicht vom selben Gen codiert werden. Durch geeignete Maßnahmen kann das Genom des Erregers so verändert werden, daß dieser nicht mehr in der Lage ist, im Wirt eine Erkrankung hervorzurufen. Das wird vorteilhafterweise dadurch erreicht, daß man Gene deletiert, die für die Virulenz oder Überlebensfähigkeit im Wirt benötigt werden. Da diese Metaboliten vom Erreger essentiell benötigt werden, vom Patientenorganismus aber nicht bereitgestellt werden, stirbt der Erreger im Patienten nach Verbrauch der eigenen Reserven vorteilhafterweise ab. Die Überlebenszeit im Wirt ist jedoch lang genug, um eine protektive Immunantwort hervorzurufen. Rekombinante Impfstoffe kommen mit Vorteil dann in Frage, wenn das protektive Antigen bzw. der Borreliose-Erreger, im rekombinanter Form vorliegt, allein aber nicht in der Lage ist, Schutz zu induzieren. Dies ist insbesondere dann wichtig, wenn der Schutz in erster Linie von verschiedenen Lymphocytenpopulationen getragen wird. In diesem Fall kann das für das protektive Antigen zuständige Gen in einem geeigneten Träger kloniert werden, der es ermöglicht, eine geeignete Immunantwort gegen das rekombinante Molekül hervorzurufen. Das Konzept eines anti-idiotypischen Impfstoffs im Sinne der Erfindung beruht darauf, daß anti-idiotypische Antikörper, die von protektiven Antikörpern erkannt werden, in der Lage sind, deren Synthese zu stimulieren. Beispielsweise im Falle von Kohlenhydrat- Antigenen kann die Produktion molekularer Antikörper vorteilhafterweise weniger aufwendig sein als die Herstellung des Antigens selbst. Des weiteren ist die durch anti-idiotypische Antikörper hervorgerufene Immunität mit Vorteil auf andere Weise zu kontrollieren, als die gegen das nominale Antigen. Daher können anti-idiotypische Vakzine bzw. Impfstoffe bereits bei Kleinkindern vorteilhafterweise einen ausreichenden Schutz hervorrufen. Selbstverständlich ist es möglich, auch mit Antikörpern gegen die erfindungsgemäßen Antigene zu impfen.
Die vorliegende Erfindung betrifft also auch eine immunogene Zusammensetzung, vorzugsweise einen Impfstoff, der die vorstehend beschriebenen Borreliose- Antigene, ein Fragment davon und/oder Protein mit dessen immunogenen Eigenschaften bzw. Antikörper, die gegen die Antigene gerichtet sind, enthält. Der erfindungsgemäße Impfstoff enthält gegebenenfalls zusätzlich einen pharmazeutisch verträglichen Träger. Geeignete Träger und die Formulierung derartiger Impfstoffe sind dem Fachmann bekannt. Zu geeigneten Trägern zählen beispielsweise Phosphat-gepufferte Kochsalzlösungen, Wasser, Emulsionen, beispielsweise Öl/Wasser-Emulsionen, Netzmittel, sterile Lösungen etc. Die Verabreichung des Impfstoffs kann oral oder parenteral, beispielsweise intradermal, subkutan oder intramuskulär, erfolgen. Die geeignete Dosierung wird von dem behandelnden Arzt bestimmt und hängt von verschiedenen Faktoren ab, beispielsweise von der Art der Verabreichung, von dem Alter und Gewicht des Empfängers etc. Sie kann im Bereich von 1 μg bis 200 μg pro Patient liegen. Bei Kindern erniedrigt sich die Dosis auf 5 μg und bei Hämodialyse-Patienten erhöht sich die Dosis auf 50-300 μq.
Die Beschreibung soll im Folgenden anhand eines Beispieles veranschaulicht werden, ohne die Erfindung darauf einzuschränken.
Beispiel
Identifizierung von Borreliose Antigenen
Methoden
Zellen von fünf verschiedenen Stämmen von Borreliose Erregern (B. burgdorferii B31, B . garinii 20047, B . garinii BITS und B . garinii VS286 und B . afzelii PK0 (VS461) , die aus Hautstanzen, bzw. Zecken isoliert und vermehrt worden waren, wurden in gefrorenem Zustand lysiert und die Zellysate bei 4°C hochtourig abzentrifugiert . Die Überstände, die die Gesamtproteinmischung enthalten, wurden jeweils durch hochaufllösende zwei-dimensionale Polyacrylamid Gelelektrophorese (2DE-Gele) (nach Jungblut P., Grabher, G. , Stöffler, G., Electrophoresis 20, 3611- 3622, 1999; und Klose und Kobaltz, 1995, Electrophoresis 16, 1043-1049) aufgetrennt.
Analytische und präparative 2DE-Großgele (24x 32 cm) wurden mit Silber, bzw. mit Coomassie-Blau gefärbt und zur Dokumentation eingescannt (Figuren 1, 2, 3 , 4 und 5 von den verschiedenen Typen) .
Analoge analytische 2DE-Gele aller Lysate wurden ungefärbt auf PVDF-Membranen transferiert und jeweils mit Seren von 9 verschiedenen IgG positiven Neuroborreliose-Patienten (Sera 2-10) ,- alle späte Manifestationen) inkubiert (nach Jungblut, P., Grabher, G., Stöffler, G. , Electrophoresis 20, 3611-3622, 1999). Diejenigen Proteine, die gegen diese Seren auf diesen immunologisch gefärbten Blots positiv reagierten, wurden in die Abbildungen 1-5 als Zahlen eingegeben und in Tabelle 1 mit + versehen. Diejenigen Proteine, die immunologisch negativ reagierten, wurden in Tabelle 1 mit - versehen.
Die Proteine wurden in einem präparativen 2DE-Gel aufgetrennt, mit Coomassie gefärbt, ausgestanzt und mit Trypsin gespalten. Die entstandenen tryptischen Peptide wurden eluiert und entsalzt und per MALDI- Massenspektrometrie analysiert . Durch Vergleich der Massendaten („Massenfingerprints" der tryptischen Peptide) mit den bestehenden Datenbanken (SWISSPROT, PIR) wurden die Proteine unter Benutzung des Massenvergleichsprogramms Mascot identifiziert und mit den Proteinspot-Nummern versehen (vergl . Tabelle 1, 2 und 3) .
In Tabelle 2 ist aufgeführt, welche Proteine mit welchen Sera positiv reagiert haben. Das Serum 5 war sehr schwach und ergab daher nur mit Protein 1, 3, 6, 19 aus B. .burgdorferii eine positive Reaktion und mit Protein 1, 19 aus B. garinii VS286 und mit Protein 24 aus B. garinii 20047. Es ist wahrscheinlich, daß auch die identifizierten Proteine mit negativer Reaktion mit Patientensera positiv reagieren, wenn weitere Seren gemessen werden.
In Tabelle 3 sind die Namen der identifizierten Proteine, bzw. ihrer zugehörigen Gene aufgelistet und die Zugriffsnummern („Accession" -Nummern) dieser Proteine in den Datenbanken (S.Pt: SwissProt-Datenbank; PIR BLS : PIR Datenbank) aufgeführt. Außerdem sind in Tabelle 3 die möglichen Zeil- oder Plasmid-Positionen der Gene und wo bekannt, auch die Funktionen der Proteine aufgeführt (Fräser et al . , Nature 390, 580- 586, 1997) .
Für jedes Protein sind die Bewertungen („Score") für eine signifikante Identifizierung (Schwellwert größer/gleich 63), die Peptid-Sequenzüberlappung („Sequence Coverage", % Cover.), die Zahl der im Protein enthaltenen Aminosäurereste, no . a.a.), ihr Molekulargewicht (Mw) und die Referenz (ref) angegeben.
Ergebnisse :
1. Alle im Inmmunoblot positiv gefundenen Proteine wurden durch die massenspektrometrische Analyse als zugehörig zum Organismus Borrelia burgdorferii , B . afzelii und/oder B. garinii identifiziert (siehe
Tabellen 1-3) .
2. Nicht alle identifizierten Proteine konnten in der von Fräser et al . , Nature, 390, 580-586 (1997) publizierten Gendatenbank des Organismus B . burgdorferii aufgefunden werden (diese vier Proteine sind in Tabelle 3 mit * markiert) . Die Autoren geben an, dass bei ihrer Genom-Analyse an einigen Stellen des Genoms Unklarheiten bestehen.
Daraus erklären sich die niedrigeren Schwellwerte
(„Score") unter 63 für diese Proteine (vergl .
Tabelle 3)
3. Die mit den 9 Patienten-Seren immunologisch positiven Proteine finden sich sowohl in B . jburgdorferii als auch zum Teil in allen drei untersuchten B . garinii-Stämmen; und dem B . afzelii- Stamm (vergl. Tabelle 2) wieder. Einige der Seren waren relativ schwach, so dass nur die stärksten Proteine eine positive Reaktion zeigten.
4. Daraus folgt, dass die mit den Patientenseren in den vier untersuchten Stämmen positiv identifizierten Proteine oder ihre Fragmente sich zur Entwicklung eines polyvalenten „Vakzins" gegen die in Amerika (B. burgdorferii) und in Europa vorkommenden B . garinii-Stämme bzw. in Asien vorkommendenm B. afzelii-Stamm eignen.
Zu den Proteinen gehören:
Spot 1 Oligopeptid ABC transporter periplasmic
BP(oppA-2) (Bb) Spot la Glycosyl transferase IgtD homolog Spot lb Heat shock Protein 90
Spot 1 VLSE fragment Spot 2 (U76406) putative vls rec. casette Vls6
Borrelia burgdorferii Spot 3 Flagellin Protein Borrelia garinii Spot 4 (AE001578) conserved hypothetical protein Borrelia burgdorferii Spot 5 Membrane assoc. protein p66 percursor
Borrelia burgdoferii Spot 6 Oligopeptid ABC transporter periplasmic BP (oppA-4) (Bc)
Spot 7 Fructose-biphosphate aldose (fba)
Borrelia burgdorferii Spot 8 DNAK Protein Heat Shock Protein 70 Borrelia burgdorferii Spot 9 orfE Borrelia burgdorferii
Spot 10 Outer surface protein B precursor
Borrelia burgdorferii Spot 10a L-lactate dehydrogenase (ldh) Spot 12 P83/100 gene Borrelia burgdorferii Spot 13 Enolase 2phosphoglycerat Borrelia burgdorferi i Spot 15 Flagellin Protein Borrelia garinii
Spot 16 Hypothetical protein BBE28 Borrelia burgdorferi i
Spot 18 DNA direct. RNA polymerase (rpoA) homolog Spot 20 P66 protein (fragment)
Spot 27 Flagellin (fragment)
Spot 28 DNA direct. RNA polymerase
Spot 31 Integral outer membran protein p66
Spot 35 Pyruvate kinase (pyk) homolog Spot 36 Phosphoglycerat kinase (pgk)
Spot 38 BBU28760 NID.
Unter diesen Proteinen sind auch vier hypothetische Proteine, die bisher nur als ORFs/ „open reading frames" charakterisiert worden sind, die also bisher nicht auf der Proteinebene isoliert und charakterisiert worden sind (Proteinspot 2, 4, Spot 9, Spot 16 und Spot 38) .
5. Da das in Amerika entwickelte Vakzin (The New England Journal of Medicine (1998) , Vol. 339, No . 4) nur gegen das immunogene Protein OspA („outer surface lipoprotein" ) gerichtet ist, kommt der Identifikation der in Tabelle 2 und 3 gelisteten
Antigene eine Bedeutung für die Diagnose und Vakzin-Entwicklung zu.
6. Alle in Tabelle 2 und 3 positiv aufgeführten Proteine oder ihre Fragmente können zur Entwicklung von Diagnose-Chips zur schnellen Diagnose von
Borrrelien-Infektionen verwendet werden.
7. Die positiv identifizierten Antigene bestätigen die auf anderem Wege identifizierten Antigene nach Jungblut et al . , 1999 (Proteine p83/l00, Flagellin,
Oligopeptid Permease opp-A) .
In der Arbeit von Jungblut et al . , 1999 wurden diese Proteine auf folgende Weise identifiziert: Sie wurden aus kleinen 2DE-Gelen ausgestanzt und per Massenspektrometrie oder durch spezielle Antikörper identifiziert; die Serum-Diagnose wurde durch ELISA- Tests wie unter Routine-Laborbedingungen oder an eindimensionalen Gelen mit Kaninchen Antisera oder Human Seren durchgeführt . Unter diesen Bedingungen wurden neben den bekannten Antigene (z.B. OspA, outer-surface lipoprotein) zwei neue Antigene identifiziert, nämlich GAPDH und ABC Transporter Oligopeptid Permease.
Legenden
Abbildung 1-5: Hochauflösende zwei-dimensionale Polyacrylamid-Gel
(nach Klose und Kobalz, 1975) einer
Gesamtproteinmischung nach Lyse von der verschiedenen
Borrelia -Zellen; 1. Dimension IEF-Gel (Trennung nach
Ladung) und 2. Dimension SDS-Gel (Trennung nach Größe der Proteine); Größe des Geles 24 x 30 cm;Silber- Färbung. Alle in Abbildung 1-5 markierten Proteinspots wurden per Massenspektrometrie der Peptide analysiert. Eine indikative Skalierung der pH- und MW-Werte ist angegeben .
Tabelle 1: Wichtige Borrelia Proteine auf 2DE-Gelen Von den 5 verschiedenen Borrelia-Stämmen wurden analytische 2DE-Gele hergestellt und mit Silber gefärbt .
+, diejenigen Proteinspots, die in den Gelen der jeweiligen Stämme enthalten waren und immunologisch mit den benutzten Sera reagierten, wurden mit plus bezeichnet ;
-, diejenigen Proteinspots, die in den jeweiligen
Stämmen mit den Sera nicht nachgewiesen werden konnten
(entweder nicht vorhanden oder zu niedrig exprimiert, oder an anderer Stelle präsente Proteinspots) , wurden mit minus bezeichnet.
Tabelle 2 : Immunologischer Test gegen 9 Patienten-Seren Von den verschiedenen Borrelia-Stämmen wurden analytische 2DE-Gele ungefärbt auf PVDF-Membranen transferiert. Alle diese Membranen wurden mit den 9 verschiedenen Seren von Neuroborreliose-Patienten inkubiert .
Die Seren, die Proteine mit einer positiven immunologischen Reaktion ergaben, sind in die Tabelle eingetragen.
Danach ergibt sich, dass folgende Proteinspots in allen Stämmen von B . burgdorferii und B . garinii vorkamen (vergl. Tabelle 1) und auch immunologisch mit den Seren positiv reagierten:
Spot 1 Oligopeptid ABC transporter periplasmic
BP(oppA-2) (Bb)
Spot la Glycosyl transferase IgtD homolog S Sppoott llbb Heat shock Protein 90
Spot lc VLSE fragment
Spot 2 (U76406) putative vls rec. casette Vls6
Borrelia burgdorferii
Spot 3 Flagellin Protein Borrelia garinii S Sppoott 4 4 (AE001578) conserved hypothetical protein Borrelia burgdorferii
Spot 5 Membrane assoc. protein p66 percursor
Borrelia burgdoferii
Spot 6 Oligopeptid ABC transporter periplasmic BP (oppA-4) (Bc)
Spot 7 Fructose-biphosphate aldose (fba)
Borrelia burgdorferii
Spot 8 DNAK Protein Heat Shock Protein 70
Borrelia burgdorferii S Sppoott 9 9 orfE Borrel ia burgdorferii
Spot 10 Outer surface protein B precursor
Borrelia burgdorferii
Spot 10a L-lactate dehydrogenase (ldh)
Spot 12 P83/100 gene Borrelia burgdorferii S Sppoott 1 133 Enolase 2phosphoglycerat Borrelia burgdorferi i
Spot 15 Flagellin Protein Borrelia garinii
Spot 16 Hypothetical protein BBE28 Borrelia burgdorferi i S Sppoott 1 188 DNA direct. RNA polymerase (rpoA) homolog Spot 20 P66 protein (fragment)
Spot 27 Flagellin (fragment)
Spot 28 DNA direct. RNA polymerase
Spot 31 Integral outer membran protein p66
Spot 35 Pyruvate kinase (pyk) homolog
Spot 36 Phosphoglycerat kinase (pgk)
Spot 38 BBU28760 NID.
Tabelle 3 :
Identifikation der immunologisch positiven Proteinspots mittels Massenspektrometrie
Abkürzungen :
Spot X: Nummer des Proteins im Silbergefärbten 2DE-Gel.
Name : Name des identifizierten Proteins (vergl. Tabelle 2)
Ac . S . P . Accession Nummer in der SwissProt- Datenbank
Ac.PIR.BLS Accession Nummer in der PIR BLAST Datenbank
Gene Ident Zugehöriger Gen-Name des Organismus Borrelia burgdorferii
Position/Function Position auf einem der Plasmide von
B . burgdorferii ; Funktion des Proteins im metabolischen Zyklus
Score Schwellwert für Signifikanz (Wahrscheinlichkeit mit Programm Mascot (=größer/gleich 63)
Cover. Wiederfindungsrate der Peptidmassen im Vergleich zur Proteinsequenz in der Datenbank
No a.a Zahl der Aminosäurereste im Protein Mw Molekulargewicht des Proteins
Ref. Literaturverzeichnis
* Hypothetische Proteine, deren Gen in der NCBI Datenbank enthalten sind, die aber bisher nicht als Proteine nachgewiesen worden waren.
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Table 3 Identified proteins
Figure imgf000051_0001
Fiaser CM. Casjens S, Huaπg WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum 1) " Zhang.J -R., Hardliam J.,M., Barbour A.,G. and Norris S. Antigenic Variation in lyme A, Dodson R, Hickey EK, G inn M, Dougherty B, Tomb JF, Fleischmann RD, Richardson disease borreliae by pro recombination of VMP-like sequence casettes." Cell 89 (2), 275-285
D, Peterson J. Kerlavage AR, Quackeπbusc J, Salzberg S, Hanson M, van Vugt R, Palmer (1997).
N, Adams MD, Gocayne J", Venter JC, et al.. " Genomic sequence of a lyme disease m) Direct Submission 22.04.1997, Bono, J.L. spirochaete, Borrelia burgdorferi." Nature 1997 Dec 11 ;390 n) Tilly, IC, Hauser, R., Campell, J. and Ostheimer,G. "Isolation of dπaJ, Dank, and grpE b) Bunikis J„ Noppa L., Bergstroem S. "Molecular analysis of a 66 kDa protein (p66), homologues from Borrelia burgdorferi and complementations of Escherichia coli " Mol associated ith the outer membrane of lyme disease Borrelia species" FEMS Microbiol. ett. Microbiol. 7 (3), 359-369 (1993)
131:139-145 (1995) o) Fukimako.M. and Koreki.Y Int. "A phylogenetic analysis of Borrelia burgdorferi sensu lato
Coleman, J.L.; Benach, i L. "Identification and characterization of an endoflagellar antigen isolates associated with lyme disease in Japan by flagellin gene sequence determination." J of Borrelia burgdorferi.,, J Clin. Invest. (1989) 84: 2-330. Syst Bacteriol. 46(2), 416-421 (1996). d) Beigstroeni S , Bundoc V., Barbour A.G. "Molecular analysis of a linear plasmid-encoded p) Bumkis J., Luke C.J., Buni iene E., Bergstrom S.,Barbour A.G., J. Bacteriol 180: 1618 1623 major surface proteins, OspA and OspB, of the Lyme disease spirochaete Borrelia (1998) burgdorferi. „ Mol Microbiol. 3: 479-486 (1989). q) Anda.P., Gebbia.J.Λ., backenson.P.B., Coleman,J.L. and BenachJ.L "A glyceraldehyde-3-
Capoiale D.A., Kocher T.D. "Sequence Variation in the outer-surface protein genes of phosphate dehydrogenase homolog in Borrelia burgdorferi and Borrelia. „ Infect. Immun. 64
Bon elia burgdorferi. ,, Mol. Biol Evol 11: 51-64 (1994). (1), 262-268 (1996).
Roessier D , Eifi'ert H., Jauris-Heipke S., Lehπert G., Preac-Mursic V., eepe J., Schiott T , r) Curtin S.M., Maggs A.DF. Carter P.E., Pennington T.H. Submitted October 1997 to the
Soutschek E., Wilske B. "Molecular and i munological characterization of the p38/10O EMBL/Genebank/DDBJ databases. piotcin of various Bonelia burgdorferi sensu lato strains. „ Med. Microbiol. Imniunol. 184: s) Iyer R., Hardham J.M., Wormser G.P., Schwanz I., Norris S J. Submitted November 1999 to
23-32 (1995). the EMBL/Genebank/DDBJ databases.
B) Bono J L.. Tilly K., Stevenson B., Hogan D., Rosa P. "Oligopeptide permease in Borrelia burgdorferi: putative peptide- binding compoπents encoded by both chiomosomal and plasmid loci. ., Microbiology 144: 1033-1044 (1998).
"Direct Submission" DDBJ/EMBL/GENEBA K 13.7.1995
Fukunaka, M., Oleada K., Nakao M., Konishi, T. "Phylogenetic analysis of hon elia species based sequences and its application for molecular typic boιτeliae'" hit.J Syst Bacteriol 46 (2),
416-421 (1996).
Miyamoto, , Sato, Y., Okada. K., Fu unaga, M. "Competence of a migratory bird, red- bellied fhruchrysolaus as an reservoir for the lyme disease in Japan,, Int.J.Syst.Bacteπol
46(4), 898-905 ( 1996).
Anzola, ].. Luft, B.J.. Gorgone, G., Dattwyler, R. J.,Lahesmaa,R. and Pelt7,G. " Borrelia
Bui dorferi HSP70 Homolog: Characterization o irnmunoreactive stress protein" mfecUmmim 60 (9), 3704-3713 (1992).

Claims

Patentansprüche
1. Mittel zur Diagnose von Lyme Borreliose umfassend die Antigene Glyceraldehyd-3-phosphat- Dehydrogenase (GAPDH) , Oligopeptid-Permease,
Oligopeptid ABC transporter periplasmic BP(oppA- 2) (Bb) , Glycosyl transferase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii , Flagellin Protein Borrelia garinii ,
(AE001578) conserved hypothetical protein cp32-6
Borrelia burgdorferii , membrane assoc. protein p66 percursor Borrelia burgdoferii , Oligopeptid
ABC transporter periplasmic BP (oppA-4) (Bc) , Fructose-biphosphate aldose (fba) Borrelia burgdorferii , DNAK Protein Heat Shock Protein 70 Borrelia burgdorferii , orfE Borrelia burgdorferii , Outer surface protein B precursor Borrelia burgdorferii , L-lactate dehydrogenase (ldh) , P83/100 gene Borrelia burgdorferii ,
Enolase 2phosphoglycerat Borrelia burgdorferii , Flagellin Protein Borrelia garinii , hypothetical protein BBE28 Borrelia burgdorferii , DNA direct. RNA polymerase (rpoA) homolog, P66 protein (fragment), Flagellin (fragment), DNA direct. RNA polymerase, integral outer membran protein p66, pyruvate kinase (pyk) homolog, Phosphoglycerat kinase (pgk) und/oder BBU28760 NID und/oder deren Fragmente und/oder für die Antigene und/oder Fragmente codierenden Nucleinsäuresequenzen.
2. Mittel nach Anspruch 1, dadurch gekennzeichnet, dass die Antigene spezifisch mit anti-B. garnerii , anti-B. burgdorferii- und/oder anti-B. afzelii-Antikörpern reagieren.
3. Mittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Antigene an einem festen Träger immobilisiert sind.
4. Verwendung der Antigene Dehydrogenase (GAPDH), Oligopeptid-Permease, Oligopeptid ABC transporter periplasmic BP(oppA-2) (Bb) , Glycosyl transferase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii , Flagellin Protein Borrelia garinii , (AE001578) conserved hypothetical protein cp32-6 Borrelia burgdorferii , membrane assoc. protein p66 percursor Borrelia burgdoferii , Oligopeptid ABC transporter periplasmic BP (oppA-4) (Bc) , Fructose-biphosphate aldose (fba) Borrelia burgdorferii , DNAK Protein
Heat Shock Protein 70 Borrelia burgdorferii , orfE Borrelia burgdorferii , Outer surface protein B precursor Borrelia burgdorferii , L-lactate dehydrogenase (ldh) , P83/100 gene Borrelia burgdorferii , Enolase 2phosphoglycerat Borrelia burgdorferii , Flagellin Protein Borrelia garinii , hypothetical protein BBE28 Borrelia burgdorferii , DNA direct. RNA polymerase (rpoA) homolog, P66 protein (fragment) , Flagellin (fragment) , DNA direct. RNA polymerase, integral outer membran protein p66, pyruvate kinase (pyk) homolog, Phosphoglycerat kinase (pgk) und/oder BBU28760
NID und/oder deren Fragmente und/oder für die Antigene und/oder Fragmente codierenden Nucleinsäuresequenzen zur Herstellung eines Mittels zur Diagnose und/oder Therapie von Lyme Borreliose.
5. Verfahren zum Nachweis von Lyme Borreliose, dadurch gekennzeichnet, dass ein Mittel gemäß einem der Ansprüche 1 bis 3 mit einer biologischen Probe, die Borreliose-
Antikörper enthält, unter Bedingungen, die die Bildung eines Antigen-Antiköper-Komplexes gestatten, in Kontakt gebracht wird, und die Komplexbildung nachgewiesen wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die biologische Probe eine Körperflüssigkeit ist .
7. Verfahren nach Anspruch 5 oder 6 , dadurch gekennzeichnet, dass der Nachweis in einem ELISA durchgeführt wird.
8. Borreliose-ImpfStoff , dadurch gekennzeichnet, dass er Glyceraldehyd- 3 -phosphat-Dehydrogenase (GAPDH) , Oligopeptid-Permease, Oligopeptid ABC transporter periplasmic BP(oppA-2) (Bb) , Glycosyl transferase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative vls rec. casette
Vls6 Borrelia burgdorferii , Flagellin Protein Borrelia garinii , (AE001578) conserved hypothetical protein cp32-6 Borrelia burgdorferii , membrane assoc. protein p66 percursor Borrelia burgdoferii , Oligopeptid ABC transporter periplasmic BP (oppA-4) (Bc) , Fructose-biphosphate aldose (fba) Borrelia burgdorferii , DNAK Protein Heat Shock Protein 70 Borrelia burgdorferii , orfE Borrelia burgdorferii , Outer surface protein B precursor Borrelia burgdorferii , L-lactate dehydrogenase (ldh) , P83/100 gene Borrelia burgdorferii ,
Enolase 2phosphoglycerat Borrelia burgdorferii , Flagellin Protein Borrelia garinii , hypothetical protein BBE28 Borrelia burgdorferii , DNA direct. RNA polymerase (rpoA) homolog, P66 protein (fragment), Flagellin (fragment), DNA direct. RNA polymerase, integral outer membran protein p66, pyruvate kinase (pyk) homolog, Phosphoglycerat kinase (pgk) und/oder BBU28760 NID und/oder deren Fragmente und/oder Antikörper und/oder für die Antigene und/oder Fragmente und/oder Antikörper codierenden Nucleinsäuresequenzen umfasst.
9. Kit zur Diagnose und/oder Therapie von Lyme Borreliose, umfassend Glyceralaldehyd-3-phosphat- Dehydrogenase (GAPDH) , Oligopeptid-Permease,
Oligopeptid ABC transporter periplasmic BP(oppA- 2) (Bb) , Glycosyl transferase IgtD homolog, heat shock Protein 90, VLSE fragment, (U76406) putative vls rec. casette Vls6 Borrelia burgdorferii , Flagellin Protein Borrelia garinii ,
(AE001578) conserved hypothetical protein cp32-6 Borrelia burgdorferii , membrane assoc. protein p66 percursor Borrelia burgdoferii , Oligopeptid ABC transporter periplasmic BP (oppA-4) (Bc) , Fructose-biphosphate aldose (fba) Borrelia burgdorferii , DNAK Protein Heat Shock Protein 70 Borrelia burgdorferii , orfE Borrelia burgdorferii , Outer surface protein B precursor
Borrelia burgdorferii , L-lactate dehydrogenase
(ldh) , P83/100 gene Borrelia burgdorferii ,
Enolase 2phosphoglycerat Borrelia burgdorferii , Flagellin Protein Borrelia garinii , hypothetical protein BBE28 Borrelia burgdorferii , DNA direct.
RNA polymerase (rpoA) homolog, P66 protein
(fragment), Flagellin (fragment), DNA direct. RNA polymerase, integral outer membran protein p66, pyruvate kinase (pyk) homolog, Phosphoglycerat kinase (pgk) und/oder BBU28760 NID und/oder deren Fragmente und/oder Antikörper und/oder für die Antigene, Fragmente und/oder Antikörper codierenden Nucleinsäuresequenzen .
PCT/EP2000/012454 1999-12-08 2000-12-08 Mittel und verfahren zur diagnose von lyme borreliose sowie borreliose-impfstoff WO2001042790A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00991154A EP1238280A2 (de) 1999-12-08 2000-12-08 Mittel und verfahren zur diagnose von lyme borreliose sowie borreliose-impfstoff

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19960113.5 1999-12-08
DE19960113A DE19960113A1 (de) 1999-12-08 1999-12-08 Mittel und Verfahren zur Diagnose von Lyme Borreliose sowie Borreliose-Impfstoff

Publications (2)

Publication Number Publication Date
WO2001042790A2 true WO2001042790A2 (de) 2001-06-14
WO2001042790A3 WO2001042790A3 (de) 2001-12-06

Family

ID=7932515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/012454 WO2001042790A2 (de) 1999-12-08 2000-12-08 Mittel und verfahren zur diagnose von lyme borreliose sowie borreliose-impfstoff

Country Status (4)

Country Link
US (1) US20030138868A1 (de)
EP (1) EP1238280A2 (de)
DE (1) DE19960113A1 (de)
WO (1) WO2001042790A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL223175B1 (pl) 2012-10-22 2016-10-31 Inst Chemii Bioorganicznej Polskiej Akademii Nauk Szczepionka przeciw boreliozie, konstrukt genetyczny, rekombinowane białko, sposób otrzymywania konstruktu genetycznego, sposób otrzymywania szczepionki, sposób otrzymywania rekombinowanych białek, zastosowanie rekombinowanych białek do wytwarzania szczepionki przeciwko boreliozie
CN109641063B (zh) 2016-04-20 2022-11-15 能源环境和技术研究中心O.A., M.P. 用于增强pklr的基因表达的组合物和方法
CN105920593A (zh) * 2016-06-08 2016-09-07 山东省海洋生物研究院 一种水产迟钝爱德华氏菌亚单位口服微胶囊疫苗
US11739388B2 (en) 2016-11-03 2023-08-29 University Of Leicester Phage-based detection of borreliosis and means therefor
EP3410117A1 (de) * 2017-06-02 2018-12-05 Université de Strasbourg Nachweis von borrelia burgdorferi sensu lato bei patienten mit disseminierter late-lyme-infektion
EP3697452A4 (de) 2017-10-16 2021-11-24 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, O.A., M.P. Lentivirale vektoren zur verabreichung von pklr zur behandlung von pyruvatkinasemangel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000448A1 (en) * 1991-06-28 1993-01-07 The Regents Of The University Of California Methods and compositions for diagnosing lyme disease
WO1995014781A2 (en) * 1993-11-24 1995-06-01 The University Of Connecticut Methods for diagnosing early lyme disease
WO1997026273A1 (en) * 1996-01-22 1997-07-24 The Regents Of The University Of California Borrelia burgdorferi outer membrane proteins
WO1997042325A1 (en) * 1996-05-08 1997-11-13 Yale University B. burgdorferi polypeptides expressed in vivo
EP0821237A2 (de) * 1996-07-22 1998-01-28 Immuno Ag Immunassay zum Nachweis von anti-B. burgdorferi Antikörpern und Verfahren zur Serodiagnose bei Lyme Borreliose, diagnostische Mittel und Testkits zur Durchführung der Verfahren
EP0949508A1 (de) * 1998-04-08 1999-10-13 Dako A/S Verfahren, Antigen-Komplex und Satz zur Diagnose Lyme-Borreliose

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000448A1 (en) * 1991-06-28 1993-01-07 The Regents Of The University Of California Methods and compositions for diagnosing lyme disease
WO1995014781A2 (en) * 1993-11-24 1995-06-01 The University Of Connecticut Methods for diagnosing early lyme disease
WO1997026273A1 (en) * 1996-01-22 1997-07-24 The Regents Of The University Of California Borrelia burgdorferi outer membrane proteins
WO1997042325A1 (en) * 1996-05-08 1997-11-13 Yale University B. burgdorferi polypeptides expressed in vivo
EP0821237A2 (de) * 1996-07-22 1998-01-28 Immuno Ag Immunassay zum Nachweis von anti-B. burgdorferi Antikörpern und Verfahren zur Serodiagnose bei Lyme Borreliose, diagnostische Mittel und Testkits zur Durchführung der Verfahren
EP0949508A1 (de) * 1998-04-08 1999-10-13 Dako A/S Verfahren, Antigen-Komplex und Satz zur Diagnose Lyme-Borreliose

Also Published As

Publication number Publication date
EP1238280A2 (de) 2002-09-11
US20030138868A1 (en) 2003-07-24
WO2001042790A3 (de) 2001-12-06
DE19960113A1 (de) 2001-06-13

Similar Documents

Publication Publication Date Title
DE68929550T2 (de) Im Wesentlichen reines ganzes OspaA-Protein, frei von anderen B. burgdorferi-Materialien
Johnston et al. The serological classification of Neisseria gonorrhoeae. I. Isolation of the outer membrane complex responsible for serotypic specificity.
EP0506868B1 (de) Immunologisch aktive proteine von borrelia burgdorferi, zusammenhängende testkits und impfstoff
Goldbaum et al. Characterization of an 18-kilodalton Brucella cytoplasmic protein which appears to be a serological marker of active infection of both human and bovine brucellosis
DE69333585T2 (de) Gereinigtes vakuolisierendes toxin aus helicobacter pylori und methoden zu dessen verwendung
WO1988005823A2 (en) Mycobacterium tuberculosis genes encoding protein antigens
DE3587268T2 (de) Verfahren zur isolierung des mycobakteriellen antigens-a60 und die verwendung dieses antigens zur herstellung von immunologischen reagenzien und in immunologischen testverfahren.
Nano Identification of a heat-modifiable protein of Francisella tularensis and molecular cloning of the encoding gene
Kent et al. Analysis of the axial filaments of Treponema hyodysenteriae by SDS-PAGE and immunoblotting
EP0918865B1 (de) Immunologisch aktive proteine von borrelia burgdorferi, dafür kodierende nukleinsäuren sowie deren verwendung in testkits und als impfstoffe
Russell et al. Antibody responses to antigens of Streptococcus mutans in monkeys (Macaca fascicularis) immunized against dental caries
EP1238280A2 (de) Mittel und verfahren zur diagnose von lyme borreliose sowie borreliose-impfstoff
Schoone et al. An immunoprotective monoclonal antibody directed against Leptospira interrogans serovar copenhageni
US5585102A (en) Flagella-less borrelia
DE68916424T2 (de) Pasteurella-impfstoff.
Sellwood et al. Antibodies to a common outer envelope antigen of Treponema hyodysenteriae with antibacterial activity
DE60133734T2 (de) Polypeptide die polymorphismen aus bordertella pertussis, bordetella parapertussis und bordetella bronchiseptica pertactin wiederholende regionen enthalten, ihre verwendung in diagnostik und immunogene zusammensetzungen
DE69535156T2 (de) Verfahren und zusammensetzungen zur diagnose von rochalimaea henselae und rochalimaea quintana infektion
Muñoz et al. A Brucella melitensis H38Δ wbkF rough mutant protects against Brucella ovis in rams
Shih et al. Genospecies identification and characterization of Lyme disease spirochetes of genospecies Borrelia burgdorferi sensu lato isolated from rodents in Taiwan
DE68926856T2 (de) Diagnose der infektion mit mycobacterium bovis
EP2199303B1 (de) Polypeptide und Verfahren zur spezifischen Detektion von Antikörpern bei Patienten mit einer Borrelieninfektion
Chong-Cerrillo et al. Immunohistochemical analysis of Lyme disease in the skin of naive and infection-immune rabbits following challenge
EP2561362B1 (de) Verfahren zur erkennung einer salmonelleninfektion
EP2396655B2 (de) VORRICHTUNG ZUM SEROLOGISCHEN NACHWEIS VON YERSINIEN-INFEKTIONEN UND/ODER DEREN FOLGEERKRANKUNGEN SOWIE VERWENDUNG DER PROTEINE MyfA UND PsaA VON Y.ENTEROCOLITICA UND Y.PSEUDOTUBERCULOSIS ALS REKOMBINANTE ANTIGENE

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000991154

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000991154

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10149532

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2000991154

Country of ref document: EP