WO2001040868A2 - Alternierende phasenmaske - Google Patents

Alternierende phasenmaske Download PDF

Info

Publication number
WO2001040868A2
WO2001040868A2 PCT/DE2000/004136 DE0004136W WO0140868A2 WO 2001040868 A2 WO2001040868 A2 WO 2001040868A2 DE 0004136 W DE0004136 W DE 0004136W WO 0140868 A2 WO0140868 A2 WO 0140868A2
Authority
WO
WIPO (PCT)
Prior art keywords
phase mask
segments
mask according
segment
alternating phase
Prior art date
Application number
PCT/DE2000/004136
Other languages
English (en)
French (fr)
Other versions
WO2001040868A3 (de
Inventor
Christoph Friedrich
Michael Heissmeier
Molela Moukara
Uwe Griesinger
Burkhard Ludwig
Rainer Pforr
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to JP2001542273A priority Critical patent/JP3699933B2/ja
Priority to KR10-2002-7006908A priority patent/KR100490913B1/ko
Priority to EP00989795A priority patent/EP1244937A2/de
Publication of WO2001040868A2 publication Critical patent/WO2001040868A2/de
Publication of WO2001040868A3 publication Critical patent/WO2001040868A3/de
Priority to US10/158,733 priority patent/US6660437B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/30Alternating PSM, e.g. Levenson-Shibuya PSM; Preparation thereof

Definitions

  • the invention relates to a phase mask according to the preamble of claim 1.
  • Phase masks of this type are used in photolithography processes for producing integrated circuits, in particular 10 for producing interconnects for wiring integrated circuits.
  • Such interconnects are usually incorporated into insulator layers, which are applied directly or with intermediate layers.
  • Such substrates usually consist of silicon layers, while the insulator layers consist of oxide layers, preferably silicon oxides.
  • trenches and contact holes running in one or more planes are incorporated, etching processes, in particular plasma etching processes, preferably being used for this purpose.
  • a resist mask with a hole pattern corresponding to the trenches and / or the contact holes is applied to the insulator layer.
  • several resist masks are also applied in succession in a multi-stage process in order to incorporate contact holes and / or trenches in several levels of the insulator layer.
  • the individual trenches and contacts are tact hole punched out.
  • the resist masks are then removed from the insulator layer.
  • the trenches and / or contact holes are deposited to produce the metal interconnects.
  • Resist masks are produced on the insulator layers using known photolithography processes.
  • a radiation-sensitive resist layer is first applied to the insulator layer. By placing stencils or the like, this resist layer is exposed to radiation, in particular light radiation, at predetermined locations. Then, in a suitable developer, either only the exposed or only the unexposed areas of the resist layer are removed. In the first case there is a so-called positive resist, in the second case a negative
  • the resist layer with the hole pattern thus generated then forms the resist mask for the subsequent etching processes.
  • the rays in particular light rays, are to be imaged as precisely as possible on the surface of the resist layer in accordance with a predetermined hole pattern.
  • the highest possible resolution is to be achieved, which is synonymous with obtaining an abrupt transition from exposed and unexposed areas in the photoresist layer.
  • the exposure takes place in such a way that radiation is emitted by a radiation source, which is focused via a lens onto an image plane in which the resist layer is located.
  • a radiation source which is focused via a lens onto an image plane in which the resist layer is located.
  • image plane individual substrates with the resist layers applied thereon are positioned by means of a stepper in the beam path of the beams emitted by the radiation source.
  • the mask is usually designed as a binary mask, for example in the form of a chrome mask.
  • chrome masks have an alternating structure of transparent areas, which are preferably formed by a glass layer, and non-transparent layers, which are formed by the chrome layers.
  • a phase mask is used instead of a chrome mask to increase the contrast of exposed and unexposed areas on the resist layer.
  • phase mask can be designed in particular as a halftone phase mask.
  • the opaque layers are replaced by a partially transparent layer with a transmission of typically 6%, the layer thicknesses of which are designed such that the continuous radiation undergoes a phase shift of 180 °.
  • phase mask can also be designed as an alternating phase mask.
  • Such an alternating phase mask each has adjacent transparent regions separated from a chrome layer, each of which has phases shifted by 180 °. This means that the radiation passing through a transparent area is 180 ° out of phase with the radiation which is guided through the adjacent transparent area.
  • the branched, opaque segments designed as chrome bars have, in particular two chrome webs each form a T-shaped structure.
  • a second chrome web finishes on the long side of a first chrome web, so that the first chrome web is divided into two sub-segments.
  • the transparent areas surrounding the chrome webs are then to be designed in particular as rectangular flat segments, the lengths and widths of the flat segments being matched to the lengths of the adjacent opaque segments or parts thereof.
  • the transparent surface segments are then preferably arranged in such a way that two surface segments lying opposite each other on an opaque segment have phases different by 180 °.
  • the light rays that pass the phase mask at the boundary line of these flat segments are extinguished by interference effects, so that an unexposed zone is obtained on the resist layer of the corresponding position.
  • a phase mask is known from US Pat. No. 5,840,447, which has transparent flat segments with different phases.
  • a periodic sub-wavelength structure is provided along the boundary line of two flat segments with different phases. This sub-
  • Wavelength structure consists of alternating thin layers of materials from the two adjacent flat segments. This sub-wave-long structure ensures an almost continuous transition of the refractive index when transitioning from one flat segment to the other. In this way it is avoided that interference cancels an extinction of Beams of light take place which penetrate the boundary line between the surface segments.
  • a phase mask is known from US Pat. No. 5,635,316, which has several transparent surface segments with phases of 0 ° or
  • the invention is based on the object of designing an alternating phase mask of the type mentioned at the outset in such a way that branched structures with high contrast and high imaging quality can be imaged.
  • the alternating phase mask according to the invention has at least two opaque segments, the first segment opening out on one long side of the second segment and the first segment dividing m into two subsegments on both sides of the opening.
  • two transparent flat segments are arranged over their entire length, which have phases shifted by 180 ° ⁇ ⁇ ⁇ , with ⁇ ⁇ being a maximum of 25 °.
  • the flat segments which lie opposite on the longitudinal side of the first segment opposite the neck and have a phase shifted by 180 ⁇ ⁇ ⁇ , are characterized by at least one transparent surface boundary segment separated, the phase of which lies between the phases of the adjacent surface segments.
  • the phase of the surface boundary segment preferably corresponds to the arithmetic mean of the phases of the adjacent surface segments.
  • the surface boundary segment formed in this way avoids negative interference of the radiation passing through the boundary region between the adjacent surface segments. Thus, there is no extinction of the radiation in this border area, so that the corresponding areas of the resist layer are exposed.
  • the area boundary segment can be incorporated into the alternating phase mask without great expenditure of material or costs.
  • phase mask according to the invention a high-contrast image is obtained in a wide parameter range of the optical parameters of the imaging system.
  • a high-contrast image is obtained even if there is defocusing of the radiation passing through the phase mask.
  • Figure 1 Schematic representation of a section of a first embodiment of the phase mask according to the invention.
  • Figure 2 Schematic representation of the exposure structure obtained with the phase mask according to Figure 1 on a resist layer.
  • Figure 3 Schematic representation of a section of a second embodiment of the phase mask according to the invention.
  • Figure 4 Schematic representation of the exposure structure obtained with the phase mask according to Figure 3 on a resist layer.
  • FIG. 1 shows a first exemplary embodiment of a section of a phase mask 1 for exposing a photo-sensitive layer in a photolithography process for producing integrated circuits.
  • the photosensitive layer is in particular designed as a resist layer, which is applied, for example, to an insulator layer.
  • the insulator layer is seated directly or with the interposition of a metal layer on a substrate which contains integrated circuits.
  • This substrate is preferably made of silicon.
  • the insulator layer preferably consists of a silicon oxide. Conductor tracks are incorporated into this insulator layer, with trenches and contact holes being etched in accordance with a predetermined pattern in order to produce the conductor tracks, into which metal is subsequently deposited.
  • the trenches and contact holes are worked into the insulator layer by means of an etching process, preferably by means of a plasma etching process.
  • at least one resist mask is produced from the resist layer lying on the insulator layer, which has a hole pattern corresponding to the trenches and contact holes. Trenches and contact holes are incorporated by etching through the holes in the resist mask.
  • the resist mask is produced from the resist layer by means of a photolithography process.
  • the resist layer is exposed on predetermined layers and then developed. Depending on whether the resist layer is a positive or negative resist, the exposed or unexposed areas of the resist layer are removed during development.
  • a radiation-emitting radiation source is provided for carrying out the exposure process. The radiation is focused on the resist layer using a lens.
  • the layer to be exposed m is used to move the beam path of the radiation into the focal point of the objective by means of a stepper.
  • the phase mask 1 is provided in front of the objective.
  • a radiation source formed by a laser which emits coherent laser light beams as radiation.
  • FIG. 1 shows a section of an exemplary embodiment of the alternating phase mask 1 according to the invention, in which two opaque segments are provided. These opaque segments are designed as chrome webs 2, 3.
  • the chrome webs 2, 3 are formed by thin layers which are applied to a transparent substrate 4, which is formed, for example, by a glass plate.
  • the cross sections of the chrome webs 2, 3 each have the shape of elongated rectangles.
  • the second chrome web 3 finishes at a right angle, so that the two chrome webs 2, 3 complement each other to form a T-shaped structure.
  • the first chrome web 2 is divided into two sub-segments 2a, 2b.
  • is the wavelength of the one used in the exposure Laser light rays and NA the numerical aperture of the optical imaging system.
  • Adjacent to the chrome bars 2, 3 are a total of four transparent surface segments 5a, 5b, which together with the chrome bars 2, 3 form an essentially square arrangement.
  • the surface segments 5a, 5b are arranged in such a way that two of the surface segments 5a, 5b each rest on a partial segment 2a, 2b of the first chrome web 2 or on the second chrome web 3.
  • the side length of a surface segment 5a or 5b corresponds in each case to the length of the partial segment 2a, 2b of the first chrome web 2 or the length of the second chrome web 3, on which the respective side of the surface segment 5a or 5b bears.
  • the surface segments 5a, 5b have different phases.
  • the surface segments 5a, 5b with the respective phases are preferably produced by etching the glass plate forming the base 4 in the corresponding depth in the regions of the surface segments 5a, 5b.
  • the phases of the surface segments 5a, 5b are chosen such that two opposite surface segments 5a, 5b each have a phase shifted by an angle of 180 ° ⁇ ⁇ ⁇ .
  • two of the surface segments 5a each have the phase 180 °, that is to say when the laser light beams pass, the laser light beams experience a phase shift of 180 °.
  • the two other surface segments 5b each have a phase of 0 °, which is identical to the phase of the substrate 4.
  • the two lower surface segments 5a, 5b each adjoin a chrome layer with two side surfaces.
  • the two upper surface segments 5a, 5b each lie opposite one another with one side surface, without a chrome layer being arranged in between.
  • a transparent surface boundary segment 6 is provided between these two surface segments 5a, 5b.
  • This surface boundary segment 6 has a rectangular cross section and extends along a straight line along which the second chrome web 3 also runs.
  • the width of the surface boundary segment 6 also corresponds to the width of the second chrome web 3.
  • the length of the surface boundary segment 6 corresponds to the lengths of the adjacent sides of the surface segments 5a, 5b.
  • the phase of the surface boundary segment 6 lies between the phases of the adjacent surface segments 5a, 5b.
  • the phase of the surface boundary segment 6 preferably corresponds to the arithmetic mean of the phases of the surface segments 5a, 5b adjoining it.
  • the phases of the adjacent surface segments 5a, 5b are 0 ° or 180 °, so that the phase of the surface boundary segment 6 is 90 °.
  • the phase can also be 90 ° + n • 180 °, where n is a positive integer.
  • the arrangement thus formed forms an alternating phase mask 1, in each of which adjacent transparent surface segments 5a, 5b separated by an opaque chrome layer have phases shifted by 180 °.
  • the surface boundary segment 6 avoids that the surface segments 5a, 5b, which are opposite one another on the longitudinal side of the first chrome web 2 opposite the mouth of the second chrome web 3, do not directly adjoin one another.
  • the interposition of the surface boundary segment 6 thus avoids an abrupt phase jump of 180 °. Rather, only phase jumps of 90 ° occur at the boundary lines of the surface boundary segment 6. This prevents interference effects from extinguishing the laser light beams at the boundary between these surface segments 5a, 5b, so that the respective resist structure is also exposed in this area.
  • FIG. 2 schematically shows the exposure pattern of a resist layer that is obtained with the alternating phase mask 1 according to FIG. 1.
  • the light areas mark the exposed areas.
  • the dark areas the unexposed areas.
  • FIG. 2 shows that an image with a very high contrast is obtained with the phase mask 1 according to the invention.
  • the T-shaped structure of the chrome segments stands out clearly from the surrounding exposed areas as an unexposed area. In particular, a very strong exposure of the resist layer takes place in the area of the surface boundary segment 6.
  • a small tongue-shaped bulge 7 of the unexposed zone extends only in the region of the center of the upper edge of the T-shaped structure.
  • the widening of the unexposed zone at this point is based on the cross-sectional widening of the first chrome web 2 at the mouth of the second chrome web 3.
  • FIG. 3 shows a second exemplary embodiment of the phase mask 1 according to the invention.
  • the structure of this phase mask 1 essentially corresponds to the structure of the phase mask 1 according to FIG. 1.
  • phase mask 1 according to FIG. 3 has surface segments 5a, 5b with phases of 90 ° and 270 °, which are arranged alternately with respect to the individual chrome layers.
  • the surface boundary segment 6, which lies between surface segments 5a, 5b with phases of 90 ° and 270 °, has a phase of 0 ° corresponding to the background 4.
  • phase mask 1 according to FIG. 3 A further difference from the phase mask 1 according to FIG. 1 is that in the phase mask 1 according to FIG. 3 the first chrome web 2 has an indentation 8 on its long side which forms the upper edge of the T-shaped structure. This booking 8 is arranged opposite to the mouth of the second chrome web 3 on the long side of the first chrome web 2. The width of the indentation 8 corresponds to the width of the second chrome web 3.
  • FIG. 4 schematically shows the exposure pattern of a resist layer that is obtained with the alternating phase mask 1 according to FIG. 3.
  • the exposure pattern is almost identical to the exposure pattern according to FIG. 2.
  • the surface boundary segment 6 consists of a transparent zone with a homogeneous phase.
  • the area boundary segment 6 can also be subdivided into several zones of different phases, the phase also being able to vary continuously in the borderline case.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Die Erfindung betrifft eine alternierende Phasenmaske (1) mit einer aus zwei opaken Segmenten bestehenden verzweigten Struktur. Beidseits der Segmente oder Teilen hiervon sind jeweils zwei transparente Flächensegmente (5a, 5b) angeordnet, welche um 180° ± Δ α verschobene Phasen aufweisen, wobei Δ α maximal 25° beträgt. Die Flächensegmente (5a, 5b) sind durch wenigstens ein transparentes Flächengrenzsegment (6) getrennt, dessen Phase zwischen den Phasen der angrenzenden Flächensegmente (5a, 5b) liegt.

Description

Beschreibung
Alternierende Phasenmaske
5 Die Erfindung betrifft eine Phasenmaske gemäß dem Oberbegriff des Anspruchs 1.
Derartige Phasenmasken werden bei Photolithographieprozessen zur Herstellung von integrierten Schaltungen, insbesondere 10 zur Herstellung von Leitbahnen zur Verdrahtung von integrierten Schaltkreisen eingesetzt.
Derartige Leitbahnen werden üblicherweise in Isolatorschichten eingearbeitet, welche unmittelbar oder unter Zwischenla-
15 gerung einer Metallschicht auf einem Substrat aufsitzen, welches die integrierten Schaltungen enthält. Derartige Substrate bestehen üblicherweise aus Siliziumschichten, während die Isolatorschichten aus Oxidschichten bestehen, vorzugsweise aus Siliziumoxiden.
20
Zur Herstellung der Leitbahnen in der Isolatorschicht werden in einer Ebene oder in mehreren Ebenen verlaufende Gräben und Kontaktlöcher eingearbeitet, wobei hierzu vorzugsweise Ätzprozesse insbesondere Plasma-Ätzprozesse eingesetzt wer-
25 den.
Um diese Gräben und Kontaktlöcher in die Isolatorschicht einzuarbeiten wird eine Resistmaske mit einem den Gräben und/oder den Kontaktlöchern entsprechenden Lochmuster auf 30 die Isolatorschicht aufgebracht. Üblicherweise werden auch in einem mehrstufigen Prozess nacheinander mehrere Re- sistmasken aufgebracht, um Kontaktlöcher und/oder Gräben in mehreren Ebenen der Isolatorschicht einzuarbeiten.
3.5
Durch die entsprechenden Öffnungen in den Resistmasken werden mit vorgegebenen Tiefen die einzelnen Gräben und Kon- taktlocher emgeatzt. Danach werden die Resistmasken von der Isolatorschicht entfernt. Schließlich wird zur Herstellung der Leitbahnen Metall m die Graben und/oder Kontaktlocher abgeschieden .
Die Herstellung von Resistmasken auf den Isolatorschichten erfolgt mittels bekannter Photolithographieprozesse . Dabei wird auf die Isolatorschicht zunächst eine strahlungsemp- findliche Resistschicht aufgebracht. Durch Aufsetzen von Schablonen oder dergleichen wird diese Resistschicht an vorgegebenen Stellen mit Strahlung, insbesondere Lichtstrahlung beaufschlagt. Danach werden in einem geeigneten Entwickler entweder nur die belichteten oder nur die unbelichteten Bereiche der Resistschicht entfernt. Im ersten Fall liegt ein sogenannter Positiv-Resist , im zweiten Fall ein Negativ-
Resist vor. Die Resistschicht mit dem so erzeugten Lochmuster bildet dann die Resistmaske für die nachfolgenden Atzprozesse .
Bei dem Belichtungsprozess sollen die Strahlen, insbesondere Lichtstrahlen, entsprechend einem vorgegebenen Lochmuster möglichst genau auf die Oberflache der Resistschicht abgebildet werden. Dabei soll eine möglichst hohe Auflosung erzielt werden, was gleichbedeutend damit ist, einen möglichst abrupten Übergang von belichteten und unbelichteten Stellen in der Photoresistschicht zu erhalten.
Die Belichtung erfolgt dabei derart, dass von einer Strahlungsquelle Strahlung emittiert wird, die über ein Objektiv auf eine Bildebene fokussiert wird, in der sich die Resistschicht befindet. In der Bildebene werden einzelne Substrate mit den darauf aufgebrachten Resistschichten mittels eines Steppers in dem Strahlengang der von der Strahlungsquelle emittierten Strahlen positioniert.
Bei der Belichtung wird die Strahlung durch eine Maske gefuhrt, wobei durch die Struktur der Maske ein bestimmtes Be- lichtungsmuster vorgebbar ist. Die Maske ist üblicherweise als binäre Maske, beispielsweise in Form einer Chrommaske ausgebildet. Derartige Chrommasken weisen eine alternierende Struktur von transparenten Bereichen, die vorzugsweise von einer Glasschicht gebildet sind, und nicht transparenten Schichten auf, die von den Chromschichten gebildet sind.
Zur Erhöhung des Kontrastes von belichteten und nicht belichteten Bereichen auf der Resistschicht wird anstelle ei- ner Chrommaske eine Phasenmaske verwendet.
Eine derartige Phasenmaske kann insbesondere als Halbton- Phasenmaske ausgebildet sein. Bei derartigen Halbton- Phasenmasken sind die opaken Schichten durch eine teildurch- lässige Schicht mit einer Transmission von typischerweise 6% ersetzt deren Schichtdicken so ausgebildet sind, dass die durchgehende Strahlung einen Phasenhub von 180° erfährt.
Weiterhin kann die Phasenmaske auch als alternierende Pha- senmaske ausgebildet sein. Eine derartige alternierende Phasenmaske weist jeweils von einer Chromschicht getrennte benachbarte transparente Bereiche auf, die jeweils um 180° verschobene Phasen aufweisen. Das heißt, dass die durch einen transparenten Bereich durchgehende Strahlung um 180° phasenversetzt gegenüber der Strahlung ist, die durch den benachbarten transparenten Bereich geführt ist.
Mit derartigen alternierenden Phasenmasken wird eine exakte und kontrastreiche optische Abbildung insbesondere dann er- halten, wenn die Chromschichten als Chromstege in Abstand parallel zueinander verlaufend angeordnet sind. Die transparenten Bereiche bilden dann ebenfalls Stege, die zwischen den Chromstegen verlaufen und alternierende Phasen von 0° und 180° aufweisen.
Problematisch ist jedoch eine Ausbildung von Phasenmasken, die verzweigte, als Chromstege ausgebildete opake Segmente aufweisen, wobei insbesondere jeweils zwei Chromstege eine T-formige Struktur bilden. Bei einer derartigen T-formigen Struktur mundet an der Längsseite eines ersten Chromsteges ein zweiter Chromsteg aus, so dass der erste Chromsteg in zwei Teilsegmente unterteilt wird. Die transparenten Bereiche, welche die Chromstege umgeben, sind dann insbesondere als rechteckige Flachensegmente auszubilden, wobei die Langen und Breiten der Flachensegmente jeweils an die Langen der angrenzenden opaken Segmente oder Teile hiervon ange- passt sind. Die transparenten Flachensegmente sind dann vorzugsweise so angeordnet, dass jeweils zwei an einem opaken Segment gegenüberliegende Flachensegmente um 180° verschiedene Phasen aufweisen. Jedoch verbleiben dann immer zwei Flachensegmente mit um 180° verschiedenen Phasen, welche un- mittelbar anemandergrenzen. Die Lichtstrahlen, die an der Grenzlinie dieser Flachensegmente die Phasenmaske passieren, werden durch Interferenzeffekte ausgelöscht, so dass dadurch auf der Resistschicht der entsprechenden Position eine nichtbelichtete Zone erhalten wird.
Dies bedingt einen zweiten Belichtungsprozess, mit dem diese Zone nachträglich belichtet werden muss. Dies stellt einen unerwünschten zusätzlichen Bearbeitungsschritt und somit einen Mehraufwand an Zeit und Kosten dar.
Aus der US 5,840,447 ist eine Phasenmaske bekannt, die transparente Flachensegmente mit unterschiedlichen Phasen aufweist. Entlang der Grenzlinie zweier Flachensegmente mit unterschiedlichen Phasen ist eine periodische Sub- Wellenlangen-struktur vorgesehen. Diese Sub-
Wellenlangenstruktur besteht aus alternierenden dünnen Lagen von Materialien der beiden angrenzenden Flachensegmente. Durch diese Sub-Wellen-langenstruktur wird em nahezu kontinuierlicher Übergang des Brechungsindexes beim Übergang von einem Flachensegment zum anderen erhalten. Auf diese Weise wird vermieden, dass durch Interferenz eine Ausloschung von Lichtstrahlen erfolgt, welche die Grenzlinie zwischen den Flachensegmenten durchsetzen.
Aus der US 5,635,316 ist eine Phasenmaske bekannt, die meh- rere transparente Flachensegmente mit Phasen von 0° oder
180° aufweist. Lichtstrahlen, welche die Grenzlinie zwischen zweier Flachensegmenten unterschiedlicher Phase durchsetzen, werden durch Interferenzeffekte ausgelöscht. Durch eine geeignete Anordnung der Flachensegmente und der sich daraus ergebenden Grenzlmienstuktur wird em geschlossenes Netzwerk von unbelichteten Linien erhalten. In einem zweiten Verfahrensschritt erfolgt mit einer zweiten Maske eine teilweise Nachbelichtung der unbelichteten Linien.
Der Erfindung liegt die Aufgabe zugrunde eine alternierende Phasenmaske der eingangs genannten Art so auszubilden, dass verzweigte Strukturen mit hohem Kontrast und hoher Abbil- dungsqualitat abbildbar sind.
Zur Losung dieser Aufgabe sind die Merkmale des Anspruchs 1 vorgesehen. Vorteilhafte Ausfuhrungsformen und zweckmäßige Weiterbildungen sind den Unteranspruchen beschrieben.
Die erfmdungsgemaße alternierende Phasenmaske weist wenig- stens zwei opake Segmente auf, wobei das erste Segment an einer Längsseite des zweiten Segments ausmundet und das erste Segment m zwei Teilsegmente beidseits der Ausmundung unterteilt .
Beidseits der Teilsegmente sowie des zweiten Segments sind jeweils über deren Gesamtlange zwei transparente Flachensegmente angeordnet, welche um 180° ± Δ α verschobene Phasen aufweisen, wobei Δ α maximal 25° betragt.
Die Flachensegmente, die an der der Ausmundung gegenüberliegenden Längsseite des ersten Segments gegenüberliegen und eine um 180 ± Δ α verschobene Phase aufweisen sind durch we- nigstens ein transparentes Flächengrenzsegment getrennt, dessen Phase zwischen den Phasen der angrenzenden Flächensegmente liegt. Vorzugsweise entspricht die Phase des Flä- chengrenzsegments dem arithmetischen Mittel der Phasen der angrenzenden Flächensegmente.
Durch das so ausgebildete Flächengrenzsegment wird eine negative Interferenz der den Grenzbereich zwischen den angrenzenden Flächensegmenten durchsetzenden Strahlung vermieden. Somit tritt in diesem Grenzbereich keine Auslöschung der Strahlung auf, so dass die entsprechenden Bereiche der Re- sist-schicht belichtet werden.
Eine Nachbelichtung dieser Bereiche der Photoresistschicht entfällt somit, so dass ein weiterer Belichtungsprozess zur Herstellung der gewünschten Struktur der Resistmaske vermieden werden kann.
Das Flächengrenzsegment kann ohne großen Material- oder Kostenaufwand in die alternierende Phasenmaske eingearbeitet werden.
Weiterhin ist vorteilhaft, dass mit der erfindungsgemäßen Phasenmaske eine kontrastreiche Abbildung in einem breiten Parameterbereich der optischen Parameter des Abbildungssy- stems erhalten wird. Insbesondere wird auch dann noch eine kontrastreiche Abbildung erhalten, wenn eine Defokussierung der die Phasenmaske durchsetzenden Strahlung vorliegt.
Die Erfindung wird im nachstehenden anhand der Zeichnungen erläutert. Es zeigen:
Figur 1: Schematische Darstellung eines Ausschnitts eines ersten Ausführungsbeispiels der erfindungsgemäßen Phasenmaske . Figur 2: Schematische Darstellung der mit der Phasenmaske gemäß Figur 1 erhaltenen Belichtungsstruktur auf einer Resistschicht.
Figur 3: Schematische Darstellung eines Ausschnitts eines zweiten Ausführungsbeispiels der erfindungsgemäßen Phasenmaske .
Figur 4: Schematische Darstellung der mit der Phasenmaske gemäß Figur 3 erhaltenen Belichtungsstruktur auf einer Resistschicht.
Figur 1 zeigt ein erstes Ausführungsbeispiel eines Ausschnitts einer Phasenmaske 1 zur Belichtung einer photoemp- findlichen Schicht bei einem Photolithographieprozess zur Herstellung von integrierten Schaltungen.
Die photoempfindliche Schicht ist insbesondere als Resistschicht ausgebildet, welche beispielsweise auf einer Isola- torschicht aufgebracht ist. Die Isolatorschicht sitzt unmittelbar oder unter Zwischenlagerung einer Metallschicht auf einem Substrat auf, welches integrierte Schaltungen enthält. Dieses Substrat besteht vorzugsweise aus Silizium. Die Isolatorschicht besteht vorzugsweise aus einem Siliziumoxid. In diese Isolatorschicht werden Leitbahnen eingearbeitet, wobei zur Herstellung der Leitbahnen nach einem vorgegebenen Muster Gräben und Kontaktlöcher eingeätzt werden, in welche anschließend Metall abgeschieden wird.
Die Gräben und Kontaktlöcher werden mittels eines Ätzprozesses, vorzugsweise mittels eines Plasma-Ätzprozesses in die Isolatorschicht eingearbeitet. Hierzu wird aus der auf der Isolatorschicht aufliegenden Resistschicht wenigstens eine Resistmaske hergestellt, die ein den Gräben und Kontaktlö- ehern entsprechendes Lochmuster aufweist. Die Einarbeitung von Gräben und Kontaktlöchern erfolgt durch ein Ätzen durch die Löcher der Resistmaske. Die Herstellung der Resistmaske aus der Resistschicht erfolgt mittels eines Photolithographieprozesses . Die Resistschicht wird hierzu an vorgegebenen Schichten belichtet und danach entwickelt. Je nachdem ob es sich bei der Resistschicht um einen Positiv- oder Negativ-Resist handelt, werden bei der Entwicklung die belichteten oder unbelichteten Bereiche der Resistschicht entfernt. Zur Durchfuhrung des Belichtungsprozesses ist eine Strahlung emittierende Strahlungsquelle vorgesehen. Die Strahlung wird mittels eines Objektivs auf die Resist-Schicht fokussiert. Mittels eines Steppers wird die jeweils zu belichtende Schicht m den Strahlengang der Strahlung in den Brennpunkt des Objektivs verfahren. Vor dem Objektiv ist die Phasenmas- ke 1 vorgesehen.
Im vorliegenden Ausfuhrungsbeispiel ist eine von einem Laser gebildete Strahlungsquelle vorgesehen, welche als Strahlung kohärente Laserlichtstrahlen emittiert.
In Figur 1 ist em Ausschnitt eines Ausfuhrungsbeispiels der erfmdungsgemaßen alternierenden Phasenmaske 1 dargestellt, welchem zwei opake Segmente vorgesehen sind. Diese opaken Segmente sind als Chromstege 2, 3 ausgebildet. Die Chromste- ge 2, 3 sind von dünnen Schichten gebildet, die auf einem transparenten Untergrund 4 aufgebracht sind, der beispielsweise von einer Glasplatte gebildet ist. Die Querschnitte der Chromstege 2, 3 weisen jeweils die Form von langgestreckten Rechtecken auf.
An der Längsseite des ersten Chromstegs 2 mundet der zweite Chromsteg 3 im rechten Winkel aus, so dass sich die beiden Chromstege 2, 3 zu einer T-formigen Struktur erganzen. Durch die Ausmundung des zweiten Chromstegs 3 wird dabei der erste Chromsteg 2 zwei Teilsegmente 2a, 2b unterteilt. Die Große G der T-formigen Struktur betragt etwa G = 0,3 . λ/NA. Dabei ist λ die Wellenlange der bei der Belichtung verwendeten Laserlichtstrahlen und NA die numerische Apertur des optischen Abbildungssystems.
An die Chromstege 2, 3 angrenzend sind insgesamt vier trans- parente Flächensegmente 5a, 5b vorgesehen, die zusammen mit den Chromstegen 2, 3 eine im wesentlichen quadratische Anordnung bilden. Die Flächensegmente 5a, 5b sind dabei so angeordnet, dass jeweils zwei der Flächensegmente 5a, 5b an einem Teilsegment 2a, 2b des ersten Chromstegs 2 oder am zweiten Chromsteg 3 gegenüberliegend anliegen.
Dabei entspricht jeweils die Seitenlänge eines Flächensegments 5a oder 5b der Länge des Teilsegments 2a, 2b des ersten Chromstegs 2 oder der Länge des zweiten Chromstegs 3, an welchem die jeweilige Seite des Flächensegments 5a oder 5b anliegt.
Die Flächensegmente 5a, 5b weisen dabei unterschiedliche Phasen auf. Vorzugsweise werden die Flächensegmente 5a, 5b mit den jeweiligen Phasen dadurch hergestellt, in dem in den Bereichen der Flächensegmente 5a, 5b die den Untergrund 4 bildende Glasplatte in entsprechender Tiefe eingeätzt ist.
Die Phasen der Flächensegmente 5a, 5b sind dabei so gewählt, dass jeweils zwei sich gegenüberliegende Flächensegmente 5a, 5b um einen Winkel von 180° ± Δ α verschobene Phase aufweisen. Der Winkelversatz Δ α beträgt dabei maximal etwa Δ α = 25°. Bei den in den Figuren dargestellten Ausführungsbeispielen beträgt der Winkelversatz Δ α = 0°.
Bei dem in Figur 1 dargestellten Ausführungsbeispiel weisen jeweils zwei der Flächensegmente 5a die Phase 180° auf, das heißt bei Durchgang der Laserlichtstrahlen erfahren die Laserlichtstrahlen einen Phasenhub von 180°. Demgegenüber weisen die beiden anderen Flächensegmente 5b jeweils eine Phase von 0° auf, die identisch mit der Phase des Untergrunds 4 ist.
Wie aus Figur 1 ersichtlich ist, grenzen die beiden unteren Flächensegmente 5a, 5b jeweils mit zwei Seitenflächen an eine Chromschicht an. Die beiden oberen Flächensegmente 5a, 5b liegen jedoch jeweils mit einer Seitenfläche einander gegenüber, ohne dass dazwischen eine Chromschicht angeordnet ist.
Erfindungsgemäß ist zwischen diesen beiden Flächensegmenten 5a, 5b ein transparentes Flächengrenzsegment 6 vorgesehen. Dieses Flächengrenzsegment 6 weist einen rechteckigen Querschnitt auf und erstreckt sich längs einer Geraden, entlang derer auch der zweite Chromsteg 3 verläuft. Die Breite des Flächengrenzsegments 6 entspricht auch der Breite des zweiten Chromstegs 3. Die Länge des Flächengrenzsegments 6 entspricht den Längen der angrenzenden Seiten der Flächensegmente 5a, 5b.
Die Phase des Flächengrenzsegments 6 liegt zwischen den Phasen der angrenzenden Flächensegmenten 5a, 5b. Vorzugsweise entspricht die Phase des Flächengrenzsegments 6 dem arithmetischen Mittelwert der Phasen der daran angrenzenden Flä- chensegmenten 5a, 5b.
Im vorliegenden Ausführungsbeispiel betragen die Phasen der angrenzenden Flächensegmente 5a, 5b 0° bzw. 180°, so dass die Phase des Flächengrenzsegments 6 90° beträgt. Alternativ kann die Phase auch 90° + n • 180° betragen, wobei n eine positive ganze Zahl ist.
Die so gebildete Anordnung bildet eine alternierende Phasenmaske 1, bei welcher jeweils benachbarte, durch eine opake Chromschicht getrennte transparente Flächensegmente 5a, 5b um 180° verschobene Phasen aufweisen. Durch das Flächengrenzsegment 6 wird vermieden, dass die Flächensegmente 5a, 5b, die an der der Ausmündung des zweiten Chromstegs 3 gegenüberliegenden Längsseite des ersten Chromstegs 2 einander gegenüberliegen, nicht unmittelbar an- einander angrenzen. Durch die Zwischenschaltung des Flächengrenzsegments 6 wird somit ein abrupter Phasensprung von 180° vermieden. Vielmehr entstehen an den Grenzlinien des Flächengrenzsegments 6 jeweils nur Phasensprünge von 90°. Auf diese Weise wird vermieden, dass durch Interferenzeffek- te an der Grenze zwischen diesen Flächensegmenten 5a, 5b eine Auslöschung der Laserlichtstrahlen auftritt, so dass auch in diesem Bereich eine Belichtung der jeweiligen Re- siststruktur erfolgt.
Figur 2 zeigt schematisch das Belichtungsmuster einer Resistschicht, die mit der alternierenden Phasenmaske 1 gemäß Figur 1 erhalten wird. Die hellen Bereiche kennzeichnen die belichteten Stellen. Die dunklen Bereiche die nicht belichteten Stellen. Aus Figur 2 ist ersichtlich, dass mit der er- findungsgemäßen Phasenmaske 1 eine Abbildung mit sehr hohem Kontrast erhalten wird. Die T-förmige Struktur der Chromsegmente hebt sich konturgenau als nicht belichtete Zone von den umliegenden belichteten Zonen deutlich ab. Insbesondere findet auch im Bereich des Flächengrenzsegments 6 eine sehr starke Belichtung der Resistschicht statt.
Lediglich im Bereich des Zentrums des oberen Randes der T- förmigen Struktur erstreckt sich eine kleine zungenförmige Auswölbung 7 der nicht belichteten Zone. Die Verbreiterung der nicht belichteten Zone an dieser Stelle beruht auf der Querschnittsverbreiterung des ersten Chromstegs 2 an der Ausmündung des zweiten Chromstegs 3.
Figur 3 zeigt ein zweites Ausführungsbeispiel der erfin- dungsgemäßen Phasenmaske 1. Der Aufbau dieser Phasenmaske 1 entspricht im wesentlichen dem Aufbau der Phasenmaske 1 gemäß Figur 1. Im Unterschied zur Phasenmaske 1 gemäß Figur 1 weist die Phasenmaske 1 gemäß Figur 3 Flächensegmente 5a, 5b mit Phasen von 90° und 270° auf, die alternierend bezüglich den einzelnen Chromschichten angeordnet sind. Das Flächengrenzsegment 6, welches zwischen Flächensegmenten 5a, 5b mit Phasen von 90° und 270° liegt, weist eine dem Untergrund 4 entsprechende Phase von 0° auf.
Ein weiterer Unterschied zur Phasenmaske 1 gemäß Figur 1 besteht darin, dass bei der Phasenmaske 1 gemäß Figur 3 der erste Chromsteg 2 an seiner den oberen Rand der T-förmigen Struktur bildenden Längsseite eine Einbuchtung 8 aufweist. Diese Einbuchung 8 ist gegenüberliegend zur Ausmündung des zweiten Chromstegs 3 an der Längsseite des ersten Chromstegs 2 angeordnet. Dabei entspricht die Breite der Einbuchtung 8 der Breite des zweiten Chromstegs 3.
Figur 4 zeigt schematisch das Belichtungsmuster einer Re- sistschicht, die mit der alternierenden Phasenmaske 1 gemäß Figur 3 erhalten wird. Das Belichtungsmuster ist nahezu identisch mit dem Belichtungsmuster gemäß Figur 2.
Der einzige Unterschied der Belichtungsmuster besteht darin, dass durch die Einbuchtung 8 im ersten Chromsteg 2 der Phasenmaske 1 gemäß Figur 1 nunmehr auf der Oberseite der durch die T-förmige Struktur der opaken Segmente erzeugten nicht belichteten Zone keine zungenförmige Auswölbung 7 mehr auftritt.
In den vorliegenden Ausführungsbeispielen besteht das Flächengrenzsegment 6 aus einer transparenten Zone mit homogener Phase. Prinzipiell kann das Flächengrenzsegment 6 auch in mehrere Zonen unterschiedlicher Phase unterteilt sein, wobei im Grenzfall die Phase auch kontinuierlich variieren kann.

Claims

Patentansprüche
1. Alternierende Phasenmaske zur Belichtung einer photoemp- findlichen Schicht bei einem Photolithographieprozess, umfassend eine T-Musterstruktur aus transparenten Felächenseg- enten (5a, 5b) mit zueinander verschobenen Phasen und ein Flächengrenzsegment (6), dessen Phase zwischen den Phasen der angrenzenden Flächensegmente (5a, 5b) liegt, d a d u r c h g e k e n n z e i c h n e t , dass die Phasenmaske wenigstens zwei opake Segmente (2, 3) aufweist, wobei an einer Längsseite des ersten opaken Segments (2) das zweite opake Segment (3) ausmündet und so das erste opake Segment (2) in zwei opake Teilsegmente (2a, 2b) beid- seits der Ausmündung unterteilt, dass beidseits der Teilsegmente (2a, 2b) sowie des zweiten opaken Segments (3) jeweils über deren Gesamtlänge jeweils zwei der transparenten Flächensegmente (5a, 5b) angeordnet sind, welche um 180° ± Δ α verschobene Phasen aufweisen, wobei Δ maximal 25° beträgt, und dass die transparenten Flächensegmente (5a, 5b), die an der der Ausmündung gegenüberliegenden Längsseite des ersten Segments (2) gegenüberliegen und eine um 180° ± Δ α verschobene Phase aufweisen, durch das wenigstens eine transparente Flächengrenzsegment (6) getrennt sind.
2. Alternierende Phasenmaske nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die opaken Segmente (2, 3) sich zu einer T-förmigen Struktur ergänzen.
3. Alternierende Phasenmaske nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass eine Größe G der T-förmigen Struktur etwa G = 0,3 • λ/NA beträgt wobei λ die Wellenlänge der bei der Belichtung verwen- deten Strahlung und wobei NA die numerische Apertur des für die Belichtung verwendeten Abbildungssystems ist.
4. Alternierende Phasenmaske nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , dass die opaken Segmente (2, 3) im Wesentlichen die Form von langgestreckten Rechtecken aufweisen.
5. Alternierende Phasenmaske nach einem der Ansprüche 2 - 4, d a d u r c h g e k e n n z e i c h n e t , dass das erste opake Segment (2) an der der Ausmündung des zweiten opaken Segments (3) gegenüberliegenden Seite eine sich über die Länge der Ausmündung erstreckende Einbuchtung (8) aufweist .
6. Alternierende Phasenmaske nach einem der Ansprüche 1 - 5, d a d u r c h g e k e n n z e i c h n e t , dass das erste und zweite opake Segment als Chromstege (2, 3) ausgebildet sind.
7. Alternierende Phasenmaske nach einem der Ansprüche 1 - 6, d a d u r c h g e k e n n z e i c h n e t , dass Δ = 0° ist.
8. Alternierende Phasenmaske nach einem der Ansprüche 1 - 7, d a d u r c h g e k e n n z e i c h n e t , dass das Flächengrenzsegment (6) quer zu den Grenzflächen der angrenzenden Flächensegmente (5a, 5b) in Teilsegmente (2a, 2b) unterschiedlicher Phasen aufgeteilt ist.
9. Alternierende Phasenmaske nach einem der Ansprüche 1 - 7, d a d u r c h g e k e n n z e i c h n e t , dass das Flächengrenzsegment (6) eine homogene Phase aufweist.
10. Alternierende Phasenmaske nach einem der Ansprüche 2 - 9, d a d u r c h g e k e n n z e i c h n e t , dass die transparenten Flächensegmente (5a, 5b) einen rechteckigen Querschnitt aufweisen.
11. Alternierende Phasenmaske nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , dass die Längen und Breiten der transparenten Flächensegmente (5a, 5b) jeweils den Längen der angrenzenden Segmente oder Teilsegmente (2a, 2b) entsprechen.
12. Alternierende Phasenmaske nach einem der Ansprüche 7 -
11, d a d u r c h g e k e n n z e i c h n e t , dass die transparenten Flächensegmente (5a, 5b) Phasen von 0° oder 180° aufweisen.
13. Alternierende Phasenmaske nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass das Flächengrenzsegment (6) eine Phase von 90° aufweist.
14. Alternierende Phasenmaske nach einem der Ansprüche 7 -
13, d a d u r c h g e k e n n z e i c h n e t , dass die transparenten Flächensegmente (5a, 5b) Phasen von 90° oder 270° aufweisen.
15. Alternierende Phasenmaske nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t , dass das Flächengrenzsegment (6) eine Phase von 0° aufweist.
16. Alternierende Phasenmaske nach einem der Ansprüche 8 - 15, d a d u r c h g e k e n n z e i c h n e t , dass das Flächengrenzsegment (6) die Form eines langgestreckten Rechtecks aufweist.
17. Alternierende Phasenmaske nach Anspruch 16, d a d u r c h g e k e n n z e i c h n e t , dass die Breite des Flächengrenzsegments (6) an die Breite des zweiten opaken Segments (3) angepasst ist.
18. Alternierende Phasenmaske nach Anspruch 16 oder 17, d a d u r c h g e k e n n z e i c h n e t , dass die Länge des Flächengrenzsegments (6) an die Längen der angrenzenden transparenten Flächensegmente (5a, 5b) angepasst ist.
PCT/DE2000/004136 1999-11-30 2000-11-22 Alternierende phasenmaske WO2001040868A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001542273A JP3699933B2 (ja) 1999-11-30 2000-11-22 交互性位相マスク
KR10-2002-7006908A KR100490913B1 (ko) 1999-11-30 2000-11-22 교번 위상 마스크
EP00989795A EP1244937A2 (de) 1999-11-30 2000-11-22 Alternierende phasenmaske
US10/158,733 US6660437B2 (en) 1999-11-30 2002-05-30 Alternating phase mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19957542A DE19957542C2 (de) 1999-11-30 1999-11-30 Alternierende Phasenmaske
DE19957542.8 1999-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/158,733 Continuation US6660437B2 (en) 1999-11-30 2002-05-30 Alternating phase mask

Publications (2)

Publication Number Publication Date
WO2001040868A2 true WO2001040868A2 (de) 2001-06-07
WO2001040868A3 WO2001040868A3 (de) 2001-12-06

Family

ID=7930824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004136 WO2001040868A2 (de) 1999-11-30 2000-11-22 Alternierende phasenmaske

Country Status (6)

Country Link
US (1) US6660437B2 (de)
EP (1) EP1244937A2 (de)
JP (1) JP3699933B2 (de)
KR (1) KR100490913B1 (de)
DE (1) DE19957542C2 (de)
WO (1) WO2001040868A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517969A (ja) * 2001-06-08 2005-06-16 ニューメリカル テクノロジーズ インコーポレイテッド フォトリソグラフィ・マスクのための位相競合解決法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129202C1 (de) 2001-06-18 2002-09-26 Infineon Technologies Ag Alternierende Phasenmaske
US20020192676A1 (en) * 2001-06-18 2002-12-19 Madonna Angelo J. Method for determining if a type of bacteria is present in a mixture
US20030151118A1 (en) * 2002-02-14 2003-08-14 3M Innovative Properties Company Aperture masks for circuit fabrication
US6821348B2 (en) * 2002-02-14 2004-11-23 3M Innovative Properties Company In-line deposition processes for circuit fabrication
US20050003346A1 (en) * 2002-04-12 2005-01-06 Colorado School Of Mines Apparatus and method for detecting microscopic living organisms using bacteriophage
DE60332740D1 (de) * 2002-04-12 2010-07-08 Colorado School Of Mines Golde Verfahren zum nachweis geringer konzentrationen eines zielbakteriums unter verwendung von phagen zur infizierung von zielbakterienzellen
US8216780B2 (en) * 2002-04-12 2012-07-10 Microphage (Tm) Incorporated Method for enhanced sensitivity in bacteriophage-based diagnostic assays
KR100675882B1 (ko) * 2004-12-22 2007-02-02 주식회사 하이닉스반도체 다중투과 위상 마스크 및 이를 이용한 노광 방법
WO2006105414A2 (en) * 2005-03-31 2006-10-05 Colorado School Of Mines Apparatus and method for detecting microscopic organisms using microphage
US20110097702A1 (en) * 2005-03-31 2011-04-28 Voorhees Kent J Methods and compositions for in situ detection of microorganisms on a surface
KR100809331B1 (ko) 2006-08-29 2008-03-05 삼성전자주식회사 마스크 및 그 제조 방법
US7773307B2 (en) * 2006-12-12 2010-08-10 Northrop Grumman Space & Mission Systems Corporation Phase mask with continuous azimuthal variation for a coronagraph imaging system
CN101802615A (zh) 2007-06-15 2010-08-11 小噬菌体公司 利用增强噬菌体扩增来检测微生物的方法
US8697434B2 (en) * 2008-01-11 2014-04-15 Colorado School Of Mines Detection of phage amplification by SERS nanoparticles
US9441204B2 (en) * 2008-04-03 2016-09-13 Colorado School Of Mines Compositions and methods for detecting Yersinia pestis bacteria
US9455202B2 (en) * 2014-05-29 2016-09-27 United Microelectronics Corp. Mask set and method for fabricating semiconductor device by using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653679A2 (de) * 1989-04-28 1995-05-17 Fujitsu Limited Maske, Verfahren zur Herstellung der Maske und Verfahren zur Musterherstellung mit einer Maske
US5923566A (en) * 1997-03-25 1999-07-13 International Business Machines Corporation Phase shifted design verification routine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229255A (en) * 1991-03-22 1993-07-20 At&T Bell Laboratories Sub-micron device fabrication with a phase shift mask having multiple values of phase delay
US5472814A (en) 1994-11-17 1995-12-05 International Business Machines Corporation Orthogonally separated phase shifted and unphase shifted mask patterns for image improvement
US5523186A (en) * 1994-12-16 1996-06-04 International Business Machines Corporation Split and cover technique for phase shifting photolithography
US5595843A (en) 1995-03-30 1997-01-21 Intel Corporation Layout methodology, mask set, and patterning method for phase-shifting lithography
US5942355A (en) 1996-09-04 1999-08-24 Micron Technology, Inc. Method of fabricating a phase-shifting semiconductor photomask
US6228539B1 (en) * 1996-09-18 2001-05-08 Numerical Technologies, Inc. Phase shifting circuit manufacture method and apparatus
US5840447A (en) 1997-08-29 1998-11-24 International Business Machines Corporation Multi-phase photo mask using sub-wavelength structures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653679A2 (de) * 1989-04-28 1995-05-17 Fujitsu Limited Maske, Verfahren zur Herstellung der Maske und Verfahren zur Musterherstellung mit einer Maske
US5923566A (en) * 1997-03-25 1999-07-13 International Business Machines Corporation Phase shifted design verification routine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HISASHI WATANABE ET AL: "SUB-QUARTER-MICRON GATE PATTERN FABRICATION USING A TRANSPARENT PHASE SHIFTING MASK" JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART B,US,AMERICAN INSTITUTE OF PHYSICS. NEW YORK, Bd. 9, Nr. 6, 1. November 1991 (1991-11-01), Seiten 3172-3175, XP000268536 ISSN: 0734-211X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517969A (ja) * 2001-06-08 2005-06-16 ニューメリカル テクノロジーズ インコーポレイテッド フォトリソグラフィ・マスクのための位相競合解決法

Also Published As

Publication number Publication date
DE19957542A1 (de) 2001-07-05
EP1244937A2 (de) 2002-10-02
JP3699933B2 (ja) 2005-09-28
KR20030009328A (ko) 2003-01-29
KR100490913B1 (ko) 2005-05-19
WO2001040868A3 (de) 2001-12-06
JP2003521726A (ja) 2003-07-15
US6660437B2 (en) 2003-12-09
DE19957542C2 (de) 2002-01-10
US20030008218A1 (en) 2003-01-09

Similar Documents

Publication Publication Date Title
DE602004010249T2 (de) Methode zur Erzeugung eines Musters mittels einer Fotomaske, und Methode zur Erzeugung der entsprechenden Maskendaten
DE19957542C2 (de) Alternierende Phasenmaske
DE19510564C2 (de) Phasenverschiebungsmaske vom Dämpfungstyp und Herstellungsverfahren derselben
DE4113968C2 (de) Maskenstruktur und Verfahren zur Herstellung von Halbleiterbauelementen unter Verwendung der Maskenstruktur
DE4413821B4 (de) Phasenschiebemaske und Verfahren zu deren Herstellung
DE19802369B4 (de) Phasenschiebe-Photomasken-Herstellungsverfahren
DE10225423A1 (de) Fotomaske zur Fokusüberwachung, Verfahren zur Fokusüberwachung, Einheit zur Fokusüberwachung und Herstellungsverfahren für eine derartige Einheit
DE10164306B4 (de) Doppelbelichtung mit abbildenden Hilfstrukturen und verschiedenen Belichtungstools
DE10310136B4 (de) Maskensatz zur Projektion von jeweils auf den Masken des Satzes angeordneten und aufeinander abgestimmten Strukturmustern auf einen Halbleiterwafer
DE19648075C2 (de) Phasenschiebemaske und Herstellverfahren für diese
EP1117001B1 (de) Lithographieverfahren und Maske zu dessen Durchführung
DE19740948B4 (de) Phasenschiebemaske und Verfahren zum Herstellen derselben
DE19727261B4 (de) Verfahren zum Herstellen einer Phasenschiebemaske
DE2835363A1 (de) Verfahren zum uebertragen von strukturen fuer halbleiterschaltungen
DE10310137B4 (de) Satz von wenigstens zwei Masken zur Projektion von jeweils auf den Masken gebildeten und aufeinander abgestimmten Strukturmustern und Verfahren zur Herstellung der Masken
DE19725830B4 (de) Photomaske mit Halbton-Phasenverschiebungsmaterial und einem Chrommuster auf einem transparenten Substrat
DE10156143B4 (de) Verfahren zur Herstellung von photolithographischen Masken
DE4440821C2 (de) Photomaske zur Vermeidung von unregelmäßigen Lichtreflexionen
DE60032378T2 (de) Korrekturmaske mit licht absorbierenden phasenverschiebungszonen
DE10305617B4 (de) Maske und Verfahren zum Strukturieren eines Halbleiterwafers
DE10203358A1 (de) Photolithographische Maske
EP1122603A1 (de) Phasenmaske
DE102005009805A1 (de) Lithographiemaske und Verfahren zum Erzeugen einer Lithographiemaske
EP1421445B1 (de) Photolithographische maske
DE4215489C2 (de) Phasenverschiebungsmaske

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000989795

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027006908

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 542273

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10158733

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000989795

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027006908

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020027006908

Country of ref document: KR