WO2001033489A2 - Fernauslesbare identifikationsmarke und verfahren zum betrieb einer solchen - Google Patents

Fernauslesbare identifikationsmarke und verfahren zum betrieb einer solchen Download PDF

Info

Publication number
WO2001033489A2
WO2001033489A2 PCT/DE2000/003882 DE0003882W WO0133489A2 WO 2001033489 A2 WO2001033489 A2 WO 2001033489A2 DE 0003882 W DE0003882 W DE 0003882W WO 0133489 A2 WO0133489 A2 WO 0133489A2
Authority
WO
WIPO (PCT)
Prior art keywords
resonant circuits
antenna system
readable identification
identification tag
transmitting
Prior art date
Application number
PCT/DE2000/003882
Other languages
English (en)
French (fr)
Other versions
WO2001033489A3 (de
Inventor
Max Guntersdorfer
Helmut Zarschizky
Gerhard Zorn
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2001033489A2 publication Critical patent/WO2001033489A2/de
Publication of WO2001033489A3 publication Critical patent/WO2001033489A3/de
Priority to US10/307,366 priority Critical patent/US7088245B2/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2405Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used
    • G08B13/2414Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used using inductive tags
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/0672Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with resonating marks
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2405Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used
    • G08B13/2414Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used using inductive tags
    • G08B13/2417Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used using inductive tags having a radio frequency identification chip
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2428Tag details
    • G08B13/2431Tag circuit details
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2428Tag details
    • G08B13/2448Tag with at least dual detection means, e.g. combined inductive and ferromagnetic tags, dual frequencies within a single technology, tampering detection or signalling means on the tag

Definitions

  • the invention relates to a remotely readable identification tag, a method for remotely readable identification by means of radio waves and corresponding uses.
  • a readable identification tag which has a digitally stored identification number of up to 40 bits in length.
  • the digital identification number is implemented by means of a plurality of resonant circuits which can be excited by radio waves ("Radio Frequency Identification Tags” or “RFID Tags”) and which are present on the identification tag.
  • the radio waves typically in the range from KHz to GHz, in particular from MHz to GHz
  • the radio waves are e.g. B. with the system "MOBY-F” to 125 KHz and with "MOBY-V” to 433 MHz.
  • Each resonant circuit corresponds to the representation of one bit (“1-bit RFID tag”).
  • Several resonant circuits are integrated in an identification tag according to the length of the identification number.
  • a reading of data is done so far that a pulse is sent from the outside to the identification mark, for. B. at MOBY-F to 125 KHz, and the individual 1-bit RFID tags sequentially, ie delayed one after the other, emit pulses on the substantially same wavelength again.
  • the identification number is obtained in the reader.
  • the sequential emission of the signals of the individual 1-bit RFID tags is implemented, among other things, by differently sized delay devices. It is an object of the present invention to provide a way for fast remote access.
  • the identifiable identification mark has at least two resonant circuits and at least one transmit / receive antenna system coupled to the resonant circuits. Furthermore, at least two resonant circuits are designed so that they have a different natural frequency from each other.
  • One property inherent in the resonant circuit is to have at least one natural frequency.
  • the strength of the vibration in the resonant circuits is greater, the closer the frequency of the recorded signals to the natural frequency of the resonant circuits. This is equivalent to the fact that an oscillation circuit of the identification mark is only excited to a significant oscillation if the frequency of the signal picked up by the antenna system lies within a range around the natural frequency of the respective oscillation circuit.
  • the width of the area is essentially determined by the half-width of the resonant circuit. The resonant circuit oscillates relatively long depending on the quality.
  • the resonant circuit vibrates significantly, ie if it is at least approximately in resonance, its signal is fed back to the transmitting / receiving antenna system and radiated again. The presence of a resonant circuit in an excited field can thus be verified.
  • the resonant circuit can be interpreted as a 1-bit information carrier, e.g. B. with state "1" in the presence and state "0" in the absence.
  • the bit pattern of an identification tag is determined by the number of resonant circuits with distinguishable natural frequencies.
  • a multibit identification mark with two or more of these resonant circuits can therefore send out a multi-bit sequence with the pattern of all natural frequencies.
  • a clear coding or identification is possible. For example, 40-bit or 80-bit coding similar to that of a bar code can be implemented.
  • the space required by the identification mark depends, among other things, on the natural frequency of the resonant circuits. With a frequency band of 80 MHz typical in industrial application around a frequency of 2.45 GHz, the dimensions of an oscillating circuit are in the range of a few mm 2 . For example, in the case of 80 resonant circuits, corresponding to 80-bit coding, which are each 1 MHz apart, the approximate space requirement of the identification mark is a few cm 2 . However, this space requirement can still be reduced constructively.
  • the setting of the bit pattern i. H. the presence of the correspondingly functioning resonant circuits can take place in a production facility or at the user.
  • the setting of the bit pattern at the user can e.g. B. happen by damaging or short-circuiting individual resonant circuits, for. B. by means of laser radiation.
  • the excitation of a multibit tag can e.g. B. by means of a simultaneous multi-frequency excitation or by means of a so-called.
  • Chirp pulse in which a frequency range is swept, which contains at least two natural frequencies of the resonant circuits (81, ... 8n).
  • the quality of the resonant circuits must be so high that the response of the identification is long enough to detect or separate all of the transmitted frequencies.
  • a measurement of the bit pattern of the above 80-bit RFID tag is typically in the range of microseconds, e.g. B. 1 ⁇ s.
  • the transmit / receive antenna system has a primary resonant circuit and, connected thereto, an input antenna and an output antenna.
  • the primary resonant circuit contains at least one primary capacitor and at least one primary coil per resonant circuit.
  • At least two resonant circuits in turn each have at least one secondary coil and one secondary capacitor, the respective secondary coil being inductively coupled to a corresponding primary coil.
  • antennas can also be used, e.g. B. only a combined transmit / receive antenna or several antennas.
  • each secondary capacitor has a different capacitance.
  • the capacitance allows the natural frequency of an oscillating circuit to be set with high accuracy.
  • the identification mark that can be read from a distance has a delay device which effects a delay in the signal response between reception of a signal and emission of a signal. This makes it possible to identify several identification marks, even if they are excited by a single pulse. Without a time spread of the response of the identification marks, these would respond at the same time and so different bit patterns or several identical bit patterns could not be discriminated or only with great effort. Such a problem arises, for example, when several goods are to be recorded simultaneously, e.g. B. in a shopping cart.
  • the respective delay time is significantly longer than the time for the radiation of the signals, because in this way the emitted signals can be separated well.
  • a time equalization of several identification marks is possible, for example, through a statistical distribution of the delay time, alone or together with other measures (Supertag, Samsys, etc.). So you can z. B. take advantage of natural or deliberately introduced manufacturing tolerances of the delay device. For example, a spontaneous response of the identification mark when using a spark gap can be realized by letting the characteristic values of the charging capacitor or the spark gap fluctuate within a manufacturing range. This allows z. B. Realize delay times of up to a few seconds.
  • the delay device is a spark gap which, for. B. can be fed by the primary capacitor.
  • the entire circuit but at least the transmit / receive antenna system and the resonant circuits, are applied to a flexible substrate using thin-film technology.
  • a flexible substrate using thin-film technology.
  • single crystal substrates can be dispensed with, which makes production inexpensive. Due to the flexibility of the substrate, e.g. B. made of paper or plastic, the identification mark can be made flat and flexibly applied, for. B. in adhesive labels or on packaging.
  • a rectifier for charging the charging capacitor using thin-film technology should also advantageously be applied.
  • the identification mark can also contain other components, e.g. B. rectifiers, batteries, sensors etc.
  • the applications are generally a remote query for the identification of objects, such as. For example, when shopping in supermarkets, in warehousing or when transporting within logistics chains. Possible areas of application are e.g. B. listed in the advertising leaflet of Siemens AG ("MOBY" systems).
  • radio wave signal instead of a radio wave signal can, for. B. an acustomagnetic signal is also used.
  • the following exemplary embodiment shows schematically in top view a remotely readable identification mark T.
  • a circuit arrangement using thin-film technology is applied to a substrate 11 made of plastic, so that the
  • the circuit arrangement comprises a transmitting / receiving antenna system 1 and n (n 2) resonant circuits 81, ..., 8n.
  • the transmit / receive antenna system 1 includes an input antenna 2 for receiving radio waves and an output antenna 3 for radiation of radio waves. These two antennas 2, 3 are connected to a resonant circuit 4, which in turn comprises n primary coils 7 connected in series with the same inductance Lp and a charging capacitor 5 with one
  • a spark gap 6 is connected in series with the primary coils 7.
  • Each primary coil 7 is opposite an oscillating circuit 81, ..., 8n, each of which comprises a secondary coil 9 with inductance Ls and a secondary capacitor 101, ..., 10n with capacitance Cl, ..., Cn.
  • the secondary coil 9 is inductively coupled to the respective primary coil 7.
  • the inductance Ls of the secondary coil 9 is the same for each resonant circuit 81, ..., 8n.
  • the capacitances Cl, ..., Cn of the secondary capacitors 101, ..., lOn are each dimensioned differently, in such a way that the natural frequencies fl, ..., fn of the resonant circuits 81, ..., 8n are equidistant from each other at a distance of 1 MHz.
  • the number n of resonant circuits, resonant circuit 81,..., 8n is 80, so that an 80-bit RFID tag is present.
  • the identification mark T can be operated in such a way that a radio signal is emitted by an external transmitter. After this signal has been received via the input antenna 2 of the identification mark T, a charging of the charging capacitor 5 and a delayed connection of the spark gap 6, the resonant circuit 4 is set in vibration. This oscillation is transmitted by the inductive coupling to the secondary oscillating circuits 81, ..., 8n, which in turn are excited to oscillate depending on the correspondence of the frequency given from the outside with the natural frequency.
  • the vibration of the resonant circuits 81,..., 8n is in turn emitted via the output antenna 3 and can thus be detected by an external receiver and then evaluated.
  • a chirp pulse sweeps over a frequency band of at least 80 MHz, the entire spectrum of the addressable natural frequencies fl, ..., fn is emitted.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Security & Cryptography (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Near-Field Transmission Systems (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

Die fernauslesbare Identifikationsmarke weist mindestens zwei Schwingkreise und mindestens ein mit den Schwingkreisen gekoppeltes Sende-/Empfangs-Antennensystem auf, das dadurch gekennzeichnet ist, daß mindestens zwei Schwingkreise eine unterschiedliche Eigenfrequenz aufweisen.

Description

.
Beschreibung
Femauslesbare Identifi ationsmarke und Verfahren zum Betrieb einer solchen
Die Erfindung betrifft eine femauslesbare Identifikationsmarke, ein Verfahren zur fernauslesbaren Identifikation mittels Radiowellen und entsprechende Verwendungen.
Beispielsweise aus Siemens-Welt 6/98 oder aus einer Werbeveröffentlichung der Siemens AG ist eine femauslesbare Identifikationsmarke (Systeme "MOBY") bekannt, welche eine digital gespeicherte Identifikationsnummer von bis zu 40 Bit Länge aufweist. Die Realisierung der digitalen Identifikati- onsnummer geschieht mittels mehrerer durch Radiowellen anregbarer Schwingkreise ("Radio Frequency Identification Tags" oder "RFID-Tags") , die auf der Identifikationsmarke vorhandenen sind. Die Radiowellen (typischerweise im Bereich von KHz bis GHz, insbesondere von MHz bis GHz) liegen z. B. beim Sy- stem "MOBY-F" auf 125 KHz und bei "MOBY-V" auf 433 MHz. Jeder Schwingkreis entspricht der Darstellung eines Bits ("1-Bit RFID-Tag"). Mehrere Schwingkreise sind entsprechend der Länge der Identifikationsnummer in eine Identifikationsmarke integriert.
Ein Auslesung von Daten geschieht bisher so, daß von außen ein Impuls an die Identifikationsmarke gesendet wird, z. B. bei MOBY-F auf 125 KHz, und die einzelnen 1-Bit RFID-Tags sequentiell, also zeitverzögert nacheinander, Impulse auf der im wesentlichen gleichen Wellenlänge wieder abstrahlen. Durch Aufnahme der sequentiellen Radiosignale ergibt sich im Lesegerät die Identifikationsnummer. Die sequentielle Abstrahlung der Signale der einzelnen 1-Bit RFID-Tags wird u.a. durch unterschiedlich dimensionierte Verzögerungsvorrichtungen rea- lisiert. Es ist eine Aufgabe der vorliegenden Erfindung, eine Möglichkeit zur schnellen Fernabfrage zu schaffen.
Diese Aufgabe wird durch eine femauslesbare Identifikations- marke gemäß Patentanspruch 1, eine Verwendung der femauslesbare Identifikationsmarke gemäß Anspruch 8 und ein Verfahren zur fernauslesbaren Identifikation gemäß Patentanspruch 9 gelöst.
Die femauslesbare Identifik-ationsmarke weist mindestens zwei Schwingkreise auf sowie mindestens ein mit den Schwingkreisen gekoppeltes Sende-/Empfangs-Antennensystem. Weiterhin sind mindestens zwei Schwingkreise so beschaffen, daß sie eine zueinander unterschiedliche Eigenfrequenz aufweisen.
Eine dem Schwingkreis inhärente Eigenschaft ist es, mindestens eine Eigenfrequenz aufzuweisen. Durch die Kopplung mit dem Sende-/Empfangs-Antennensystem können vom Antennensystem aufgenommene Signale in die Schwingkreise eingespeist werden, welche dadurch selbst zur Schwingung angeregt werden. Die
Stärke der Schwingung in den Schwingkreisen ist um so größer, je näher die Frequenz der aufgenommenen Signale an der Eigenfrequenz der Schwingkreise liegt. Dies ist gleichbedeutend damit, daß ein Schwingkreis der Identifikationsmarke nur zu einer signifikanten Schwingung angeregt wird, wenn die Frequenz des vom Antennensystem aufgenommenen Signals innerhalb eines Bereichs um die Eigenfrequenz des jeweiligen Schwingkreises liegt. Die Breite des Bereichs wird im wesentlichen von der Halbwertsbreite des Schwingkreises bestimmt. Der Schwingkreis schwingt je nach Güte relativ lang nach.
Schwingt der Schwingkreis signifikant, ist er also mindestens annähernd in Resonanz, so wird sein Signal an das Sende- /Empfangs-Antennensystem zurückgeführt und wieder abge- strahlt. Dadurch kann die Anwesenheit eines Schwingkreises in einem angeregten Feld nachgewiesen werden. Der Schwingkreis kann als 1 Bit-Informationsträger aufgefaßt werden, z. B. mit Zustand "1" bei Anwesenheit und Zustand "0" bei Abwesenheit.
Das Bitmuster einer Identifikations arke wird bestimmt durch die Zahl der Schwingkreise mit unterscheidbaren Eigenfrequenzen. Eine Multibit-Identifikationsmarke mit zwei oder mehr dieser Schwingkreise kann also eine Multi-Bit-Sequenz mit dem Musters aller Eigenfrequenzen aussenden. Durch Festlegung der angeschalteten Schwingkreise—ist somit eine eindeutige Kodierung bzw. Identifikation möglich. Beispielsweise kann eine 40-Bit- oder 80-Bit-Kodierung ähnlich der eines Barcodes realisiert sein.
Der Platzbedarf der Identifikationsmarke ist unter anderem abhängig von der Eigenfrequenz der Schwingkreise. Bei einen in industrieller Anwendung typischen Frequenzband von 80 MHz um eine Frequenz von 2,45 GHz bewegen sich die Abmessungen eines Schwingkreises im Bereich einiger mm2. Beispielsweise bei 80 Schwingkreisen, entsprechend einer 80-Bit-Kodierung, die jeweils 1 MHz auseinanderliegen, beträgt der ungefähre Platzbedarf der Identifikationsmarke wenige cm2. Dieser Platzbedarf ist aber konstruktiv noch verringerbar.
Die Einstellung des Bitmusters, d. h. ein Vorhandensein der entsprechend funktionierenden Schwingkreise, kann in einer Produktion erfolgen oder beim Verwender. Die Einstellung des Bitmusters beim Verwender kann z. B. durch Beschädigen oder Kurzschließen einzelner Schwingkreise geschehen, z. B. mit— tels Laserstrahlung.
Die Anregung eines Multibit-Tags kann z. B. mittels einer gleichzeitigen mehrfrequentigen Anregung erfolgen oder auch mittels eines sog. Chirp-Pulses, bei dem ein Frequenzbereich überstrichen wird, der mindestens zwei Eigenfrequenzen der Schwingkreise (81,...8n) beinhaltet. Die Güte der Schwingkreise muß so hoch sein, daß die Antwort der Identifikations- marke lang genug ist, um alle gesendeten Frequenzen zu detek- tieren bzw. voneinander zu trennen. Eine Messung des Bitmusters des oben genannten 80-Bit RFID-Tags liegt typischerweise im Bereich von MikroSekunden, z. B. 1 μs .
Es ist ein Vorteil einer solchen fernablesbaren Identifikationsmarke, daß Mehr-Bit-Informationen sehr schnell oder simultan auslesbar sind. Weiterhin ist ihre Realisierung einfach, z. B. durch Einsatz passiver Bauteile, und entsprechend preiswert durchführbar . -
Es ist vorteilhaft, wenn das Sende-/Empfangs-Antennensystem mit den Schwingkreisen gekoppelt ist, weil sich so eine einfache realisierbare Wellenübertragung ergibt.
Es ist weiterhin vorteilhaft, wenn das Sende-/Empfangs-Anten- nensystem einen Primärschwingkreis und damit verbunden eine Eingangsantenne und eine Ausgangsantenne aufweist. Der Primärschwingkreis beinhaltet mindestens einen Primärkondensator und mindestens eine Primärspule je Schwingkreis. Mindestens zwei Schwingkreise wiederum weisen jeweils mindestens eine Sekundärspule und einen Sekundärkondensator auf, wobei die jeweilige Sekundärspule mit einer entsprechenden Primärspule induktiv gekoppelt ist. Mit einer solchen Anordnung ist eine einfache, verschleißarme, effektive und auf Biegungen weitgehend tolerante An- kopplung des Antennensystems an die Schwingkreise möglich.
Alternativ kann aber auch eine andere Zahl von Antennen ver- wendet werden, z. B. nur eine kombinierte Sende-/Empfangs- Antenne oder mehrere Antennen.
Es ist günstig, wenn jeder Sekundärkondensator eine unterschiedliche Kapazität aufweist. Durch die Kapazität kann die Eigenfrequenz eines Schwingkreises mit hoher Genauigkeit eingestellt werden. Es ist weiterhin vorteilhaft, wenn die femauslesbare Identifikationsmarke eine Verzögerungseinrichtung aufweist, die eine Verzögerung des Signalgangs zwischen Empfang eines Signals und Abstrahlung eines Signals bewirkt. Dadurch ist es mög- lieh, mehrere Identifikationsmarken zu identifizieren, auch wenn diese von einem einzigen Puls angeregt werden. Ohne zeitliche Spreizung der Antwort der Identifikationsmarken würden diese gleichzeitig antworten und so unterschiedliche Bitmuster oder mehrere gleiche Bitmuster nicht oder nur mit sehr großem Aufwand diskriminiert werden können. Ein solches Problem tritt beispielsweise auf, wenn mehrere Waren gleichzeitig erfaßt werden sollen, z. B. in einem Einkaufswagen.
Dabei ist es besonders bevorzugt, wenn die jeweilige Verzöge- rungszeit signifikant größer ist als die Zeit zur Abstrahlung der Signale, weil so die abgestrahlten Signale gut voneinander getrennt werden können.
Eine zeitliche Entzerrung mehrerer Identifikationsmarken ist beispielsweise durch eine statistische Verteilung der Verzögerungszeit möglich, alleine oder auch zusammen mit anderen Maßnahmen (Supertag, Samsys, etc.). So kann man z. B. natürliche oder bewußte eingeführte Fertigungstoleranzen der Verzögerungsvorrichtung ausnutzen. Beispielsweise läßt sich eine spontane Rückantwort der Identifikationsmarke bei Einsatz einer Funkenstrecke realisieren, indem man die Kennwerte des Ladekondensators oder der Funkenstrecke selbst innerhalb einer Fertigungsbreite schwanken läßt. Dadurch lassen sich z. B. Verzögerungszeiten von bis zu wenigen Sekunden realisie- ren.
Beim 80-Bit-RFID-Tag mit einer Antwortzeit von 1 μs sind in einer Sekunde 106 Zeitfenster belegbar, so daß realistischerweise 1000 Identifikationsmarken gleichzeitig mit ge- ringer Fehlerrate identifizierbar sind. Allgemein ist es vorteilhaft, wenn die Zeit der Verzögerung signifikant größer ist als die Zeit zur Abstrahlung der Signale.
Beim Einsatz des 80-Bit-RFID-Tags im Bereich von 2,45 GHz bei einem Einkaufswagen ist zu beachten, daß dieser heutzutage meist aus Metall gefertigt ist und so die Strahlung abschirmt. Zwar ist eine Einstrahlung/Ablesung von oben möglich, die Sicherheit der Ablesung wird aber reduziert. Er- setzt man einen heutigen Einkaufswagen Z; B. durch einen aus Kunststoff aufgebauten, so ist eine Einstrahlung/Ablesung aus mehreren Richtungen möglich und so eine Identifizierung optimierbar.
Es ist besonders günstig im Hinblick auf eine Implementierung, wenn die Verzögerungseinrichtung eine Funkenstrecke ist, die z. B. vom Primärkondensator bespeisbar ist.
Es ist zur Anwendung bei verschiedenen Gütern auch vorteil- haft, wenn die gesamte Schaltung, aber mindestens das Sende- /Empfangs-Antennensystem und die Schwingkreise, in Dünnschicht-Technik auf einem flexiblen Substrat aufgebracht sind. Dadurch kann auf Einkristallsubstrate verzichtet werden, wodurch eine Herstellung preisgünstig ist. Durch die Flexibilität des Substrats, z. B.aus Papier oder Kunststoff, kann die Identifikationsmarke flach ausgeführt sein und flexibel aufbringbar, z. B. in Klebeetiketten oder auf Verpackungen.
Bei Verwendung einer durch einen Ladekondensator gespeisten Funkenstrecke sollte günstigerweise auch ein Gleichrichter zur Aufladung des Ladekondensators in Dünnschicht-Technik aufgebracht sein.
Selbstverständlich kann die Identifizierungsmarke auch weitere Bauelemente enthalten, z. B. Gleichrichter, Batterien, Sensoren etc. Die Anwendungen sind allgemein eine Fernabfrage zur Identifizierung von Objekten, wie z. B. beim Einkauf in Supermarkten, in der Lagerhaltung oder beim Transport innerhalb von Lo- gistikketten. Mögliche Anwendungsgebiete sind z. B. in der Werbeschrift der Siemens AG (Systeme "MOBY") aufgeführt.
Statt eines Radiowellensignals kann analog z. B. auch ein akustomagnetisches Signal verwendet wird.
Das folgende Ausführungsbeispiel zeigt in Figur 1 schematisch in Aufsicht eine fernablesbare Identifikationsmarke T.
Auf einem Substrat 11 aus Kunststoff ist eine Schaltungs- anordnung in Dunnschicht-Technik aufgebracht, so daß die
Identifikationsmarke T biegsam ist. Die Schaltungsanordnung umfaßt ein Sende-/Empfangs-Antennensystem 1 und n (n 2) Schwingkreise 81,..., 8n.
Das Sende-/Empfangs-Antennensystem 1 beinhaltet eine Ein- gangsantenne 2 zum Empfang von Radiowellen und eine Ausgangsantenne 3 zur Abstrahlung von Radioweilen. Diese beiden Antennen 2,3 sind mit einem Pπmarschwingkreis 4 verbunden, der wiederum n in Reihe geschaltete Primarspulen 7 mit der glei- chen Induktivität Lp und einen Ladekondensator 5 mit einer
Kapazität C0 und integriertem Gleichrichter aufweist. Zusätzlich ist mit den Primarspulen 7 eine Funkenstrecke 6 in Reihe geschaltet .
Jeder Primarspule 7 liegt ein Schwingkreis 81,..., 8n gegenüber, der jeweils eine Sekundarspule 9 mit Induktivität Ls und einen Sekundarkondensator 101,..., lOn mit Kapazität Cl,...,Cn umfaßt. Die Sekundarspule 9 ist mit der jeweiligen Primarspule 7 induktiv gekoppelt. Die Induktivität Ls der Se- kundarspule 9 ist für jeden Schwingkreis 81,...., 8n gleich. Hingegen sind die Kapazitäten Cl,...,Cn der Sekundärkonden- satoren 101,..., lOn jeweils unterschiedlich dimensioniert, und zwar so, daß die Eigenfrequenzen fl,...,fn der Schwingkreise 81,...., 8n äquidistant in einem Abstand von 1 MHz von- einander entfernt sind. Die Zahl n der Schwingkreise Schwingkreis 81,...., 8n beträgt 80, so daß ein 80-Bit-RFID-Tag vorliegt.
Die Identifikationsmarke T kann so betrieben werden, dass von einem externen Sender ein Radiosignal ausgesandt wird. Nach Aufnahme dieses Signals über die Eingangsantenne 2 der Identifikationsmarke T, einer Aufladung des Ladekondensators 5 und einer zeitverzögerten Durchschaltung der Funkenstrecke 6 wird der Schwingkreis 4 in Schwingung versetzt. Diese Schwin- gung wird durch die induktive Kopplung auf die Sekundärschwingkreise 81,..., 8n übertragen, welche wiederum je nach Übereinstimmung der von außen aufgegebenen Frequenz mit der Eigenfrequenz zu einer Schwingung angeregt werden.
Die Schwingung der Schwingkreise 81,..., 8n wird wiederum über die Ausgangsantenne 3 abgestrahlt und kann so durch einen externen Empfänger detektiert werden, und danach ausgewertet werden. Bei Überstreichen eines Frequenzbandes von mindestens 80 MHz mit einem Chirp-Puls wird das gesamte Spektrum der an- sprechbaren Eigenfrequenzen fl,...,fn abgestrahlt.

Claims

Patentansprüche
1. Femauslesbare Identifikationsmarke (T) , aufweisend
- mindestens zwei Schwingkreise (81,...8n),
- mindestens ein mit den Schwingkreisen (81,...8n) gekoppeltes Sende-/Empfangs-Antennensystem (1), d a d u r c h g e k e n n z e i c h n e t, d a ß mindestens zwei Schwingkreise (81,...8n) eine unterschiedliche Eigenfrequenz (fl,...,fn) aufweisen.
2. Femauslesbare Identifikationsmarke (T) nach Anspruch 1, bei der das Sende-/Empfangs-Antennensystem (1) mit den Schwingkreisen (81,...8n) induktiv gekoppelt ist.
3. Femauslesbare Identifikationsmarke (T) nach einem der Ansprüche 1 oder 2, bei der
- das Sende-/Empfangs-Antennensystem (1) einen Primärschwingkreis (4) und damit verbunden eine Eingangsantenne (2) und eine Ausgangsantenne (3) aufweist, - der Primärschwingkreis (4) mindestens einen Primärkondensator (5) und mindestens eine Primärspule (3) je Schwingkreis (81,...8n) aufweist,
- der Schwingkreis (81,...8n) mindestens eine Sekundärspule (4) und einen Sekundärkondensator (101, ,10n) aufweist, und die jeweilige Sekundärspule (4) mit einer entsprechenden Primärspule (3) induktiv gekoppelt ist.
4. Femauslesbare Identifikationsmarke (T) nach Anspruch 3, bei der jeder Sekundärkondensator (101, ,10n) eine unter- schiedliche Kapazität (Cl,...,Cn) aufweist.
5. Femauslesbare Identifikationsmarke (T) nach einem der vorhergehenden Ansprüche, bei der eine Verzögerungseinrichtung zur Verzögerung des Signalgangs vorhanden ist.
6. Femauslesbare Identifikationsmarke (T) nach Anspruch 5, bei der die Verzögerungseinrichtung eine Funkenstrecke (5) ist, die vom Primärkondensator (4) bespeisbar ist.
7. Femauslesbare Identifikationsmarke (T) nach einem der vorhergehenden Ansprüche, bei der mindestens das Sende- /Empfangs-Antennensystem (1) und die Schwingkreise (81,...8n) in Dünnschicht-Technik auf einem flexiblen Substrat (11) aus Papier oder Kunststoff aufgebracht sind.
8. Verwendung einer fernauslesbaren Identifikationsmarke (T) als Preisschild oder Barcode.
9. Verfahren zum Betrieb einer Identifikationsmarke (T) , bei dem
- ein äußeres Radiowellensignal vom Sende-/Empfangs- Antennensystem (1) aufgenommen und in die Schwingkreise
(81,...8n) eingekoppelt wird,
- die in den Schwingkreisen (81,...8n) erzeugten Signale über das Sende-/Empfangs-Antennensystem (1) wieder abgegeben werden.
10. Verfahren nach Anspruch 9, bei dem das äußere Radiowellensignal einen Frequenzbereich überstreicht, das mindestens zwei Eigenfrequenzen (fl,...,fn) der Schwingkreise (81,...8n) beinhaltet.
11. Verfahren nach Anspruch 10 zur Identifizierung von Waren in einem Transportbehälter, bei der die Schwingkreise (81,...8n) um jeweils mindestens 1 MHz verschiedene Eigenfrequenzen (fl,...,fn) aufweisen.
12. Verfahren einem der Ansprüche 9 bis 11, bei dem eine Zeit zwischen Aufnahme des äußeren Radiowellensignals und der Ab- Strahlung der in den Schwingkreisen (81,...8n) erzeugten Signale mittels einer Verzögerungseinrichtung verzögert wird, wobei die Verzögerungszeit mehrerer Identifikationsmarken (T) zeitlich entzerrt ist.
13. Verfahren einem der Ansprüche 8 bis 12, bei dem statt eines Radiowellensignals ein akustomagnetisches Signal verwendet wird.
PCT/DE2000/003882 1999-11-05 2000-11-06 Fernauslesbare identifikationsmarke und verfahren zum betrieb einer solchen WO2001033489A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/307,366 US7088245B2 (en) 1999-11-05 2002-12-02 Remote-readable identification tag and method for operating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19953334.2 1999-11-05
DE19953334A DE19953334C2 (de) 1999-11-05 1999-11-05 Fernauslesbare Identifikationsmarke und Verfahren zum Betrieb mehrerer solcher Identifikationsmarken

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/307,366 Continuation US7088245B2 (en) 1999-11-05 2002-12-02 Remote-readable identification tag and method for operating the same

Publications (2)

Publication Number Publication Date
WO2001033489A2 true WO2001033489A2 (de) 2001-05-10
WO2001033489A3 WO2001033489A3 (de) 2001-09-27

Family

ID=7928055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003882 WO2001033489A2 (de) 1999-11-05 2000-11-06 Fernauslesbare identifikationsmarke und verfahren zum betrieb einer solchen

Country Status (3)

Country Link
US (1) US7088245B2 (de)
DE (1) DE19953334C2 (de)
WO (1) WO2001033489A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042160A1 (de) * 2004-08-31 2006-03-09 Infineon Technologies Ag Verfahren und Vorrichtung zum Identifizieren von mindestens einer Antenne anhand von deren Resonanzfrequenz und Identifikations-System
EP1950716A2 (de) 2007-01-24 2008-07-30 United Security Applications ID, Inc. Universal-Verfolgungsanordnung
US7724139B2 (en) 2007-01-24 2010-05-25 United Security Applications Id, Inc. Universal tracking assembly
US8081078B2 (en) 2007-01-24 2011-12-20 United Security Applications Id, Inc. Universal tracking assembly

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636733B1 (en) 1997-09-19 2003-10-21 Thompson Trust Wireless messaging method
DE10145498C2 (de) * 2001-09-14 2003-08-07 Hermos Informatik Gmbh Mobiles Transponder-Lesegerät und Netzwerk zum Überwachen von transpondertragenden Objekten
US7938722B2 (en) * 2005-09-12 2011-05-10 Igt Enhanced gaming chips and table game security
DE10258670A1 (de) * 2002-12-13 2004-06-24 Giesecke & Devrient Gmbh Transponder zur berührungslosen Übertragung von Daten
US20110163857A1 (en) * 2003-04-09 2011-07-07 Visible Assets, Inc. Energy Harvesting for Low Frequency Inductive Tagging
US8681000B2 (en) 2003-04-09 2014-03-25 Visible Assets, Inc. Low frequency inductive tagging for lifecycle management
US7675422B2 (en) * 2003-04-09 2010-03-09 Visible Assets, Inc. Networked RF Tag for tracking people by means of loyalty cards
DE102004037347A1 (de) 2004-08-02 2006-02-23 Infineon Technologies Ag Identifikationsdatenträger-Anordnung, Lese-Vorrichtung und Identifikations-System
WO2007002511A2 (en) * 2005-06-24 2007-01-04 Enxnet, Inc. Passive resonant reflector
US8880047B2 (en) 2005-08-03 2014-11-04 Jeffrey C. Konicek Realtime, location-based cell phone enhancements, uses, and applications
US8295851B2 (en) 2005-08-03 2012-10-23 Michael Edward Finnegan Realtime, interactive and geographically defined computerized personal matching systems and methods
DE102005062827A1 (de) * 2005-12-27 2007-06-28 Bundesdruckerei Gmbh Dokument mit einem Datenspeicher, Vorrichtung und Verfahren zum Lesen eines Funketiketts und Computerprogrammprodukt
KR100753830B1 (ko) * 2006-04-04 2007-08-31 한국전자통신연구원 인공자기도체를 이용한 고임피던스 표면 구조 및 그 구조를이용한 안테나 장치 및 전자기 장치
DE202007002838U1 (de) * 2007-02-27 2008-07-03 Robert Bosch Gmbh Werkstückidentifikationssystem
GB2492010A (en) * 2010-04-08 2012-12-19 Access Business Group Int Llc Point of sale inductive systems and methods
JP2013179560A (ja) * 2012-02-01 2013-09-09 Sumida Corporation ワイヤレス通信システム、ならびに、当該ワイヤレス通信システムにおいて利用される携帯型小型装置、携帯型小型装置用の収納ケースおよび携帯型小型装置用の通信装置。

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209783A (en) * 1977-03-30 1980-06-24 Tokyo Shibaura Electric Co., Ltd. Object identification system
US4263595A (en) * 1978-05-16 1981-04-21 Siemens Aktiengesellschaft Apparatus for identifying objects and persons
US4458235A (en) * 1980-02-27 1984-07-03 Tokyo Shibaura Denki Kabushiki Kaisha Foreground subject-identifying apparatus
US5444223A (en) * 1994-01-11 1995-08-22 Blama; Michael J. Radio frequency identification tag and method
WO1998026390A1 (de) * 1996-12-11 1998-06-18 Vacuumschmelze Gmbh Etiketten in akustomagnetischen diebstahlsicherungssystemen
US5891240A (en) * 1991-09-24 1999-04-06 Gordian Holding Corporation Radio frequency automatic identification system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069472A (en) * 1975-12-25 1978-01-17 Tokyo Shibaura Electric Co., Ltd. Foreground subject-identifying apparatus
US4823228A (en) * 1988-02-08 1989-04-18 Harris Corp. RF harmonic monitor for detecting potential lightning strikes by induced corona
DE3807936A1 (de) * 1988-03-10 1989-09-21 Leiendecker Hans Juergen Elektronisches diebstahlsicherungssystem
DE4009579A1 (de) * 1989-04-18 1991-09-26 Guenther Niessen System zur fernerkennung von gegenstandskennzeichnungen
US5099227A (en) * 1989-07-18 1992-03-24 Indala Corporation Proximity detecting apparatus
DE4213065A1 (de) * 1992-04-21 1993-10-28 Norbert H L Dr Ing Koster Selbstidentifizierende Telemetrievorrichtung
US5446447A (en) * 1994-02-16 1995-08-29 Motorola, Inc. RF tagging system including RF tags with variable frequency resonant circuits
DE4409984B4 (de) * 1994-03-23 2004-05-06 Volkswagen Ag Wechselstromzündung mit optimierter elektronischer Schaltung
JPH08123919A (ja) 1994-10-28 1996-05-17 Mitsubishi Electric Corp 非接触icカードシステムおよびその通信方法
AUPO055296A0 (en) * 1996-06-19 1996-07-11 Integrated Silicon Design Pty Ltd Enhanced range transponder system
DE19717505C2 (de) * 1997-04-25 1999-02-18 Diehl Ident Gmbh Transponder-Kommunikationseinrichtung
US5908444A (en) * 1997-06-19 1999-06-01 Healing Machines, Inc. Complex frequency pulsed electromagnetic generator and method of use
AU764920B2 (en) * 1997-09-11 2003-09-04 Precision Dynamics Corporation Radio frequency identification tag on flexible substrate
US6302147B1 (en) * 1999-04-08 2001-10-16 Joseph Lorney Rose Automatic dry release valve coupling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209783A (en) * 1977-03-30 1980-06-24 Tokyo Shibaura Electric Co., Ltd. Object identification system
US4263595A (en) * 1978-05-16 1981-04-21 Siemens Aktiengesellschaft Apparatus for identifying objects and persons
US4458235A (en) * 1980-02-27 1984-07-03 Tokyo Shibaura Denki Kabushiki Kaisha Foreground subject-identifying apparatus
US5891240A (en) * 1991-09-24 1999-04-06 Gordian Holding Corporation Radio frequency automatic identification system
US5444223A (en) * 1994-01-11 1995-08-22 Blama; Michael J. Radio frequency identification tag and method
WO1998026390A1 (de) * 1996-12-11 1998-06-18 Vacuumschmelze Gmbh Etiketten in akustomagnetischen diebstahlsicherungssystemen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042160A1 (de) * 2004-08-31 2006-03-09 Infineon Technologies Ag Verfahren und Vorrichtung zum Identifizieren von mindestens einer Antenne anhand von deren Resonanzfrequenz und Identifikations-System
EP1950716A2 (de) 2007-01-24 2008-07-30 United Security Applications ID, Inc. Universal-Verfolgungsanordnung
EP1950716A3 (de) * 2007-01-24 2009-11-04 United Security Applications ID, Inc. Universal-Verfolgungsanordnung
US7724139B2 (en) 2007-01-24 2010-05-25 United Security Applications Id, Inc. Universal tracking assembly
US7859410B2 (en) 2007-01-24 2010-12-28 United Security Applications Id, Inc. Universal tracking assembly
US8081078B2 (en) 2007-01-24 2011-12-20 United Security Applications Id, Inc. Universal tracking assembly

Also Published As

Publication number Publication date
US7088245B2 (en) 2006-08-08
DE19953334A1 (de) 2001-06-13
DE19953334C2 (de) 2002-05-08
US20030117330A1 (en) 2003-06-26
WO2001033489A3 (de) 2001-09-27

Similar Documents

Publication Publication Date Title
WO2001033489A2 (de) Fernauslesbare identifikationsmarke und verfahren zum betrieb einer solchen
DE69323995T2 (de) Verfahren zum Abstimmen von elektronischen Antwortgeräten
DE69321073T2 (de) Erfassung einer Vielzahl von Artikeln
DE60319987T2 (de) Frequenzvariables etikett
US6130612A (en) Antenna for RF tag with a magnetoelastic resonant core
DE60004683T2 (de) Doppelkabel zum verbinden einer elektronischen warenüberwachungsantenne mit einer rfid-vorrichtung
DE602005003565T2 (de) System und verfahren zum selektiven lesen von rfid-einrichtungen
US9454683B2 (en) Ultra wideband radio frequency identification system, method, and apparatus
DE69736078T2 (de) Spreizspektrum-Frequenzsprunglesesystem
EP1224607B1 (de) Verfahren zum auslesen und beschreiben von rfid-transpondern
DE3854478T2 (de) Vorrichtung und verfahren zur kennzeichnung.
DE19717505C2 (de) Transponder-Kommunikationseinrichtung
DE69620658T2 (de) Sende-Empfänger für kontaktloses IC-Kartensystem
DE69130447T2 (de) System und Verfahren zur kontaktlosen Datenübertragung
EP0499582B1 (de) Deaktivierungsvorrichtung für Resonanzetiketten
DE202006017474U1 (de) Lesegerät in Verbindung mit wenigstens einer Antenne für ein RFID-System und Antennenmodul in dem RFID-System
DE69921658T2 (de) Optisches Interface zwischen Empfänger und Auswerteeinheit für Antwortsignale eines Etiketts in RFID-Systemen zur Erkennung von leistungsschwachen Resonanzetiketten
DE102006028736A1 (de) System zur mobilen Bestandskontrolle eines Objekbestandes basierend auf RFID
DE69908571T2 (de) System und verfahren zum realisieren besonderer funktionen in kontaktlosen etiketten
DE102006001504A1 (de) Identifikations-Datenträger, Lese-Vorrichtung, Identifikations-System und Verfahren zum Herstellen eines Identifikations-Datenträgers
DE2151105B2 (de) Anordnung zum Identifizieren von Gegenständen
WO1996027844A2 (de) Transponderanordnung für elektromagnetische abfragesysteme
EP1190369B1 (de) Kommunikationsendgerät
EP1639526B1 (de) Elektronisches bauelement für identifikationsmarken
DE4110683A1 (de) Hochfrequenz-sendeeinheit in kleinstbauweise

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): BR CN IN JP KR MX RU UA US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): BR CN IN JP KR MX RU UA US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10307366

Country of ref document: US

122 Ep: pct application non-entry in european phase