WO2001033292A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2001033292A1
WO2001033292A1 PCT/JP1999/006018 JP9906018W WO0133292A1 WO 2001033292 A1 WO2001033292 A1 WO 2001033292A1 JP 9906018 W JP9906018 W JP 9906018W WO 0133292 A1 WO0133292 A1 WO 0133292A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
display device
crystal display
pixel electrode
Prior art date
Application number
PCT/JP1999/006018
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Sato
Genshiro Kawachi
Yoshiro Mikami
Katsumi Kondo
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1999/006018 priority Critical patent/WO2001033292A1/en
Publication of WO2001033292A1 publication Critical patent/WO2001033292A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/104Materials and properties semiconductor poly-Si

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device in which a pixel electrode and a counter electrode are arranged on the same substrate, and a liquid crystal is controlled and displayed by applying a voltage between both electrodes. It relates to electrode materials and electrode structures. Background art
  • the pixel electrode of the transparent conductive film formed on the transparent insulating substrate and the liquid crystal held between the counter electrodes of the transparent conductive film formed on the opposing substrate generally have 2.
  • a vertical electric field type liquid crystal display device that controls display by changing the alignment direction of liquid crystal molecules by applying a vertical electric field is widely used.
  • FIG. 26 shows an example of a pixel portion of a conventional in-plane switching mode liquid crystal display device.
  • Scanning signal lines 52 and 53, video signal line 13 and counter voltage signal line 54 are formed on transparent insulating substrate 2 made of glass, near the intersection of scanning signal line 52 and video signal line 54.
  • a thin film transistor 8 using amorphous Si is formed.
  • the thin film transistor 8 has a transparent conductive film I T0 It is connected to a pixel electrode 3 made of a film.
  • the counter voltage signal line is connected to a counter electrode 4 made of a metal film of the same layer, and generates an electric field that is substantially parallel to the substrate between the counter electrode 4 and the pixel electrode to drive the liquid crystal.
  • a liquid crystal display device in which a driving circuit is formed on a thin film transistor substrate using a thin film transistor is known.
  • the number of parts can be reduced to reduce costs, and the number of connection points to external terminals can be reduced. Therefore, finer wiring intervals can be realized, and high definition can be achieved. Disclosure of the invention
  • An object of the present invention is to provide a liquid crystal display device having a high viewing angle, a high aperture ratio, and a high definition.
  • a first feature of the liquid crystal display device of the present invention is that at least one of the pair of substrates is transparent, a liquid crystal layer sandwiched between the pair of substrates, and at least one of the pair of substrates is arranged on at least one of the substrates.
  • the pixel electrode and the counter electrode are made of a conductive film containing Si as a main component.
  • a second feature of the liquid crystal display device of the present invention is that at least one of the pair of substrates is transparent, a liquid crystal layer sandwiched between the pair of substrates, and at least one of the pair of substrates is disposed on one of the substrates.
  • the counter electrode is formed of a conductive film containing Si as a main component.
  • a third feature of the liquid crystal display device of the present invention is that at least one of the pair of substrates is transparent, a liquid crystal layer sandwiched between the pair of substrates, and at least one of the pair of substrates is disposed on one of the substrates.
  • the display is performed by controlling the liquid crystal molecules in the layer, and the pixel electrode or the counter electrode is formed of a conductive film containing Si as a main component.
  • a fourth feature of the liquid crystal display device of the present invention is that at least one of the pair of substrates is transparent, a liquid crystal layer sandwiched between the pair of substrates, and the at least one of the pair of substrates is disposed on at least one of the substrates.
  • a counter electrode arranged in the same direction as the electrodes, and displaying by controlling the liquid crystal molecules of the liquid crystal layer by a voltage applied between the pixel electrode and the counter electrode; It is composed of a crystalline semiconductor film and the counter electrode is composed of ITO.
  • a fifth feature of the liquid crystal display device of the present invention is that at least one of the pair of substrates is transparent, a liquid crystal layer sandwiched between the pair of substrates, and an image arranged on at least one of the pair of substrates.
  • a counter electrode disposed in the same direction as that of the pixel electrode.
  • the display is performed by controlling the liquid crystal molecules of the liquid crystal layer by a voltage applied between the pixel electrode and the counter electrode.
  • the counter electrode is composed of a polycrystalline semiconductor film.
  • a sixth characteristic of the liquid crystal display device of the present invention is that at least one of the pair of substrates is transparent, a liquid crystal layer sandwiched between the pair of substrates, and at least one of the pair of substrates.
  • a video signal electrode disposed on one of the substrates, a scanning signal electrode disposed so as to cross the video signal electrode, a thin film transistor disposed near an intersection of the video signal electrode and the scanning signal electrode;
  • the pixel electrodes are formed of a conductive film containing Si as a main component, and are arranged in a plane.
  • the opposing electrode is constituted by a transparent electrode.
  • a seventh feature of the liquid crystal display device of the present invention is that the opposing substrate and the thin film transistor substrate facing each other with the liquid crystal interposed therebetween, and the thin film transistor substrate Cross each other A video signal electrode and a scanning signal electrode, a thin film transistor disposed near an intersection of the scanning signal electrode and the video signal electrode, and a pixel electrode connected to a source of the thin film transistor.
  • a substantially parallel electric field is formed on the thin film transistor substrate between the opposing electrodes connected to the opposing voltage signal lines arranged in the same direction as the pixel electrodes, and applied to the liquid crystal to control the transmitted light.
  • At least one of the electrode and the counter electrode is made of a conductive film containing Si as a main component.
  • An eighth feature of the liquid crystal display device of the present invention is that an opposing substrate and a thin film transistor substrate which face each other with a liquid crystal interposed therebetween, a video signal line and a scanning signal line crossing each other on the thin film transistor substrate, a scanning signal line and a video signal line A thin film transistor connected to the video signal line and turned on by the scanning signal line, and a pixel electrode connected to the source of the thin film transistor.
  • a substantially parallel electric field is formed on the thin-film transistor substrate between the counter electrodes connected to the signal lines and applied to the liquid crystal to control the transmitted light, and the thin-film transistor has a channel made of a polycrystalline Si film.
  • the pixel electrode or Means that the counter electrode is formed of the same conductive film as the channel in the same layer as the channel.
  • a ninth feature of the liquid crystal display device of the present invention is that the liquid crystal display device has at least one pair of transparent substrates and a liquid crystal layer sandwiched between the substrates, and one of the pair of substrates has at least a surface thereof.
  • Semiconductor having a transparent electrode formed on an insulating main surface, and a patterned semiconductor layer opposed to the transparent electrode via the first insulating layer at least. That is, the liquid crystal layer is driven by an electric field generated between the layer and the transparent electrode.
  • a tenth feature of the liquid crystal display device of the present invention is that the liquid crystal display device has at least one transparent substrate and a liquid crystal layer sandwiched between the substrates, and one of the pair of substrates has at least one.
  • the surface is insulative, the transparent electrode formed on the insulative main surface, the semiconductor layer formed on the first insulating layer, and a part of the semiconductor layer via the gate insulating layer.
  • a plurality of thin film transistors each including an opposing gate electrode and a pair of semiconductor layers of the first conductivity type; a plurality of scan signal lines connected to the plurality of thin film transistors and formed so as to cross each other; and a plurality of video signals
  • At least one of the pair of first conductive type semiconductor layers has a pattern and extends on the transparent electrode, and is generated between the patterned first conductive type semiconductor layer and the transparent electrode. Due to the electric field To drive the liquid crystal.
  • FIG. 1 is a diagram showing details of a pixel portion of a liquid crystal display device according to the present invention.
  • FIG. 2 is a cross-sectional view of a pixel in FIG. 1 taken along a plane parallel to a scanning signal line.
  • FIG. 3 is a cross section of the additional capacitor of FIG. Fig. 4 shows the thin film of Fig. 1.
  • 3 is a cross section of a transistor.
  • FIG. 5 is an equivalent circuit of a liquid crystal display device with a built-in drive circuit.
  • FIG. 6 is an example of an equivalent circuit of a pixel.
  • FIG. 7 is a diagram of an example in which a pixel electrode is connected to a storage capacitor 55 formed between the pixel electrode and the counter voltage signal line 44.
  • FIG. 8 is an example of a liquid crystal display device using a thin-film transistor composed of a polycrystalline Si film having the pixels of FIG.
  • FIG. 9 is an example of a method of manufacturing a thin film transistor substrate using a polycrystalline Si film having the pixels of FIG.
  • FIG. 10 is an example of a pixel of the liquid crystal display device of the present invention.
  • FIG. 11 is a cross section of the pixel of FIG.
  • FIG. 12 is a cross section of the storage capacitor of the pixel of FIG.
  • FIGS. 13 and 14 show a method of forming a thin film transistor substrate having the pixels shown in FIG.
  • FIG. 15 is an example of a pixel of the liquid crystal display device according to the present invention.
  • FIG. 16 is a cross-sectional view of the pixel in FIG. 15 from the drain contact layer 91 to the vicinity of the additional capacitance 90.
  • Fig. 17 is an example of a pixel of the liquid crystal display device using a thin-film transistor composed of a polycrystalline
  • FIG. 15 is a cross-sectional view of the liquid crystal display device having the pixels of FIG. 15 in a direction perpendicular to the video signal line 13.
  • FIG. 18 is an example of a pixel of the liquid crystal display device according to the present invention.
  • FIG. 19 is an example of a pixel of the liquid crystal display device according to the present invention.
  • FIG. 20 is a sectional view showing the vicinity of the thin film transistor of the pixel shown in FIG.
  • FIG. 21 is a cross-sectional view near the storage capacitance of the pixel in FIG. Fig. 22 and Fig.
  • FIG. 23 shows an example of a method for manufacturing a thin film transistor substrate having the pixels shown in FIG.
  • FIG. 24 is an example of a pixel of the liquid crystal display device according to the present invention. No.
  • FIG. 25 is a cross section corresponding to a section between A-A ′ in FIG.
  • FIG. 26 shows an example of a pixel portion of an in-plane switching mode liquid crystal display device according to the prior art.
  • FIG. 1 is a diagram showing details of a pixel portion of a liquid crystal display device according to the present invention.
  • a video signal line 13 and a scanning signal line 52 are arranged on a transparent insulating substrate 2, and a resource, a drain, and a channel are formed in a single layer by a polycrystalline Si film near the intersection.
  • a coplanar thin-film transistor 8 having a gate electrode formed on the channel is formed.
  • an n-type thin film transistor is formed.
  • the transparent insulating substrate for example, a glass substrate can be used.
  • the gate electrode 9 of the thin-film transistor 8 is formed of the same metal film as the scan signal line 52 on the same layer as the scan signal line 52, and is connected to the scan signal line 52.
  • the drain 10 of the thin-film transistor 8 is connected to the video signal line 13 via the contact hole 7. Drain of thin-film transistor 8
  • Numeral 10 is a polycrystalline Si film in the same layer as the channel 22 of the thin-film transistor 8 and has the same n-type phosphorus as the source and drain of the thin-film transistor, and has conductivity.
  • the pixel electrode 3 is formed.
  • the pixel electrode 3 is connected to the source 11 of the thin-film transistor 8.
  • the additional capacitance 1 is formed between the polycrystalline Si film in the same layer as the pixel electrode 3 and the preceding scanning signal line 53 via a gate insulating film.
  • the pixel electrode 3 is connected to the lower capacitor electrode of the additional capacitor 1. At the top of video signal line 1 3
  • An ITO film which is a transparent conductive film forming the counter voltage signal line 14 and the counter electrode 4, is deposited via an inorganic insulating film made of SiN and an organic insulator made of polyimide.
  • the organic protective film 15 covers the video signal line 13 and the scanning signal lines 52 and 53, and is opened on the pixel electrode 3 to form the organic protective film opening 5.
  • the counter electrode opening 6 is located inside the organic protective film opening 5.
  • FIG. 2 is a cross-sectional view of a pixel in FIG. 1 taken along a plane parallel to a scanning signal line.
  • Video signal lines 13 made of a metal film are formed on a transparent insulating substrate 2 with a base film 19 and an interlayer insulating film 18 interposed therebetween.
  • An inorganic protection film 16 made of SiN and an organic protection film 15 made of polyimide are formed on the video signal line 13.
  • the organic protective film 15 is covered with an ITO film forming the counter electrode 4.
  • a pixel electrode 3 made of a polycrystalline Si film is formed on the transparent insulating substrate 2 via a base film 19, and the pixel electrode 3 is covered with only the inorganic protective film 16.
  • the direction of liquid crystal molecules is controlled by applying a voltage to the pixel electrode 3 and the counter electrode 4.
  • the chemical resistance is superior to a case where the pixel electrode is formed of a metal film that can be dry-etched, for example, an A1 alloy. . That is, if the pixel electrode 3 is made of a Si film, even if the inorganic protective film 16 on the pixel electrode 3 is made thinner, it is possible to suppress damage to the electrode due to the etching solution when etching the ITO film of the counter electrode. Things.
  • the pixel electrode 3 by forming the pixel electrode 3 with a Si film, it is possible to reduce defects due to the reaction with the liquid crystal.
  • the yield is improved. Further, by reducing the thickness of the inorganic protective film 16, the electric flux passing through the insulating film can be reduced, the electric field applied to the liquid crystal can be increased, and the driving voltage can be reduced.
  • the IT layer formed on the side wall of the inorganic protective film 16 can be used.
  • the opposing electrode 4 made of a film has an effect of shielding the electric field from the video signal line 13 to reduce crosstalk of a signal between pixels and improving image quality.
  • FIG. 3 is a cross-section of the additional capacitor of FIG.
  • a pixel electrode 3 composed of a polycrystalline Si film which is mounted on a transparent insulating substrate 2 via a base film 19, and a polycrystalline Si film which is doped with a phosphorus and boron.
  • Capacitive lower electrode 33 made of non-doped Si film
  • the capacitive contact layer 32 connected to the capacitive lower electrode 33 is self-aligned to p-type, which is different from the source and drain of the thin film transistor, by boron doping using the scanning signal line as a mask. Is formed. Also, connect between the capacitive contact layer 32 and the pixel electrode 3 doped with the same n-type as the source and drain.
  • the Pn connection region 31 is made of a polycrystalline Si film doped with phosphorus and boron.
  • the capacitance contact layer 32 is poled at a concentration of 10 20 cc or more, and the pixel electrode 3 is closed at a concentration of 10 20 cc or more. You.
  • the P n connection region 32 1 is heavily doped with both phosphorus and boron. The contact between the capacitance contact 32 and the pixel electrode 3 is ensured.
  • Capacitor lower electrode 3 3 gate insulating film 1-7 to previous scan signal line 5 3 via consisting of S i 0 2 film on are formed, added between the scanning signal line 3 and the capacitor lower electrode 3 3 volume 1 Is formed.
  • the additional capacitor 1 holds a negative voltage at which the preceding scanning signal line 53 turns off the n-type thin-film transistor, thereby inducing a hole in the polycrystalline Si film forming the lower electrode 33 of the capacitor. Then, it is electrically connected to the connected capacitor contact layer 32 made of the P-type polycrystalline Si film.
  • the additional capacitance consists of the capacitance contact layer 32 and the pn connection area 31. It is electrically connected to the pixel electrode through the capacitor and functions as a capacitor for holding the potential of the pixel electrode.
  • the additional capacitance 1 is formed via a gate oxide film which is thinner than a case where the capacitance is formed by the same conductive layer as the video signal wiring 13 via the interlayer insulating film 18 and a unit area.
  • the capacity per unit can be increased, and the area of the additional capacity can be reduced to improve the aperture ratio.
  • an inorganic protective film 16 made of SiN and an organic protective film 15 made of polyimide interposed through an ITO film
  • the voltage signal lines 14 are stacked.
  • the counter voltage signal line 14 also has the effect of blocking the electric field from the scanning signal line 53.
  • FIG. 4 is a cross section of the thin film transistor of FIG.
  • This figure shows a double-gate thin film transistor in which the gate electrode 9 is divided into two.
  • a drain 11 and a source 10 and a source 10 and a polycrystalline Si film which are connected to the transparent insulating substrate 2 via a base film 19 and are connected to a power of more than 10.sup.20 cc.
  • LDD 21 Lightly—Doped—Drain
  • a channel 22 made of an i film is formed.
  • a gate electrode 9 made of a metal film is formed on the channel 22 via a gate insulating film 17. The boundary between channel 22 and LDD 21 is formed in self-alignment with the end of gate electrode 9.
  • the drain 11 is connected to a video signal line 13 made of a metal film via a contact hole 7 opened in the interlayer insulating film 18 and the gate insulating film 17.
  • Source The pixel electrode 3 is connected to the pixel electrode 3 composed of the same layer of a phosphorus-doped polycrystalline Si film.
  • the source, drain, LDD and pixel electrode of the thin film transistor are n-type polycrystalline Si, and the capacitor contact layer is a p-type polycrystalline Si film.
  • the source, drain, LDD, and pixel electrode of the thin-film transistor can be P-type polycrystalline Si films, and the capacitor contact layer can be formed of n-type polycrystalline Si.
  • FIG. 5 is an equivalent circuit of a liquid crystal display device with a built-in drive circuit.
  • the scanning signal lines 42 and the video signal lines 13 that intersect each other are arranged in a matrix on the substrate 40.
  • a scanning signal line driving circuit 42 connected to a scanning signal line and a video signal line driving circuit 41 connected to a video signal line 13 are formed of a polycrystalline Si film on the periphery of the substrate 40. It is composed of a so-called CMOS circuit using n-type and p-type thin film transistors.
  • a counter voltage signal line 44 is arranged in parallel with the scanning signal line 42.
  • Pixels 45 are formed in a region defined by the scanning signal line 42 and the video signal line 13.
  • the substrate 40 is a transparent insulating substrate, for example, a glass substrate can be considered.
  • FIG. 6 is an example of an equivalent circuit of a pixel.
  • a thin film transistor 8 is formed near the intersection of the video signal line 13 and the scanning signal line 52.
  • the drain 11 of the thin-film transistor 8 is connected to the video signal line 13, and the source 10 of the thin-film transistor 8 is extended to the pixel electrode 3.
  • the gate electrode 9 of the thin-film transistor 8 is connected to the scanning signal line 52.
  • the counter electrode 4 is connected to a counter voltage signal line 44.
  • the pixel electrode 3 forms an additional capacitor 51 with the preceding scanning signal line 53.
  • the pixel electrode 3 and the counter electrode 4 are formed in parallel on the same substrate, and are substantially flat on the substrate. It has the function of generating a strong electric field and applying the electric field to the liquid crystal.
  • a positive voltage is applied to the selected scanning signal line 52 to turn on the thin-film transistor 8 connected to the scanning signal line.
  • the signal voltage from the video signal line 13 is applied to the pixel electrode 3 via the thin film transistor 10, and the additional capacitance 51 formed between the scanning signal line 53 at the previous stage and the counter electrode 4 via the liquid crystal.
  • the liquid crystal capacitor 50 formed during the writing is charged and writing is performed.
  • a negative voltage is applied to the selected scanning signal line 52 to turn off the thin film transistor, the video signal line 13 is electrically separated from the pixel electrode 3, and the pixel electrode 3 is connected to the additional capacitance 51 and The signal voltage is held by the electric charge charged in the liquid crystal capacitor 50.
  • writing is performed by sequentially selecting the scanning signal lines 42, a predetermined signal voltage is applied to each pixel to drive the liquid crystal, and an image is displayed.
  • the pixel electrode instead of connecting the pixel electrode to the additional capacitance 51 formed between the scanning electrode and the preceding scanning electrode in FIG. 6, the pixel electrode was formed between the pixel electrode and the counter voltage signal line 44 as shown in FIG. It can also be connected to the storage capacity 55.
  • the storage capacitor 55 has an effect of holding the signal voltage applied to the pixel electrode 3, similarly to the additional capacitor 51.
  • FIG. 8 is an example of a liquid crystal display device using a thin-film transistor composed of a polycrystalline Si film having the pixels of FIG.
  • the liquid crystal 62 is a liquid crystal having a positive dielectric anisotropy, and is sealed between the substrate 40 and the opposing substrate 61. The distance between the substrate 40 and the opposing substrate 61 is maintained by the maximum film thickness of the opposing voltage signal line 15 formed on the thin film transistor substrate. Both the substrate 40 and the opposing substrate 61 are formed of a transparent glass substrate, and an alignment film 64 for aligning the liquid crystal is formed on a surface in contact with the liquid crystal. In the alignment film 64, liquid crystal molecules are generally generated between the pixel electrode 3 and the counter electrode 4 by rubbing or anisotropic polymerization by polarized ultraviolet light. It has the function of orienting in the direction perpendicular to the electric field.
  • a color filter is formed on the counter substrate 61.
  • a substantially parallel electric field is generated between the pixel electrode 3 and the counter electrode 4 formed on the substrate 40 to change the direction of the liquid crystal molecules and control the plane of polarization of the transmitted polarized light. (Not shown) to control the brightness of the pixel by converting it to the amount of transmitted light.
  • Color display is performed by controlling the transmissivity of the pixels provided with color filters corresponding to the red, blue, and green colors.
  • the transparent conductive film formed on the opposing substrate shields an electric field such as static electricity from the opposing substrate side and suppresses fluctuation of a liquid crystal display.
  • FIG. 9 is an example of a method of manufacturing a thin-film transistor substrate using a polycrystalline Si film having the pixels of FIG.
  • a non-doped amorphous Si (a-Si) film 71 is deposited to a thickness of 50 nm by low-pressure CVD using disilane.
  • XeC1 pulse excimer laser light 70 is irradiated in a range of 30 OmJ to 50 OmJ per square centimeter, and the substrate is scanned to crystallize.
  • the crystal Si film 72 is used.
  • a SiO 2 film serving as a gate insulating film 22 is deposited to a thickness of 100 nm by a plasma CVD method using TE0S.
  • a metal film made of Nb is deposited, and photolithography is performed by dry etching using CF 4 gas to form a gate electrode 9 and a scanning signal line (not shown).
  • doping is performed using a phosphorus ion implantation method so that the phosphorus concentration in the polycrystalline Si film is from 10 17 Z cc to 10 18 Z cc.
  • An LDD 21 is formed to form a channel 22 made of non-doped polycrystalline Si in a self-aligned manner on the gate electrode 9 to obtain the structure shown in FIG. 9 (b).
  • the resist 73 is used as a mask, and the pixel electrode 3 is ion-implanted with phosphorus ions into the regions to be the source 10 and the drain 11 by ion implantation. Doping so as to be about 10 to the power of 20 / cc. Similarly, the pn connection region and the n-type transistor (not shown) of the driving circuit are similarly linked.
  • the gate insulating film can be removed by using a resist as a mask to expose the polycrystalline Si film, and can be doped by an ion shower method using PH 3 gas. After the resist is removed, the resist is used as a mask in the capacitive contact layer, the Pn junction region, and the p-type transistor region (not shown) of the drive circuit, and the boron concentration in the Si film is also reduced. Doping is performed so that it becomes 10 20 or more cc or more. After removing the resist, the implanted phosphorus and boron are activated by excimer laser or thermal annealing.
  • TE 0 interlayer insulating film 1 8 S consisting by Ri S i 0 2 film to a plasma CVD using to 5 0 0 nm deposition.
  • the interlayer insulating film 18 and the gate insulating film 17 on the drain 11 and the pixel electrode 3 are removed by photolithography by dry etching using CHF 3 gas.
  • a metal film made of a refractory metal such as Cr, M0, W, or an alloy of these is deposited to a thickness of 500 nm by sputtering, and a video signal is formed by photolithography using an ⁇ -etch.
  • a line 13 is formed and connected to the drain 11 of the thin film transistor to obtain the structure shown in FIG. 9 (d).
  • a 500-nm-thick inorganic protective film 16 made of SiN is deposited by plasma CVD and applied to the liquid crystal display device by dry etching using CF 4 or SF 6 gas. After opening a terminal section (not shown) for supplying signals and power from the outside, an organic protective film 15 made of polyimide is applied and photo-coated. It is formed by selective polymerization using UV irradiation with a mask.
  • the organic protective film 15 is a transparent conductive film made of IT 0 (Indium-Tin-Oxides) formed so as to open on the pixel electrode 3 and the terminal (not shown).
  • IT 0 Indium-Tin-Oxides
  • high-concentration ion implantation can be performed to form a single-drain thin-film transistor in which the source and the drain are directly connected to the channel without going through the LDD. It is known that p-type single-drain thin-film transistors are less deteriorated than n-type single-drain thin-film transistors. Are suitable.
  • FIG. 10 is an example of a pixel of the liquid crystal display device of the present invention.
  • the thin-film transistor 8 is formed near the intersection of the video signal line 13 and the scanning signal line 52.
  • a pixel electrode 3 made of a polycrystalline Si film that is connected to the same layer as the channel connected to the source of the thin-film transistor 8, and a channel electrode that is also connected to the same layer as the channel.
  • the opposing electrode 4 made of the polycrystalline Si film is formed.
  • the counter voltage signal line 14 and the counter electrode 4 are connected via the contact holes 7 and 81 by the capacitor upper electrode 82 made of the same metal layer as the video signal line 13. I have.
  • a storage capacitor 55 is formed between the pixel electrode 3 and the capacitor upper electrode 82 via an interlayer insulating film and a gate insulating film.
  • FIG. 11 is a cross section of the pixel of FIG.
  • a pixel electrode 3 made of a polycrystalline Si film and a counter electrode 4 are arranged in the same layer close to each other with a base film interposed therebetween.
  • the protective insulating film 8 5 may be a transparent organic insulating film such as S i N, addition of an inorganic insulating film such as S i 0 2, poly Lee Mi de.
  • FIG. 12 is a cross section of the storage capacitor of the pixel of FIG.
  • a pixel electrode 3 and a counter electrode 4 made of a polycrystalline Si film doped with phosphorus via a base film 19 are formed on a glass substrate 20.
  • the counter electrode 4 is connected to a counter voltage signal line 14 made of the same conductive film as a scan signal line (not shown) via a capacitor upper electrode 82.
  • the capacitor upper electrode 82 is formed of the same conductive film as the video signal line (not shown), and forms the storage capacitor 55 with the pixel electrode 3 via the interlayer insulating film 18 and the gate insulating film 17. .
  • FIG. 13 and 14 show a method of forming a thin film transistor substrate having the pixels shown in FIG.
  • a polycrystalline Si film is formed on a glass substrate by the same method as in FIG. 9, and a polycrystalline Si film 72 is formed by photolithography in the shape shown in FIG. 13 (a). . Since the pixel electrode 3 and the counter electrode 4 are formed of the same layer of polycrystalline Si film, they can be processed with the same photomask, and there is no misalignment of the mask, and the uniformity of the distance between the pixel electrode 3 and the counter electrode 4 can be improved. In addition, the Si film can be added by dry etching, and the recession during etching from the resist tin can be reduced as compared with the ITO film processed by etching and the metal film for forming wiring. Next, a gate insulating film made of a SiO 2 film is deposited.
  • a conductive film made of Cr is deposited by sputtering, and photolithography is performed by a wet etch using an aqueous cerium nitrate solution to perform scanning signal lines 52 and 53 and a gate electrode 9 connected to scanning signal line 52. , And the counter voltage signal line 14 are formed.
  • S i 0 2 film After depositing an interlayer insulating film made of, a contact hole 7 and an insulating film opening 84 are opened by photolithography using dry etching to obtain the structure shown in FIG. 14 (b).
  • the video signal line 13 and the upper portion 82 of the capacitor electrode are formed by using this to obtain the structure shown in FIG. 14 (b).
  • a protective insulating film made of SiN is deposited to a thickness of 800 nm, and a terminal portion (not shown) is opened by photolithography to obtain a thin film transistor substrate having the pixels shown in FIG.
  • the pixel structure of this embodiment has the effect of improving the uniformity of the distance between the pixel electrode and the counter electrode in a horizontal electric field type liquid crystal display device, suppressing the fluctuation of the electric field intensity applied to the liquid crystal, and improving the uniformity of the image quality.
  • the withstand voltage of a thin-film transistor decreases as the gate length of the transistor is reduced.
  • the distance between the wirings can be reduced, and the liquid crystal can be driven even by a thin-film transistor in which the driving voltage of the liquid crystal is reduced to be miniaturized.
  • a liquid crystal display device having a reduced non-display area by reducing the area of the built-in drive circuit by miniaturizing the transistor can be obtained.
  • FIG. 15 is an example of a pixel of the liquid crystal display device according to the present invention.
  • a light-shielding film 92 made of an opaque conductive film of the same layer as the video signal lines 13 is formed on a glass substrate, and a thin-film transistor 8 using a polycrystalline Si film is formed on the light-shielding film 92.
  • Source 1 0 of the thin film transistor is connected to the video signal line 1 3 with a conductive film made of shea Li site de in the same layer as the counter electrode 4
  • the counter electrode 14 is formed via the underlying film, the gate insulating film, and the interlayer insulating film.
  • FIG. 16 is a cross-sectional view of the pixel of FIG. 15 from the drain contact layer 91 to the vicinity of the additional capacitance 90.
  • a video signal line 13 and a light-shielding film 92 made of a Cr film having a thickness of 200 nm are formed on a glass substrate 20, a video signal line 13 and a light-shielding film 92 made of a Cr film having a thickness of 200 nm are formed.
  • the light-shielding film 92 shields light from the backlight of the liquid crystal display device that enters the channel 22 and the LDD 21 from the substrate 20 side, thereby suppressing the leak current of the thin-film transistor and stabilizing the voltage of the pixel electrode. Has the effect of improving the image quality.
  • the ends of the light shielding film 92 and the video signal line 13 are formed in a forward tapered shape having a gentle angle.
  • the end of the video signal line 13 has a forward tapered shape
  • a decrease in crystallinity due to a step at the time of crystallization due to excimer laser annealing of the Si film formed on the end can be suppressed.
  • the conductive film made of Cr In order to form the conductive film made of Cr into a forward tapered shape at the end, for example, it can be formed by photolithography using a wet etch using an etchant containing nitric acid.
  • the video signal line 13 is connected to the drain of the thin-film transistor 8 via a drain contact layer 91 composed of a silicide.
  • the source of the thin-film transistor 8 is connected to the pixel electrode 3.
  • the gate electrode 9 of the thin-film transistor 8 is connected to the scanning signal line 52, and a switch for electrically connecting and separating between the video signal line 13 and the pixel electrode 3 by the voltage of the scanning signal line 52.
  • Perform the function of The pixel electrode forms an additional capacitor 90 between the pixel electrode and the preceding scanning signal line 53 via an interlayer insulating film.
  • the additional capacitance 90 has a function of holding the voltage of the pixel electrode 3.
  • the drain contact layer 91 and the pixel electrode 3 are formed of a conductive silicide film.
  • the silicide film can be deposited by, for example, a sputtering method using a silicide target. Also, like the Si film, it can be processed with high precision by photolithography using dry etching. Since the silicide film has a lower resistance than the Si film, it can be used for the counter voltage signal line.
  • Silicide film For example, silicides of high melting point metals such as W, Mo, and Ta can be used.
  • these refractory metal films are used as electrode films, they have better chemical resistance and can reduce the occurrence of defects due to the reaction between the liquid crystal and the electrodes.
  • FIG. 17 is a cross-sectional view of the liquid crystal display device having the pixels of FIG. 15 in a direction perpendicular to the video signal line 13.
  • Liquid crystal having a positive dielectric anisotropy is sealed between the glass substrate 20 and the opposing substrate 61, and the distance between the glass substrate 20 and the opposing substrate 61 is determined by plastic beads 95 of a predetermined size. Is held.
  • the base film 1 9 consisting of S i 0 2 on the video signal line 1 3 is al, an gate insulating film 1-7 and the interlayer insulating film 1 8
  • An opposing electrode 4 is formed via this.
  • the pixel electrode 3 is formed of a conductive layer on the same layer as the counter electrode. A voltage is applied between the pixel electrode 3 and the counter electrode 4 to apply a substantially parallel electric field to the substrate.
  • the counter electrode 4 also has the effect of shielding the electric field from the video signal line 13 and reducing crosstalk to improve image quality.
  • An alignment film 64 for aligning liquid crystal is formed on the glass substrate 20 and the counter substrate 61, and is subjected to a rubbing treatment so as to align liquid crystal molecules in a direction substantially parallel to the video signal line 13. Due to the electric field applied between the pixel electrode 3 and the counter electrode 4, the liquid crystal molecules rotate in the direction of the lines of electric force 96, rotate the plane of polarization of the transmitted light, and rotate a polarizing plate (not shown). The amount of transmitted light is controlled. In this embodiment, since the pixel electrode is in contact with the liquid crystal only through the thin alignment film, an electric field can be effectively applied to the liquid crystal, and the driving voltage can be reduced.
  • FIG. 18 is an example of a pixel of the liquid crystal display device according to the present invention.
  • the cross-sectional structure is the same as that of the pixel of FIG. 1, and the pixel electrode 3 and the counter electrode 4 have a bend in the pixel.
  • Electric fields are applied to the liquid crystal 62 in different directions within the pixel due to the bending of the electrode between the pixel electrode 3 and the counter electrode 4. You.
  • the liquid crystal 62 is oriented along the electric field, and the viewing angle characteristics are improved by having different orientations in the pixel.
  • FIG. 19 is an example of a pixel of the liquid crystal display device according to the present invention.
  • An in-plane switching type liquid crystal display device having a thin film transistor composed of an a-Si film on a glass substrate 20 is shown.
  • a pixel electrode 3 and a counter electrode 4 are formed of a laminated film of n + a-Si and non-doped a-Si having conductivity and being doped with phosphorus.
  • On the video signal line 13 made of a metal film an a-Si line 100 composed of n + a-Si and a non-a-Si is formed at the lower part to enhance the resistance to disconnection. .
  • the source 10 using the a_S i film, the drain 11 and the channel 11 are placed on the gate electrode 9 via the gate insulating film. It has an inverted staggered thin film transistor formed by the above method.
  • the drain 11 is connected to the pixel electrode 3 via a drain wiring 102 made of the same metal film as the video signal line.
  • the counter voltage signal line 14 made of the same metal film as the scan signal line 52 and the counter voltage wire 103 made of the same metal film as the video signal line are connected via the through-hole 101 to the top. They are connected to each other by the ITO film 93 formed in the above.
  • the counter electrode 4 is connected to the counter voltage signal line 14 through the counter voltage wiring 103 and the ITO film 93.
  • An organic protective film opening 4 in which an organic protective film is opened is formed above the pixel electrode 3 and the counter electrode 4.
  • FIG. 20 is a cross-sectional view of the vicinity of the thin-film transistor 8 of the pixel shown in FIG.
  • a gate electrode 9 is formed on a glass substrate 20, and a thin-film transistor 8 having a source 10, a drain 11, and a channel 22 formed via a gate insulating film 17 is formed. .
  • the source 10 of the thin-film transistor 8 is connected to the video signal line 13 made of a metal film, and the drain 11 is connected to the drain wiring. Through 102, it is connected to the pixel electrode 3 composed of a laminated film of n + a-Si104 and the node a-Si105.
  • An organic protective film 15 is opened on the pixel electrode 3 and is protected by an inorganic protective film 16.
  • FIG. 21 is a cross-sectional view near the storage capacitor of the pixel in FIG.
  • a counter voltage signal line 14 made of a metal film is formed on the glass substrate 20 in the same layer as the scanning signal line 12. Gate insulating film on opposing voltage signal line 14
  • a drain wiring 102 connected to the pixel electrode 3 of the previous stage pixel via 17 is formed, and a storage capacitor 55 for holding the signal voltage of the previous stage pixel electrode is formed.
  • the opposing voltage signal line 14, the ITO film 93, and the opposing voltage wiring are provided via the through hole 101 having the gate insulating film 17 and the inorganic protective film 16 opened.
  • the counter voltage wiring 103 is connected to the counter electrode 4 composed of a laminated film of n + a—Si 104 and non-doped a—Si 105, and the upper part of the counter electrode 4 is an inorganic protective film 16 And the organic protective film 15 is opened.
  • FIGS. 22 and 23 show an example of a method of manufacturing a thin film transistor substrate having the pixels shown in FIG. Fig. 22 and Fig. 23 are
  • a metal film made of Cr is deposited on a glass substrate 20 by sputtering to a thickness of 200 nm, and is gated to a scanning signal line and a counter voltage signal line 14 by photolithography using an ⁇ et etch.
  • a contact electrode 9 is formed.
  • the a-Si of the node and n + a-Si which is the phosphorus-doped a-Si, are each deposited by plasma CVD at 200 nm. Deposit 0 nm and 50 nm.
  • the non-doped a-Si 105 and n + a Si 104 are processed by photolithography using dry etching to obtain the shapes shown in FIGS. 22 (a) and 23 (a).
  • a resist is applied and exposed and developed using a photomask to form a resist pattern in which the area of the thin film transistor 8 is opened in FIG. 22 (c), and the resource 10 and the drain are dry-etched.
  • 11 Using the metal film on 1 as a mask, n + a-Si and a part of the non-doped a-Si in the channel portion are removed by dry etching, and a channel 22 is formed to form a thin film transistor.
  • an inorganic protective film 16 made of SiN is deposited again by a 200-nm plasma CVD method.
  • Photolithography by dry etching using SF 6 gas is performed, and through holes 101 are opened in the inorganic insulating film 16 and the gate insulating film 17 to obtain the structure shown in FIG. 23 (c). .
  • an ITO film is deposited to a thickness of 140 nm by sputtering, and is processed into a shape of the IT0 film 93 by photolithography using a wet etch.
  • An organic protective film made of polyimide was applied and processed by exposure and development using a photomask or RIE using oxygen, as shown in Figs. 22 (d) and 23 (d).
  • a thin film transistor substrate having a structure is obtained.
  • the organic protective film has an effect of suppressing the reaction between the liquid crystal and the metal film forming the wiring.
  • the metal film that forms the video signal line and the scanning signal line is Cr
  • High-melting-point metals such as Mo and W, which have excellent contact properties with Si, and alloys thereof can also be used.
  • the Mo alloy has excellent contact properties with the ITO film.
  • the pixel electrode and the counter electrode are formed using a conductive n + a-Si film having higher chemical resistance than the metal film forming the video signal line, and the liquid crystal is formed only by the inorganic protective film. Since it has sufficient chemical resistance, the organic protective film on the pixel electrode and the counter electrode can be opened, and the electric field applied to the liquid crystal increases. This has the effect of reducing the drive voltage. Also, since processing by dry etching is possible, the pixel electrode can be made thinner to increase the aperture ratio.
  • FIG. 24 is an example of a pixel of the liquid crystal display device according to the present invention.
  • An opposing electrode 4 made of an ITO film is formed on the entire surface of the transparent insulating substrate 2.
  • a transparent insulating film made of a silicon oxide film is formed on the counter electrode 4.
  • a video signal line 13 is formed via an interlayer insulating film 18.
  • the gate electrode of the thin-film transistor 8 is formed of the same metal film as the scanning signal line 52 and is connected to the scanning signal line 52.
  • the drain 10 of the thin-film transistor 8 is connected to the video signal line 13 via the contact hole 7.
  • the conductive pixel electrode 3 is made of a polycrystalline Si film in the same layer as the channel 22 of the thin-film transistor, is doped with the same n-type phosphorus as the source and drain of the thin-film transistor, and has conductivity. Is formed.
  • the pixel electrode 3 is connected to the source 11 of the thin-film transistor.
  • phosphorus is used for doping the source and drain and the pixel electrode to form an N-type thin film transistor and a pixel electrode, but boron is used instead of phosphorus and a P-type Thin film transistor.
  • An inorganic protective film 16 made of a silicon nitride film is formed on the scanning signal line, the video signal line, and the thin film transistor.
  • an interlayer insulating film 18 and an inorganic protective film 16 are opened.
  • an inorganic protective film opening 111 is formed.
  • FIG. 25 is a cross section of the liquid crystal display device of the present invention corresponding to a section taken along line AA ′ of FIG. 24.
  • a counter electrode 4 made of IT 0 is placed on a transparent insulating substrate 2 made of a glass substrate. Is formed. On the counter electrode 4, a transparent insulating film 110 having a thickness of 500 nm made of a silicon oxide film is formed.
  • a pixel electrode 3 made of a polycrystalline Si film is formed on the transparent insulating film 110.
  • the pixel electrode 3 is formed of the same layer as the channel of the thin-film transistor 8 and is continuously connected to the source 11 of the thin-film transistor.
  • the transparent insulating film may be a silicon oxide film, a silicon nitride film, or a laminated film of a silicon oxide film and a silicon nitride film. Silicon nitride films are suitable for preventing diffusion of impurities from glass and ITO.
  • the liquid crystal is driven in a region where the electric field is substantially parallel to the substrate at the end of the pixel electrode by the electric lines of force 96 generated between the pixel electrode 3 and the counter electrode 4.
  • an alignment film 64 for aligning the liquid crystal is formed on the pixel electrode 3.
  • the pixel electrode is formed on the transparent insulating film 110 having no step, and is continuously connected to the drain, so that there is no disconnection at the step, so that the yield can be improved. .
  • there is no misalignment between the pixel electrode and the counter electrode and there is no display non-uniformity due to a change in the electrode interval.
  • the structure is such that only the alignment film is interposed between the pixel electrode 3 and the liquid crystal, so that an effective electric field can be applied to the liquid crystal and the liquid crystal can be driven with a low driving voltage.
  • the pixel electrode 3 in addition, a polycrystalline Si film, which is easy to perform fine processing, is used for the pixel electrode, and there is an advantage that the pixel electrode 3 can be made thinner to improve the aperture ratio. As a result, the electric field at the end of the electrode becomes stronger, so that the liquid crystal can be driven at a lower voltage, thus forming the liquid crystal on the thin film transistor substrate.
  • the liquid crystal can also be driven by a built-in low-breakdown-voltage drive circuit consisting of a polycrystalline Si thin-film transistor. For this reason, the liquid crystal display device having the pixel of the present invention has an advantage that a driving circuit is built in and high definition can be achieved.
  • the polycrystalline Si is used for the pixel electrode.
  • the conductive amorphous silicon film and the silicide film are different from the channels of the thin film transistor. Since it is a horizontal electric field method that can be formed and used as a layer, the pixel electrode does not need to be transparent, and even if transparency is sacrificed, the thickness of the film is adjusted according to the sheet resistance required for the pixel electrode.
  • Amorphous Si films that can be increased and have higher resistance than polycrystalline Si can also be used with increased film thickness.
  • an opaque silicide film can be used as an electrode. In either case, fine processing can be performed by dry etching using a fluorine-based gas, and a high-definition, high-definition horizontal electric field type liquid crystal display device can be formed.
  • a pixel electrode or a counter electrode by forming a pixel electrode or a counter electrode with a conductive film containing Si as a main component, it is possible to improve the aperture ratio and reduce the driving voltage of a horizontal electric field type liquid crystal driving device. . Also, the yield can be improved. Industrial applicability
  • the pixel electrode or the counter electrode is formed of the conductive film containing Si as a main component, the aperture ratio can be particularly improved and the driving voltage can be reduced. Thus, a liquid crystal display device with low power consumption can be configured.

Abstract

A high-angle-of-field, high-aperture-ratio, high-accuracy liquid crystal display device which comprises opposing substrates sandwiching a liquid crystal therebetween and a thin-film transistor substrate, which has a thin-film transistor to be turned on by a scanning signal line and provided on the thin-film transistor substrate, and which forms for application onto a liquid crystal an electric field in parallel with the thin-film transistor substrate and between a pixel electrode connected to a thin-film transistor's source and a counter electrode connected to a counter voltage signal line so as to control a transmission light, wherein at least one of the pixel electrode and the counter electrode is composed of a conductive film mainly containing Si, use of the Si-containing conductive film enabling a high-accuracy fine-fabrication of the pixel electrode and the counter electrode to provide a high-angle-of-field, high-accuracy, high-aperture-ratio, horizontal electric field type liquid crystal display device. A built-in circuit method with a reduced drive voltage will, if used, provide a higher-accuracy, higher-angle-of-field liquid crystal display device.

Description

明 細 書  Specification
液晶表示装置 技術分野  Liquid crystal display technology
本発明は液晶表示装置に係り、 同一基板上に画素電極と対向電極を配 置し、 両電極間に電圧を印加することによ リ液晶を制御し表示を行う液 晶表示装置に関し、 特にその電極材料, 電極構造に関するものである。 背景技術  The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device in which a pixel electrode and a counter electrode are arranged on the same substrate, and a liquid crystal is controlled and displayed by applying a voltage between both electrodes. It relates to electrode materials and electrode structures. Background art
従来の液晶表示装置では、 透明絶縁基板上に形成された透明導電膜の 画素電極と、 対向基板上に形成された透明導電膜の対向電極間に保持さ れた液晶に対して、 基板に概ね垂直な電界を印加するこ とによ り 、 液晶 分子の配向方向を変化させて表示の制御を行う縦電界型液晶表示装置が 広く用いられている。  In a conventional liquid crystal display device, the pixel electrode of the transparent conductive film formed on the transparent insulating substrate and the liquid crystal held between the counter electrodes of the transparent conductive film formed on the opposing substrate generally have 2. Description of the Related Art A vertical electric field type liquid crystal display device that controls display by changing the alignment direction of liquid crystal molecules by applying a vertical electric field is widely used.
一般に、 このよ うな縦電界型の液晶表示装置は視野角が狭いという問 題がある。 これに対し、 特開平 9— 73 1 0 1号公報に開示されているよう に 互いに交互に配置されたいわゆる櫛歯電極をなす画素電極と対向電極の 間に基板に概ね平行な電界を発生して液晶を駆動する横電界型の液晶表 示装置が近年用いられるよう になってきた。  Generally, such a vertical electric field type liquid crystal display device has a problem that a viewing angle is narrow. On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 9-73101, an electric field substantially parallel to the substrate is generated between the pixel electrode and the counter electrode, which are alternately arranged, and form a so-called comb electrode. In recent years, a lateral electric field type liquid crystal display device that drives a liquid crystal has been used.
第 2 6図は、 従来技術による横電界方式の液晶表示装置の画素部分の 例である。  FIG. 26 shows an example of a pixel portion of a conventional in-plane switching mode liquid crystal display device.
ガラスからなる透明絶縁基板 2上に、 走査信号線 5 2 , 5 3 と映像信 号線 1 3及び対向電圧信号線 5 4が形成され、 走査信号線 5 2 と映像信 号線 5 4の交差部付近にアモルファス S i を用いた薄膜トランジスタ 8 が形成されている。 薄膜トランジスタ 8は、 透明導電膜である I T0 膜からなる画素電極 3 に接続されている。 対向電圧信号線は同層の金属 膜からなる対向電極 4に接続され、 画素電極との間に基板に概ね平行な 電界を発生させ、 液晶を駆動している。 Scanning signal lines 52 and 53, video signal line 13 and counter voltage signal line 54 are formed on transparent insulating substrate 2 made of glass, near the intersection of scanning signal line 52 and video signal line 54. A thin film transistor 8 using amorphous Si is formed. The thin film transistor 8 has a transparent conductive film I T0 It is connected to a pixel electrode 3 made of a film. The counter voltage signal line is connected to a counter electrode 4 made of a metal film of the same layer, and generates an electric field that is substantially parallel to the substrate between the counter electrode 4 and the pixel electrode to drive the liquid crystal.
また、 特許第 265399号公報に開示されているよう に、 駆動回路を薄膜 トランジスタを用いて薄膜トランジスタ基板上に形成する液晶表示装置 が知られている。 この液晶表示装置では部品点数を削減して低コス ト化 が図れるほか、 外部端子との接続点数を減らすことができる。 よって、 よ り微細な配線間隔が実現でき、 高精細化が可能である。 発明の開示  Further, as disclosed in Japanese Patent No. 265399, a liquid crystal display device in which a driving circuit is formed on a thin film transistor substrate using a thin film transistor is known. In this liquid crystal display device, the number of parts can be reduced to reduce costs, and the number of connection points to external terminals can be reduced. Therefore, finer wiring intervals can be realized, and high definition can be achieved. Disclosure of the invention
従来の I T O膜または金属膜を画素電極および対向電極とする横電界 型の液晶表示装置では、 I T 0膜及び金属膜の加工に精度の悪いゥエツ トエッチングを用いており、 電極の微細化が困難であった。 横電界型の 液晶表示装置では、 画素電極及び対向電極は、 透明導電膜で形成されて いても端部近傍をのぞき、 光透過領域と して使用できないため、 従来の 横電界型の液晶表示装置を高精度化すると、 画素電極及び対向電極を微 細化できないため開口率が著しく低下し、 輝度の低下やバックライ トの 消費電力の増加を招き実用的でなかった。  In a conventional in-plane switching liquid crystal display device using a ITO film or metal film as a pixel electrode and a counter electrode, it is difficult to miniaturize the electrodes by using inexpensive jet etching to process the ITO film and the metal film. Met. In a horizontal electric field type liquid crystal display device, the pixel electrode and the counter electrode cannot be used as a light transmission region except for the vicinity of the end even if they are formed of a transparent conductive film. When the precision of the pixel electrode was increased, the pixel electrode and the counter electrode could not be miniaturized, so that the aperture ratio was remarkably reduced, which led to a reduction in luminance and an increase in backlight power consumption, which was not practical.
また、 画素電極と対向電極が I T Oを材料と して形成されている横電 界型の液晶表示装置では、 微細化するのに困難である。 よって開口率を 確保するためには、 これら画素電極と対向電極の電極間隔を広くする必 要があり、 よって駆動電圧が高いという問題があった。 横電界型の液晶 表示装置に駆動回路を内蔵して、 よ リ高精細で高視野角の液晶表示装置 を得よう とすると、 内蔵した駆動回路で得られる低い駆動電圧では液晶 の駆動が困難であった。 本発明の目的は、 高視野角であり、 かつ高開口率で高精細な液晶表示 装置を提供することにある。 Also, it is difficult to miniaturize a lateral electric field type liquid crystal display device in which a pixel electrode and a counter electrode are formed using ITO as a material. Therefore, in order to secure an aperture ratio, it is necessary to increase the electrode interval between the pixel electrode and the counter electrode, and there is a problem that the driving voltage is high. If a driving circuit is built into a horizontal electric field type liquid crystal display device to obtain a higher definition and higher viewing angle liquid crystal display device, it is difficult to drive the liquid crystal with a low driving voltage obtained by the built-in driving circuit. there were. An object of the present invention is to provide a liquid crystal display device having a high viewing angle, a high aperture ratio, and a high definition.
この目的を達成するために、  to this end,
本発明の液晶表示装置の第 1 の特徴は、 少なく とも一方が透明な一対 の基板と、 この一対の基板に挟持された液晶層と、 一対の基板の少なく とも一方の基板上に配置された映像信号電極と、 映像信号電極と交差す るよう に配置された走査信号電極と、 映像信号電極と走査信号電極の交 点付近に配置された薄膜トランジスタと、 薄膜トランジスタに接続され た画素電極と、 画素電極が配置された方向と同じ方向に配置された対向 電極とを有し、 画素電極と対向電極間に印加される電圧によ リ前記液晶 層の液晶分子を制御することによ り表示を行い、 画素電極及び対向電極 は、 S i を主成分とする導電膜で構成されるというものである。  A first feature of the liquid crystal display device of the present invention is that at least one of the pair of substrates is transparent, a liquid crystal layer sandwiched between the pair of substrates, and at least one of the pair of substrates is arranged on at least one of the substrates. A video signal electrode, a scanning signal electrode arranged to cross the video signal electrode, a thin film transistor arranged near an intersection of the video signal electrode and the scanning signal electrode, a pixel electrode connected to the thin film transistor, and a pixel A counter electrode arranged in the same direction as the direction in which the electrodes are arranged, and performing display by controlling the liquid crystal molecules of the liquid crystal layer by a voltage applied between the pixel electrode and the counter electrode. The pixel electrode and the counter electrode are made of a conductive film containing Si as a main component.
本発明の液晶表示装置の第 2の特徴は、 少なく とも一方が透明な一対 の基板と、 この一対の基板に挟持された液晶層と、 一対の基板の少なく とも一方の基板上に配置された映像信号電極と、 映像信号電極と交差す るように配置された走査信号電極と、 映像信号電極と走査信号電極の交 点付近に配置された薄膜トランジスタと、 薄膜トランジスタに接続され た画素電極と、 画素電極と同じ方向に配置された対向電極とを有し、 画 素電極と対向電極間に印加される電圧によ リ前記液晶層の液晶分子を制 御することによ り表示を行い、 画素電極又は対向電極は、 S i を主成分 とする導電膜で構成されるというものである。  A second feature of the liquid crystal display device of the present invention is that at least one of the pair of substrates is transparent, a liquid crystal layer sandwiched between the pair of substrates, and at least one of the pair of substrates is disposed on one of the substrates. A video signal electrode, a scanning signal electrode arranged to cross the video signal electrode, a thin film transistor arranged near the intersection of the video signal electrode and the scanning signal electrode, a pixel electrode connected to the thin film transistor, and a pixel A counter electrode disposed in the same direction as the electrodes, and displaying by controlling the liquid crystal molecules of the liquid crystal layer by a voltage applied between the pixel electrode and the counter electrode; Alternatively, the counter electrode is formed of a conductive film containing Si as a main component.
本発明の液晶表示装置の第 3の特徴は、 少なく とも一方が透明な一対 の基板と、 この一対の基板に挟持された液晶層と、 一対の基板の少なく とも一方の基板上に配置された映像信号電極と、 映像信号電極と交差す るよう に配置された走査信号電極と、 映像信号電極と走査信号電極の交 点付近に配置された薄膜トランジスタと、 薄膜トランジスタに接続され た画素電極と、 画素電極と同じ方向に配置された対向電極とを有し、 画 素電極と対向電極間に印加される電圧によ り液晶層の液晶分子を制御す るこ とによ り表示を行い、 画素電極又は対向電極は、 S i を主成分とす る導電膜で構成されるというものである。 A third feature of the liquid crystal display device of the present invention is that at least one of the pair of substrates is transparent, a liquid crystal layer sandwiched between the pair of substrates, and at least one of the pair of substrates is disposed on one of the substrates. A video signal electrode; a scanning signal electrode arranged to cross the video signal electrode; and an intersection of the video signal electrode and the scanning signal electrode. A thin film transistor arranged near the point, a pixel electrode connected to the thin film transistor, and a counter electrode arranged in the same direction as the pixel electrode, and a liquid crystal is applied by a voltage applied between the pixel electrode and the counter electrode. The display is performed by controlling the liquid crystal molecules in the layer, and the pixel electrode or the counter electrode is formed of a conductive film containing Si as a main component.
本発明の液晶表表示装置の第 4の特徴は、 少なく とも一方が透明な一 対の基板と、 一対の基板に挟持された液晶層と、 一対の基板の少なく と も一方の基板上に配置された映像信号電極と、 映像信号電極と交差する よう に配置された走査信号電極と、 映像信号電極と走査信号電極の交点 付近に配置された薄膜トランジスタと、 薄膜トランジスタ に接続された 画素電極と、 画素電極と同じ方向に配置された対向電極とを有し、 画素 電極と対向電極間に印加される電圧によ り前記液晶層の液晶分子を制御 することによ り表示を行い、 画素電極は多結晶半導体膜で構成され、 対 向電極は I T Oで構成されるというものである。  A fourth feature of the liquid crystal display device of the present invention is that at least one of the pair of substrates is transparent, a liquid crystal layer sandwiched between the pair of substrates, and the at least one of the pair of substrates is disposed on at least one of the substrates. A video signal electrode, a scanning signal electrode arranged so as to intersect with the video signal electrode, a thin film transistor arranged near an intersection of the video signal electrode and the scanning signal electrode, a pixel electrode connected to the thin film transistor, and a pixel. A counter electrode arranged in the same direction as the electrodes, and displaying by controlling the liquid crystal molecules of the liquid crystal layer by a voltage applied between the pixel electrode and the counter electrode; It is composed of a crystalline semiconductor film and the counter electrode is composed of ITO.
本発明の液晶表示装置の第 5の特徴は、 少なく とも一方が透明な一対 の基板と、 一対の基板に挟持された液晶層と、 一対の基板の少なく とも 一方の基板上に配置された映像信号電極と、 映像信号電極と交差するよ うに配置された走査信号電極と、 映像信号電極と走査信号電極の交点付 近に配置された薄膜トランジスタと、 薄膜トランジスタに接続された画 素電極と、 画素電極と同じ方向に配置された対向電極とを有し、 画素電 極と対向電極間に印加される電圧によ リ前記液晶層の液晶分子を制御す ること によ り表示を行い、 画素電極は I T 0で構成され、 対向電極は多 結晶半導体膜で構成されるというものである。  A fifth feature of the liquid crystal display device of the present invention is that at least one of the pair of substrates is transparent, a liquid crystal layer sandwiched between the pair of substrates, and an image arranged on at least one of the pair of substrates. A signal electrode, a scanning signal electrode arranged to cross the video signal electrode, a thin film transistor arranged near an intersection of the video signal electrode and the scanning signal electrode, a pixel electrode connected to the thin film transistor, and a pixel electrode And a counter electrode disposed in the same direction as that of the pixel electrode. The display is performed by controlling the liquid crystal molecules of the liquid crystal layer by a voltage applied between the pixel electrode and the counter electrode. The counter electrode is composed of a polycrystalline semiconductor film.
本発明の液晶表示装置の第 6の特徴は、 少なく とも一方が透明な一対 の基板と、 一対の基板に挟持された液晶層と、 一対の基板の少なく とも 一方の基板上に配置された映像信号電極と、 映像信号電極と交差する よ う に配置された走査信号電極と、 映像信号電極と走査信号電極の交点付 近に配置された薄膜 トラ ンジスタ と、 薄膜 トラ ンジスタ に接続された画 素電極と、 画素電極が配置された層とは異層に絶縁膜を介して平面状に 配置された対向電極と を有し、 画素電極と対向電極間に印加される電圧 によ リ前記液晶層の液晶分子を制御する こ と によ り表示を行う液晶表示 装置において、 画素電極は S i を主成分とする導電膜で構成され、 平面 状に配置された対向電極は透明電極によ り構成されるという ものである 本発明の液晶表示措置の第 7 の特徴は、 液晶を挟んで対向する対向基 板及び薄膜 トランジスタ基板と、 この薄膜 トラ ンジスタ基板上に互いに 交差して配置された映像信号電極及び走査信号電極と、 走査信号電極及 び映像信号電極の交差部付近に配置された薄膜 トランジスタ と、 薄膜 ト ラ ンジスタのソースに接続された画素電極と を有し、 画素電極と同 じ方 向に配置された対向電圧信号線に接続された対向電極の間に薄膜 トラ ン ジスタ基板に概ね平行な電界を形成し液晶に印加して透過光を制御し、 画素電極と対向電極の少なく とも一方は S i を主成分とする導電膜から なるという ものである。 A sixth characteristic of the liquid crystal display device of the present invention is that at least one of the pair of substrates is transparent, a liquid crystal layer sandwiched between the pair of substrates, and at least one of the pair of substrates. A video signal electrode disposed on one of the substrates, a scanning signal electrode disposed so as to cross the video signal electrode, a thin film transistor disposed near an intersection of the video signal electrode and the scanning signal electrode; A pixel electrode connected to the thin-film transistor; and a counter electrode disposed in a plane different from the layer on which the pixel electrode is disposed with an insulating film interposed therebetween, and applied between the pixel electrode and the counter electrode. In a liquid crystal display device that performs display by controlling the liquid crystal molecules of the liquid crystal layer by the applied voltage, the pixel electrodes are formed of a conductive film containing Si as a main component, and are arranged in a plane. The opposing electrode is constituted by a transparent electrode. A seventh feature of the liquid crystal display device of the present invention is that the opposing substrate and the thin film transistor substrate facing each other with the liquid crystal interposed therebetween, and the thin film transistor substrate Cross each other A video signal electrode and a scanning signal electrode, a thin film transistor disposed near an intersection of the scanning signal electrode and the video signal electrode, and a pixel electrode connected to a source of the thin film transistor. A substantially parallel electric field is formed on the thin film transistor substrate between the opposing electrodes connected to the opposing voltage signal lines arranged in the same direction as the pixel electrodes, and applied to the liquid crystal to control the transmitted light. At least one of the electrode and the counter electrode is made of a conductive film containing Si as a main component.
本発明の液晶表示装置の第 8 の特徴は、 液晶を挟み対向する対向基板 と薄膜 トランジスタ基板と、 薄膜 トランジスタ基板上に互いに交差する 映像信号線と走査信号線と、 走査信号線と映像信号線の交差部付近に形 成された ドレイ ンが映像信号線に接続され、 走査信号線によ リオンされ る薄膜 トランジスタ と、 薄膜 トラ ンジスタのソースに接続された画素電 極と を有し、 対向電圧信号線に接続された対向電極の間に薄膜 トラ ンジ スタ基板に概ね平行な電界を形成し液晶に印加して透過光を制御し、 薄 膜 トラ ンジスタが多結晶 S i 膜からなるチャネルを有し、 画素電極ま た は対向電極は、 チャネルと同層であリチャネルと同じ導電膜からなると いうものである。 An eighth feature of the liquid crystal display device of the present invention is that an opposing substrate and a thin film transistor substrate which face each other with a liquid crystal interposed therebetween, a video signal line and a scanning signal line crossing each other on the thin film transistor substrate, a scanning signal line and a video signal line A thin film transistor connected to the video signal line and turned on by the scanning signal line, and a pixel electrode connected to the source of the thin film transistor. A substantially parallel electric field is formed on the thin-film transistor substrate between the counter electrodes connected to the signal lines and applied to the liquid crystal to control the transmitted light, and the thin-film transistor has a channel made of a polycrystalline Si film. And the pixel electrode or Means that the counter electrode is formed of the same conductive film as the channel in the same layer as the channel.
本発明の液晶表示装置の第 9の特徴は、 少なく とも一方が透明な一対 の基板と、 この基板に挟持された液晶層を有する液晶表示装置であって 一対の基板の一方は少なく ともその表面が絶縁性で、 絶縁性の主表面上 に形成された透明電極と、 透明電極と第一の絶縁層を介して相対するパ ターニングされた半導体層を少なく とも有し、 パターニングされた半導 体層と透明電極間に発生せしめた電界によって前記液晶層を駆動すると いうあのである。  A ninth feature of the liquid crystal display device of the present invention is that the liquid crystal display device has at least one pair of transparent substrates and a liquid crystal layer sandwiched between the substrates, and one of the pair of substrates has at least a surface thereof. Semiconductor having a transparent electrode formed on an insulating main surface, and a patterned semiconductor layer opposed to the transparent electrode via the first insulating layer at least. That is, the liquid crystal layer is driven by an electric field generated between the layer and the transparent electrode.
本発明の液晶表示装置の第 1 0の特徴は、 少なく とも一方が透明な一 对の基板と、 この基板に挟持された液晶層を有する液晶表示装置であつ て、 一対の基板の一方は少なく ともその表面が絶縁性で、 絶縁性の主表 面上に形成された透明電極と、 第一の絶縁層上に形成された半導体層と . 半導体層の一部にゲー ト絶縁層を介して相対するゲート電極と一対の第 一導電型の半導体層を具備した複数の薄膜トランジスタと、 複数の薄膜 トランジスタに接続され、 互いに交差するよう に形成された複数の走查 信号線と、 複数の映像信号配線とを有し、 一対の第一導電型の半導体層 の少なく とも一方は、 パターニングされて透明電極上に延在されており、 パターニングされた第一導電型の半導体層と透明電極間に発生せしめた 電界によって液晶を駆動するというものである。 図面の簡単な説明  A tenth feature of the liquid crystal display device of the present invention is that the liquid crystal display device has at least one transparent substrate and a liquid crystal layer sandwiched between the substrates, and one of the pair of substrates has at least one. In each case, the surface is insulative, the transparent electrode formed on the insulative main surface, the semiconductor layer formed on the first insulating layer, and a part of the semiconductor layer via the gate insulating layer. A plurality of thin film transistors each including an opposing gate electrode and a pair of semiconductor layers of the first conductivity type; a plurality of scan signal lines connected to the plurality of thin film transistors and formed so as to cross each other; and a plurality of video signals At least one of the pair of first conductive type semiconductor layers has a pattern and extends on the transparent electrode, and is generated between the patterned first conductive type semiconductor layer and the transparent electrode. Due to the electric field To drive the liquid crystal. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明による液晶表示装置の画素部分の詳細を示した図で ある。 第 2図は、 第 1 図の画素の走査信号線に平行な面での断面図であ る。 第 3図は、 第 1 図の付加容量の断面である。 第 4図は第 1 図の薄膜 トランジスタの断面である。 第 5図は駆動回路内蔵液晶表示装置の等価 回路である。 第 6図は画素の等価回路の例である。 第 7図は、 画素電極 を対向電圧信号線 4 4との間に形成した蓄積容量 5 5に接続した例の図 である。 第 8図は、 第 1 図の画素を有する多結晶 S i膜からなる薄膜ト ランジスタ を用いた液晶表示装置の例である。 第 9図は、 第 1 図の画素 を有する多結晶 S i 膜を用いた薄膜トランジスタ基板の製造方法の例で ある。 第 1 0図は、 本発明の液晶表示装置の画素の例である。 第 1 1 図 は、 第 1 0図の画素の断面である。 第 1 2図は、 第 1 0図の画素の蓄積 容量の断面である。 第 1 3図及び第 1 4図は第 1 0図の画素を有する薄 膜トランジスタ基板の形成方法である。 第 1 5図は、 本発明による液晶 表示装置の画素の例である。 第 1 6図は、 第 1 5図の画素の ドレイ ンコ ンタク ト層 9 1 から付加容量 9 0付近の断面図である。 第 1 7図は、 第FIG. 1 is a diagram showing details of a pixel portion of a liquid crystal display device according to the present invention. FIG. 2 is a cross-sectional view of a pixel in FIG. 1 taken along a plane parallel to a scanning signal line. FIG. 3 is a cross section of the additional capacitor of FIG. Fig. 4 shows the thin film of Fig. 1. 3 is a cross section of a transistor. FIG. 5 is an equivalent circuit of a liquid crystal display device with a built-in drive circuit. FIG. 6 is an example of an equivalent circuit of a pixel. FIG. 7 is a diagram of an example in which a pixel electrode is connected to a storage capacitor 55 formed between the pixel electrode and the counter voltage signal line 44. FIG. 8 is an example of a liquid crystal display device using a thin-film transistor composed of a polycrystalline Si film having the pixels of FIG. FIG. 9 is an example of a method of manufacturing a thin film transistor substrate using a polycrystalline Si film having the pixels of FIG. FIG. 10 is an example of a pixel of the liquid crystal display device of the present invention. FIG. 11 is a cross section of the pixel of FIG. FIG. 12 is a cross section of the storage capacitor of the pixel of FIG. FIGS. 13 and 14 show a method of forming a thin film transistor substrate having the pixels shown in FIG. FIG. 15 is an example of a pixel of the liquid crystal display device according to the present invention. FIG. 16 is a cross-sectional view of the pixel in FIG. 15 from the drain contact layer 91 to the vicinity of the additional capacitance 90. Fig. 17
1 5図の画素を有する液晶表示装置の映像信号線 1 3 に垂直な方向での 断面図である。 第 1 8図は、 本発明による液晶表示装置の画素の例であ る。 第 1 9図は本発明による液晶表示装置の画素の例である。 第 2 0図 は、 第 1 9図の画素の薄膜トランジスタ付近の断面図である。 第 2 1 図 は、 第 1 9図の画素の蓄積容量付近の断面図である。 第 2 2図及び第FIG. 15 is a cross-sectional view of the liquid crystal display device having the pixels of FIG. 15 in a direction perpendicular to the video signal line 13. FIG. 18 is an example of a pixel of the liquid crystal display device according to the present invention. FIG. 19 is an example of a pixel of the liquid crystal display device according to the present invention. FIG. 20 is a sectional view showing the vicinity of the thin film transistor of the pixel shown in FIG. FIG. 21 is a cross-sectional view near the storage capacitance of the pixel in FIG. Fig. 22 and Fig.
2 3図は第 1 8図の画素を有する薄膜トランジスタ基板の製造方法の例 である。 第 2 4図は、 本発明による液晶表示装置の画素の例である。 第FIG. 23 shows an example of a method for manufacturing a thin film transistor substrate having the pixels shown in FIG. FIG. 24 is an example of a pixel of the liquid crystal display device according to the present invention. No.
2 5図は、 第 2 4図の A— A ' 間に対応する断面である。 第 2 6図は、 従来技術による横電界方式の液晶表示装置の画素部分の例である。 発明を実施するための最良の形態 FIG. 25 is a cross section corresponding to a section between A-A ′ in FIG. FIG. 26 shows an example of a pixel portion of an in-plane switching mode liquid crystal display device according to the prior art. BEST MODE FOR CARRYING OUT THE INVENTION
第 1 図は、 本発明による液晶表示装置の画素部分の詳細を示した図で ある。 透明絶縁基板 2上に映像信号線 1 3 と走査信号線 5 2 が配置され、 こ の交差部付近に多結晶 S i 膜によ リ ソース及び ドレイ ンとチャネルが同 一層で形成されている。 ま た、 このチャネル上にゲー ト電極が形成され たコ プレーナ型の薄膜 トラ ンジスタ 8 が形成されている。 尚、 第 1 図で は、 n型の薄膜 トランジスタ が形成されている。 ま た、 透明絶縁基板と しては例えばガラス基板を用いる ことができる。 FIG. 1 is a diagram showing details of a pixel portion of a liquid crystal display device according to the present invention. A video signal line 13 and a scanning signal line 52 are arranged on a transparent insulating substrate 2, and a resource, a drain, and a channel are formed in a single layer by a polycrystalline Si film near the intersection. In addition, a coplanar thin-film transistor 8 having a gate electrode formed on the channel is formed. In FIG. 1, an n-type thin film transistor is formed. Further, as the transparent insulating substrate, for example, a glass substrate can be used.
薄膜 トランジスタ 8 のゲー ト電極 9 は、 走査信号線 5 2 と同層に、 走 査信号線 5 2 と同 じ金属膜で形成されて、 走査信号線 5 2 に接続されて いる。 薄膜 トランジスタ 8 の ドレイ ン 1 0 は、 コ ンタ ク トホール 7 を介 して映像信号線 1 3 に接続されている。 薄膜 トラ ンジスタ 8 の ドレイ ン The gate electrode 9 of the thin-film transistor 8 is formed of the same metal film as the scan signal line 52 on the same layer as the scan signal line 52, and is connected to the scan signal line 52. The drain 10 of the thin-film transistor 8 is connected to the video signal line 13 via the contact hole 7. Drain of thin-film transistor 8
1 0 は、 薄膜 トランジスタ 8 のチャネル 2 2 と同層の多結晶 S i 膜から な り 、 薄膜 トラ ンジスタのソース及び ドレイ ンと同 じ n型に リ ンで ド一 プされ、 導電性を有する画素電極 3 が形成されている。 画素電極 3 は、 薄膜 トランジスタ 8 のソース 1 1 に接続されている。 Numeral 10 is a polycrystalline Si film in the same layer as the channel 22 of the thin-film transistor 8 and has the same n-type phosphorus as the source and drain of the thin-film transistor, and has conductivity. The pixel electrode 3 is formed. The pixel electrode 3 is connected to the source 11 of the thin-film transistor 8.
ま た、 付加容量 1 が画素電極 3 と同層な多結晶 S i 膜と前段の走査信 号線 5 3 との間にゲー ト絶縁膜を介して形成されている。 画素電極 3 は. 付加容量 1 の容量下部電極に接続される。 映像信号線 1 3 の上部には Further, the additional capacitance 1 is formed between the polycrystalline Si film in the same layer as the pixel electrode 3 and the preceding scanning signal line 53 via a gate insulating film. The pixel electrode 3 is connected to the lower capacitor electrode of the additional capacitor 1. At the top of video signal line 1 3
S i Nからなる無機絶縁膜とポ リ イ ミ ドからなる有機絶縁物を介して対 向電圧信号線 1 4 および対向電極 4 を形成する透明導電膜である I T O 膜が堆積されている。 有機保護膜 1 5 は、 映像信号線 1 3 及び走査信号 線 5 2, 5 3 を被覆し、 画素電極 3上で開口され有機保護膜開口部 5 が 形成されている。 対向電極開口部 6 は、 有機保護膜開口部 5 の内部に位 置している。 本実施例においては画素電極 3及び対向電極 4がいずれも 薄膜 トランジスタのチャネルと同層な膜で形成されてお り 、 絶縁膜で異 層化された他の導電層との接続に要するコ 2 ンタ ク トホールが不要で光透過面積を拡大し開口率を増加できる。 特に 画素の微細化に伴いコ ンタ ク トホールの面積が無視できな く なる よ う な 場合の開口率の確保に効果がある。 An ITO film, which is a transparent conductive film forming the counter voltage signal line 14 and the counter electrode 4, is deposited via an inorganic insulating film made of SiN and an organic insulator made of polyimide. The organic protective film 15 covers the video signal line 13 and the scanning signal lines 52 and 53, and is opened on the pixel electrode 3 to form the organic protective film opening 5. The counter electrode opening 6 is located inside the organic protective film opening 5. Ri Contact with the pixel electrode 3 and the counter electrode 4 is formed by the channel and the same layer film of either a thin film transistor in this embodiment, co 2 required for connection to other conductive layers that are different stratified insulating film No contact hole is required, so that the light transmission area can be enlarged and the aperture ratio can be increased. This is particularly effective for securing the aperture ratio when the area of the contact hole cannot be ignored with the miniaturization of pixels.
第 2 図は、 第 1 図の画素の走査信号線に平行な面での断面図である。 透明絶縁基板 2 上に下地膜 1 9 と層間絶縁膜 1 8 を介して金属膜から なる映像信号線 1 3 が形成されている。 映像信号線 1 3 上に S i Nから なる無機保護膜 1 6 と、 ポリ イ ミ ドからなる有機保護膜 1 5 が形成され ている。 有機保護膜 1 5 を対向電極 4 を形成する I T O膜が被覆してい る。 ま た、 透明絶縁基板 2上に下地膜 1 9 を介して多結晶 S i 膜からな る画素電極 3 が形成され、 画素電極 3 は無機保護膜 1 6 のみで被覆され ている。 画素電極 3 と対向電極 4 に電圧を印加する こ と によ リ液晶分子 の向きを制御する。  FIG. 2 is a cross-sectional view of a pixel in FIG. 1 taken along a plane parallel to a scanning signal line. Video signal lines 13 made of a metal film are formed on a transparent insulating substrate 2 with a base film 19 and an interlayer insulating film 18 interposed therebetween. An inorganic protection film 16 made of SiN and an organic protection film 15 made of polyimide are formed on the video signal line 13. The organic protective film 15 is covered with an ITO film forming the counter electrode 4. Further, a pixel electrode 3 made of a polycrystalline Si film is formed on the transparent insulating substrate 2 via a base film 19, and the pixel electrode 3 is covered with only the inorganic protective film 16. The direction of liquid crystal molecules is controlled by applying a voltage to the pixel electrode 3 and the counter electrode 4.
本実施例のよ う に画素電極 3 を S i 膜で構成すれば、 ドライエッチの 可能な金属膜、 例えば A 1 合金で画素電極を形成する場合に比べて耐薬 品性に優れるという ものである。 即ち、 画素電極 3 を S i 膜で構成すれ ば、 たとえ画素電極 3 上の無機保護膜 1 6 を薄膜化しても、 対向電極の I T O膜のエッチング時のエッチング液による電極の損傷が抑制できる という ものである。  If the pixel electrode 3 is made of a Si film as in the present embodiment, the chemical resistance is superior to a case where the pixel electrode is formed of a metal film that can be dry-etched, for example, an A1 alloy. . That is, if the pixel electrode 3 is made of a Si film, even if the inorganic protective film 16 on the pixel electrode 3 is made thinner, it is possible to suppress damage to the electrode due to the etching solution when etching the ITO film of the counter electrode. Things.
ま た、 画素電極 3 を S i 膜で構成する こ とで、 液晶との反応による不 良も低減できる。  In addition, by forming the pixel electrode 3 with a Si film, it is possible to reduce defects due to the reaction with the liquid crystal.
さ らに、 画素電極 3 の下部には段差を有するパタ ンが形成されておら ず、 段差部で発生する断線がな く 、 歩留ま り が向上する。 さ らに、 無機 保護膜 1 6 を薄膜化する ことで、 絶縁膜中を通る電束を減少 して液晶に 印加される電界を強め、 駆動電圧を低減する こ とができる。  Further, since no pattern having a step is formed below the pixel electrode 3, there is no disconnection occurring at the step, and the yield is improved. Further, by reducing the thickness of the inorganic protective film 16, the electric flux passing through the insulating film can be reduced, the electric field applied to the liquid crystal can be increased, and the driving voltage can be reduced.
ま た、 本実施例によれば、 無機保護膜 1 6 の側壁に形成された I T〇 膜からなる対向電極 4が、 映像信号線 1 3 からの電界を遮蔽して画素間 の信号のク ロス トーク を低減し、 画質を向上する効果を有する。 In addition, according to the present embodiment, the IT layer formed on the side wall of the inorganic protective film 16 can be used. The opposing electrode 4 made of a film has an effect of shielding the electric field from the video signal line 13 to reduce crosstalk of a signal between pixels and improving image quality.
第 3 図は、 第 1 図の付加容量の断面である。  FIG. 3 is a cross-section of the additional capacitor of FIG.
透明絶縁基板 2 上に下地膜 1 9 を介して リ ン ド一プされた多結晶 S i 膜からなる画素電極 3 , リ ン及びボロ ンによ り ド一プされた多結晶 S i 膜からなる p n接続領域 3 1 , ボロ ン ドープされた容量コ ンタ ク ト層 A pixel electrode 3 composed of a polycrystalline Si film which is mounted on a transparent insulating substrate 2 via a base film 19, and a polycrystalline Si film which is doped with a phosphorus and boron. Pn connection region 31, boron-doped capacitive contact layer
3 2 , ノ ン ドープの S i 膜からなる容量下部電極 3 3 が同層の多結晶3 2, Capacitive lower electrode 33 made of non-doped Si film
S i 膜から形成され、 互いに接続されている。 容量下部電極 3 3 に接続 する容量コ ンタ ク ト層 3 2 は走査信号線をマスク と したボロ ン ドーピン グによ り薄膜 トラ ンジスタのソース及び ドレイ ンとは異なる型である p 型に自己整合的に形成されている。 ま た、 容量コ ンタ ク ト層 3 2 とソー ス及び ドレイ ンと同 じ n型に ド一プされた画素電極 3 の間を接続するThey are formed from Si films and are connected to each other. The capacitive contact layer 32 connected to the capacitive lower electrode 33 is self-aligned to p-type, which is different from the source and drain of the thin film transistor, by boron doping using the scanning signal line as a mask. Is formed. Also, connect between the capacitive contact layer 32 and the pixel electrode 3 doped with the same n-type as the source and drain.
P n接続領域 3 1 はリ ン及びボロンによ り ドープされた多結晶 S i 膜か らなる。 The Pn connection region 31 is made of a polycrystalline Si film doped with phosphorus and boron.
容量コ ンタ ク ト層 3 2 は 1 0 の 2 0乗/ cc以上の濃度にポロン ド一プ され、 ま た画素電極 3 は 1 0 の 2 0乗 cc以上の濃度で リ ン ド一プされ る。 P n接続領域 3 2 1 はリ ン及びボロ ンの両方で高濃度に ドープされ. 容量コ ンタク ト 3 2及び画素電極 3 との間でのコ ンタ ク ト性を確保して いる。 容量下部電極 3 3上には S i 0 2 膜からなるゲー ト絶縁膜 1 7 を 介し前段の走査信号線 5 3 が形成され、 走査信号線 5 3 と容量下部電極 3 3 間に付加容量 1 を形成している。 付加容量 1 は前段の走査信号線 5 3 が n型である薄膜 トラ ンジスタ をオフ にする負の電圧に保持する こ とで、 容量下部電極 3 3 を形成する多結晶 S i 膜にホールが誘起され、 接続された P型の多結晶 S i 膜からなる容量コ ンタ ク ト層 3 2 と電気的 に接続される。 付加容量は容量コ ンタ ク ト層 3 2 と p n接続領域 3 1 を 介して画素電極との間で電気的に接続され、 画素電極の電位を保持する 容量と して機能する。 付加容量 1 は層間絶縁膜 1 8 を介して映像信号配 線 1 3 と同層の導電層で容量を形成した場合に比して薄いゲー ト酸化膜 を介して形成されてお り 、 単位面積当た り の容量を大き く でき、 付加容 量の面積を縮小して開口率を向上できる。 付加容量 1 上には S i 02 か らなる層間絶縁膜 1 8, S i Nからなる無機保護膜 1 6, ポリ イ ミ ドか らなる有機保護膜 1 5 を介して I T O膜からなる対向電圧信号線 1 4が 積層される。 対向電圧信号線 1 4は走査信号線 5 3からの電界を遮蔽す る効果も有する。 The capacitance contact layer 32 is poled at a concentration of 10 20 cc or more, and the pixel electrode 3 is closed at a concentration of 10 20 cc or more. You. The P n connection region 32 1 is heavily doped with both phosphorus and boron. The contact between the capacitance contact 32 and the pixel electrode 3 is ensured. Capacitor lower electrode 3 3 gate insulating film 1-7 to previous scan signal line 5 3 via consisting of S i 0 2 film on are formed, added between the scanning signal line 3 and the capacitor lower electrode 3 3 volume 1 Is formed. The additional capacitor 1 holds a negative voltage at which the preceding scanning signal line 53 turns off the n-type thin-film transistor, thereby inducing a hole in the polycrystalline Si film forming the lower electrode 33 of the capacitor. Then, it is electrically connected to the connected capacitor contact layer 32 made of the P-type polycrystalline Si film. The additional capacitance consists of the capacitance contact layer 32 and the pn connection area 31. It is electrically connected to the pixel electrode through the capacitor and functions as a capacitor for holding the potential of the pixel electrode. The additional capacitance 1 is formed via a gate oxide film which is thinner than a case where the capacitance is formed by the same conductive layer as the video signal wiring 13 via the interlayer insulating film 18 and a unit area. The capacity per unit can be increased, and the area of the additional capacity can be reduced to improve the aperture ratio. On the additional capacitor 1, an interlayer insulating film 18 made of SiO 2, an inorganic protective film 16 made of SiN, and an organic protective film 15 made of polyimide interposed through an ITO film The voltage signal lines 14 are stacked. The counter voltage signal line 14 also has the effect of blocking the electric field from the scanning signal line 53.
第 4図は、 第 1 図の薄膜 トランジスタの断面である。  FIG. 4 is a cross section of the thin film transistor of FIG.
本図には、 ゲー ト電極 9が 2分割されたダブルゲー ト型の薄膜 トラン ジスタが示されている。 透明絶縁基板 2上に下地膜 1 9 を介して 1 0の 2 0乗ノ cc以上に リ ン ド一プされた多結晶 S i 膜からなる ドレイ ン 1 1 及びソース 1 0 と、 1 0の 1 7乗/ ccから 1 0の 1 8乗 Zeeに低濃度に リ ン ド一プされた多結晶 S i 膜からなる L D D 2 1 (Lightly— Doped— Drain)と、 ノ ン ドープの多結晶 S i 膜からなるチャネル 2 2が形成され ている。 チャネル 2 2上部にはゲー ト絶縁膜 1 7 を介し金属膜からなる ゲー ト電極 9が形成される。 チャネル 2 2 と L D D 2 1 の境界はゲー ト 電極 9の端部に一致して自己整合的に形成されている。 チャネル 2 2の 端部に形成された L D D 2 1 によ り 耐圧を改善 し、 ま たオフ電流を低減 したいわゆる L D D型の薄膜 トランジスタである。 ま た 2つの薄膜 トラ ンジスタが直列に形成されたダブルゲー ト型と し、 単ゲー ト型の薄膜 ト ランジスタ に比べ耐圧を向上しオフ電流を低減している。 ドレイ ン 1 1 には層間絶縁膜 1 8およびゲ一 卜絶縁膜 1 7 に開口されたコ ンタ ク トホ ール 7 を介して金属膜からなる映像信号線 1 3が接続される。 ソース 1 0 には同層のリ ン ドープ多結晶 S i 膜からなる画素電極 3 が接続され ている。 This figure shows a double-gate thin film transistor in which the gate electrode 9 is divided into two. A drain 11 and a source 10 and a source 10 and a polycrystalline Si film, which are connected to the transparent insulating substrate 2 via a base film 19 and are connected to a power of more than 10.sup.20 cc. LDD 21 (Lightly—Doped—Drain) consisting of a polycrystalline Si film that is low-concentrated in Zee and a non-doped polycrystalline S A channel 22 made of an i film is formed. A gate electrode 9 made of a metal film is formed on the channel 22 via a gate insulating film 17. The boundary between channel 22 and LDD 21 is formed in self-alignment with the end of gate electrode 9. This is a so-called LDD thin-film transistor in which the breakdown voltage is improved by the LDD 21 formed at the end of the channel 22 and the off-state current is reduced. The double-gate type, in which two thin-film transistors are formed in series, has a higher breakdown voltage and lower off-current than a single-gate thin-film transistor. The drain 11 is connected to a video signal line 13 made of a metal film via a contact hole 7 opened in the interlayer insulating film 18 and the gate insulating film 17. Source The pixel electrode 3 is connected to the pixel electrode 3 composed of the same layer of a phosphorus-doped polycrystalline Si film.
なお、 第 1 図から第 4図では薄膜 トラ ンジスタのソース, ドレイ ン, L D D及び画素電極を n型の多結晶 S i と し、 容量コ ンタ ク ト層を p型 の多結晶 S i 膜と したが、 薄膜 トラ ンジスタのソース, ドレイ ン, LDD 及び画素電極を P型の多結晶 S i 膜と し、 容量コ ンタ ク ト層を n型の多 結晶 S i で形成する こ ともできる。  In Figs. 1 to 4, the source, drain, LDD and pixel electrode of the thin film transistor are n-type polycrystalline Si, and the capacitor contact layer is a p-type polycrystalline Si film. However, the source, drain, LDD, and pixel electrode of the thin-film transistor can be P-type polycrystalline Si films, and the capacitor contact layer can be formed of n-type polycrystalline Si.
次に第 1 図の画素を用いた液晶表示装置の動作を説明する。  Next, the operation of the liquid crystal display device using the pixel shown in FIG. 1 will be described.
第 5 図は、 駆動回路内蔵液晶表示装置の等価回路である。  FIG. 5 is an equivalent circuit of a liquid crystal display device with a built-in drive circuit.
基板 4 0上に互いに交差する走査信号線 4 2 と映像信号線 1 3 がマ ト リ クス状に配置されている。 基板 4 0 の周辺部に、 走査信号線が接続さ れた走査信号線駆動回路 4 2 と、 映像信号線 1 3 が接続された映像信号 線駆動回路 4 1 が多結晶 S i 膜を用いた n型及び p 型の薄膜 トラ ンジス タ を用いたいわゆる C M O S型の回路で構成されている。 走査信号線 4 2 に並列して対向電圧信号線 4 4が配置されている。 走查信号線 4 2 と映像信号線 1 3 で区画された領域には、 画素 4 5 が形成されている。 尚、 基板 4 0 は、 透明絶縁基板であ り 、 例えばガラス基板が考え られる 第 6 図は、 画素の等価回路の例である。  The scanning signal lines 42 and the video signal lines 13 that intersect each other are arranged in a matrix on the substrate 40. A scanning signal line driving circuit 42 connected to a scanning signal line and a video signal line driving circuit 41 connected to a video signal line 13 are formed of a polycrystalline Si film on the periphery of the substrate 40. It is composed of a so-called CMOS circuit using n-type and p-type thin film transistors. A counter voltage signal line 44 is arranged in parallel with the scanning signal line 42. Pixels 45 are formed in a region defined by the scanning signal line 42 and the video signal line 13. The substrate 40 is a transparent insulating substrate, for example, a glass substrate can be considered. FIG. 6 is an example of an equivalent circuit of a pixel.
映像信号線 1 3 と走査信号線 5 2 の交差部付近に薄膜 トラ ンジスタ 8 が形成されている。 薄膜 トラ ンジスタ 8 の ドレイ ン 1 1 は映像信号線 1 3 に接続され、 薄膜 トラ ンジスタ 8 のソース 1 0 は画素電極 3 に延長 される。 薄膜 トラ ンジスタ 8 のゲー ト電極 9 は走査信号線 5 2 に接続さ れている。 対向電極 4 は対向電圧信号線 4 4 に接続されている。 画素電 極 3 は前段の走査信号線 5 3 との間に付加容量 5 1 を形成している。 画 素電極 3 と対向電極 4は同一基板状に並列して形成され、 基板に概ね平 行な電界を発生し、 液晶に電界を印加する機能を有する。 液晶を駆動す るには、 選択した走査信号線 5 2 に正の電圧を印加し、 走査信号線に接 続された薄膜 8 トランジスタ をオンにする。 映像信号線 1 3からの信号 電圧を薄膜トランジスタ 1 0 を介して画素電極 3 に印加し、 前段の走査 信号線 5 3 との間に形成された付加容量 5 1及び液晶を介して対向電極 4との間に形成された液晶容量 5 0 に充電して書き込みを行う。 選択さ れた走査信号線 5 2 に負の電圧を印加して薄膜トランジスタ をオフにす ると、 映像信号線 1 3 と画素電極 3が電気的に分離され、 画素電極 3は 付加容量 5 1及び液晶容量 5 0 に充電された電荷によ り信号電圧を保持 する。 第 5図において走査信号線 4 2 を順次選択して書き込みを行い、 各画素に所定の信号電圧を印加して液晶を駆動し、 映像を表示する。 なお、 第 6図で画素電極を前段の走査電極との間に形成される付加容 量 5 1 に接続する代わり に、 第 7図に示すよう に対向電圧信号線 4 4と の間に形成した蓄積容量 5 5 に接続するこ ともできる。 蓄積容量 5 5は 付加容量 5 1 と同様に画素電極 3に印加された信号電圧を保持する効果 を有する。 A thin film transistor 8 is formed near the intersection of the video signal line 13 and the scanning signal line 52. The drain 11 of the thin-film transistor 8 is connected to the video signal line 13, and the source 10 of the thin-film transistor 8 is extended to the pixel electrode 3. The gate electrode 9 of the thin-film transistor 8 is connected to the scanning signal line 52. The counter electrode 4 is connected to a counter voltage signal line 44. The pixel electrode 3 forms an additional capacitor 51 with the preceding scanning signal line 53. The pixel electrode 3 and the counter electrode 4 are formed in parallel on the same substrate, and are substantially flat on the substrate. It has the function of generating a strong electric field and applying the electric field to the liquid crystal. To drive the liquid crystal, a positive voltage is applied to the selected scanning signal line 52 to turn on the thin-film transistor 8 connected to the scanning signal line. The signal voltage from the video signal line 13 is applied to the pixel electrode 3 via the thin film transistor 10, and the additional capacitance 51 formed between the scanning signal line 53 at the previous stage and the counter electrode 4 via the liquid crystal. The liquid crystal capacitor 50 formed during the writing is charged and writing is performed. When a negative voltage is applied to the selected scanning signal line 52 to turn off the thin film transistor, the video signal line 13 is electrically separated from the pixel electrode 3, and the pixel electrode 3 is connected to the additional capacitance 51 and The signal voltage is held by the electric charge charged in the liquid crystal capacitor 50. In FIG. 5, writing is performed by sequentially selecting the scanning signal lines 42, a predetermined signal voltage is applied to each pixel to drive the liquid crystal, and an image is displayed. Note that instead of connecting the pixel electrode to the additional capacitance 51 formed between the scanning electrode and the preceding scanning electrode in FIG. 6, the pixel electrode was formed between the pixel electrode and the counter voltage signal line 44 as shown in FIG. It can also be connected to the storage capacity 55. The storage capacitor 55 has an effect of holding the signal voltage applied to the pixel electrode 3, similarly to the additional capacitor 51.
第 8図は、 第 1 図の画素を有する多結晶 S i 膜からなる薄膜トランジ スタを用いた液晶表示装置の例である。  FIG. 8 is an example of a liquid crystal display device using a thin-film transistor composed of a polycrystalline Si film having the pixels of FIG.
液晶 6 2は正の誘電異方性を有する液晶であり 、 基板 4 0及び対向基 板 6 1 の間に封入されている。 基板 4 0 と対向基板 6 1 の間隔は薄膜ト ランジスタ基板上に形成された対向電圧信号線 1 5の最大膜厚部によ り 保持されている。 基板 4 0および対向基板 6 1 はいずれも透明ガラス基 板からなり、 その液晶に接する面には、 液晶を配向させる配向膜 6 4が 形成されている。 配向膜 6 4はラビング処理または偏光紫外光による異 方性重合によ り液晶分子を概ね画素電極 3 と対向電極 4の間に発生する 電界に垂直な向きに配向させる機能を有している。 The liquid crystal 62 is a liquid crystal having a positive dielectric anisotropy, and is sealed between the substrate 40 and the opposing substrate 61. The distance between the substrate 40 and the opposing substrate 61 is maintained by the maximum film thickness of the opposing voltage signal line 15 formed on the thin film transistor substrate. Both the substrate 40 and the opposing substrate 61 are formed of a transparent glass substrate, and an alignment film 64 for aligning the liquid crystal is formed on a surface in contact with the liquid crystal. In the alignment film 64, liquid crystal molecules are generally generated between the pixel electrode 3 and the counter electrode 4 by rubbing or anisotropic polymerization by polarized ultraviolet light. It has the function of orienting in the direction perpendicular to the electric field.
また、 対向基板 6 1 上にはカラ一フ ィルタが形成されている。 基板 4 0上に形成された画素電極 3 と対向電極 4間に基板に概ね平行な電界 を発生させ液晶分子の向きを変化させ、 透過する偏光の偏光面を制御し 上下に設けた偏光板 (図示せず) で透過光量に変換して画素の明るさを 制御する。 赤, 青, 緑の各色に対応したカラ一フィルタを設けた画素の 透過率を制御してカラー表示を行う。 なお対向基板上に形成された透明 導電膜は対向基板側からの静電気などの電界をシールドし液晶表示の変 動を抑制する。  A color filter is formed on the counter substrate 61. A substantially parallel electric field is generated between the pixel electrode 3 and the counter electrode 4 formed on the substrate 40 to change the direction of the liquid crystal molecules and control the plane of polarization of the transmitted polarized light. (Not shown) to control the brightness of the pixel by converting it to the amount of transmitted light. Color display is performed by controlling the transmissivity of the pixels provided with color filters corresponding to the red, blue, and green colors. The transparent conductive film formed on the opposing substrate shields an electric field such as static electricity from the opposing substrate side and suppresses fluctuation of a liquid crystal display.
第 9図は、 第 1 図の画素を有する多結晶 S i 膜を用いた薄膜トランジ スタ基板の製造方法の例である。  FIG. 9 is an example of a method of manufacturing a thin-film transistor substrate using a polycrystalline Si film having the pixels of FIG.
透明なガラス基板 2 0上に S i N膜を 5 0 n m、 S i 02 膜を 1 0 0 n mそれぞれプラズマ C V D法で堆積し下地膜 1 9 とする。 ジシランを 用いた低圧 C V D法でノ ン ドープのアモルフ ァス S i ( a - S i )膜 7 1 を 5 0 n m堆積する。 第 9図( a ) に示すように X e C 1 パルスエキシ マレーザ光 7 0 を一平方センチあたり 3 0 O m Jから 5 0 O m Jの範囲 で照射し、 基板上を走査して結晶化し多結晶 S i 膜 7 2 とする。 TE0Sを 用いたプラズマ C V D法によ りゲート絶縁膜 2 2 となる S i 02 膜を l O O n m堆積する。 N bからなる金属膜を堆積し、 C F4 ガスを用い た ドライエッチによ りホ トリ ソを行いゲ一ト電極 9及び走査信号線 (図 示せず) を形成する。 ゲート電極 9 をマスクと し、 リ ンイオン注入法を 用い多結晶 S i 膜中のリ ン濃度が 1 0の 1 7乗 Z ccから 1 0の 1 8乗 Z ccになるよう に ドーピングを行い、 L D D 2 1 を形成してゲート電極 9 に自己整合的にノ ン ドープの多結晶 S i からなるチャネル 2 2 を形成し 第 9図( b )の構造を得る。 リ ン濃度が 1 0の 1 7乗 cc以下では L D D 2 1 の抵抗が大き く トランジスタ のオン電流が低下する。 1 0 の 1 8乗 Z ee以上では L D D内での電界緩和効果が減少 しォフ電流が増加する。 次に第 9 図 ( c ) に示すよ う にレジス ト 7 3 をマスク と し、 画素電極 3 ソース 1 0及び ドレイ ン 1 1 となる領域に リ ンイオンをイオン注入によ リ S i 中の濃度が 1 0 の 2 0乗/ cc程度になるよ う ドーピングする。 ま た、 p n接続領域及び駆動回路の n型 トランジスタ (図示せず) にも同 様にリ ン ド一プする。 なお、 イ オン注入のほか、 ゲー ト絶縁膜をレジス トをマスク と して除去して多結晶 S i 膜を露出させ、 P H 3 ガスを用い たイオンシャ ワー法によ り ドープする こ ともできる。 レジス トを除去後 容量コ ンタ ク ト層, P n接合領域及び駆動回路の p 型 トラ ンジスタ領域 (図示せず) にも同様にレジス トをマスク と しボロ ンを S i 膜中の濃度 が 1 0 の 2 0乗 cc以上以上となるよ う ド一ピングする。 レジス トを除 去した後、 エキシマレ一ザァ二一ルま たは熱ァニールによ リ注入したリ ン及びボロ ンを活性化する。 5 0 nm to S i N film on a transparent glass substrate 2 0, and the base film 1 9 is deposited by S i 0 2 film 1 0 0 nm respectively plasma CVD method. A non-doped amorphous Si (a-Si) film 71 is deposited to a thickness of 50 nm by low-pressure CVD using disilane. As shown in Fig. 9 (a), XeC1 pulse excimer laser light 70 is irradiated in a range of 30 OmJ to 50 OmJ per square centimeter, and the substrate is scanned to crystallize. The crystal Si film 72 is used. A SiO 2 film serving as a gate insulating film 22 is deposited to a thickness of 100 nm by a plasma CVD method using TE0S. A metal film made of Nb is deposited, and photolithography is performed by dry etching using CF 4 gas to form a gate electrode 9 and a scanning signal line (not shown). Using the gate electrode 9 as a mask, doping is performed using a phosphorus ion implantation method so that the phosphorus concentration in the polycrystalline Si film is from 10 17 Z cc to 10 18 Z cc. An LDD 21 is formed to form a channel 22 made of non-doped polycrystalline Si in a self-aligned manner on the gate electrode 9 to obtain the structure shown in FIG. 9 (b). LDD when the phosphorus concentration is 10 17 cc or less 21 The resistance of 1 is large, and the on-current of the transistor decreases. Above 10 18 Zee, the electric field relaxation effect in the LDD decreases and the off-current increases. Next, as shown in FIG. 9 (c), the resist 73 is used as a mask, and the pixel electrode 3 is ion-implanted with phosphorus ions into the regions to be the source 10 and the drain 11 by ion implantation. Doping so as to be about 10 to the power of 20 / cc. Similarly, the pn connection region and the n-type transistor (not shown) of the driving circuit are similarly linked. In addition to the ion implantation, the gate insulating film can be removed by using a resist as a mask to expose the polycrystalline Si film, and can be doped by an ion shower method using PH 3 gas. After the resist is removed, the resist is used as a mask in the capacitive contact layer, the Pn junction region, and the p-type transistor region (not shown) of the drive circuit, and the boron concentration in the Si film is also reduced. Doping is performed so that it becomes 10 20 or more cc or more. After removing the resist, the implanted phosphorus and boron are activated by excimer laser or thermal annealing.
次に T E 0 S を用いたプラズマ C V D によ り S i 0 2 膜からなる層間 絶縁膜 1 8 を 5 0 0 n m堆積する。 C H F 3 ガスを用いた ドライエッチ によるホ ト リ ソで ドレイ ン 1 1 上及び画素電極 3 上の層間絶縁膜 1 8及 びゲー ト絶縁膜 1 7 を除去する。 C r, M 0 , Wなどの高融点金属ま た はこれらの合金からなる金属膜をスパッタ によ り 5 0 0 n m堆積し、 ゥ エ ツ トエッチを用いたホ ト リ ソによ り 映像信号線 1 3 に形成して薄膜 ト ラ ンジスタの ドレイ ン 1 1 に接続して第 9 図( d )の構造とする。 S i N からなる厚さ 5 0 0 n mの無機保護膜 1 6 をプラズマ C V D法にょ リ堆 積し、 C F 4 ま たは S F 6 ガスを用いた ドライエッチによるホ ト リ ソで 液晶表示装置に外部から信号及び電源を供給するための端子部 (図示せ ず) を開口 した後、 ポリ イ ミ ドからなる有機保護膜 1 5 を塗布及びホ ト マスク を用いた紫外線照射による選択重合によ リ形成する。 有機保護膜 1 5 は画素電極 3 上及び端子 (図示せず) 上が開口されるよ う形成する I T 0 ( I nd i um - T i n - Ox i d es ) からなる透明導電膜をスノ ッタ によ り 1 0 n m堆積し、 ゥエ ツ トエッチを用いたホ ト リ ソによ リ 画素電極 3 上を開口 して第 9 図— 5 の構造の画素の断面構造を有する薄膜 トラ ンジ スタ基板を形成する。 Then TE 0 interlayer insulating film 1 8 S consisting by Ri S i 0 2 film to a plasma CVD using to 5 0 0 nm deposition. The interlayer insulating film 18 and the gate insulating film 17 on the drain 11 and the pixel electrode 3 are removed by photolithography by dry etching using CHF 3 gas. A metal film made of a refractory metal such as Cr, M0, W, or an alloy of these is deposited to a thickness of 500 nm by sputtering, and a video signal is formed by photolithography using an エ -etch. A line 13 is formed and connected to the drain 11 of the thin film transistor to obtain the structure shown in FIG. 9 (d). A 500-nm-thick inorganic protective film 16 made of SiN is deposited by plasma CVD and applied to the liquid crystal display device by dry etching using CF 4 or SF 6 gas. After opening a terminal section (not shown) for supplying signals and power from the outside, an organic protective film 15 made of polyimide is applied and photo-coated. It is formed by selective polymerization using UV irradiation with a mask. The organic protective film 15 is a transparent conductive film made of IT 0 (Indium-Tin-Oxides) formed so as to open on the pixel electrode 3 and the terminal (not shown). A thin film transistor substrate having a cross-sectional structure of a pixel having the structure shown in FIG. 9-5 is formed by opening the pixel electrode 3 by photolithography using a wet etch. To form
ま た、 第 9 図 ( b ) において高濃度のイオン注入を行い、 L D D を介 する ことなく チャネルにソース及び ドレイ ンが直接接続されたシングル ドレイ ンの薄膜 トランジスタ を形成する こともできる。 p 型のシングル ドレイ ンの薄膜 トランジスタ は n型のシングル ドレイ ン薄膜 卜ラ ンジス タ に比べ劣化が小さいことが知られてお り 、 L D Dによる抵抗がないた めオン電流が大き く 駆動回路用に適している。  In addition, in FIG. 9 (b), high-concentration ion implantation can be performed to form a single-drain thin-film transistor in which the source and the drain are directly connected to the channel without going through the LDD. It is known that p-type single-drain thin-film transistors are less deteriorated than n-type single-drain thin-film transistors. Are suitable.
第 1 0 図は、 本発明の液晶表示装置の画素の例である。  FIG. 10 is an example of a pixel of the liquid crystal display device of the present invention.
薄膜 トラ ンジスタ 8 は、 映像信号線 1 3 と走査信号線 5 2 の交差部付 近に形成されている。 薄膜 トランジスタ 8 のソースに接続されたチヤネ ルと同層に、 リ ン ド一プされた多結晶 S i 膜からなる画素電極 3 と、 同 様にチャネルと同層に、 リ ン ド一プされた多結晶 S i 膜からなる対向電 極 4が形成されている。 映像信号線 1 3 と同層な金属層からなる容量上 部電極 8 2 によ り 、 対向電圧信号線 1 4及び対向電極 4がコ ンタ ク トホ ール 7 及び 8 1 を介して接続されている。 ま た、 画素電極 3 と容量上部 電極 8 2 間には層間絶縁膜及びゲ一 ト絶縁膜を介して蓄積容量 5 5 が形 成されている。  The thin-film transistor 8 is formed near the intersection of the video signal line 13 and the scanning signal line 52. A pixel electrode 3 made of a polycrystalline Si film that is connected to the same layer as the channel connected to the source of the thin-film transistor 8, and a channel electrode that is also connected to the same layer as the channel. The opposing electrode 4 made of the polycrystalline Si film is formed. The counter voltage signal line 14 and the counter electrode 4 are connected via the contact holes 7 and 81 by the capacitor upper electrode 82 made of the same metal layer as the video signal line 13. I have. Further, a storage capacitor 55 is formed between the pixel electrode 3 and the capacitor upper electrode 82 via an interlayer insulating film and a gate insulating film.
第 1 1 図は、 第 1 0図の画素の断面である。  FIG. 11 is a cross section of the pixel of FIG.
ガラス基板 2 0上に下地膜を介し、 多結晶 S i 膜からなる画素電極 3 と、 対向電極 4が互いに近接 して同層に配置されている。 画素電極 3 上 部の層間絶縁膜 1 8及びゲート絶縁膜 1 7 を除去し、 液晶と電極の間隔 を狭めるこ とによ リ電極上の絶縁膜内を通る電束を減ら して電界の液晶 への印加効率を高めている。 保護絶縁膜 8 5 には S i N , S i 0 2 など の無機絶縁膜のほか、 ポリ イ ミ ドなどの透明な有機絶縁膜を用いること ができる。 On a glass substrate 20, a pixel electrode 3 made of a polycrystalline Si film and a counter electrode 4 are arranged in the same layer close to each other with a base film interposed therebetween. On pixel electrode 3 By removing the interlayer insulating film 18 and the gate insulating film 17 in some parts, and reducing the distance between the liquid crystal and the electrode, the electric flux passing through the insulating film on the electrode is reduced and the efficiency of applying the electric field to the liquid crystal Is increasing. The protective insulating film 8 5 may be a transparent organic insulating film such as S i N, addition of an inorganic insulating film such as S i 0 2, poly Lee Mi de.
第 1 2図は、 第 1 0図の画素の蓄積容量の断面である。  FIG. 12 is a cross section of the storage capacitor of the pixel of FIG.
ガラス基板 2 0上に下地膜 1 9 を介してリ ン ドープされた多結晶 S i 膜からなる画素電極 3 と対向電極 4が形成されている。 対向電極 4は走 査信号線 (図示せず) と同層な導電膜からなる対向電圧信号線 1 4に容 量上部電極 8 2 を介して接続されている。 容量上部電極 8 2 は映像信号 線 (図示せず) と同層な導電膜からなリ、 層間絶縁膜 1 8およびゲート 絶縁膜 1 7 を介し画素電極 3 と蓄積容量 5 5 を形成している。  A pixel electrode 3 and a counter electrode 4 made of a polycrystalline Si film doped with phosphorus via a base film 19 are formed on a glass substrate 20. The counter electrode 4 is connected to a counter voltage signal line 14 made of the same conductive film as a scan signal line (not shown) via a capacitor upper electrode 82. The capacitor upper electrode 82 is formed of the same conductive film as the video signal line (not shown), and forms the storage capacitor 55 with the pixel electrode 3 via the interlayer insulating film 18 and the gate insulating film 17. .
第 1 3図及び第 1 4図は、 第 1 0図の画素を有する薄膜トランジスタ 基板の形成方法である。  13 and 14 show a method of forming a thin film transistor substrate having the pixels shown in FIG.
第 9図と同様の方法によ り、 ガラス基板上に多結晶 S i 膜を形成し、 ホ トリ ソによ り第 1 3図 ( a ) の形状に多結晶 S i 膜 7 2 を形成する。 画素電極 3及び対向電極 4は同層の多結晶 S i 膜からなるため同一のホ トマスクで加工でき、 マスクの合わせずれがなく画素電極 3 と対向電極 4の間隔の均一性が向上できる。 また、 S i 膜は ドライエッチによ り加 ェでき、 レジス ト ノ タンからのエッチング時の後退をゥエツ トエッチに よ り加工する I T O膜および配線を形成する金属膜に比べ減少できる。 次に S i 0 2 膜からなるゲート絶縁膜を堆積する。 スパッタによ り C r からなる導電膜を堆積し、 硝酸セリ ウム水溶液を用いたゥエツ トエッチ によるホ トリ ソを行い走査信号線 5 2及び 5 3 と走査信号線 5 2 に接続 されたゲート電極 9、 及び対向電圧信号線 1 4を形成する。 S i 0 2 膜 からなる層間絶縁膜を堆積後、 ドライエッチを用いたホ ト リ ソによ リ コ ンタ ク トホール 7及び絶縁膜開口部 8 4 を開口 して第 1 4図 ( b ) の構 造とする。 C r膜と A 1 合金膜をそれぞれ 6 0 n と 4 0 0 n m積層 した 導電膜をスパッタ によ り堆積し、 A 1 合金膜と C r膜をそれぞれゥェ ッ トエッチによるホ ト リ ソを用いて映像信号線 1 3及び容量電極上部 8 2 を形成して第 1 4図 ( b ) の構造を得る。 S i Nからなる保護絶縁膜を 8 0 0 n m堆積し、 ホ ト リ ソによる端子部 (図示せず) の開口を行って 第 1 0 図の画素を有する薄膜 トラ ンジスタ基板を得る。 A polycrystalline Si film is formed on a glass substrate by the same method as in FIG. 9, and a polycrystalline Si film 72 is formed by photolithography in the shape shown in FIG. 13 (a). . Since the pixel electrode 3 and the counter electrode 4 are formed of the same layer of polycrystalline Si film, they can be processed with the same photomask, and there is no misalignment of the mask, and the uniformity of the distance between the pixel electrode 3 and the counter electrode 4 can be improved. In addition, the Si film can be added by dry etching, and the recession during etching from the resist tin can be reduced as compared with the ITO film processed by etching and the metal film for forming wiring. Next, a gate insulating film made of a SiO 2 film is deposited. A conductive film made of Cr is deposited by sputtering, and photolithography is performed by a wet etch using an aqueous cerium nitrate solution to perform scanning signal lines 52 and 53 and a gate electrode 9 connected to scanning signal line 52. , And the counter voltage signal line 14 are formed. S i 0 2 film After depositing an interlayer insulating film made of, a contact hole 7 and an insulating film opening 84 are opened by photolithography using dry etching to obtain the structure shown in FIG. 14 (b). A conductive film in which a Cr film and an A1 alloy film are laminated to a thickness of 60 nm and 400 nm, respectively, is deposited by sputtering, and the A1 alloy film and the Cr film are each subjected to photolithography by jet etching. The video signal line 13 and the upper portion 82 of the capacitor electrode are formed by using this to obtain the structure shown in FIG. 14 (b). A protective insulating film made of SiN is deposited to a thickness of 800 nm, and a terminal portion (not shown) is opened by photolithography to obtain a thin film transistor substrate having the pixels shown in FIG.
本実施例の画素構造は横電界型の液晶表示装置において画素電極と対 向電極の間隔の均一性を高め、 液晶に印加される電界強度の変動を抑制 し、 画質の均一性を向上する効果がある。 ま た、 薄膜 トランジスタの耐 圧は トランジスタのゲー ト長を微細化すると減少する。 本発明の画素で は配線間隔の縮小が可能であ リ 、 液晶の駆動電圧を低減して微細化した 薄膜 トランジスタでも液晶が駆動できる。 トラ ンジスタの微細化によ リ 内蔵駆動回路の面積を低減して非表示領域を低減した液晶表示装置が得 られる。  The pixel structure of this embodiment has the effect of improving the uniformity of the distance between the pixel electrode and the counter electrode in a horizontal electric field type liquid crystal display device, suppressing the fluctuation of the electric field intensity applied to the liquid crystal, and improving the uniformity of the image quality. There is. Also, the withstand voltage of a thin-film transistor decreases as the gate length of the transistor is reduced. In the pixel of the present invention, the distance between the wirings can be reduced, and the liquid crystal can be driven even by a thin-film transistor in which the driving voltage of the liquid crystal is reduced to be miniaturized. A liquid crystal display device having a reduced non-display area by reducing the area of the built-in drive circuit by miniaturizing the transistor can be obtained.
第 1 5 図は、 本発明による液晶表示装置の画素の例である。  FIG. 15 is an example of a pixel of the liquid crystal display device according to the present invention.
ガラス基板上に映像信号線 1 3 と同層の不透明な導電膜からなる遮光 膜 9 2 が形成され、 遮光膜 9 2上に多結晶 S i 膜を用いた薄膜 トラ ンジ スタ 8 が形成されている。 薄膜 トランジスタのソース 1 0 は対向電極 4 と同層にシ リ サイ ドからなる導電膜で映像信号線 1 3 に接続されている t 映像信号線 1 3 上には S i 0 2 からなる絶縁膜である下地膜とゲー ト絶 縁膜及び層間絶縁膜を介して対向電極 1 4が形成されている。 ま た、 画 素電極 3 が対向電極と同層なシ リ サイ ド膜によ リ形成され、 コ ンタ ク ト ホール 7 を介して薄膜 トランジスタ の ドレイ ン 1 1 に接続されている。 第 1 6 図は、 第 1 5 図の画素の ドレイ ンコ ンタ ク ト層 9 1 から付加容 量 9 0付近の断面図である。 A light-shielding film 92 made of an opaque conductive film of the same layer as the video signal lines 13 is formed on a glass substrate, and a thin-film transistor 8 using a polycrystalline Si film is formed on the light-shielding film 92. I have. Insulating film made of S i 0 2 on t the video signal line 1 3 Source 1 0 of the thin film transistor is connected to the video signal line 1 3 with a conductive film made of shea Li site de in the same layer as the counter electrode 4 The counter electrode 14 is formed via the underlying film, the gate insulating film, and the interlayer insulating film. In addition, the pixel electrode 3 is formed of a silicide film in the same layer as the counter electrode, and is connected to the drain 11 of the thin-film transistor via the contact hole 7. FIG. 16 is a cross-sectional view of the pixel of FIG. 15 from the drain contact layer 91 to the vicinity of the additional capacitance 90.
ガラス基板 2 0 上に厚さ 2 0 0 n mの C r膜からなる映像信号線 1 3 及び遮光膜 9 2 が形成されている。 遮光膜 9 2 はチャネル 2 2 および L D D 2 1 に基板 2 0側から入射する液晶表示装置のバックライ トから の光を遮光して薄膜 トラ ンジスタのリ ーク電流を抑制 し画素電極の電圧 安定性を高め画質を向上する効果がある。 遮光膜 9 2及び映像信号線 1 3 の端部はなだらかな角度を持った順テーパ形状に形成されている。 映像信号線 1 3 の端部を順テーパ形状にすると、 端部上に形成された S i 膜のエキシマレーザァニールによる結晶化時の段差に起因する結晶 性の低下を抑制できる。 C r からなる導電膜を端部を順テーパ形状に形 成するには、 例えば硝酸を含むエッチング液によるゥエ ツ トエッチを用 いたホ ト リ ソで形成する こ とができる。 映像信号線 1 3 はシ リ サイ ドか らなる ドレイ ンコ ンタ ク ト層 9 1 を介して薄膜 トランジスタ 8 の ドレイ ンに接続される。 薄膜 トラ ンジスタ 8 のソースは画素電極 3 に接続され る。 薄膜 トラ ンジスタ 8 のゲー ト電極 9 は走査信号線 5 2 に接続され、 映像信号線 1 3 と画素電極 3 の間を走査信号線 5 2 の電圧によ り電気的 に接続及び分離するスィ ツチの機能を果たす。 画素電極は前段の走査信 号線 5 3 との間に層間絶縁膜を介し付加容量 9 0 を形成する。 付加容量 9 0 は画素電極 3 の電圧を保持する機能を有する。  On a glass substrate 20, a video signal line 13 and a light-shielding film 92 made of a Cr film having a thickness of 200 nm are formed. The light-shielding film 92 shields light from the backlight of the liquid crystal display device that enters the channel 22 and the LDD 21 from the substrate 20 side, thereby suppressing the leak current of the thin-film transistor and stabilizing the voltage of the pixel electrode. Has the effect of improving the image quality. The ends of the light shielding film 92 and the video signal line 13 are formed in a forward tapered shape having a gentle angle. When the end of the video signal line 13 has a forward tapered shape, a decrease in crystallinity due to a step at the time of crystallization due to excimer laser annealing of the Si film formed on the end can be suppressed. In order to form the conductive film made of Cr into a forward tapered shape at the end, for example, it can be formed by photolithography using a wet etch using an etchant containing nitric acid. The video signal line 13 is connected to the drain of the thin-film transistor 8 via a drain contact layer 91 composed of a silicide. The source of the thin-film transistor 8 is connected to the pixel electrode 3. The gate electrode 9 of the thin-film transistor 8 is connected to the scanning signal line 52, and a switch for electrically connecting and separating between the video signal line 13 and the pixel electrode 3 by the voltage of the scanning signal line 52. Perform the function of The pixel electrode forms an additional capacitor 90 between the pixel electrode and the preceding scanning signal line 53 via an interlayer insulating film. The additional capacitance 90 has a function of holding the voltage of the pixel electrode 3.
ドレイ ンコ ンタ ク ト層 9 1 及び画素電極 3 は導電性のシ リ サイ ド膜に よ り形成されている。 シリ サイ ド膜は例えばシリ サイ ドターゲッ トを用 いたスパッタ法によ り堆積できる。 ま た、 S i 膜と同様 ドライエッチを 用いたホ ト リ ソ によ り高精度に加工できる。 シリ サイ ド膜は S i 膜に比 ベ抵抗が低いため対向電圧信号線に用いる ことができる。 シリ サイ ド膜 と しては W, M o, T aなどの高融点金属のシリサイ ドを用いることが できる。 また、 これら高融点金属膜を電極膜と した場合に比べ耐薬品性 に優れ、 液晶と電極の反応による不良の発生を低減できる。 The drain contact layer 91 and the pixel electrode 3 are formed of a conductive silicide film. The silicide film can be deposited by, for example, a sputtering method using a silicide target. Also, like the Si film, it can be processed with high precision by photolithography using dry etching. Since the silicide film has a lower resistance than the Si film, it can be used for the counter voltage signal line. Silicide film For example, silicides of high melting point metals such as W, Mo, and Ta can be used. In addition, compared to the case where these refractory metal films are used as electrode films, they have better chemical resistance and can reduce the occurrence of defects due to the reaction between the liquid crystal and the electrodes.
第 1 7図は、 第 1 5図の画素を有する液晶表示装置の映像信号線 1 3 に垂直な方向での断面図である。  FIG. 17 is a cross-sectional view of the liquid crystal display device having the pixels of FIG. 15 in a direction perpendicular to the video signal line 13.
ガラス基板 2 0と対向基板 6 1 間に正の誘電異方性を有する液晶が封 入され、 ガラス基板 2 0 と対向基板 6 1 の間隔は所定の大きさのプラス チックビーズ 9 5 によ り保持されている。 ガラス基板 2 0上には映像信 号線 1 3が形成され、 さ らにこの映像信号線 1 3上に S i 0 2 からなる 下地膜 1 9 , ゲート絶縁膜 1 7及び層間絶縁膜 1 8 を介して対向電極 4 が形成されている。 また、 この対向電極と同層に導電層で画素電極 3が 形成されている。 画素電極 3 と対向電極 4は間に電圧を印加し基板に概 ね平行な電界を与える。 対向電極 4は映像信号線 1 3からの電界を遮蔽 しクロス トークを減少して画質を向上する効果も有する。 ガラス基板 2 0及び対向基板 6 1上には液晶を配向させるための配向膜 6 4が形成 され、 概ね映像信号線 1 3 と平行な方向に液晶分子を配向させるようラ ビング処理されている。 画素電極 3 と対向電極 4間に印加された電界に よ り液晶分子は電気力線 9 6の方向に向けて回転し、 透過する光の偏光 面を回転させて偏光板 (図示せず) を透過する光量が制御される。 本実 施例では画素電極上が薄い配向膜のみを介して液晶に接するため液晶に 有効に電界を印加でき、 駆動電圧を低減できる。 Liquid crystal having a positive dielectric anisotropy is sealed between the glass substrate 20 and the opposing substrate 61, and the distance between the glass substrate 20 and the opposing substrate 61 is determined by plastic beads 95 of a predetermined size. Is held. On the glass substrate 2 0 is formed by the video signal Line 1 3, the base film 1 9 consisting of S i 0 2 on the video signal line 1 3 is al, an gate insulating film 1-7 and the interlayer insulating film 1 8 An opposing electrode 4 is formed via this. The pixel electrode 3 is formed of a conductive layer on the same layer as the counter electrode. A voltage is applied between the pixel electrode 3 and the counter electrode 4 to apply a substantially parallel electric field to the substrate. The counter electrode 4 also has the effect of shielding the electric field from the video signal line 13 and reducing crosstalk to improve image quality. An alignment film 64 for aligning liquid crystal is formed on the glass substrate 20 and the counter substrate 61, and is subjected to a rubbing treatment so as to align liquid crystal molecules in a direction substantially parallel to the video signal line 13. Due to the electric field applied between the pixel electrode 3 and the counter electrode 4, the liquid crystal molecules rotate in the direction of the lines of electric force 96, rotate the plane of polarization of the transmitted light, and rotate a polarizing plate (not shown). The amount of transmitted light is controlled. In this embodiment, since the pixel electrode is in contact with the liquid crystal only through the thin alignment film, an electric field can be effectively applied to the liquid crystal, and the driving voltage can be reduced.
第 1 8図は、 本発明による液晶表示装置の画素の例である。  FIG. 18 is an example of a pixel of the liquid crystal display device according to the present invention.
断面構造が第 1 図の画素と同一であり、 画素電極 3及び対向電極 4が 画素内で折れ曲がり を有している。 画素電極 3 と対向電極 4の間には電 極の折れ曲がり によ リ画素内で異なる向きに電界が液晶 6 2 に印加され る。 液晶 6 2 は電界にそって配向 し、 画素内で異なる向きの配向を有す る こと によ り視角特性が改善される。 The cross-sectional structure is the same as that of the pixel of FIG. 1, and the pixel electrode 3 and the counter electrode 4 have a bend in the pixel. Electric fields are applied to the liquid crystal 62 in different directions within the pixel due to the bending of the electrode between the pixel electrode 3 and the counter electrode 4. You. The liquid crystal 62 is oriented along the electric field, and the viewing angle characteristics are improved by having different orientations in the pixel.
第 1 9 図は、 本発明による液晶表示装置の画素の例である。  FIG. 19 is an example of a pixel of the liquid crystal display device according to the present invention.
ガラス基板 2 0上に a— S i 膜からなる薄膜 トランジスタ を有する横 電界型の液晶表示装置が示されている。 リ ン ドープされ導電性を有する n + a— S i 及びノ ン ドープ a— S i の積層膜からなる画素電極 3及び 対向電極 4が形成されている。 金属膜からなる映像信号線 1 3 は下部に n + a - S i とノ ン ド一プ a— S i からなる a— S i 線 1 0 0 が形成さ れ、 断線に対する耐性を高めている。 映像信号線 1 3 と走査信号線 5 2 の交差部付近に a _ S i 膜を用いたソース 1 0 と ドレイ ン 1 1 とチヤネ ル 1 1 がゲー ト電極 9 上にゲー ト絶縁膜を介して形成された逆スタ ガ型 の薄膜 トランジスタ を有する。 ドレイ ン 1 1 は映像信号線と同層な金属 膜からなる ドレイ ン配線 1 0 2 を介し画素電極 3 に接続される。 ま た走 査信号線 5 2 と同層な金属膜からなる対向電圧信号線 1 4 と映像信号線 と同層な金属膜からなる対向電圧配線 1 0 3 はスルーホール 1 0 1 を介 し上部に形成された I T O膜 9 3 によ り互いに接続されている。 対向電 極 4 は対向電圧信号線 1 4 と対向電圧配線 1 0 3及び I T O膜 9 3 を通 して接続されている。 画素電極 3及び対向電極 4の上部は有機保護膜が 開口された有機保護膜開口部 4が形成されている。  An in-plane switching type liquid crystal display device having a thin film transistor composed of an a-Si film on a glass substrate 20 is shown. A pixel electrode 3 and a counter electrode 4 are formed of a laminated film of n + a-Si and non-doped a-Si having conductivity and being doped with phosphorus. On the video signal line 13 made of a metal film, an a-Si line 100 composed of n + a-Si and a non-a-Si is formed at the lower part to enhance the resistance to disconnection. . In the vicinity of the intersection of the video signal line 13 and the scanning signal line 52, the source 10 using the a_S i film, the drain 11 and the channel 11 are placed on the gate electrode 9 via the gate insulating film. It has an inverted staggered thin film transistor formed by the above method. The drain 11 is connected to the pixel electrode 3 via a drain wiring 102 made of the same metal film as the video signal line. In addition, the counter voltage signal line 14 made of the same metal film as the scan signal line 52 and the counter voltage wire 103 made of the same metal film as the video signal line are connected via the through-hole 101 to the top. They are connected to each other by the ITO film 93 formed in the above. The counter electrode 4 is connected to the counter voltage signal line 14 through the counter voltage wiring 103 and the ITO film 93. An organic protective film opening 4 in which an organic protective film is opened is formed above the pixel electrode 3 and the counter electrode 4.
第 2 0 図は、 第 1 9 図の画素の薄膜 トラ ンジスタ 8付近の断面図であ る。  FIG. 20 is a cross-sectional view of the vicinity of the thin-film transistor 8 of the pixel shown in FIG.
ガラス基板 2 0上にゲー ト電極 9 が形成され、 ゲ一 ト絶縁膜 1 7 を介 してソース 1 0 , ドレイ ン 1 1 及びチャネル 2 2 が形成された薄膜 トラ ンジスタ 8 が形成されている。 薄膜 トランジスタ 8 のソース 1 0 は金属 膜からなる映像信号線 1 3 に接続され、 ドレイ ン 1 1 は ドレイ ン配線 1 0 2 を通し n+ a - S i 1 0 4と ノ ン ド一プ a— S i 1 0 5の積層膜 からなる画素電極 3 に接続される。 画素電極 3上は有機保護膜 1 5が開 口され、 無機保護膜 1 6 によ り保護される。 A gate electrode 9 is formed on a glass substrate 20, and a thin-film transistor 8 having a source 10, a drain 11, and a channel 22 formed via a gate insulating film 17 is formed. . The source 10 of the thin-film transistor 8 is connected to the video signal line 13 made of a metal film, and the drain 11 is connected to the drain wiring. Through 102, it is connected to the pixel electrode 3 composed of a laminated film of n + a-Si104 and the node a-Si105. An organic protective film 15 is opened on the pixel electrode 3 and is protected by an inorganic protective film 16.
第 2 1 図は、 第 1 9図の画素の蓄積容量付近の断面図である。  FIG. 21 is a cross-sectional view near the storage capacitor of the pixel in FIG.
ガラス基板 2 0上に走査信号線 1 2 と同層に金属膜からなる対向電圧 信号線 1 4が形成されている。 対向電圧信号線 1 4上にはゲー ト絶縁膜 A counter voltage signal line 14 made of a metal film is formed on the glass substrate 20 in the same layer as the scanning signal line 12. Gate insulating film on opposing voltage signal line 14
1 7 を介し前段の画素の画素電極 3 に接続された ドレイ ン配線 1 0 2が 形成され、 前段の画素電極の信号電圧を保持する蓄積容量 5 5が形成さ れている。 ゲー ト絶縁膜 1 7及び無機保護膜 1 6 を開口 したスルーホー ル 1 0 1 を介し、 対向電圧信号線 1 4と I T O膜 9 3及び対向電圧配線A drain wiring 102 connected to the pixel electrode 3 of the previous stage pixel via 17 is formed, and a storage capacitor 55 for holding the signal voltage of the previous stage pixel electrode is formed. The opposing voltage signal line 14, the ITO film 93, and the opposing voltage wiring are provided via the through hole 101 having the gate insulating film 17 and the inorganic protective film 16 opened.
1 0 3が接続されている。 対向電圧配線 1 0 3は n+ a— S i 1 0 4及 びノ ン ドープ a— S i 1 0 5の積層膜からなる対向電極 4に接続される 対向電極 4の上部は無機保護膜 1 6で保護され、 有機保護膜 1 5が開口 されている。 103 is connected. The counter voltage wiring 103 is connected to the counter electrode 4 composed of a laminated film of n + a—Si 104 and non-doped a—Si 105, and the upper part of the counter electrode 4 is an inorganic protective film 16 And the organic protective film 15 is opened.
第 2 2図及び第 2 3図は、 第 1 8図の画素を有する薄膜 トランジスタ 基板の製造方法の例である。 尚、 第 2 2図及び第 2 3図はそれぞれ第 FIGS. 22 and 23 show an example of a method of manufacturing a thin film transistor substrate having the pixels shown in FIG. Fig. 22 and Fig. 23 are
2 0図, 第 2 1 図の断面部での製造工程を示している。 The manufacturing process at the cross section of FIG. 20 and FIG. 21 is shown.
ガラス基板 2 0上に C rからなる金属膜をスパッタ法で 2 0 0 n m堆 積し、 ゥエ ツ トエッチを用いたホ ト リ ソによ リ走査信号線及び対向電圧 信号線 1 4とゲー ト電極 9 を形成する。 S i Nからなるゲー ト絶縁膜を A metal film made of Cr is deposited on a glass substrate 20 by sputtering to a thickness of 200 nm, and is gated to a scanning signal line and a counter voltage signal line 14 by photolithography using an ゥ et etch. A contact electrode 9 is formed. Gate insulating film made of SiN
3 0 0 n mプラズマ C V D法によ り堆積した後、 ノ ン ド一プの a— S i 及びリ ン ドープされた a— S i である n+ a - S i をプラズマ C V Dに よ り それぞれ 2 0 0 n mと 5 0 n m堆積する。 ノ ン ドープ a— S i 105 及び n+ a S i 1 0 4を ドライエッチを用いたホ ト リ ソで加工し、 第 2 2図 ( a ) 及び第 2 3図 ( a ) の形状を得る。 C rからなる金属膜を スパッタで 2 0 0 n m堆積し、 同様にホ ト リ ソで加工して映像信号線 1 3 と ドレイ ン配線 1 0 2及び対向電圧配線 1 0 3 を形成し第 2 2図After depositing by the 300-nm plasma CVD method, the a-Si of the node and n + a-Si, which is the phosphorus-doped a-Si, are each deposited by plasma CVD at 200 nm. Deposit 0 nm and 50 nm. The non-doped a-Si 105 and n + a Si 104 are processed by photolithography using dry etching to obtain the shapes shown in FIGS. 22 (a) and 23 (a). A metal film made of Cr Deposited 200 nm by sputtering, and processed by photolithography in the same way to form video signal line 13, drain wiring 102, and counter voltage wiring 103.
( b ) と第 2 3図 ( b ) の構造とする。 レジス トを塗布し、 ホ トマスク を用いて露光現像を行い第 2 2図 ( c ) において薄膜 トラ ンジスタ 8の 領域を開口 したレジス トパタ ンを形成し、 ドライエッチによ リ ソース 1 0及び ドレイ ン 1 1 上の金属膜をマスク と してチャネル部の n+ a - S i とノ ン ドープ a— S i の一部を ドライエッチによ り 除去し、 チヤネ ル 2 2 を形成して薄膜 トラ ンジスタ 8 を形成する。 次に S i Nからなる 無機保護膜 1 6 を 2 0 0 n mプラズマ C V D法によ リ堆積する。 S F6 ガスを用いた ドライエッチによるホ ト リ ソ を行い、 無機絶縁膜 1 6及び ゲー ト絶縁膜 1 7 にスルーホール 1 0 1 を開口 して第 2 3図 ( c ) の構 造を得る。 次に I T O膜をスパッタ によ り 1 4 0 n m堆積し、 ウエ ッ ト エッチを用いたホ ト リ ソによ り I T 0膜 9 3の形状に加工する。 ポリ イ ミ ドからなる有機保護膜を塗布し、 ホ トマスク を用いた露光現像ま たは 酸素を用いた R I Eによ り加工して第 2 2図 ( d ) 及び第 2 3図 ( d ) の構造を有する薄膜 トランジスタ基板を得る。 有機保護膜は配線を形成 する金属膜と液晶の反応を抑制する効果を有する。 (b) and Fig. 23 (b). A resist is applied and exposed and developed using a photomask to form a resist pattern in which the area of the thin film transistor 8 is opened in FIG. 22 (c), and the resource 10 and the drain are dry-etched. 11 Using the metal film on 1 as a mask, n + a-Si and a part of the non-doped a-Si in the channel portion are removed by dry etching, and a channel 22 is formed to form a thin film transistor. Form 8. Next, an inorganic protective film 16 made of SiN is deposited again by a 200-nm plasma CVD method. Photolithography by dry etching using SF 6 gas is performed, and through holes 101 are opened in the inorganic insulating film 16 and the gate insulating film 17 to obtain the structure shown in FIG. 23 (c). . Next, an ITO film is deposited to a thickness of 140 nm by sputtering, and is processed into a shape of the IT0 film 93 by photolithography using a wet etch. An organic protective film made of polyimide was applied and processed by exposure and development using a photomask or RIE using oxygen, as shown in Figs. 22 (d) and 23 (d). A thin film transistor substrate having a structure is obtained. The organic protective film has an effect of suppressing the reaction between the liquid crystal and the metal film forming the wiring.
映像信号線及び走査信号線を形成する金属膜と しては C r のほか、 The metal film that forms the video signal line and the scanning signal line is Cr,
S i とのコ ンタ ク ト性に優れる M o, Wなどの高融点金属およびこれら の合金を用いる こともできる。 M o合金は I T O膜とのコ ンタ ク ト性に 優れている。 High-melting-point metals such as Mo and W, which have excellent contact properties with Si, and alloys thereof can also be used. The Mo alloy has excellent contact properties with the ITO film.
本実施例では映像信号線を形成する金属膜に比べ耐薬品性の高い導電 性の n+ a— S i 膜を用いて画素電極及び対向電極を形成しており 、 無 機保護膜のみで液晶に対し十分な耐薬品性を有するため、 画素電極およ び対向電極上の有機保護膜を開口でき液晶に印加される電界が増加 し、 駆動電圧を低減できる効果を有する。 ま た、 ドライエッチによる加工が 可能なため画素電極を細線化して高開口率化する こ ともできる。 In the present embodiment, the pixel electrode and the counter electrode are formed using a conductive n + a-Si film having higher chemical resistance than the metal film forming the video signal line, and the liquid crystal is formed only by the inorganic protective film. Since it has sufficient chemical resistance, the organic protective film on the pixel electrode and the counter electrode can be opened, and the electric field applied to the liquid crystal increases. This has the effect of reducing the drive voltage. Also, since processing by dry etching is possible, the pixel electrode can be made thinner to increase the aperture ratio.
第 2 4図は、 本発明による液晶表示装置の画素の例である。  FIG. 24 is an example of a pixel of the liquid crystal display device according to the present invention.
透明絶縁基板 2上に全面に I T O膜からなる対向電極 4が形成されて いる。 対向電極 4上に酸化シ リ コ ン膜からなる透明絶縁膜が形成されて いる。 透明絶縁膜上に走査信号線 5 2 と多結晶 S i 膜によ リ ソース及び ドレイ ンとチャネルが同一層で形成されチャネル上にゲー ト電極が形成 されたコ プレーナ型の薄膜 トラ ンジスタ 8 が形成されている。 さ らに、 層間絶縁膜 1 8 を介し映像信号線 1 3 が形成されている。 薄膜 トランジ スタ 8 のゲー ト電極は走査信号線 5 2 と同層の金属膜で形成されて走査 信号線 5 2 に接続されている。 薄膜 トラ ンジスタ 8 の ドレイ ン 1 0 はコ ンタク トホール 7 を介して映像信号線 1 3 に接続されている。 薄膜 トラ ンジスタ のチャネル 2 2 と同層の多結晶 S i 膜からな り 、 薄膜 トラ ンジ スタのソース及び ドレイ ンと同 じ n型に リ ンで ドープされ、 導電性を有 する画素電極 3 が形成されている。 画素電極 3 は薄膜 トラ ンジスタのソ —ス 1 1 に接続されている。 なお、 第 2 4図ではソースと ドレイ ン及び 画素電極への ドーピングに リ ンを用い、 N型の薄膜 トラ ンジスタ及び画 素電極を形成しているが、 リ ンの代わり にホウ素を用い P型の薄膜 トラ ンジスタ とする こ ともできる。 走査信号線と映像信号線及び薄膜 トラン ジスタの上部には窒化シリ コ ン膜からなる無機保護膜 1 6 が形成される 画素電極 3 上は層間絶縁膜 1 8及び無機保護膜 1 6 が開口されて無機保 護膜開口部 1 1 1 が形成されている。  An opposing electrode 4 made of an ITO film is formed on the entire surface of the transparent insulating substrate 2. A transparent insulating film made of a silicon oxide film is formed on the counter electrode 4. A coplanar thin-film transistor 8 in which a resource, a drain, and a channel are formed in the same layer by a scanning signal line 52 and a polycrystalline Si film on a transparent insulating film, and a gate electrode is formed on the channel. Is formed. Further, a video signal line 13 is formed via an interlayer insulating film 18. The gate electrode of the thin-film transistor 8 is formed of the same metal film as the scanning signal line 52 and is connected to the scanning signal line 52. The drain 10 of the thin-film transistor 8 is connected to the video signal line 13 via the contact hole 7. The conductive pixel electrode 3 is made of a polycrystalline Si film in the same layer as the channel 22 of the thin-film transistor, is doped with the same n-type phosphorus as the source and drain of the thin-film transistor, and has conductivity. Is formed. The pixel electrode 3 is connected to the source 11 of the thin-film transistor. In Fig. 24, phosphorus is used for doping the source and drain and the pixel electrode to form an N-type thin film transistor and a pixel electrode, but boron is used instead of phosphorus and a P-type Thin film transistor. An inorganic protective film 16 made of a silicon nitride film is formed on the scanning signal line, the video signal line, and the thin film transistor. On the pixel electrode 3, an interlayer insulating film 18 and an inorganic protective film 16 are opened. Thus, an inorganic protective film opening 111 is formed.
第 2 5 図は、 本発明の液晶表示装置の第 2 4図の A— A ' 間に対応す る断面である。  FIG. 25 is a cross section of the liquid crystal display device of the present invention corresponding to a section taken along line AA ′ of FIG. 24.
ガラス基板からなる透明絶縁基板 2上に I T 0からなる対向電極 4が 形成されている。 対向電極 4上には酸化シ リ コ ン膜からなる厚さ 5 0 0 n mの透明絶縁膜 1 1 0 が形成されている。 A counter electrode 4 made of IT 0 is placed on a transparent insulating substrate 2 made of a glass substrate. Is formed. On the counter electrode 4, a transparent insulating film 110 having a thickness of 500 nm made of a silicon oxide film is formed.
透明絶縁膜 1 1 0上には多結晶 S i 膜からなる画素電極 3 が形成され ている。 画素電極 3 は薄膜 トラ ンジスタ 8 のチャネルと同層な層で形成 され、 薄膜 トラ ンジスタのソース 1 1 に連続して接続されている。  On the transparent insulating film 110, a pixel electrode 3 made of a polycrystalline Si film is formed. The pixel electrode 3 is formed of the same layer as the channel of the thin-film transistor 8 and is continuously connected to the source 11 of the thin-film transistor.
尚、 透明絶縁膜には酸化シ リ コ ン膜のほか、 窒化シ リ コ ン膜及び酸化 シ リ コ ン膜と窒化シ リ コ ン膜の積層膜を用いる こ ともできる。 窒化シ リ コ ン膜はガラス及び I T Oからの不純物の拡散を防止するのに適してい る。  The transparent insulating film may be a silicon oxide film, a silicon nitride film, or a laminated film of a silicon oxide film and a silicon nitride film. Silicon nitride films are suitable for preventing diffusion of impurities from glass and ITO.
本構造の画素では画素電極 3 と対向電極 4の間に発生する電気力線 9 6 によ り画素電極の端部で電界が基板に概ね平行な向きを有する領域 で液晶を駆動する。 画素電極 3 上には液晶を配向させる配向膜 6 4が形 成されている。 本構造の画素では画素電極が段差のない透明絶縁膜 1 10 上に形成されており 、 ま た ドレイ ンと連続的に接続されるため段差部で の断線がないため歩留ま り を向上できる。 ま た、 画素電極と対向電極間 の合わせずれがな く 、 電極間隔の変動による表示の不均一性がないため 画質が向上する。 ま た、 画素電極 3 と対向電極 4の間に十分な大きさの 保持容量が形成されるため、 別途保持容量のための面積を設ける必要が なく 、 高開口率化できる。 ま た、 本実施例では画素電極 3 と液晶との間 に配向膜のみを介する構造と してお リ 、 液晶に有効な電界を印加でき、 低い駆動電圧で液晶を駆動できる。  In the pixel of this structure, the liquid crystal is driven in a region where the electric field is substantially parallel to the substrate at the end of the pixel electrode by the electric lines of force 96 generated between the pixel electrode 3 and the counter electrode 4. On the pixel electrode 3, an alignment film 64 for aligning the liquid crystal is formed. In the pixel having this structure, the pixel electrode is formed on the transparent insulating film 110 having no step, and is continuously connected to the drain, so that there is no disconnection at the step, so that the yield can be improved. . In addition, there is no misalignment between the pixel electrode and the counter electrode, and there is no display non-uniformity due to a change in the electrode interval. Further, since a sufficiently large storage capacitor is formed between the pixel electrode 3 and the counter electrode 4, it is not necessary to provide an additional area for the storage capacitor, and the aperture ratio can be increased. Further, in this embodiment, the structure is such that only the alignment film is interposed between the pixel electrode 3 and the liquid crystal, so that an effective electric field can be applied to the liquid crystal and the liquid crystal can be driven with a low driving voltage.
本実施例の画素では加えて画素電極に微細加工が容易な多結晶 S i 膜 を用いてお り 、 画素電極 3 を細線化して開口率を向上できる利点がある , さ らに電極の微細化によ り電極端部での電界が強く なるため、 よ り低い 電圧で液晶を駆動でき、 このため薄膜 トランジスタ基板上に形成された 多結晶 S i 薄膜 トラ ンジスタからなる低耐圧の内蔵駆動回路によっても 液晶を駆動できる。 このため本発明の画素を有する液晶表示装置は駆動 回路を内蔵して高精細化できる利点を有する。 In the pixel of this embodiment, in addition, a polycrystalline Si film, which is easy to perform fine processing, is used for the pixel electrode, and there is an advantage that the pixel electrode 3 can be made thinner to improve the aperture ratio. As a result, the electric field at the end of the electrode becomes stronger, so that the liquid crystal can be driven at a lower voltage, thus forming the liquid crystal on the thin film transistor substrate. The liquid crystal can also be driven by a built-in low-breakdown-voltage drive circuit consisting of a polycrystalline Si thin-film transistor. For this reason, the liquid crystal display device having the pixel of the present invention has an advantage that a driving circuit is built in and high definition can be achieved.
本実施例においては画素電極に多結晶 S i を用いたが、 多結晶 S i 膜 のほか、 導電性を有するアモルフ ァス S i 膜及びシリ サイ ド膜を薄膜 ト ラ ンジスタのチャネルとは異なる層と して形成し、 用いる こともできる 横電界方式であるため画素電極は透明でな く とも よ く 、 透明性を犠牲と しても画素電極に必要なシー ト抵抗に応じて膜厚を増加する ことができ 多結晶 S i に比べ高抵抗なアモルフ ァス S i 膜も膜厚化して用いる こ と ができる。 ま た、 不透明なシリ サイ ド膜を電極にする こともできる。 い ずれもフ ッ素系のガスを用いた ドライエッチングによ リ微細加工でき、 高開口率で高精細な横電界型の液晶表示装置を形成できる。  In this embodiment, the polycrystalline Si is used for the pixel electrode. However, in addition to the polycrystalline Si film, the conductive amorphous silicon film and the silicide film are different from the channels of the thin film transistor. Since it is a horizontal electric field method that can be formed and used as a layer, the pixel electrode does not need to be transparent, and even if transparency is sacrificed, the thickness of the film is adjusted according to the sheet resistance required for the pixel electrode. Amorphous Si films that can be increased and have higher resistance than polycrystalline Si can also be used with increased film thickness. Also, an opaque silicide film can be used as an electrode. In either case, fine processing can be performed by dry etching using a fluorine-based gas, and a high-definition, high-definition horizontal electric field type liquid crystal display device can be formed.
本発明によれば画素電極ま たは対向電極を S i を主成分とする導電膜 で形成する こと によ リ 、 横電界型液晶駆動装置の開口率の改善及び駆動 電圧の低減が可能となる。 ま た、 歩留ま り が向上できる。 産業上の利用可能性  According to the present invention, by forming a pixel electrode or a counter electrode with a conductive film containing Si as a main component, it is possible to improve the aperture ratio and reduce the driving voltage of a horizontal electric field type liquid crystal driving device. . Also, the yield can be improved. Industrial applicability
以上のよ う に、 本発明にかかる液晶表示装置は、 画素電極又は対向電 極を S i を主成分とする導電膜で構成しているので、 特に開口率の改善 及び駆動電圧の低減が可能であ リ 、 低消費電力の液晶表示装置を構成す る ことができる。  As described above, in the liquid crystal display device according to the present invention, since the pixel electrode or the counter electrode is formed of the conductive film containing Si as a main component, the aperture ratio can be particularly improved and the driving voltage can be reduced. Thus, a liquid crystal display device with low power consumption can be configured.

Claims

請 求 の 範 囲 The scope of the claims
1 . 少なく とも一方が透明な一対の基板と、 該一対の基板に挟持された 液晶層と、 前記一対の基板の少なく とも一方の基板上に配置された映像 信号電極と、 該映像信号電極と交差するよう に配置された走査信号電極 と、 前記映像信号電極と前記走査信号電極の交点付近に配置された薄膜 トランジスタと、 該薄膜トランジスタに接続された画素電極と、 該画素 電極が配置された方向と同じ方向に配置された対向電極とを有し、 前記 画素電極と前記対向電極間に印加される電圧によ リ前記液晶層の液晶分 子を制御すること によ り表示を行う液晶表示装置において、  1. At least one of a pair of transparent substrates, a liquid crystal layer sandwiched between the pair of substrates, a video signal electrode disposed on at least one of the pair of substrates, Scanning signal electrodes arranged so as to intersect, a thin film transistor arranged near the intersection of the video signal electrode and the scanning signal electrode, a pixel electrode connected to the thin film transistor, and a direction in which the pixel electrode is arranged A liquid crystal display device having a counter electrode disposed in the same direction as that of the liquid crystal layer, and performing display by controlling liquid crystal molecules of the liquid crystal layer with a voltage applied between the pixel electrode and the counter electrode. At
前記画素電極及び前記対向電極は、 S i を主成分とする導電膜で構成 された液晶表示装置。  The liquid crystal display device, wherein the pixel electrode and the counter electrode are formed of a conductive film containing Si as a main component.
2 . 前記画素電極及び対向電極は、 同層に形成されている請求の範囲第 1項記載の液晶表示装置。  2. The liquid crystal display device according to claim 1, wherein the pixel electrode and the counter electrode are formed in the same layer.
3 . 少なく とも一方が透明な一対の基板と、 該一対の基板に挟持された 液晶層と、 前記一対の基板の少なく とも一方の基板上に配置された映像 信号電極と、 該映像信号電極と交差するよう に配置された走査信号電極 と、 前記映像信号電極と前記走査信号電極の交点付近に配置された薄膜 トランジスタと、 該薄膜トランジスタに接続された画素電極と、 該画素 電極と同じ方向に配置された対向電極とを有し、 前記画素電極と前記対 向電極間に印加される電圧によ リ前記液晶層の液晶分子を制御すること によ り表示を行う液晶表示装置において、  3. At least one of a pair of transparent substrates, a liquid crystal layer sandwiched between the pair of substrates, a video signal electrode disposed on at least one of the pair of substrates, Scanning signal electrodes arranged so as to intersect, thin film transistors arranged near intersections of the video signal electrodes and the scanning signal electrodes, pixel electrodes connected to the thin film transistors, and arranged in the same direction as the pixel electrodes A liquid crystal display device, comprising: a counter electrode formed in the liquid crystal layer, wherein a display is performed by controlling liquid crystal molecules of the liquid crystal layer by a voltage applied between the pixel electrode and the counter electrode.
前記画素電極又は前記対向電極は、 S i を主成分とする導電膜で構成 された液晶表示装置。  The liquid crystal display device, wherein the pixel electrode or the counter electrode is formed of a conductive film containing Si as a main component.
4 . 前記画素電極及び対向電極が同層に形成されている請求の範囲第 3 項記載の液晶表示装置。 4. The liquid crystal display device according to claim 3, wherein the pixel electrode and the counter electrode are formed in the same layer.
5 . 少なく とも一方が透明な一対の基板と、 該一対の基板に挟持された 液晶層と、 前記一対の基板の少なく とも一方の基板上に配置された映像 信号電極と、 該映像信号電極と交差するよう に配置された走査信号電極 と、 前記映像信号電極と前記走査信号電極の交点付近に配置された薄膜 トランジスタと、 該薄膜トランジスタに接続された画素電極と、 前記画 素電極と同じ方向に配置された対向電極とを有し、 前記画素電極と前記 対向電極間に印加される電圧によ り前記液晶層の液晶分子を制御するこ とによ り表示を行う液晶表示装置において、 5. At least one of a pair of transparent substrates, a liquid crystal layer sandwiched between the pair of substrates, a video signal electrode disposed on at least one of the pair of substrates, A scanning signal electrode disposed so as to intersect, a thin film transistor disposed near an intersection of the video signal electrode and the scanning signal electrode, a pixel electrode connected to the thin film transistor, and in the same direction as the pixel electrode. A liquid crystal display device having a counter electrode disposed therein and performing display by controlling liquid crystal molecules of the liquid crystal layer with a voltage applied between the pixel electrode and the counter electrode.
前記画素電極は、 多結晶半導体膜で構成され、  The pixel electrode is made of a polycrystalline semiconductor film,
前記対向電極は、 I T Oで構成された液晶表示装置。  The liquid crystal display device, wherein the counter electrode is made of ITO.
6 . 前記画素電極及び対向電極は、 同層に形成されている請求の範囲第 5項記載の液晶表示装置。  6. The liquid crystal display device according to claim 5, wherein the pixel electrode and the counter electrode are formed in the same layer.
7 . 少なく とも一方が透明な一対の基板と、 該一対の基板に挟持された 液晶層と、 前記一対の基板の少なく とも一方の基板上に配置された映像 信号電極と、 該映像信号電極と交差するよう に配置された走査信号電極 と、 前記映像信号電極と前記走査信号電極の交点付近に配置された薄膜 トランジスタと、 該薄膜トランジスタに接続された画素電極と、 該画素 電極と同じ方向に配置された対向電極とを有し、 前記画素電極と前記対 向電極間に印加される電圧によ り前記液晶層の液晶分子を制御するこ と によ リ表示を行う液晶表示装置において、  7. At least one pair of transparent substrates, a liquid crystal layer sandwiched between the pair of substrates, a video signal electrode disposed on at least one of the pair of substrates, Scanning signal electrodes arranged so as to intersect, thin film transistors arranged near intersections of the video signal electrodes and the scanning signal electrodes, pixel electrodes connected to the thin film transistors, and arranged in the same direction as the pixel electrodes A liquid crystal display device having a common electrode and a liquid crystal layer that performs liquid crystal display by controlling liquid crystal molecules of the liquid crystal layer with a voltage applied between the pixel electrode and the common electrode.
前記画素電極は、 I T Oで構成され、  The pixel electrode is composed of I T O,
前記対向電極は、 多結晶半導体膜で構成された液晶表示装置。  The liquid crystal display device, wherein the counter electrode is formed of a polycrystalline semiconductor film.
8 . 前記画素電極及び対向電極が同層に形成されている請求の範囲第 7 項記載の液晶表示装置。  8. The liquid crystal display device according to claim 7, wherein the pixel electrode and the counter electrode are formed in the same layer.
9 . 少なく とも一方が透明な一対の基板と、 該一対の基板に挟持された 挟持された液晶層と、 前記一対の基板の少なく とも一方の基板上に配置 された映像信号電極と、 該映像信号電極と交差するよう に配置された走 査信号電極と、 前記映像信号電極と前記走査信号電極の交点付近に配置 された薄膜トランジスタと、 該薄膜トランジスタに接続された画素電極 と、 該画素電極が配置された層とは異層に絶縁膜を介して平面状に配置 された対向電極とを有し、 前記画素電極と前記対向電極間に印加される 電圧によ り前記液晶層の液晶分子を制御するこ と によ リ表示を行う液晶 表示装置において、 9. At least one of the transparent substrates is sandwiched between the pair of substrates. A sandwiched liquid crystal layer, a video signal electrode disposed on at least one of the pair of substrates, a scan signal electrode disposed to intersect with the video signal electrode, and the video signal electrode. A thin film transistor arranged near the intersection of the scanning signal electrodes; a pixel electrode connected to the thin film transistor; and a counter electrode arranged in a plane different from the layer on which the pixel electrode is arranged via an insulating film. A liquid crystal display device which performs display by controlling liquid crystal molecules of the liquid crystal layer by a voltage applied between the pixel electrode and the counter electrode,
前記画素電極は、 S i を主成分とする導電膜で構成され、  The pixel electrode is formed of a conductive film containing Si as a main component,
平面状に配置された前記対向電極は、 透明電極によ り構成された液晶 表示装置。  The liquid crystal display device, wherein the counter electrode arranged in a plane is formed of a transparent electrode.
1 0 . 液晶を挟んで対向する対向基板及び薄膜トランジスタ基板と、 該薄膜トランジスタ基板上に互いに交差して配置された映像信号電極 及び走査信号電極と、  10. A counter substrate and a thin film transistor substrate which face each other with a liquid crystal interposed therebetween; a video signal electrode and a scanning signal electrode which are arranged on the thin film transistor substrate so as to cross each other;
前記走査信号電極及び前記映像信号電極の交差部付近に配置された薄 膜トランジスタと、  A thin film transistor arranged near an intersection of the scanning signal electrode and the video signal electrode;
該薄膜トランジスタのソースに接続された画素電極とを有し、 該画素電極と同じ方向に配置された対向電圧信号線に接続された対向 電極の間に薄膜トランジスタ基板に概ね平行な電界を形成し液晶に印加 して透過光を制御する液晶表示装置において、  A pixel electrode connected to the source of the thin film transistor; and forming an electric field substantially parallel to the thin film transistor substrate between the opposing electrodes connected to the opposing voltage signal line disposed in the same direction as the pixel electrode to form a liquid crystal on the liquid crystal. In a liquid crystal display device that controls transmitted light by applying voltage,
前記画素電極と対向電極の少なく とも一方は、 S i を主成分とする導 電膜からなる液晶表示装置。  A liquid crystal display device in which at least one of the pixel electrode and the counter electrode is made of a conductive film containing Si as a main component.
1 1 . 前記画素電極または対向電極は、 多結晶 S i 膜からなる請求の範 囲第 1 0項記載の液晶表示装置。  11. The liquid crystal display device according to claim 10, wherein said pixel electrode or counter electrode is made of a polycrystalline Si film.
1 2 . 液晶を挟み対向する対向基板と薄膜トランジスタ基板と、 該薄膜 トラ ンジスタ基板上に互いに交差する映像信号線と走査信号線 と、 1 2. A counter substrate and a thin film transistor substrate which face each other with a liquid crystal interposed therebetween, A video signal line and a scanning signal line crossing each other on the thin film transistor substrate;
該走査信号線と映像信号線の交差部付近に形成された ドレイ ンが映像 信号線に接続され、 走査信号線によ リ オンされる薄膜 トラ ンジスタ と、 前記薄膜 トランジスタ のソースに接続された画素電極と を有し、 対向電圧信号線に接続された対向電極の間に前記薄膜 トラ ンジスタ基 板に概ね平行な電界を形成し液晶に印加して透過光を制御する液晶表示 装置において、  A drain formed near the intersection of the scanning signal line and the video signal line is connected to the video signal line, and a thin film transistor is turned on by the scanning signal line, and a pixel connected to a source of the thin film transistor A liquid crystal display device comprising: an electrode; and an electric field substantially parallel to the thin film transistor substrate formed between the opposing electrodes connected to the opposing voltage signal line, and applied to the liquid crystal to control transmitted light.
前記薄膜 トラ ンジスタ が多結晶 S i 膜からなるチャネルを有し、 前記画素電極ま たは対向電極は、 チャネルと同層であ り 、 チャネルと 同 じ導電膜からなる液晶表示装置。  A liquid crystal display device, wherein the thin film transistor has a channel made of a polycrystalline Si film, and the pixel electrode or the counter electrode is in the same layer as the channel, and is made of the same conductive film as the channel.
1 3 . 薄膜 トラ ンジスタ基板上に多結晶 S i 膜からな り映像信号線と走 査信号線を駆動する回路を内蔵した請求の範囲第 1 0項〜第 1 2項のい ずれかに記載の液晶表示装置。  13. Any one of claims 10 to 12, wherein the thin film transistor substrate is made of a polycrystalline Si film and has a built-in circuit for driving a video signal line and a scanning signal line. Liquid crystal display device.
1 . 前記画素電極ま たは対向電極は、 前記薄膜 トラ ンジスタ のコ ンタ ク ト層と同層である請求の範囲第 1 0項記載の液晶表示装置。  10. The liquid crystal display device according to claim 10, wherein the pixel electrode or the counter electrode is in the same layer as a contact layer of the thin film transistor.
1 5 . 前記画素電極及び対向電極は、 リ ン ド一プアモルフ ァス S i 膜で ある請求の範囲第 1 0項記載の液晶表示装置。  15. The liquid crystal display device according to claim 10, wherein the pixel electrode and the counter electrode are a single-layer amorphous Si film.
1 6 . 前記画素電極ま たは対向電極は、 C r, M o , W, T a , T i の シ リ サイ ドま たはこれらの複合化合物を含む請求の範囲第 1 0項記載の 液晶表示装置。  16. The liquid crystal according to claim 10, wherein the pixel electrode or the counter electrode includes a silicide of Cr, Mo, W, Ta, Ti, or a composite compound thereof. Display device.
1 7 . 前記薄膜 トラ ンジスタ は、 アモルフ ァス S i 膜からなるチャネル を有する請求の範囲第 1 0項ま たは第 1 3項ま たは第 1 4項ま たは第 1 5項のいずれかに記載の液晶表示装置。  17. The thin-film transistor according to claim 10, wherein the thin-film transistor has a channel made of an amorphous Si film. A liquid crystal display device according to any one of the above.
1 8 . 少な く とも一方が透明な一対の基板と、 この基板に挟持された液 晶層を有する液晶表示装置であって、 18. A pair of substrates, at least one of which is transparent, and the liquid sandwiched between the substrates A liquid crystal display device having a crystal layer,
前記一対の基板の一方は少なく ともその表面が絶縁性であって、 前記絶縁性の主表面上に形成された透明電極と、  At least one of the pair of substrates has an insulating surface, and a transparent electrode formed on the insulating main surface;
前記透明電極と第 1 の絶縁層を介して相対する前記パターニングされ た半導体層を少なく とも有し、  Having at least the patterned semiconductor layer opposed to the transparent electrode via a first insulating layer,
前記パターニングされた半導体層と前記透明電極間に発生せしめた電 界によって前記液晶層を駆動する液晶表示装置。  A liquid crystal display device in which the liquid crystal layer is driven by an electric field generated between the patterned semiconductor layer and the transparent electrode.
1 9 . 少なく とも一方が透明な一対の基板と、 この基板に挟持された液 晶層を有する液晶表示装置であって、  19. A liquid crystal display device having at least one pair of transparent substrates and a liquid crystal layer sandwiched between the substrates,
前記一対の基板の一方は少なく ともその表面が絶縁性であって、 前記絶縁性の主表面上に形成された透明電極と、  At least one of the pair of substrates has an insulating surface, and a transparent electrode formed on the insulating main surface;
前記第一の絶縁層上に形成された半導体層と、 前記半導体層の一部に ゲート絶縁層を介して相対するゲート電極と一対の第一導電型の半導体 層を具備した複数の薄膜トランジスタと、  A semiconductor layer formed on the first insulating layer, a plurality of thin film transistors including a part of the semiconductor layer and a gate electrode and a pair of first conductive semiconductor layers facing each other with a gate insulating layer interposed therebetween;
前記複数の薄膜トランジスタに接続され、 互いに交差するように形成 された複数の走査信号線と、 複数の映像信号配線とを有し、  A plurality of scanning signal lines connected to the plurality of thin film transistors and formed to cross each other; and a plurality of video signal lines,
前記一対の第一導電型の半導体層の少なく とも一方は、 パターニング されて前記透明電極上に延在されており、  At least one of the pair of first conductive type semiconductor layers is patterned and extended on the transparent electrode,
前記パターニングされた第一導電型の半導体層と前記透明電極間に発 生せしめた電界によって前記液晶を駆動する液晶表示装置。  A liquid crystal display device that drives the liquid crystal by an electric field generated between the patterned first conductive type semiconductor layer and the transparent electrode.
PCT/JP1999/006018 1999-10-29 1999-10-29 Liquid crystal display device WO2001033292A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/006018 WO2001033292A1 (en) 1999-10-29 1999-10-29 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/006018 WO2001033292A1 (en) 1999-10-29 1999-10-29 Liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2001033292A1 true WO2001033292A1 (en) 2001-05-10

Family

ID=14237150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006018 WO2001033292A1 (en) 1999-10-29 1999-10-29 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2001033292A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149674A (en) * 2001-11-13 2003-05-21 Hitachi Ltd Liquid crystal display device
JP2003344866A (en) * 2002-05-24 2003-12-03 Sony Corp Display device and manufacturing method therefor
JP2004012731A (en) * 2002-06-06 2004-01-15 Hitachi Displays Ltd Liquid crystal display device
JP2005037913A (en) * 2003-06-27 2005-02-10 Lg Phillips Lcd Co Ltd In-plane switching mode liquid crystal display device and method for fabricating same
JP2006526799A (en) * 2003-06-02 2006-11-24 ケンブリッジ ユニバーシティ テクニカル サービシーズ リミテッド Liquid crystal device
JP2007072483A (en) * 2006-11-27 2007-03-22 Sony Corp Display apparatus and its manufacturing method
EP1843194A1 (en) * 2006-04-06 2007-10-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
JP2007298976A (en) * 2006-04-06 2007-11-15 Semiconductor Energy Lab Co Ltd Liquid crystal display, semiconductor device, and electronic device
JP2008009425A (en) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd Liquid crystal display device and electronic appliance
JP2008040234A (en) * 2006-08-08 2008-02-21 Mitsubishi Electric Corp Thin film transistor substrate, method of manufacturing thin film transistor, and display device
JP2009098256A (en) * 2007-10-15 2009-05-07 Sony Corp Liquid crystal panel, electronic apparatus, and liquid crystal panel driving method
JP2010243741A (en) * 2009-04-06 2010-10-28 Mitsubishi Electric Corp Thin film transistor array substrate, method of manufacturing the same, and liquid crystal display device
JP2012014099A (en) * 2010-07-05 2012-01-19 Mitsubishi Electric Corp Active matrix substrate and liquid crystal device
JPWO2010044289A1 (en) * 2008-10-14 2012-03-15 シャープ株式会社 Liquid crystal display
JP2012113326A (en) * 2001-02-23 2012-06-14 Nlt Technologies Ltd Active matrix type liquid crystal display device of lateral electric field system
JP2012118297A (en) * 2010-12-01 2012-06-21 Sony Corp Display panel and manufacturing method thereof, display device, and electronic apparatus
US8338865B2 (en) 2006-05-16 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
JP2014146055A (en) * 2014-04-11 2014-08-14 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JP2014194573A (en) * 2012-08-03 2014-10-09 Semiconductor Energy Lab Co Ltd Liquid crystal display device
CN104122721A (en) * 2013-06-28 2014-10-29 深超光电(深圳)有限公司 Pixel structure
JP2015064606A (en) * 2006-06-02 2015-04-09 株式会社半導体エネルギー研究所 Liquid crystal display device
WO2015103870A1 (en) * 2014-01-13 2015-07-16 京东方科技集团股份有限公司 Display substrate and display device
US9455280B2 (en) 2012-09-13 2016-09-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9829761B2 (en) 2006-10-31 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US9911755B2 (en) 2012-12-25 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor and capacitor
US10217776B2 (en) 2012-08-31 2019-02-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising first metal oxide film and second metal oxide film
JP2019144589A (en) * 2019-04-29 2019-08-29 株式会社半導体エネルギー研究所 Liquid crystal display device
JP7299834B2 (en) 2019-12-26 2023-06-28 シャープ株式会社 Active matrix substrate, in-cell touch panel liquid crystal display device provided with active matrix substrate, and method for manufacturing active matrix substrate
JP7372832B2 (en) 2019-12-26 2023-11-01 シャープ株式会社 Liquid crystal display device and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248387A (en) * 1995-03-09 1996-09-27 Hitachi Ltd Liquid crystal display device
US5838037A (en) * 1996-11-15 1998-11-17 Mitsubishi Denki Kabushiki Kaisha TFT-array and manufacturing method therefor
JPH11194366A (en) * 1998-01-07 1999-07-21 Seiko Epson Corp Active matrix substrate and its manufacture, liquid crystal device, and electronic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248387A (en) * 1995-03-09 1996-09-27 Hitachi Ltd Liquid crystal display device
US5838037A (en) * 1996-11-15 1998-11-17 Mitsubishi Denki Kabushiki Kaisha TFT-array and manufacturing method therefor
JPH11194366A (en) * 1998-01-07 1999-07-21 Seiko Epson Corp Active matrix substrate and its manufacture, liquid crystal device, and electronic equipment

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113326A (en) * 2001-02-23 2012-06-14 Nlt Technologies Ltd Active matrix type liquid crystal display device of lateral electric field system
JP2003149674A (en) * 2001-11-13 2003-05-21 Hitachi Ltd Liquid crystal display device
JP2003344866A (en) * 2002-05-24 2003-12-03 Sony Corp Display device and manufacturing method therefor
US8026116B2 (en) 2002-05-24 2011-09-27 Sony Corporation Display device and method of manufacturing the same
JP2004012731A (en) * 2002-06-06 2004-01-15 Hitachi Displays Ltd Liquid crystal display device
JP2006526799A (en) * 2003-06-02 2006-11-24 ケンブリッジ ユニバーシティ テクニカル サービシーズ リミテッド Liquid crystal device
JP2005037913A (en) * 2003-06-27 2005-02-10 Lg Phillips Lcd Co Ltd In-plane switching mode liquid crystal display device and method for fabricating same
US11073729B2 (en) 2006-04-06 2021-07-27 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US9958736B2 (en) 2006-04-06 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US11442317B2 (en) 2006-04-06 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
EP2924498A1 (en) * 2006-04-06 2015-09-30 Semiconductor Energy Laboratory Co, Ltd. Liquid crystal desplay device, semiconductor device, and electronic appliance
JP2007298976A (en) * 2006-04-06 2007-11-15 Semiconductor Energy Lab Co Ltd Liquid crystal display, semiconductor device, and electronic device
US10684517B2 (en) 2006-04-06 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
EP1843194A1 (en) * 2006-04-06 2007-10-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US11644720B2 (en) 2006-04-06 2023-05-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
JP2012053486A (en) * 2006-04-06 2012-03-15 Semiconductor Energy Lab Co Ltd Semiconductor device and electronic appliance
US9213206B2 (en) 2006-04-06 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US11921382B2 (en) 2006-04-06 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US9207504B2 (en) 2006-04-06 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
CN104950536A (en) * 2006-04-06 2015-09-30 株式会社半导体能源研究所 Liquid crystal display device, semiconductor device, and electronic appliance
CN103257492A (en) * 2006-04-06 2013-08-21 株式会社半导体能源研究所 Liquid crystal display device
KR20210047289A (en) * 2006-05-16 2021-04-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR20220106928A (en) * 2006-05-16 2022-08-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR102614424B1 (en) 2006-05-16 2023-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
JP2014194572A (en) * 2006-05-16 2014-10-09 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2014197211A (en) * 2006-05-16 2014-10-16 株式会社半導体エネルギー研究所 Semiconductor device
US8872182B2 (en) 2006-05-16 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US11726371B2 (en) 2006-05-16 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. FFS-mode liquid crystal display device comprising a top-gate transistor and an auxiliary wiring connected to a common electrode in a pixel portion
US11435626B2 (en) 2006-05-16 2022-09-06 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US8841671B2 (en) 2006-05-16 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
KR102425376B1 (en) 2006-05-16 2022-07-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US8338865B2 (en) 2006-05-16 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US11106096B2 (en) 2006-05-16 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US11061285B2 (en) 2006-05-16 2021-07-13 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device comprising a dogleg-like shaped pixel electrode in a plane view having a plurality of dogleg-like shaped openings and semiconductor device
US9268188B2 (en) 2006-05-16 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
KR102245038B1 (en) 2006-05-16 2021-04-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR20200023622A (en) * 2006-05-16 2020-03-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
CN106873259A (en) * 2006-05-16 2017-06-20 株式会社半导体能源研究所 Liquid crystal display device and semiconductor device
US9709861B2 (en) 2006-05-16 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US10509271B2 (en) 2006-05-16 2019-12-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device comprising a semiconductor film having a channel formation region overlapping with a conductive film in a floating state
JP2019124954A (en) * 2006-05-16 2019-07-25 株式会社半導体エネルギー研究所 Liquid crystal display device
US10001678B2 (en) 2006-05-16 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US11960174B2 (en) 2006-06-02 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic appliance
JP7456030B2 (en) 2006-06-02 2024-03-26 株式会社半導体エネルギー研究所 display device
JP2022048357A (en) * 2006-06-02 2022-03-25 株式会社半導体エネルギー研究所 Semiconductor device
US10095070B2 (en) 2006-06-02 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic appliance
JP2021047458A (en) * 2006-06-02 2021-03-25 株式会社半導体エネルギー研究所 Liquid crystal display device
JP2015064606A (en) * 2006-06-02 2015-04-09 株式会社半導体エネルギー研究所 Liquid crystal display device
JP2019066891A (en) * 2006-06-02 2019-04-25 株式会社半導体エネルギー研究所 Liquid crystal display device
JP2017199000A (en) * 2006-06-02 2017-11-02 株式会社半導体エネルギー研究所 Liquid crystal display device
JP2008009425A (en) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd Liquid crystal display device and electronic appliance
JP7136878B2 (en) 2006-06-02 2022-09-13 株式会社半導体エネルギー研究所 liquid crystal display
JP7223890B2 (en) 2006-06-02 2023-02-16 株式会社半導体エネルギー研究所 semiconductor equipment
JP2008040234A (en) * 2006-08-08 2008-02-21 Mitsubishi Electric Corp Thin film transistor substrate, method of manufacturing thin film transistor, and display device
US10698277B2 (en) 2006-10-31 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US11592717B2 (en) 2006-10-31 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US11860495B2 (en) 2006-10-31 2024-01-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US11372298B2 (en) 2006-10-31 2022-06-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US11016354B2 (en) 2006-10-31 2021-05-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US9829761B2 (en) 2006-10-31 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
JP2007072483A (en) * 2006-11-27 2007-03-22 Sony Corp Display apparatus and its manufacturing method
JP4544242B2 (en) * 2006-11-27 2010-09-15 ソニー株式会社 Display device
JP2009098256A (en) * 2007-10-15 2009-05-07 Sony Corp Liquid crystal panel, electronic apparatus, and liquid crystal panel driving method
JPWO2010044289A1 (en) * 2008-10-14 2012-03-15 シャープ株式会社 Liquid crystal display
JP2010243741A (en) * 2009-04-06 2010-10-28 Mitsubishi Electric Corp Thin film transistor array substrate, method of manufacturing the same, and liquid crystal display device
JP2012014099A (en) * 2010-07-05 2012-01-19 Mitsubishi Electric Corp Active matrix substrate and liquid crystal device
JP2012118297A (en) * 2010-12-01 2012-06-21 Sony Corp Display panel and manufacturing method thereof, display device, and electronic apparatus
US9941309B2 (en) 2012-08-03 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2014194573A (en) * 2012-08-03 2014-10-09 Semiconductor Energy Lab Co Ltd Liquid crystal display device
US10217776B2 (en) 2012-08-31 2019-02-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising first metal oxide film and second metal oxide film
US9455280B2 (en) 2012-09-13 2016-09-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10700099B2 (en) 2012-09-13 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9806099B2 (en) 2012-09-13 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10446584B2 (en) 2012-09-13 2019-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10236305B2 (en) 2012-09-13 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9911755B2 (en) 2012-12-25 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor and capacitor
CN104122721A (en) * 2013-06-28 2014-10-29 深超光电(深圳)有限公司 Pixel structure
US9500918B2 (en) 2014-01-13 2016-11-22 Boe Technology Group Co., Ltd. Display substrate and display device having a decreased driving voltage
WO2015103870A1 (en) * 2014-01-13 2015-07-16 京东方科技集团股份有限公司 Display substrate and display device
JP2014146055A (en) * 2014-04-11 2014-08-14 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JP2019144589A (en) * 2019-04-29 2019-08-29 株式会社半導体エネルギー研究所 Liquid crystal display device
JP7372832B2 (en) 2019-12-26 2023-11-01 シャープ株式会社 Liquid crystal display device and its manufacturing method
JP7299834B2 (en) 2019-12-26 2023-06-28 シャープ株式会社 Active matrix substrate, in-cell touch panel liquid crystal display device provided with active matrix substrate, and method for manufacturing active matrix substrate

Similar Documents

Publication Publication Date Title
WO2001033292A1 (en) Liquid crystal display device
JP4940368B2 (en) Semiconductor device
US6137551A (en) Liquid crystal display, thin film transistor array, and method of fabricating same with storage capacitor providing high aspect ratio
US8148727B2 (en) Display device having oxide thin film transistor and fabrication method thereof
KR100234892B1 (en) Structure and manufacturing method of liquid crystal display device
WO2010032386A1 (en) Semiconductor device
JP3524029B2 (en) Method of forming top gate type TFT structure
JP4967631B2 (en) Display device
WO2013056617A1 (en) Pixel unit, array substrate, liquid crystal panel and manufacturing method for array substrate
US7344926B2 (en) Liquid crystal display device and method of manufacturing the same
US20100200860A1 (en) Thin Film Transistor Array Panel and Manufacturing Method Thereof
JPH11112002A (en) Semiconductor device and manufacture therefor
WO1999039241A1 (en) Liquid crystal display device
US6534246B2 (en) Method of fabricating liquid crystal display device having shorting bars
CN103137555B (en) Thin film transistor LCD device and manufacture method thereof
JPH0281029A (en) Production of liquid crystal display device
US6330042B1 (en) Liquid crystal display and the method of manufacturing the same
US6781646B2 (en) Liquid crystal display device having gate electrode with two conducting layers, one used for self-aligned formation of the TFT semiconductor regions
JPH098311A (en) Fabrication and structure of thin film semiconductor device
JPH07263698A (en) Thin film transistor and its manufacture
US8456585B2 (en) Fabrication method of liquid crystal display device having driving circuit-integrated array substrate
JP3647384B2 (en) Thin film semiconductor device, manufacturing method thereof, and display panel
KR100390457B1 (en) A structure of thin film transistor and a method for manufacturing the same
KR101294693B1 (en) The array substrate for liquid crystal display device
JPH0476523A (en) Liquid crystal panel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 535118

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase