WO2001035504A2 - Ensemble pour laser a grande puissance - Google Patents

Ensemble pour laser a grande puissance Download PDF

Info

Publication number
WO2001035504A2
WO2001035504A2 PCT/DE2000/003979 DE0003979W WO0135504A2 WO 2001035504 A2 WO2001035504 A2 WO 2001035504A2 DE 0003979 W DE0003979 W DE 0003979W WO 0135504 A2 WO0135504 A2 WO 0135504A2
Authority
WO
WIPO (PCT)
Prior art keywords
gain element
laser radiation
array
gain
radiation
Prior art date
Application number
PCT/DE2000/003979
Other languages
German (de)
English (en)
Other versions
WO2001035504A3 (fr
Inventor
Christian Hanke
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2001035504A2 publication Critical patent/WO2001035504A2/fr
Publication of WO2001035504A3 publication Critical patent/WO2001035504A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18383Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with periodic active regions at nodes or maxima of light intensity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3095Tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5027Concatenated amplifiers, i.e. amplifiers in series or cascaded

Definitions

  • Semiconductor high-power lasers with diffraction-limited beam quality are z. B. in the material system of InGaAlAs / GaAs limited to values below 500 mW. Laser arrays with a large number of edge-emitting individual lasers produce powers of over 40 W in the incoherent overlay
  • the active layer of a laser diode provided for radiation generation can be used with a suitable choice of the mixed crystal composition of the semiconductor material to amplify irradiated laser radiation of the appropriate wavelength by means of current injection.
  • the object of the present invention is to have a high laser radiation power of at least 1 W. to produce diffraction limited or high beam quality with semiconductor lasers.
  • the basic idea that led to the laser arrangement according to the invention is the optical series connection of electrically pumped semiconductor gain elements with simultaneous thermal and electrical parallel connection of the elements.
  • they are integrated monolithically and are operated as a type of hybrid laser in a resonator external to the actual laser radiation source or as an optical power amplifier in a so-called master oscillator power amplifier (MOPA) arrangement known per se.
  • MOPA master oscillator power amplifier
  • the interaction of optical field, charge carrier density and refractive index is reduced because of the small volume of the active zone compared to the total resonator volume compared to conventional broad-strip lasers and therefore leads to a lower number of modes which have an increased stability.
  • Figure 1 shows an example of a gain element present in the laser arrangement in cross section.
  • Figure 2 shows an array of gain elements in cross section.
  • Figure 3 shows the array of Figure 2 in supervision.
  • FIGS. 4 and 5 show laser arrangements according to the invention.
  • FIGS. 6 and 7 show diagrams for calculating the geometry of the laser arrangement. LJ ⁇ t to H ⁇ >
  • the upper contact 12 is opaque to the laser radiation, e.g. B. a metal contact
  • an opening in the contact is provided in the area provided as the input and output of the laser radiation 14.
  • the entry and exit surface on the top of the gain element can be provided with an anti-reflective coating 13 for low-reflection coupling and decoupling of the laser radiation passing through.
  • the number of active layers of the gain element is not fixed. It is generally sufficient if there is an active layer. A more effective reinforcement results in particular with the stacked lasers, which have several (preferably up to ten) active layers one above the other.
  • the active layers can be designed in a manner known per se as double heterostructures or potential well structures (also multiple potential wells [MQW structures, multiple quantum well]) and are electrically pumped via the pn junctions. According to the exemplary embodiment shown, each active layer is arranged between oppositely doped layers, so that a sequence of alternately n-doped and p-doped intermediate layers is present.
  • tunnel junctions are provided in the reverse pn junctions, which ensure low-resistance conversion of the hole and electron currents.
  • the doping concentration of the tunnel junctions is typically in the range of more than 10 19 cm "
  • the desired doping profiles can be achieved in GaAs using MOVPE (etal organic vapor phase epitaxy) using the dopants carbon (p-doping) and tellurium (n-doping).
  • the thickness of the tunnel junctions is preferably in the range from 20 nm to 200 nm.
  • the tunnel junctions can be structured by masking techniques known per se during production in order to laterally limit the current permeability.
  • a lateral current limitation can instead or in addition be effected with orifices 6, 11, two of which are shown as an example in FIG. 1. Such screens are z. B.
  • the optical aperture can have a larger diameter than the electrically pumped active zone in the active layer. This allows the number of modes to be increased and the beam quality of the laser arrangement to be improved.
  • the layer structure is composed of many individual layers with different refractive indices (layers with different energy band gaps between valence and conduction bands), undesirable partial reflections occur at the interfaces of the layers.
  • FIG. 2 shows a top view of this array, in which the ring-shaped upper contacts 12 and the antireflection coatings 13 can be seen inside the areas enclosed by the contacts 12.
  • the top In principle, contacts can have any shape, including angular ones. This is indicated in FIG. 3 by somewhat differently shaped contours of the four contacts 12 shown as an example.
  • the contacts can be shaped in such a way that they also function as optical diaphragms for mode selection. For this reason too, it can be advantageous if not all contacts are shaped in the same way.
  • the gain elements can also be controlled individually via separate power connections.
  • the array's gain elements are arranged linearly one after the other; however, this arrangement need not lie on a straight line.
  • the gate elements can also e.g. B. be arranged in a ring (ring resonator configuration).
  • the gain elements as a whole can also have different dimensions within an array. In currently preferred embodiments, the diameters of the individual gain elements are between 5 ⁇ m and several hundred micrometers.
  • FIG. 4 shows a laser arrangement with an array of semiconductor gain elements in cross section.
  • the actual radiation source usually a suitable semiconductor laser, is not shown.
  • the radiation 14 emanating from the laser is preferably emitted by an as
  • Partially permeable device acting as resonator end mirror 19 e.g. the laser's resonator end mirror intended for the light exit
  • a beam shaping element 20 e.g. a lens or a holographic element, collimating or parallelizing.
  • An external reflector, in this example simply one on one Mirror support 22 applied mirror layer 23 is arranged at such a distance from the areas of the gain elements provided as the input and output for laser radiation that the laser radiation emerging from a gain element is reflected into the following gain element.
  • the radiation passes, for example through an aperture 24 that filters out a single mode, onto another partially transparent device that acts as a resonator end mirror 25, so that the arrangement is provided with a resonance property for the laser radiation.
  • the resonator of the semiconductor laser used can also be included in the arrangement in such a way that, together with the partially reflecting resonator end mirrors 19, 25, it defines the desired resonance condition.
  • the arrangement is mounted on a carrier 21, which is preferably as
  • Heat sink metal, diamond, micro cooler acts.
  • the array of gain elements can be provided with power connections 18 as shown.
  • a laser arrangement according to the invention can be provided for subsequent amplification of the laser radiation, preferably a spatially single-mode laser (single spatial mode laser, solid-state laser or semiconductor laser) (master oscillator power amplifier configuration, MOPA). It is with this Execution in the area of the exit of the radiation from the arrangement no device provided as a resonator end mirror attached, as shown in Figure 5 as an example.
  • the arrangement of FIG. 4 provided with the external resonator can be operated as a pure amplifier arrangement without a resonator end mirror.
  • a beam shaping element 20 is preferably also present here.
  • FIGS. 6 and 7 show diagrams for the geometrical calculation of the beam paths running through the gain elements. It means d1 the distance between the plane of the entry and exit surfaces 26 of the radiation on the top of a gain element and the rear reflector 2, d2 the distance between the plane of the entry and exit surfaces 26 of the radiation on the top of a gain element.
  • Element and the external reflector 23 or the distance between the plane of the entrance and exit surfaces 26 of the radiation on the top of a gain element of the one array 15 and the plane of the entrance and exit surfaces 26 v of the radiation on the top of a gain element of the other array 15 ⁇ , a the distance between two gain elements, n the average refractive index in the gain element and ⁇ the angle of incidence of the radiation 14.
  • a particular advantage of the arrangement according to the invention is the electrical and thermal parallel connection of the gain elements with simultaneous series connection of the optical amplification brought about by the gain elements.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

L'invention concerne un ensemble (15), dans lequel des éléments de gain à semiconducteurs, pompés électriquement, sont montés en série optiquement et montés en parallèle thermiquement et électriquement. Cet ensemble sert de résonateur laser hybride ou d'amplificateur laser. Le rayonnement laser (14) est réfléchi au moyen d'un réflecteur externe (23) et de réflecteurs internes postérieurs, d'un élément de gain à l'autre, et amplifié dans la zone active des éléments de gain, appropriée pour une amplification du rayon et pompée électriquement par l'intermédiaire de connexions électriques (18). Il est ainsi possible d'obtenir une qualité de rayon et une puissance de sortie élevées.
PCT/DE2000/003979 1999-11-10 2000-11-07 Ensemble pour laser a grande puissance WO2001035504A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19954093A DE19954093A1 (de) 1999-11-10 1999-11-10 Anordnung für Hochleistungslaser
DE19954093.4 1999-11-10

Publications (2)

Publication Number Publication Date
WO2001035504A2 true WO2001035504A2 (fr) 2001-05-17
WO2001035504A3 WO2001035504A3 (fr) 2001-12-06

Family

ID=7928563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003979 WO2001035504A2 (fr) 1999-11-10 2000-11-07 Ensemble pour laser a grande puissance

Country Status (2)

Country Link
DE (1) DE19954093A1 (fr)
WO (1) WO2001035504A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100341A2 (fr) * 2005-04-29 2007-09-07 Massachusetts Institute Of Technology Systeme laser a semi-conducteur a plaque a incidence rasante et procede correspondant
CN105637634A (zh) * 2013-10-16 2016-06-01 皇家飞利浦有限公司 紧凑激光器件
EP2245711A4 (fr) * 2008-02-14 2018-01-03 Michael Jansen Lasers à cavité étendue en zigzag à émission par surface semi-conductrice et pompage électrique et led superluminescentes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1405379A1 (fr) * 2001-07-12 2004-04-07 Textron Systems Corporation Laser en zigzag a semi-conducteur et amplificateur optique
DE102004040080B4 (de) * 2004-07-29 2010-05-12 Osram Opto Semiconductors Gmbh Optisch gepumpte Halbleiter-Laservorrichtung
US7433376B1 (en) 2006-08-07 2008-10-07 Textron Systems Corporation Zig-zag laser with improved liquid cooling
DE102006061532A1 (de) * 2006-09-28 2008-04-03 Osram Opto Semiconductors Gmbh Kantenemittierender Halbleiterlaser mit mehreren monolithisch integrierten Laserdioden
JP6862658B2 (ja) * 2016-02-15 2021-04-21 株式会社リコー 光増幅器、光増幅器の駆動方法及び光増幅方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342953A2 (fr) * 1988-05-17 1989-11-23 Kokusai Denshin Denwa Kabushiki Kaisha Amplificateur optique à semi-conducteur
US5696786A (en) * 1993-04-15 1997-12-09 The United States Of America As Represented By The Secretary Of The Air Force Solid-state laser system
US5856990A (en) * 1993-09-10 1999-01-05 Telefonaktiebolaget Lm Ericsson Optical amplifying device
WO1999039405A2 (fr) * 1998-01-30 1999-08-05 Osram Opto Semiconductors Gmbh & Co. Ohg Puce de laser a semi-conducteur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555595A (en) * 1978-10-19 1980-04-23 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor light amplifier
US5131002A (en) * 1991-02-12 1992-07-14 Massachusetts Institute Of Technology External cavity semiconductor laser system
JPH0690063A (ja) * 1992-07-20 1994-03-29 Toyota Motor Corp 半導体レーザー
SE501722C2 (sv) * 1993-09-10 1995-05-02 Ellemtel Utvecklings Ab Ytemitterande laseranordning med vertikal kavitet
JPH08162717A (ja) * 1994-12-07 1996-06-21 Mitsubishi Heavy Ind Ltd 面発光半導体レーザ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342953A2 (fr) * 1988-05-17 1989-11-23 Kokusai Denshin Denwa Kabushiki Kaisha Amplificateur optique à semi-conducteur
US5696786A (en) * 1993-04-15 1997-12-09 The United States Of America As Represented By The Secretary Of The Air Force Solid-state laser system
US5856990A (en) * 1993-09-10 1999-01-05 Telefonaktiebolaget Lm Ericsson Optical amplifying device
WO1999039405A2 (fr) * 1998-01-30 1999-08-05 Osram Opto Semiconductors Gmbh & Co. Ohg Puce de laser a semi-conducteur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 004, no. 087 (E-016), 21. Juni 1980 (1980-06-21) & JP 55 055595 A (KOKUSAI DENSHIN DENWA CO LTD), 23. April 1980 (1980-04-23) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100341A2 (fr) * 2005-04-29 2007-09-07 Massachusetts Institute Of Technology Systeme laser a semi-conducteur a plaque a incidence rasante et procede correspondant
WO2007100341A3 (fr) * 2005-04-29 2007-11-15 Massachusetts Inst Technology Systeme laser a semi-conducteur a plaque a incidence rasante et procede correspondant
EP2245711A4 (fr) * 2008-02-14 2018-01-03 Michael Jansen Lasers à cavité étendue en zigzag à émission par surface semi-conductrice et pompage électrique et led superluminescentes
CN105637634A (zh) * 2013-10-16 2016-06-01 皇家飞利浦有限公司 紧凑激光器件

Also Published As

Publication number Publication date
DE19954093A1 (de) 2001-05-23
WO2001035504A3 (fr) 2001-12-06

Similar Documents

Publication Publication Date Title
DE69329713T2 (de) Mit beugungsgitter integrierter mehrfachstreifen vielfachlaser-resonator
DE69838761T2 (de) Optischer Datenübertragungspfad enthaltend eine oberflächenemittierende Laserdiode mit Vertikalresonator und eine Photodiode mit Resonanzkavität
DE69309410T2 (de) Optische Vielfachschalteranordnung unter Verwendung halbleitender Wellenleiterverstärker
DE69400042T2 (de) Oberflächenemittierender Laser und dessen Herstellungsverfahren
DE69201908T2 (de) Laserdiode mit zu den Epitaxieschichten im wesentlichen senkrecht verlaufendem Ausgangsstrahl.
DE102009054564A1 (de) Laserdiodenanordnung und Verfahren zum Herstellen einer Laserdiodenanordnung
DE102016014938B4 (de) Lichtemittervorrichtung, basierend auf einem photonischen Kristall mit säulen- oder wandförmigen Halbleiterelementen, und Verfahren zu deren Betrieb und Herstellung
DE102017130582A1 (de) Halbleiterlaser, Laser-Anordnung und Verfahren zur Herstellung eines Halbleiterlasers
DE60101195T2 (de) Oberflächenemittierender Laser mit senkrechtem Resonator und integrierter Mikrolinse
DE3884366T2 (de) Vorrichtung zur Erzeugung der zweiten Harmonischen, wobei sich die aktive Schicht und die Schicht zur Erzeugung der zweiten Harmonischen auf demselben Substrat befinden.
EP1683245B1 (fr) Vcsel monolithique a pompage optique comprenant un emetteur a emission par la tranche place lateralement
DE102016213749A1 (de) Quantenkaskadenlaser
EP0849812A2 (fr) DEL avec découplage de la lumière omni directionnel
DE112019006198T5 (de) Laterales Maßschneidern einer Strominjektion für Laserdioden
DE69708911T2 (de) Verbesserungen an und im zusammenhang mit lasern
WO2007098730A2 (fr) Dispositif laser a semi-conducteurs
DE68908604T2 (de) Optischer Halbleiterverstärker.
EP1366548A2 (fr) Laser semi-conducteur a emission par la surface
WO2001035504A2 (fr) Ensemble pour laser a grande puissance
DE2556850C2 (de) Heteroübergangs-Diodenlaser
WO2024083995A1 (fr) Ensemble oscillateur et procédé
DE2632222A1 (de) Halbleiter-lichtquelle
DE60128546T2 (de) Halbleiterdiodenlaser mit verbesserter Strahldivergenz
DE102022111977A1 (de) Breitstreifen-Diodenlaser mit integriertem p-n-Tunnelübergang
DE2205728B2 (de) Aus einem mehrschichtigen Halbleiterkörper bestehendes optisches Bauelement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

122 Ep: pct application non-entry in european phase