WO2001035476A1 - Elektrochemischer brennstoffzellenstapel mit polymerelektrolyten - Google Patents

Elektrochemischer brennstoffzellenstapel mit polymerelektrolyten Download PDF

Info

Publication number
WO2001035476A1
WO2001035476A1 PCT/DE2000/003782 DE0003782W WO0135476A1 WO 2001035476 A1 WO2001035476 A1 WO 2001035476A1 DE 0003782 W DE0003782 W DE 0003782W WO 0135476 A1 WO0135476 A1 WO 0135476A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
cooling medium
area
gas
fuel cell
Prior art date
Application number
PCT/DE2000/003782
Other languages
English (en)
French (fr)
Other versions
WO2001035476A8 (de
Inventor
Ottmar Schmid
Cosmas Heller
Udo Martin
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to JP2001537115A priority Critical patent/JP2003514354A/ja
Priority to EP00983062A priority patent/EP1230701A1/de
Publication of WO2001035476A1 publication Critical patent/WO2001035476A1/de
Publication of WO2001035476A8 publication Critical patent/WO2001035476A8/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an electrochemical fuel cell stack according to the preamble of patent claim 1.
  • Prior art fuel cell stacks include at least one, but usually a plurality of individual fuel cells that are stacked next to or on top of one another.
  • a single cell consists of the so-called membrane electrode unit, abbreviated as MEA, of anode, cathode and a proton-conducting electrolyte membrane arranged between them.
  • MEA membrane electrode unit
  • Another gas distribution structure with channels for guiding the cathode gas is provided on the cathode side. In particular, it contains oxygen and water, some of which is formed in the electrochemical reaction at the cathode.
  • the gas distributor structures are usually in the form of a channel structure on the surface of a e.g. metallic, plate realized.
  • the anode-side gas distributor structure of an individual cell and the cathode-side gas distributor structure of the adjacent cell are usually carried out on the two flat sides of the same plate.
  • cooling chambers are provided within the stack, through which a liquid or gaseous cooling medium flows. These can be arranged anywhere in the stack and within a single cell. For example, a cooling chamber can be assigned to each individual cell. However, it is also possible for a plurality of individual cells to be assigned to one cooling chamber.
  • FIG. 1 shows a fuel cell stack with convective liquid water cooling in accordance with the prior art.
  • a liquid cooling medium in particular water, through which inside the fuel cell stack.
  • Stacked arranged cooling chambers passed. After leaving the stack, it will heated cooling water to dissipate the heat taken into a cooler.
  • These known fuel cell stacks are preferably operated with a small temperature difference in the cooling water between inlet and outlet of approximately 10 ° C. in order to keep the cooler as compact as possible for removing the fuel cell waste heat.
  • this fuel cell stack is also preferably operated at temperatures greater than 60 ° C. in order to achieve sensible efficiencies, the known versions of the cathode water vapor can be condensed only to a very small extent within the fuel cell stack.
  • An additional heat exchanger is therefore arranged outside the fuel cell stack, with which the water vapor present in the cathode gas is condensed. This serves e.g. the purpose of maintaining the water balance across the entire fuel cell system.
  • the object of the present invention is to provide a fuel cell stack with which a substantial part of the water vapor present in the cathode gas can already be condensed within the stack, so that condensation in the downstream condenser can be substantially reduced or even becomes completely unnecessary.
  • the area in which the cooling medium enters the fuel cell stack and the area in which the cathode gas emerges from the fuel cell stack overlap at least partially, so that in this area of overlap, the water vapor in the cathode exhaust gas can be condensed out. Condensation of the water vapor within the stack is thus achieved, so that a separate condenser for condensation is dispensed with can be, or this can be dimensioned much smaller than in the known systems.
  • the essential material conversion of the electrochemical fuel cell reaction basically occurs in the entry area of the cathode gas.
  • low dew points typically below 40 ° C.
  • the cooling medium inlet area and the cathode gas outlet area By covering the cooling medium inlet area and the cathode gas outlet area according to the invention, low dew points (typically below 40 ° C.) are reached in the area of the cover, which lead to the desired strong condensation of the water vapor in the cathode gas.
  • only a small amount of heat is absorbed by the cooling medium in the entry area of the cathode gas, ie where the essential conversion of the fuel cell reaction takes place.
  • the fuel cell according to the invention is advantageously operated with a gaseous cooling medium which, compared to the cooling media normally used, such as e.g. Water or Gykol has a much lower heat capacity. If higher temperature differences are desired, a defined setting of the temperature difference homogeneously across each cell of the fuel cell stack is not possible with cooling media that have a high heat capacity without a disproportionately high control effort, since only a very small and therefore poorly controllable coolant flow is required. If, on the other hand, you choose a coolant with a lower heat capacity, a higher coolant flow, which is much easier to regulate, is necessary to maintain the same temperature difference.
  • a gaseous cooling medium which, compared to the cooling media normally used, such as e.g. Water or Gykol has a much lower heat capacity.
  • This Adaptation can be carried out by locally restricted measures in the area of the overlap of the coolant inlet area and the cathode gas outlet area or complementary thereto in the remaining area of the cell. These measures can be, for example, an adaptation of the geometry with regard to the channels. In particular, the channel cross section, number of channels per area or the arrangement of the channels can be spatially varied. Further possible geometrical adjustments concern the influencing of the contact surface by ribs, webs, grooves or needles or the like in the flow channels.
  • a material with good thermal conductivity can be present in the area of condensation in the inlet area of the cooling medium and / or a material with poor thermal conductivity in the remaining area of the cell.
  • the materials can be applied both in layer form to the surface of the channels, and can also be introduced into the carrier material itself.
  • FIG. 5 shows the voltage-current density characteristics of a fuel cell stack according to the invention in comparison to a known fuel cell stack
  • FIG. 6 shows an embodiment of the fuel cell stack according to the invention with locally adapted channel geometry in the area of the condensation; 7 shows an embodiment of the fuel cell stack according to the invention with locally adapted use of heat-conducting / heat-insulating materials. 8 shows an embodiment of the fuel cell stack according to the invention with separate guidance of cathode gas and cooling medium;
  • FIG 9 shows an embodiment of the fuel cell stack according to the invention, in which a part of the cooling medium flows through the cathode-side gas distributor structure as cathode gas after flowing through the cooling medium distributor structure.
  • Fig. 2 shows a first embodiment of the fuel cell stack according to the invention in a schematic representation.
  • a plate is shown, e.g. Made of metal, on the surface of which a gas distributor structure for the cathode gas is incorporated.
  • the gas distribution structure is only shown schematically here. It consists of one or more serpentine or meandering channels, as are known per se to the person skilled in the art.
  • the cathode gas enters the cell through an opening, passes through the flow channel or channels and exits the cell again at the diagonally opposite opening.
  • inlet area and outlet area of a fluid in the sense of the present invention are to be understood to mean not only the immediate area of the perforations, but also their closer surroundings, measured along the fluid flow. In this area, the metabolism due to the electrochemical fuel cell reaction is very low or practically no longer available. In the example shown, e.g. the section of the flow channel from the last change of direction to the opening with the cathode gas outlet area.
  • the cooling medium in this embodiment essentially enters the cell over the entire edge length of the plate and flows in cross flow to the cathode gas (the cooling medium flows on a distributor structure on the back of the plate shown).
  • the cooling medium inlet area and cathode gas outlet area overlap to a large extent. This area of coverage where the condensation takes place is outlined.
  • the ambient air is used as the cooling medium.
  • Typical temperatures for cathode gas and cooling medium at the inlet and outlet are also shown. It can be seen that the temperature differences between inputs and leakage in both fluids - compared to the known fuel cells - are relatively high. The temperature differences are in the range from 30 to 45 ° C. Dew points below 40 ° C are reached at the cathode gas outlet. This saves a separate condenser for condensing the water in the cathode gas.
  • FIG. 3 Another embodiment according to the invention is shown in FIG. 3. It differs from the embodiment shown in FIG. 2 essentially only in another gas distributor structure. This is designed as a parallel gas distributor structure.
  • the gaseous cooling medium e.g. ambient air
  • the cooling medium inlet area and cathode gas outlet area overlap in essential parts. This area of coverage where the condensation takes place is outlined.
  • the air cooling can advantageously be carried out via a radiator.
  • 4 shows a corresponding embodiment.
  • the radiator is arranged directly in front of the fuel cell stack and blows the air into the cooling channels or cooling chambers of the fuel cell stack.
  • the cooling air to be supplied to the stack can also be conveyed into the stack from the radiator via a line.
  • FIG. 5 shows the voltage-current density characteristics of a fuel cell stack according to the invention with air cooling in comparison to a known fuel cell stack with water cooling.
  • the values shown were obtained by measurements on a cell stack from ten fuel cells ("10-cell").
  • Graphite was used as the base material for the bipolar plates. It can be seen that the two characteristics are almost identical. The in-stack condensation of the water vapor obtained according to the invention can thus be achieved without loss of efficiency.
  • 6 shows a further embodiment according to the invention. A plate is shown, on the side facing away from the viewer, the gas distributor structure shown in FIG. 2 or 3 for guiding the cathode gas is present. The distributor structure for the cooling medium is shown on the side facing the viewer.
  • the cathode gas enters the cell through an opening in the plate, passes through the flow channel (s) (not visible here) and exits the cell at the diagonally opposite opening.
  • the cooling medium enters the cooling channels at the lower edge of the plate and leaves them at the opposite edge.
  • the area of coverage of the cooling medium inlet area and cathode gas outlet area, in which the condensation essentially takes place, is bordered. In this area of coverage, additional ribs are arranged within the channels in order to enlarge the contact area. This increases the heat exchange between the coolant and cathode gas in this area and thus has a favorable influence on the condensation.
  • FIG. 7 shows an embodiment of the invention with which the local heat exchange over the cell surface is varied by additional measures.
  • the structure of the plate corresponds to that shown in FIG. 6 with the exception of the ribs not present here in the area of the condensation, so that reference is made to avoid repetition.
  • a heat-insulating layer is present on the channel surface within the area of coverage of the cooling medium inlet area and cathode gas outlet area.
  • the heat exchange can be reduced in this area by appropriate selection of layer thickness and layer material in order to avoid possibly undesirable high temperature gradients in the condensation area.
  • This layer can e.g. be a self-supporting layer or film that is glued to the surface. However, it is also possible to apply a thin layer of lacquer or to introduce the additional material directly into the carrier layer.
  • heat-insulating materials can be used in the device according to FIG. 6 or 7 in the area outside the overlap of the cooling medium inlet area and the cathode gas outlet area.
  • MEA denotes the membrane-electrode assembly, which on the one hand is adjacent to the anode-side gas distributor structure AS and on the other hand from the cathode-side gas distributor structure KS.
  • a cooling medium distribution structure KK also referred to as a cooling chamber.
  • the cooling medium eg air, flows through the cooling chambers KK and is fed in and out above and below the stack.
  • the cathode gas flows through the individual cathode-side gas distributor structures KS.
  • the cooling channels in the cooling medium distribution structure KK advantageously as short as possible and therefore executed in parallel (without meanders or serpentines).
  • a cooling air flow directed vertically upward is advantageously present in the stack, so that the cooling air flow is supported by the thermals that occur.
  • FIG. 9 shows a further embodiment of the fuel cell stack according to the invention, in which part of the cooling medium is used as cathode gas after flowing through the cooling medium distributor structure.
  • the sequence of the components membrane-electrode unit MEA, cathode-side gas distributor structure KS, anode-soapy gas distributor structure AS, cooling medium distributor structure KK within the stack corresponds to FIG. 8.
  • the pre-compressed cooling air flow flows - advantageously from below - through parallel cooling channels of the cooling medium distributor structure and, after exiting the cooling medium distributor structure, reaches a chamber above the fuel cell stack.
  • Part of the cooling air is passed on from this chamber to the gas distributor structure on the cathode side, supplies the cathode with oxygen and finally exits the FC stack through one or more openings, which are advantageously arranged on the side.
  • the excess cooling air flow leaves the upper chamber, for example, via a flow or pressure-controlled valve and goes directly into the environment.
  • Another gas can also be used as the cooling medium instead of air, e.g. by gases that occur within the fuel cell system at low temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft einen elektrochemischen Brennstoffzellenstapel mit mindestens einer Membran-Elektroden-Einheit aus einer Anode, einer Kathode und einer dazwischen angeordneten Elektrolytmembran; mindestens einer anodenseitigen Gasverteilerstruktur mit einem Anodengaseintrittsbereich, einem Anodengasaustrittsbereich sowie Kanälen zur Führung des Anodengases vom Anodengaseintrittsbereich zum Anodengasaustrittsbereich, wobei das Anodengas Wasserstoff enthält; mindestens einer kathodenseitigen Gasverteilerstruktur mit einem Kathodengaseintrittsbereich, einem Kathodengasaustrittsbereich sowie Kanälen zur Führung des Kathodengases vom Kathodengaseintrittsbereich zum Kathodengasaustrittsbereich, wobei das Kathodengas Sauerstoff und Wasserdampf enthält, einer Kühlmediumverteilerstruktur mit einem Kühlmediumseintrittsbereich, einem Kühlmediumsaustrittsbereich sowie Kanälen zur Führung des Kühlmediums vom Kühlmediumseintrittsbereich zum Kühlmediumsaustrittsbereich. Erfindungsgemäss überdecken sich Kühlmediumseintrittsbereich und Kathodengasaustrittsbereich zumindest teilweise, so dass in diesem Bereich der Überdeckung eine Auskondensation des Wasserdampfs im Kathodenabgas erfolgen kann.

Description

Elektrochemischer Brennstoffzellenstapel
Die Erfindung betrifft einen elektrochemischen Brennstoffzellenstapel nach dem Oberbegriff des Patentanspruchs 1.
Brennstoffzellenstapel gemäß dem Stand der Technik umfassen mindestens eine, üblicherweise jedoch eine Mehrzahl von einzelnen Brennstoffzellen, die neben oder übereinander gestapelt sind. Eine Einzelzelle besteht aus der sogenannten Memb- ran-Elektoden-Einheit, abgekürzt als MEA bezeichnet, aus Anode, Kathode und einer dazwischen angeordneten, protonenleitenden Elektrolytmembran. Anodenseitig ist eine Gasverteilerstruktur mit Kanälen zur Führung des wasserstoffhaltigen Anodengases vorhanden. Kathodenseitig ist eine weitere Gasverteilerstruktur mit Kanälen zur Führung des Kathodengases vorhanden. Es enthält insbesondere Sauerstoff sowie Wasser, das zum Teil bei der elektrochemischen Reaktion an der Kathode entsteht. Die Gasverteilerstrukturen sind üblicherweise als Kanalstruktur auf der Oberfläche einer z.B. metallischen, Platte realisiert. Die anodenseitige Gasverteilerstruktur einer Einzelzelle sowie die kathodenseitige Gasverteilerstruktur der benachbarten Zelle werden üblicherweise auf den beiden Flachseiten derselben Platte ausgeführt. Man spricht dann von einer bipolaren Platte. Zur Temperierung der Brennstoffzelle sind innerhalb des Stapels Kühlkammern vorhanden, die von einem flüssigen oder gasförmigen Kühlmedium durchströmt werden. Diese können an beliebigen Stellen innerhalb des Stapels und innerhalb einer Einzelzelle angeordnet sein. Zum Beispiel kann jeder Einzelzelle eine Kühlkammer zugeordnet sein. Es ist aber auch möglich, dass mehrere Einzelzellen einer Kühlkammer zugeordnet sind.
In Fig. 1 ist ein Brennstoffzellenstapel mit konvektiver Flüssigwasserkühlung entspre- chend dem Stand der Technik dargestellt. Zur Kühlung des Brennstoffzellenstapels wird ein flüssiges Kühlmedium, insbesondere Wasser, durch die innerhalb des
Stapels angeordnete Kühlkammern geleitet. Nach Verlassen des Stapels wird das erwärmte Kühlwasser zur Abfuhr der aufgenommenen Wärme in einen Kühler geführt. Diese bekannten Brennstoffzellenstapel werden bevorzugt mit einer geringen Temperaturdifferenz des Kühlwassers zwischen Eintritt und Austritt von ca. 10° C betrieben, um den Kühler zur Abfuhr der Brennstoffzellen-Abwärme möglichst kompakt zu halten.
Da diese Brennstoffzellenstapel zur Erzielung sinnvoller Wirkungsgrade darüber hinaus vorzugsweise bei Temperaturen größer als 60° C betrieben wird, kann mit den bekannten Ausführungen der Kathodenwasserdampf nur in sehr geringem Umfang innerhalb des Brennstoffzellenstapels kondensiert werden. Deshalb ist außerhalb des Brennstoffzellenstapels ein zusätzlicher Wärmetauscher angeordnet, mit dem der im Kathodengas vorhandene Wasserdampf kondensiert wird. Dies dient z.B. dem Zweck, die Wasserbilanz über das gesamte Brennstoffzellensystem aufrechtzuerhalten.
Aufgabe der vorliegenden Erfindung ist es, einen Brennstoffzellenstapel zu schaffen, mit dem ein wesentlicher Teil des im Kathodengas vorhandenen Wasserdampfs bereits innerhalb des Stapels kondensiert werden kann, so dass eine Kondensation im nachgeschalteten Kondensator wesentlich vermindert werden kann oder sogar ganz überflüssig wird.
Diese Aufgabe wird mit dem Gegenstand des Patentanspruchs 1 gelöst. Vorteilhafte Ausführungen der Erfindung sowie ein Verfahren zum Betrieb des erfindungsgemäßen Brennstoffzellenstapels sind Gegenstand weiterer Ansprüche.
Erfindungsgemäß überdeckt sich der Bereich, in dem das Kühlmedium in den Brennstoffzellenstapel eintritt und der Bereich, in dem das Kathodengas aus dem Brennstoffzellenstapel austritt, zumindest teilweise, so dass in diesem Bereich der Überdeckung eine Auskondensation des Wasserdampfs im Kathodenabgas erfolgen kann. Somit wird eine Auskondensation des Wasserdampfs innerhalb des Stapels erreicht, so dass auf einen separaten Kondensator zur Kondensation verzichtet werden kann, oder dieser wesentlich kleiner als bei den bekannten Systemen dimensioniert werden kann.
Wesentlich für das Verständnis der Erfindung ist die Tatsache, dass der wesentliche Stoffumsatz der elektrochemischen Brennstoffzellen-Reaktion grundsätzlich im Eintrittsbereich des Kathodengases auftritt. Durch die erfindungsgemäße Überdeckung von Kühlmediumseintrittsbereich und Kathodengasaustnttsbereich werden einerseits im Bereich der Überdeckung niedrige Taupunkte erreicht (typischerweise unterhalb von 40°C), die zu der gewünschten starken Kondensation des Wasser- dampfs im Kathodengas führen. Andererseits findet im Eintrittsbereich des Kathodengases, also dort, wo der wesentliche Umsatz der Brennstoffzellen-Reaktion stattfindet, nur noch eine geringe Wärmeaufnahme des Kühlmediums statt.
Somit kann die gewünschte Kondensation des Wasserdampfs im wesentlichen ohne Wirkungsgradverlust der Brennstoffzelle erreicht werden. Man erhält im Vergleich zu den beschriebenen Brennstoffzellenstapeln gemäß dem Stand der Technik, die mit geringen Temperaturdifferenzen betrieben werden, nahezu die gleiche Zellspannung.
Vorteilhaft wird die erfindungsgemäße Brennstoffzelle mit einem gasförmigen Kühlmedium betrieben, das gegenüber den üblicherweise eingesetzten Kühlmedien wie z.B. Wasser oder Gykol eine wesentlich niedrigere Wärmekapazität aufweist. Werden höhere Temperaturdifferenzen angestrebt, so ist mit Kühlmedien, die eine hohe Wärmekapazität aufweisen, eine definierte Einstellung der Temperaturdifferenz homogen über jede Zelle des Brennstoffzellenstapels nicht ohne unverhältnismäßig hohen Regelaufwand möglich, da hierzu nur ein sehr geringer und somit schlecht regulierbarer Kühlmittelfluss benötigt wird. Wählt man dagegen ein Kühlmittel mit geringerer Wärmekapazität, so ist zur Aufrechterhaltung der gleichen Temperaturdifferenz ein höherer Kühlmittelfluss notwendig, der sich wesentlich einfacher regulieren lässt.
Zur Optimierung der zellinternen Kondensation des Produktwassers ist ferner eine Anpassung des Wärmeaustausches zwischen dem Kathodengas und dem Kühlmedium an die verschiedenen Betriebszustände der Brennstoffzelle möglich. Diese Anpassung kann durch örtlich beschränkte Maßnahmen im Bereich der Überdeckung von Kühlmitteleintrittsbereich und Kathodengasaustrittsbereich oder komplementär hierzu im übrigen Bereich der Zelle erfolgen. Diese Maßnahmen können z.B. in einer Anpasssung der Geometrie hinsichtlich der Kanäle liegen. Hierbei kann insbesondere der Kanalquerschnitt, Kanalzahl pro Fläche oder die Anordnung der Kanäle räumlich variiert werden. Weitere mögliche Geometrieanpassungen betreffen die Beinflussung der Kontaktfläche durch Rippen, Stege, Rillen oder Nadeln o.a. in den Strömungskanälen.
Eine weitere mögliche Maßnahme besteht in dem gezielten räumlichen Einsatz von Materialien mit speziellen Wärmeleiteigenschaften. Zum Beispiel kann im Bereich der Kondensation im Eintrittsbereich des Kühlmediums ein Material mit guter Wärmeleitfähigkeit vorhanden sein und/oder im übrigen Bereich der Zelle ein Material mit schlechter Wärmeleitfähigkeit. Die Materialien können sowohl in Schichtform auf die Oberfläche der Kanäle aufgebracht werden, als auch in das Trägermaterial selbst eingebracht werden.
Mit einer oder einer Kombination der genannten Maßnahmen kann beispielsweise lokal im Bereich der Kondensation im Eintrittsbereich des Kühlmediums für einen erhöhten Wärmeaustausch zwischen Kathodengas und Kühlmedium gesorgt werden und damit die pro Zeit kondensierte Wassermenge gesteigert werden.
Die Erfindung wird anhand von Ausführungsbeispielen unter Bezugnahme auf
Zeichnungen näher erläutert. Es zeigen:
Fig. 1 : ein bekanntes Brennstoffzellensystem, wie in der Beschreibungseinleitung erläutert; Fig. 2-4 jeweils Ausführungen des erfindungsgemäßen Brennstoffzellenstapels;
Fig. 5 die Spannungs-Stromdichte-Kennlinien eines erfindungsgemäßen Brennstoffzellenstapels im Vergleich zu einem bekannten Brennstoffzellenstapel;
Fig. 6 eine Ausführung des erfindungsgemäßen Brennstoffzellenstapels mit lokal angepasster Kanalgeometrie im Bereich der Kondensation; Fig. 7 eine Ausführung des erfindungsgemäßen Brennstoffzellenstapels mit lokal angepasstem Einsatz wärmeleitender/wärmeisolierender Materialien. Fig. 8 eine Ausführung des erfindungsgemäßen Brennstoffzellenstapels mit getrennter Führung von Kathodengas und Kühlmedium;
Fig. 9 eine Ausführung des erfindungsgemäßen Brennstoffzellenstapels, bei dem ein Teil des Kühlmediums nach Durchströmen der Kühlmediumverteiler- Struktur die kathodenseitige Gasverteilerstruktur als Kathodengas durchströmt.
Fig. 2 zeigt eine erste Ausführung des erfindungsgemäßen Brennstoffzellenstapels in schematischer Darstellung. Dargestellt ist eine Platte, z.B. aus Metall, auf deren Oberfläche eine kathodenseitige Gasverteilerstruktur für das Kathodengas eingearbeitet ist. Die Gasverteilerstruktur ist hier nur schematisch eingezeichnet. Sie besteht aus einem oder mehreren serpentinenförmigen oder meanderförmigen Kanälen, wie sie dem Fachmann an sich bekannt sind. Das Kathodengas tritt über eine Durchbrechung in die Zelle ein, durchläuft den oder die Strömungskanäle und tritt an der diagonal gegenüberliegenden Durchbrechung wieder aus der Zelle aus.
Die Begriffe "Eintrittsbereich" und "Austrittsbereich" eines Fluids im Sinne der vorliegenden Erfindung sind so zu verstehen, dass damit nicht nur der unmittelbare Bereich der Durchbrechungen gemeint ist, sondern zusätzlich deren nähere Umgebung, und zwar gemessen entlang der Fluidströmung. In diesem Bereich ist ein Stoffumsatz aufgrund der elektrochemischen Brennstoffzellenreaktion sehr gering oder praktisch nicht mehr vorhanden. Im dargestellten Beispiel gehört z.B. der Abschnitt des Strömungskanals vom letzten Richtungswechsel bis zur Durchbrechung mit zum Kathodengasaustrittsbereich.
Wie man aus der Zeichnung erkennen kann, tritt das Kühlmedium in dieser Ausfüh- rung im wesentlichen über die gesamte Kantenlänge der Platte in die Zelle ein und strömt im Querstrom zu dem Kathodengas (das Kühimedium strömt auf einer Verteilerstruktur auf der Rückseite der dargestellten Platte). Kühlmediumseintritts- bereich und Kathodengasaustrittsbereich überdecken sich in wesentlichen Teilen. Dieser Bereich der Überdeckung, in dem die Kondensation stattfindet, ist umrandet. Als Kühlmedium wird in dieser Ausführung die Umgebungsluft verwendet.
Ebenfalls eingezeichnet sind typische Temperaturen für Kathodengas und Kühlmedium am Ein- und Austritt. Man erkennt, dass die Temperaturdifferenzen zwischen Ein- und Austritt bei beiden Fluiden - verglichen mit den bekannten Brennstoffzellen - relativ hoch sind. Die Temperaturunterschiede liegen jeweils im Bereich von 30 bis 45°C. Am Austritt des Kathodengases werden Taupunkte von unterhalb 40°C erreicht. Dadurch wird ein separater Kondendsator zur Kondensation des Wassers im Kathodengas eingespart.
Eine weitere erfindungsgemäße Ausführung zeigt Fig. 3. Er unterscheidet sich von der in Fig. 2 dargestellten Ausführung im wesentlichen nur durch eine andere Gasverteilerstruktur. Diese ist hier als Parallel-Gasverteilerstruktur ausgeführt. Das gasförmige Kühlmedium (z.B. Umgebungsluft) tritt im wesentlichen über die gesamte Kantenlänge der Platte in die Zelle ein und strömt in Gegenrichtung zum Kathodengas (das Kühlmedium strömt auf einer Verteilerstruktur auf der Rückseite der dargestellten Platte). Kühimediumseintrittsbereich und Kathodengasaustrittsbereich überdecken sich in wesentlichen Teilen. Dieser Bereich der Überdeckung, in dem die Kondensation stattfindet, ist umrandet.
Die Luftkühlung, wie sie bei der Ausführung nach Fig. 2 oder 3 vorgesehen ist, kann vorteilhaft über einen Radiator erfolgen. Fig. 4 zeigt hierzu eine entsprechende Ausführung. Der Radiator ist direkt vor dem Brennstoffzellenstapel angeordnet und bläst die Luft in die Kühlkanäle bzw. Kühlkammern des Brennstoffzellenstapels.
In einer weiteren, hier nicht gezeigten Ausführung, kann die dem Stapel zuzuführende Kühlluft auch über eine Leitung vom Radiator in den Stapel gefördert werden.
Fig. 5 zeigt die Spannungs-Stromdichte-Kennlinien eines erfindungsgemäßen Brenn- Stoffzellenstapels mit Luftkühlung im Vergleich zu einem bekannten Brennstoffzellenstapel mit Wasserkühlung. Die dargestellten Werte wurden durch Messungen an einem Zellstapel aus zehn Brennstoffzellen ("10-Zeller") gewonnen. Als Grundwerkstoff der Bipolarplatten wurde Graphit verwendet. Man erkennt, dass die beiden Kennlinien annähernd identisch sind. Die erfindungsgemäß erhaltene stapelinterne Kondensation des Wasserdampfs kann also ohne Wirkungsgradverlust erreicht werden. Fig. 6 zeigt eine weitere erfindungsgemäße Ausführung. Dargestellt ist eine Platte, auf deren dem Betrachter abgewandten Seite die in Fig. 2 oder 3 dargestellte Gasverteilerstruktur zur Führung des Kathodengases vorhanden sind. Auf der dem Betrachter zugewandten Seite ist die Verteilerstruktur für das Kühlmedium darge- stellt. Man erkennt die einzelnen, parallelen Kanäle, die durch Stege voneinander getrennt sind. Das Kathodengas tritt über eine Durchbrechung in der Platte in die Zelle ein, durchläuft den oder die - hier nicht einsehbaren - Strömungskanäle und tritt an der diagonal gegenüberliegenden Durchbrechung wieder aus der Zelle aus. Das Kühlmedium tritt an der unteren Kante der Platte in die Kühlkanäle ein und verlässt diese an der gegenüberliegenden Kante. Der Bereich der Überdeckung von Kühlmediumseintrittsbereich und Kathodengasaustrittsbereich, in dem die Kondensation im wesentlichen stattfindet, ist umrandet. In diesem Bereich der Überdeckung sind innerhalb der Kanäle zusätzliche Rippen angeordnet, um die Kontaktfläche zu vergrößern. Dadurch wird in diesem Bereich der Wärmeaustausch zwischen Kühl- medium und Kathodengas erhöht und somit die Kondensation günstig beeinflusst.
Fig. 7 zeigt eine Ausführung der Erfindung, mit der der lokale Wärmeaustausch über der Zellfläche durch zusätzliche Maßnahmen variiert wird. Der Aufbau der Platte entspricht mit Ausnahme der hier nicht vorhandenen Rippen im Bereich der Konden- sation dem in Fig. 6 gezeigten, so dass zur Vermeidung von Wiederholungen darauf verwiesen ist. Als zusätzliche Maßnahme ist innerhalb des Bereichs der Überdeckung von Kühlmediumseintrittsbereich und Kathodengasaustrittsbereich eine wärmeisolierende Schicht auf der Kanaloberfläche vorhanden. Durch entsprechende Auswahl von Schichtdicke und Schichtmaterial kann in diesem Bereich der Wärme- austausch verringert werden, um eventuell unerwünschte hohe Temperaturgradienten im Kondensationsbereich zu vermeiden. Diese Schicht kann z.B. eine selbst tragende Schicht oder Folie sein, die auf die Oberfläche aufgeklebt wird. Möglich ist aber auch das Aufbringen einer dünnen Lackschicht oder das unmittelbare Einbringen des zusätzlichen Materials in die Trägerschicht.
In einer weiteren Ausführung (nicht dargestellt) können bei der Vorrichtung nach Fig. 6 im Bereich der Überdeckung von Kühlmediumseintrittsbereich und Kathoden- gasaustrittsbereich gut wärmeleitfähige Materialien vorhanden sein, um den Wärmeaustausch zwischen Kathodengas und Kühlmedium in diesem Bereich weiter zu erhöhen.
In einer anderen Ausführung können bei der Vorrichtung nach Fig. 6 oder 7 im Bereich außerhalb der Überdeckung von Kühlmediumseintrittsbereich und Kathodengasaustrittsbereich wärmeisolierende Materialien eingesetzt werden.
Mit den beschriebenen Maßnahmen ist es somit möglich, im Bereich außerhalb des Kondensationsgebiets den Wärmeaustausch zu verringern und an anderer Stelle des Strömungsfelds eine starke lokale Kondensation zu erreichen.
Alle in den Fig. 6 und 7 gezeigten Maßnahmen, die dort im Bezug auf die Kanäle zur Führung des Kühlmediums beschrieben wurden, können in gleicher Weise auch auf die Kanäle zur Führung des Kathodengases angewandt werden.
Fig. 8 zeigt eine Ausführung des erfindungsgemäßen Brennstoffzellenstapels, bei dem Kathodengas und Kühlmedium innerhalb des Stapels getrennt voneinander geführt werden. In der schematischen Darstellung bezeichnet MEA die Membran- Elektoden-Einheit, die einerseits zu der anodenseitigen Gasverteilerstruktur AS und andererseits von der kathodenseitigen Gasverteilerstruktur KS benachbart ist. Zwischen zwei Einzelzellen des Brennstoffzellenstapels sowie am Anfang und am Ende des Stapels ist jeweils eine Kuhlmediumverteilerstruktur KK, auch als Kühlkammer bezeichnet, vorhanden. Das Kühlmedium, z.B. Luft, durchströmt die Kühl- kammern KK und wird oberhalb und unterhalb des Stapels zu- und abgeführt. Das Kathodengas durchströmt die einzelnen kathodenseitigen Gasverteilerstrukturen KS. Es wird über sogenannte Ports, die durch miteinander fluchtende Durchbrechungen innerhalb der einzelnen Komponenten KK,KS,AS, MEA gebildet werden, zu und abgeführt. Um druckverlustbedingte Leistungseinbußen bei der Durchleitung des Kühllufstromes möglichst klein zu halten, werden die Kühlkanäle in der Kuhlmediumverteilerstruktur KK vorteilhafterweise möglichst kurz und deshalb parallel (ohne Meander oder Serpentinen) ausgeführt. Dadurch ist vorteilhafterweise eine senkrecht nach oben gerichtete Kühlluftströmung im Stapel vorhanden, so dass die Kühlluftströmung durch die auftretende Thermik unterstützt wird.
Fig. 9 zeigt eine weitere Ausführung des erfindungsgemäßen Brennstoffzellenstapels, bei der ein Teil des Kühlmediums nach Durchströmen der Kuhlmediumverteilerstruktur als Kathodengas verwendet wird. Die Abfolge der Komponenten Membran-Elektoden-Einheit MEA, kathodenseitige Gasverteilerstruktur KS, anoden- seifige Gasverteilerstruktur AS, Kuhlmediumverteilerstruktur KK innerhalb des Stapels entspricht Fig. 8.
Zunächst strömt der vorverdichtete Kühlluftstrom - vorteilhafterweise von unten - durch parallele Kühlkanäle der Kuhlmediumverteilerstruktur und gelangt nach dem Austritt aus der Kühlmedienverteilerstruktur in eine Kammer oberhalb des Brennstoff- zellenstapels. Aus dieser Kammer wird ein Teil der Kühlluft zu der kathodenseitigen Gasverteilerstruktur weitergeleitet, versorgt die Kathode mit Sauerstoff und tritt schließlich durch eine oder mehrere - vorteilhafterweise seitlich angeordnete Öffnungen - aus dem BZ-Stack aus. Der überschüssige Kühlluftstrom verläßt die obere Kammer beispielsweise über ein durchfluss- oder druckgeregeltes Ventil und gelangt direkt in die Umgebung.
Für beide Ausführungen nach Fig. 8 und Fig. 9 können als Kathodengas außer Luft auch andere sauerstoffhaltiges Gase bzw. Gasgemische eingesetzt werden. Voraussetzung ist jedoch, dass sie die MEA nicht vergiften.
Ebenso kann als Kühlmedium anstatt Luft auch ein anderes Gas eingesetzt werden, z.B. durch Gase, die innerhalb des Brennstoffzellensystems bei niedriger Temperatur anfallen.
Die Führung des Anodengases innerhalb des Stapels wurde in den Zeichnungen aus Gründen der Übersichtlichkeit nicht eingezeichnet.

Claims

Patentansprüche:
1 . Elektrochemischer Brennstoffzellenstapel mit mindestens einer Membran-Elektroden-Einheit (MEA) aus einer Anode, einer Kathode und einer dazwischen angeordneten Elektrolytmembran, - mindestens einer anodenseitigen Gasverteilerstruktur (AS) mit einem A- nodengaseintrittsbereich, einem Anodengasaustnttsbereich sowie Kanälen zur Führung des Anodengases vom Anodengaseintrittsbereich zum A- nodengasaustrittsbereich, wobei das Anodengas Wasserstoff enthält, mindestens einer kathodenseitigen Gasverteilerstruktur (KS) mit einem Kathodengaseintrittsbereich, einem Kathodengasaustrittsbereich sowie
Kanälen zur Führung des Kathodengases vom Kathodengaseintrittsbereich zum Kathodengasaustrittsbereich, wobei das Kathodengas Sauerstoff und Wasserdampf enthält; einer Kuhlmediumverteilerstruktur (KK) mit einem Kühlmediumseintrittsbe- reich, einem Kühlmediumsaustrittsbereich sowie Kanälen zur Führung des
Kühlmediums vom Kühlmediumseintrittsbereich zum Kühlmediumsaustrittsbereich; dadurch gekennzeichnet, dass Kühlmediumseintrittsbereich und Kathodengasaustrittsbereich sich zumindest teilweise überdecken, so dass in diesem Be- reich der Überdeckung eine Auskondensation des Wasserdampfs im Kathodenabgas erfolgen kann.
2. Elektrochemischer Brennstoffzellenstapel nach Patentanspruch 1 , dadurch gekennzeichnet, dass im Bereich der Überdeckung von Kühlmediumseintritts- bereich und Kathodengasaustrittsbereich die Geometrie der Kanäle gegenüber den Bereichen außerhalb der Überdeckung unterschiedlich ist.
3. Elektrochemischer Brennstoffzellenstapel nach Patentanspruch 2, dadurch gekennzeichnet, dass die Geometrie der Kanäle sich im Bereich der Über- deckung hinsichtlich Kanalanordnung, Kanalquerschnitt, Kanalzahl pro Fläche, zusätzlicher Rippen, Stege, Rillen oder Nadeln von den übrigen Bereichen außerhalb der Überdeckung unterscheidet.
4. Elektrochemischer Brennstoffzellenstapel nach Patentanspruch 2 oder 3, dadurch gekennzeichnet, dass im Bereich der Überdeckung von Kühlmediumseintrittsbereich und Kathodengasaustrittsbereich im Wärmeübertragungsweg zwischen Kühlmedium und Kathodengas Materialien vorhanden sind, die sich hinsichtlich ihrer wärmeleitenden Eigenschaften von den außerhalb der Ü- berdeckung eingesetzten Materialien unterscheiden.
5. Elektrochemischer Brennstoffzellenstapel nach einem der vorangehenden Patentansprüche, dadurch gekennzeichnet, dass kathodenseitigen Gasver- teilerstruktur und Kuhlmediumverteilerstruktur derart ausgebildet sind, dass
Kathodengas und Kühlmedium im Kreuzstrom geführt werden.
6. Elektrochemischer Brennstoffzellenstapel nach einem der vorangehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass kathodenseitigen Gasver- teilerstruktur und Kuhlmediumverteilerstruktur derart ausgebildet sind, dass
Kathodengas und Kühlmedium im Gegenstrom geführt werden.
7. Elektrochemischer Brennstoffzellenstapel nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass Kathodengas und Kühlmedium getrennt voneinander den Brennstoffzellenstapel durchströmen.
8. Elektrochemischer Brennstoffzellenstapel nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Teil des Kühlmediums nach Durchströmen der Kuhlmediumverteilerstruktur die kathodenseitige Gasver- teilerstruktur als Kathodengas durchströmt.
9. Verfahren zum Betrieb eines elektrochemischen Brennstoffzellenstapels nach einem der vorangehenden Patentansprüche, dadurch gekennzeichnet, dass als Kühlmedium ein Gas, z.B. Umgebungsluft, eingesetzt wird.
PCT/DE2000/003782 1999-11-06 2000-10-26 Elektrochemischer brennstoffzellenstapel mit polymerelektrolyten WO2001035476A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001537115A JP2003514354A (ja) 1999-11-06 2000-10-26 電気化学的な燃料電池セルスタック
EP00983062A EP1230701A1 (de) 1999-11-06 2000-10-26 Elektrochemischer brennstoffzellenstapel mit polymerelektrolyten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19953404.7 1999-11-06
DE19953404A DE19953404B4 (de) 1999-11-06 1999-11-06 Elektrochemischer Brennstoffzellenstapel

Publications (2)

Publication Number Publication Date
WO2001035476A1 true WO2001035476A1 (de) 2001-05-17
WO2001035476A8 WO2001035476A8 (de) 2001-06-14

Family

ID=7928101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003782 WO2001035476A1 (de) 1999-11-06 2000-10-26 Elektrochemischer brennstoffzellenstapel mit polymerelektrolyten

Country Status (4)

Country Link
EP (1) EP1230701A1 (de)
JP (1) JP2003514354A (de)
DE (1) DE19953404B4 (de)
WO (1) WO2001035476A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10224397A1 (de) * 2002-06-01 2003-12-11 Behr Gmbh & Co Brennstoffzellenstapel
DE102004051751B4 (de) * 2004-10-23 2015-11-05 Robert Bosch Gmbh Fahrzeug mit einer Brennstoffzellenanlage mit einem wasserhaltigen Fluidstrom
DE102007036477A1 (de) * 2007-08-01 2009-02-05 Behr Gmbh & Co. Kg Bipolarplatte für eine Brennstoffzelle und Brennstoffzellenstapel
EP2675005A1 (de) 2012-06-11 2013-12-18 HTceramix S.A. Gasverteilungselement für eine Brennstoffzelle
EP2675006A1 (de) 2012-06-11 2013-12-18 HTceramix S.A. Gasverteilungselement mit Stützschicht

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267062A (ja) * 1991-02-22 1992-09-22 Mitsubishi Heavy Ind Ltd 燃料電池用ガスセパレータ
JPH05144451A (ja) * 1991-11-20 1993-06-11 Fuji Electric Co Ltd 固体高分子電解質型燃料電池の反応ガス・冷却媒体通流構造
JPH05151980A (ja) * 1991-11-29 1993-06-18 Sanyo Electric Co Ltd 燃料電池の冷却プレート
JPH06251778A (ja) * 1993-02-26 1994-09-09 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池
JPH06260200A (ja) * 1993-03-08 1994-09-16 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池システム
WO1996000453A1 (en) * 1994-06-24 1996-01-04 Ballard Power Systems Inc. Electrochemical fuel cell stack with concurrently flowing coolant and oxidant streams
JPH0831437A (ja) * 1994-07-15 1996-02-02 Toshiba Corp 燃料電池とその運転方法
DE4442285C1 (de) * 1994-11-28 1996-02-08 Siemens Ag Brennstoffzellen und daraus bestehende Brennstoffzellenbatterien
EP0833400A1 (de) * 1995-05-25 1998-04-01 Honda Giken Kogyo Kabushiki Kaisha Brennstoffzelle und verfahren zu ihrer kontrolle
EP0862235A1 (de) * 1995-08-30 1998-09-02 Honda Giken Kogyo Kabushiki Kaisha Brennstoffzelle
DE19809575A1 (de) * 1997-03-05 1998-09-10 Fuji Electric Co Ltd Brennstoff-Element mit einem festen Polymer-Elektrolyten
WO2000036680A1 (en) * 1998-12-17 2000-06-22 International Fuel Cells, Llc A cooling plate for a fuel cell stack assembly
WO2000039874A1 (en) * 1998-12-28 2000-07-06 International Fuel Cells, Llc Pressurized water recovery system for a fuel cell power plant

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267062A (ja) * 1991-02-22 1992-09-22 Mitsubishi Heavy Ind Ltd 燃料電池用ガスセパレータ
JPH05144451A (ja) * 1991-11-20 1993-06-11 Fuji Electric Co Ltd 固体高分子電解質型燃料電池の反応ガス・冷却媒体通流構造
JPH05151980A (ja) * 1991-11-29 1993-06-18 Sanyo Electric Co Ltd 燃料電池の冷却プレート
JPH06251778A (ja) * 1993-02-26 1994-09-09 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池
JPH06260200A (ja) * 1993-03-08 1994-09-16 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池システム
WO1996000453A1 (en) * 1994-06-24 1996-01-04 Ballard Power Systems Inc. Electrochemical fuel cell stack with concurrently flowing coolant and oxidant streams
JPH0831437A (ja) * 1994-07-15 1996-02-02 Toshiba Corp 燃料電池とその運転方法
DE4442285C1 (de) * 1994-11-28 1996-02-08 Siemens Ag Brennstoffzellen und daraus bestehende Brennstoffzellenbatterien
EP0833400A1 (de) * 1995-05-25 1998-04-01 Honda Giken Kogyo Kabushiki Kaisha Brennstoffzelle und verfahren zu ihrer kontrolle
EP0862235A1 (de) * 1995-08-30 1998-09-02 Honda Giken Kogyo Kabushiki Kaisha Brennstoffzelle
DE19809575A1 (de) * 1997-03-05 1998-09-10 Fuji Electric Co Ltd Brennstoff-Element mit einem festen Polymer-Elektrolyten
WO2000036680A1 (en) * 1998-12-17 2000-06-22 International Fuel Cells, Llc A cooling plate for a fuel cell stack assembly
WO2000039874A1 (en) * 1998-12-28 2000-07-06 International Fuel Cells, Llc Pressurized water recovery system for a fuel cell power plant

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 1994-336126, XP002165610 *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 057 (E - 1315) 4 February 1993 (1993-02-04) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 525 (E - 1436) 21 September 1993 (1993-09-21) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 535 (E - 1439) 27 September 1993 (1993-09-27) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 641 (E - 1639) 6 December 1994 (1994-12-06) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 658 (E - 1643) 13 December 1994 (1994-12-13) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 06 28 June 1996 (1996-06-28) *

Also Published As

Publication number Publication date
DE19953404A1 (de) 2001-05-23
JP2003514354A (ja) 2003-04-15
DE19953404B4 (de) 2004-11-25
EP1230701A1 (de) 2002-08-14
WO2001035476A8 (de) 2001-06-14

Similar Documents

Publication Publication Date Title
DE102006019114B4 (de) Brennstoffzellensystem zur verbesserten Wasserstoff- und Sauerstoffverwendung
DE69224116T2 (de) Festoxidbrennstoffzellensystem
DE69514364T2 (de) Stapel elektrochemischer brennstoffzellen mit gleichzeitig fliessenden kuehlmittel- und oxidantienstroemen
DE102005038928B4 (de) Brennstoffzelle vom Pakettyp
DE102006009844A1 (de) Bipolarplatte, insbesondere für einen Brennstoffzellenstapel eines Fahrzeugs
DE10055253B4 (de) Brennstoffzellenstapel
DE102005031081A1 (de) Bipolarplatte, Verfahren zur Herstellung einer Bipolarplatte und Brennstoffzellenblock-Anordnung
EP1352439B1 (de) Pem-brennstoffzellenstapel mit kühlmediumverteilerstruktur
DE19743067C2 (de) Strömungsmodul mit Strömungskammern für drei oder vier Fluide
EP1378018B1 (de) Elektrochemischer brennstoffzellenstapel
DE19953404B4 (de) Elektrochemischer Brennstoffzellenstapel
EP1523781B1 (de) Brennstoffzelle mit interner gasregulierung
WO2001009969A1 (de) Kühlsystem für brennstoffzellen
WO2003090301A2 (de) Elektrodenplatte mit befeuchtungsbereich
DE102006046725A1 (de) Wassermassenausgleichsschema für Brennstoffzellensysteme
DE10126723A1 (de) Interkonnektor für eine Brennstoffzelle
DE10323647B4 (de) Anordnung und Verfahren zum Kühlen eines Brennstoffzellenstapels
DE102018205995A1 (de) Vorrichtung zur Konditionierung des Kathodengases und Brennstoffzellensystem mit einer solchen Vorrichtung
DE102022103985B3 (de) Bipolarplatte, Brennstoffzellenvorrichtung und Verfahren zum Betreiben der Brennstoffzellenvorrichtung
DE102021123184B3 (de) Festoxid-Brennstoffzellenvorrichtung
DE102023117512A1 (de) Bipolarplatte und Niedertemperatur-Polymerelektrolytmembran-Brennstoffzelle
EP1595303A2 (de) Brennstoffzellenstapel
DE10315758A1 (de) PEM-Brennstoffzelle
DE102007026683B4 (de) Fluidgekühlter membranelektroden-basierter Energiekonverter - Multi-Loop-Plane (MLP)
DE10015362A1 (de) Brennstoffzellenstapel für flüssigen oder teilweise flüssigen Brennstoff

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: C1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

CFP Corrected version of a pamphlet front page

Free format text: REVISED TITLE RECEIVED BY THE INTERNATIONAL BUREAU AFTER COMPLETION OF THE TECHNICAL PREPARATIONS FOR INTERNATIONAL PUBLICATION

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000983062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10110653

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 537115

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000983062

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000983062

Country of ref document: EP