WO2001033290A1 - Afficheur a cristaux liquides a reflexion, afficheur a cristaux liquides semi-emetteur et dispositif electronique - Google Patents

Afficheur a cristaux liquides a reflexion, afficheur a cristaux liquides semi-emetteur et dispositif electronique Download PDF

Info

Publication number
WO2001033290A1
WO2001033290A1 PCT/JP2000/007770 JP0007770W WO0133290A1 WO 2001033290 A1 WO2001033290 A1 WO 2001033290A1 JP 0007770 W JP0007770 W JP 0007770W WO 0133290 A1 WO0133290 A1 WO 0133290A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
liquid crystal
substrate
reflective
liquid
Prior art date
Application number
PCT/JP2000/007770
Other languages
English (en)
French (fr)
Inventor
Chiyoaki Iijima
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to DE60042318T priority Critical patent/DE60042318D1/de
Priority to EP00971786A priority patent/EP1152281B1/en
Priority to US09/869,719 priority patent/US6738115B1/en
Priority to JP2001535116A priority patent/JP3692445B2/ja
Priority to CN008024936A priority patent/CN1335943B/zh
Publication of WO2001033290A1 publication Critical patent/WO2001033290A1/ja
Priority to US10/767,819 priority patent/US6970215B2/en
Priority to US11/203,459 priority patent/US7379133B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • G02F1/1397Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell the twist being substantially higher than 90°, e.g. STN-, SBE-, OMI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/03Number of plates being 3
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/12Biaxial compensators

Definitions

  • the present invention relates to a liquid crystal device of a passive matrix driving system or the like and an electronic device using the same. More specifically, the present invention relates to an internal reflection type reflective liquid product device or a semi-transmissive reflective liquid device in which a reflective layer or a semi-transmissive reflective layer is provided on the liquid product surface side of a substrate, and a liquid product device such as The present invention relates to an electronic device using the same. f i! i; technology
  • reflective liquid packaging which uses external light to display without using a light source such as a backlight, has low power consumption. 0; It is used in portable telephones such as wristwatches, notebooks, notebook computers, etc.
  • a liquid product is sandwiched between a pair of substrates, and external light incident from the ⁇ side via a liquid crystal panel, a polarizing plate, or the like is attached to the back side of the liquid product panel. The light is reflected by the reflecting plate.
  • the optical path from the liquid crystal separated by a plate or the like to the reflection plate is long, parallax is generated in the displayed image, resulting in double reflection.
  • the display can be read at the location (1) because the display is made visible by using external light.
  • a semi-transmissive reflective liquid crystal device that uses external light in the same way as a normal reflective liquid crystal device, but allows the display to be viewed by an internal light source in dark places has been disclosed in Japanese Utility Model Publication No. 57-0492771. ⁇ ⁇ ⁇ It is proposed in Japanese Patent Application Laid-Open No. Hei 8-292 9 4 ⁇ ⁇ .
  • a semi-transmissive reflector / backlight etc. are arranged on the outer surface of the liquid crystal panel opposite to the observation side, and the transparent substrate is used between the liquid crystal dust and the ⁇ transparent reflector. Because of the interposition, double reflection and blurring of display may occur. Further, when a power filter is combined, there is a problem that a double reflection or a blur of a display occurs due to parallax, and a sufficient color cannot be obtained.t ) Therefore, Japanese Patent Application Laid-Open No. Hei 7-31892 No. 9 proposes a transflective liquid crystal device ⁇ in which a pixel electrode having an f-transmissive reflective film on the inner surface of a liquid crystal cell is provided.
  • the applicant of the present application has proposed a novel transflective liquid crystal device in Japanese Patent Application No. 10-166806, but this liquid crystal device has a sufficient transmissive liquid crystal display especially in a reflective display. There was a problem that the reflectance could not be obtained and the display became dark.
  • the present invention has been made in view of the above-described problems, and has improved brightness and contrast ratio, and is suitable for a color display. Suitable for color display with high contrast ratio It is a technical object to provide a transflective liquid crystal device, and an electronic apparatus including a liquid crystal device including such a reflective or transflective liquid crystal device.
  • a first reflective liquid product device of the present invention includes a first substrate, a transparent second substrate opposed to the first substrate, and the first and second substrates. A liquid crystal sandwiched therebetween, a reflective electrode chip disposed on the side of the L-th substrate facing the second substrate, and a polarizing plate provided on the second substrate opposite to the first substrate. A first retardation plate disposed between the polarizing plate and the second tomb plate; and a second retardation plate disposed between the dichroic plate and the first retardation plate.
  • the swist angle of the liquid crystal is 230 to 260 degrees
  • the And (the product of the optical anisotropy ⁇ n and the layer thickness d) of the liquid crystal has a minimum value of 0.8. 5 m or less and the maximum ilft is 0.70 ⁇ m or more
  • the ⁇ nd of the ⁇ ⁇ I-position buckle is 150 ⁇ 50 nm or 600 ⁇ 50 nm.
  • ⁇ nd of the second place of the ⁇ ' ⁇ is 5.50
  • the angle # 1 between the absorption # 1 of the polarizing plate and the optical axis of the second phase plate is 15 to 35 degrees.
  • An angle G2 between the optical axis of the phase difference plate and the optical axis of the second phase difference plate is 60 to 80 degrees.
  • the second reflective liquid crystal of the present invention comprises: a first substrate; a transparent second S plate disposed opposite to the first substrate; A liquid crystal sandwiched between the two substrates, a reflective electrode scrap disposed on a side of the first & plate facing the second substrate, and a reflective plate disposed on a side of the second plate opposite to the first substrate.
  • the liquid crystal has a swivel angle of 230 to 26 °, and the minimum value of the liquid crystal And is 0.85 ⁇ m or less and the maximum value is 0.8 ⁇ m.
  • An of the first retarder is 150 ⁇ 50 nm
  • An of the second retarder is 610 ⁇ 60 nm
  • the transmission axis or absorption axis of the polarizing plate and the second axis The angle ⁇ 1 between the optical axis of the phase difference plate and the optical axis of the second phase difference plate is 10 to 35 degrees
  • the angle 62 between the optical axis of the first phase difference plate and the optical axis of the second phase difference plate is 3 0 to 60 degrees.
  • the first and second reflective liquid crystal devices of the present invention external light incident from the side of the polarizing plate is provided on the first substrate via the polarizing plate, the transparent second substrate, and the liquid crystal. Reflection The light is reflected by the electrode layer and is emitted again from the side of the polarizing plate via the liquid crystal, the second substrate, and the polarizing plate. Therefore, for example, by controlling the alignment state of the liquid crystal using an electric field between the reflective electrode layer (reflective electrode) provided on the first substrate and the transparent electrode (counter electrode) provided on the second substrate.
  • the external light intensity output as display light via the liquid crystal after reflection by the reflection electrode layer can be controlled.
  • the presence of the transparent substrate between the liquid product and the reflector prevents the occurrence of two-way reflections or blurring of the display due to the presence of the transparent substrate. It becomes possible. Then, by using two retardation plates, the first and second retardation plates, disposed between the polarizing plate and the second substrate, color correction can be performed easily and accurately by 1L. Can be.
  • the reflective electrode layer is a waste or multi-piece having both a reflective function and a ',' electrode function.
  • the liquid product ⁇ is in the range of 230 to 260 degrees, so that a contrast ratio of, for example, “10” to I :: ⁇ at which 3 ⁇ 4-3 ⁇ 4 becomes possible
  • the ⁇ nd of the liquid product has a small i value of 0.85 ⁇ m or more and a large / large value of 0.7 ⁇ m or more, so the specific value required for the equipment specifications is In a wide operating temperature range, the change in transmittance with respect to the applied li pressure of the liquid product device can be changed in the tone (that is, i] i adjustment and the lit tone decreases in the lit tone).
  • ⁇ nd of the first retardation plate is 150 nm or 50 nm or 600 ⁇ 50 nm (that is, 100 to 20 nm). 0 nm is 550-650 nm), and the And of the second retardation plate is 550 ⁇ 50 nm (that is, 500-600 nm). It is possible to effectively avoid a situation in which the display is reddish or the like.
  • ⁇ ° () 1 ie, the angle between the transmission axis or absorption axis of the polarizing plate and the optical axis of the second retardation plate
  • the angle G 2 that is, the angle between the optical axis of the first retardation plate and the optical axis of the second retardation plate
  • a high-quality reflective display in which color correction is appropriately performed in color display or monochrome display can be performed.
  • the And of the first retardation plate is 150 nm 50 nm (that is, 100 to 200 nm), and the second retardation plate is Since ⁇ nd is 61 ⁇ 60 nm (that is, 550 to 670 nm), black display becomes reddish or bluish. Such a situation can be effectively avoided.
  • the angle 01 is between 10 and 35 degrees, and the angle 02 is between 30 and 60 degrees, so that the brightness and the contrast ratio can be increased at the same time.
  • the use of two retardation plates makes it possible to provide a high-quality reflective display in which color correction is properly performed in color display or monochrome display.
  • ⁇ nd of the liquid crystal is 0.70 to 0.85 m.
  • the An of the liquid crystal is 0.70 to 0.85 / im (that is, the minimum value of the An of the liquid crystal is 0.70 ⁇ m or more, and the A of the liquid crystal is not less than 0.70 ⁇ m). (the maximum value of nd is 0.85 m or less), so that the change in the transmittance with respect to the applied voltage of the liquid component in the wide operating temperature range required for the device specifications is more preferably monotonic. It is also possible to perform the gradation ⁇ very accurately.
  • ⁇ nd of the liquid crystal is such a value as long as the layer thickness d of the liquid crystal is constant in the image display area or in each open area. Under the condition of 0.70 to 0.85 ⁇ , a very good joint (that is, the above-mentioned excellent change in transmittance and gradation display) can be obtained.
  • the projections and depressions are formed on the surface of the reflective electrode layer consciously or unconsciously by design and the scrap thickness d of the liquid product is not constant in all regions within each pixel, It may be difficult or impossible to set the range of the nd of the liquid crystal to 0.70 to 0.85 m in all regions in each pixel.
  • the nd of the liquid crystal is set so that the minimum value is 0.85 ⁇ m or less and the maximum value is 0.70 ⁇ m or more as described above, A sufficiently good result for use (that is, the above-mentioned good change in transmittance and gradation display) can be obtained.
  • a color filter is provided on a liquid crystal side surface of the first substrate or the second substrate.
  • the intensity of external light emitted as display light via the liquid crystal after reflection by the reflective electrode layer can be controlled. Since the reflected light is reflected through the color filter, a color reflective display is possible. At this time, the two sheets of phase difference between the polarizing plate and the second substrate By using a plate, color correction can be performed relatively easily and accurately. As a result, the brightness and the contrast ratio can be simultaneously increased, and a high-quality color reflective display with high color reproducibility can be realized.
  • the reflective electrode layer is formed of a refuse reflective electrode.
  • the intensity of external light emitted as display light via the liquid crystal after reflection by the reflective electrode is controlled by controlling the alignment state of the liquid crystal using the reflective electrode provided on the first panel. It is possible to form such a reflective electrode from a metal film such as A1 (aluminum).
  • the reflective electrode includes a reflective film, a transparent insulating film disposed on the reflective fl :, and the insulating film. Check the transparent one pole located above.
  • the reflected light is emitted as an integrated light through the liquid crystal after the reflection.
  • External light intensity can be controlled.
  • a transparent electrode may be formed of, for example, an ITO (Indium Tin Oxide) film
  • the insulating film may be formed of, for example, silicon oxide as a main component.
  • the reflection film may be formed of, for example, a metal film such as 81.
  • passive matrix driving is performed in a normally black mode.
  • the brightness and contrast ratio are high, and color correction is accurately performed at the time of color display.
  • the resulting high-quality reflective display can be performed.
  • irregularities are formed on a surface of the first substrate facing the second substrate.
  • the external light reflected via the liquid crystal is reflected on the reflective electrode layer formed in the uneven shape by being formed on the uneven surface of the substrate, the size of the unevenness, the shape, etc. , It is possible to obtain an optimal reflection characteristic. Therefore, ultimately, brighter and higher quality display can be performed.
  • a method of forming such a concave and convex for example, a method of forming the surface of the first substrate in an uneven shape may be used. Alternatively, a method of forming an uneven film on a flat surface on the first substrate may be used. Further, it is also possible to form the reflection electrode layer itself on the flat first substrate in an uneven shape.
  • a first transflective liquid crystal device includes: a transparent first substrate; a transparent second substrate opposed to the first substrate; A liquid crystal sandwiched between substrates, a light source provided on the first plate opposite to the liquid product, and a ⁇ transmission reflection disposed on a side of the first plate facing the second substrate.
  • An electrode layer, provided on the opposite side of the front second substrate to the L-substrate (a light-transmitting plate, a first retardation plate placed between the polarizing plate and the second substrate, A second retardation plate disposed between the polarizing plate and the second retardation plate, and the twist angle of the liquid product is 230 to 260 degrees; Has a minimum value of 0.85 / m or less and its 1 ⁇ 2 ilft is 0.70 ⁇ m or less, and the ⁇ nd of the first retardation plate is 150 soil 50 nm Or 600 ⁇ 50 nm, and And of the retardation plate is 550 soil 50 nm, and the ft angle 1 between the transmission axis or absorption axis of the polarizing plate and the optical axis of the second retardation plate is 15 to 35 degrees.
  • the angle ⁇ 2 between the optical axis of the first phase difference plate and the optical axis of the second phase difference plate is 60 to 80 degrees.
  • a second transflective liquid product device includes a transparent first S plate and a transparent second J plate opposed to the second S plate.
  • a liquid crystal sandwiched between the first and second substrates, a light source provided on the opposite side of the ⁇ 1 substrate to the liquid crystal, and a light source disposed on a side of the first ⁇ first substrate facing the second substrate.
  • a second retardation plate disposed between the polarizing plate and the first retardation plate, wherein a twist angle of the liquid crystal is 230 to 260 degrees, and an And of the liquid crystal is provided.
  • ⁇ nd of the first retardation plate is 150 And of the phase difference plate is 61 0 ⁇ 60 nm
  • the angle 01 formed between the transmission axis or absorption axis of the polarizing plate and the optical axis of the second retardation plate is 10 to 35 degrees
  • the optical axis of the first retardation plate is The angle ⁇ 2 between the second phase difference plate and the optical axis is 30 to 60 degrees.
  • the liquid product is determined by using the? G field between the ⁇ reflector electrode (transparent / reflective electrode) provided on the first substrate and the transparent electrode (counter electrode) provided on the second certain plate.
  • the presence of the transparent substrate between the liquid product and the reflection plate does not cause double reflection or blurring of display, and it is possible to obtain a sufficient coloration even when colorization is performed.
  • the first and second substrates arranged between the light plate and the second substrate The color correction can be done easily and accurately by using two ⁇ &&.
  • the term “transmission-reflection? 3 ⁇ 4electrode” refers to a substance having both a transmission-reflection function and an electrode function or having many functions.
  • the light is emitted from the light source, and
  • the light source light that passes through the translucent region of the polar debris from the side of the polarizing plate is emitted from the side of the polarizing plate through the liquid product, the ⁇ 2 plate and the optical plate. Therefore, for example, if another optical plate is arranged between the first substrate and the light source and the transmission axis and the absorption axis are arranged in a predetermined relationship between the first substrate and the polarizing plate on the second substrate,
  • the ⁇ 3 ⁇ 4! By controlling, it is possible to control the light intensity of the light source emitted as display light through the liquid crystal after passing through the transmission / reflection electrode.
  • the liquid crystal has a swivel angle of 230 to 260 degrees, so that a high contrast ratio of, for example, “10” or more can be realized.
  • the And of the liquid crystal has a minimum value of 0.85 ⁇ m or less and a maximum value of 0.70 // m or more.
  • the change in transmittance with respect to the applied voltage of the liquid crystal device can be a monotonic change (that is, a monotonous increase or a monotonous decrease), and it is also possible to accurately perform gradation display.
  • the An of the first retardation plate is 150 ⁇ 50 nm (that is, 100 to 200 nm) or 600 ⁇ 50 nm (that is, 550 ⁇ 50 nm). 6650 nm), and ⁇ nd of the second retardation plate is 550 ⁇ 50 nm (that is, (500 nm to 600 nm), it is possible to effectively avoid a situation in which a black display has a reddish or bluish tinge.
  • the angle 0 1 ie, the angle between the transmission axis or absorption axis of the polarizing plate and the optical axis of the second retardation plate
  • the angle ⁇ 2 ie, Since the angle between the optical axis of the first phase difference plate and the optical axis of the second phase difference plate
  • the brightness and the contrast ratio can be simultaneously increased.
  • the use of two lace plates enables a high-quality reflective display in which color correction is accurately performed in color display or monochrome display.
  • the ⁇ nd of the first retardation plate is 150 ⁇ 0.50 nm (that is, 100-200 nm)
  • the delta nd the second phase difference plate 6 1 0 ⁇ 6 0 nm ( i.e., 5 5 0 ⁇ 6 7 0 nm ) since it is,, '3 ⁇ 4 display, ⁇ building 7 IT- state redness and ⁇ only such Can be effectively avoided.
  • the angle G1 is 10 to 35 degrees and the angle 0 2 is 30 to 60 degrees, the brightness and the contrast ratio must be simultaneously adjusted.
  • two retardation plates it is possible to display a color-corrected quality image at the time of color display or white color display.
  • ⁇ nd of the liquid crystal is 0.70 to 0.85 ⁇ .
  • the An of the liquid product is 0.70 to 0.85 ⁇ (that is, the minimum value of the And of the liquid product is 0.70 ⁇ m or more.
  • the maximum value of And of the liquid product is 0.85 ⁇ m or less. Therefore, the change in the transmittance with respect to the applied voltage of the liquid product device over a wide operating temperature range required for the device specifications is as follows. A good monotonous change can be obtained, and a gradation display can be performed very accurately.
  • the And of the liquid crystal is such that if the thickness d of the liquid crystal is constant in the image display region or in the opening region of each pixel, Very good results can be obtained under the conditions of 0.70 to 0.85 ⁇ m.
  • the range of ⁇ nd of the liquid crystal is set to 0.70 to 0.7 in all the regions in each pixel. It can be difficult or impossible to make it 85 ⁇ m.
  • the ⁇ nd of the liquid crystal is determined to have a minimum value of 0.85 m or less and a maximum value of 0.70 m. If it is set to be not less than nm, a practically satisfactory result can be obtained.
  • a color filter is provided on a liquid crystal side surface of the first substrate or the second substrate.
  • the transmissive display by controlling the alignment state of the liquid crystal by flowing through the transmissive reflective electrode layer provided on the first substrate, ⁇ External light intensity emitted as display light can be controlled. The reflected light is reflected through the color filter, so that a color reflective display is possible.
  • the transmissive light is emitted through the liquid crystal after passing through the transflective electrode layer as ⁇ indicating light. Light source light intensity can be controlled. Then, since the light from the light source is emitted through the color filter, a color transmissive display is possible. As a result, the brightness and the contrast ratio can be reduced to 1 o'clock, and a high-quality color display with high color realism can be achieved.
  • the transflective fe waste comprises a reflective layer on which a slit is formed.
  • the reflection layer provided with the slit provided on the first ⁇ plate, the reflection by the nowadays
  • the intensity of external light emitted later as display light via the liquid crystal can be controlled, and during transmissive display, the intensity of light source light emitted as display light via the liquid product after passing through the slit can be controlled.
  • a reflection I pole may be formed of, for example, gold or a film such as ⁇ 1.
  • the transflective electrode layer in addition to the reflective layer on which such a slit is formed, for example, the translucent electrode layer may be formed so that the gaps are mutually transparent when viewed from a direction perpendicular to the second substrate so that light can pass therethrough.
  • the reflection layer may be a divided reflection layer, or a reflection layer provided with a plurality of regular or irregular openings through which light can pass.
  • the width of the slit may be 3 to 20 ⁇ m.
  • the transflective electrode layer includes a transflective film and a transparent insulating film disposed on the transflective film. It has a stacked structure including a film and a transparent electrode disposed on the insulating film.
  • the liquid crystal is not reflected after the reflection by the transflective film during the reflective display. It is possible to control the intensity of external light emitted as display light via the LCD, and to control the intensity of the light source emitted as display light via the liquid product after transmitting through the transmissive reflective film and the transparent electrode in a transmissive display.
  • a transparent electrode may be formed of, for example, an ITO film
  • the insulating film may be formed of, for example, silicon oxide as a main component.
  • such a semi-transmissive reflective film may be formed of, for example, a gold film such as 1 provided with a slit opening.
  • the liquid crystal device is driven by passive matrix in a normally-black mode.
  • the brightness and contrast ratio are high, and the power line display or [-J3 ⁇ 4 display is performed by a normally-black mode passive matrix driving method using an STN liquid product, for example.
  • the power line display or [-J3 ⁇ 4 display is performed by a normally-black mode passive matrix driving method using an STN liquid product, for example.
  • another polarizing plate disposed between the first substrate and the light source; the first substrate and the other substrate; It further includes other ⁇ and ⁇ phase plates arranged in the same manner as the polarizing plate.
  • the electric field can be reduced in the transmission type display.
  • the change in the alignment state of the liquid crystal due to the application of the pressure makes it possible to modulate the light source light (transmitted light) emitted from the polarizing plate on the second substrate side. Further, color correction at the time of transmissive display can be performed relatively easily by another retardation plate on the second substrate side.
  • irregularities are formed on a surface of the first substrate on a side facing the second substrate.
  • the external light reflected via the liquid crystal is reflected on the semi-transmissive reflective electrode layer formed on the uneven surface of the substrate by being formed on the uneven surface of the substrate. It is possible to obtain an optimal reflection characteristic by controlling such factors. Eventually, a brighter and higher quality display can be performed.
  • a method of forming such unevenness for example, a method of forming the surface of the first substrate in an uneven shape is used. Alternatively, a method of forming an uneven film on a flat surface on the first substrate may be used. Further, it is also possible to form the transflective electrode layer itself on the flat first substrate in an uneven shape.
  • the electronic apparatus of the present invention may be arranged such that the first or second reflective liquid crystal device or the first or second transflective liquid crystal device of the present invention described above (e.g. Various aspects described above are included).
  • the reflective liquid product apparatus which can display brightly ⁇ contrast reflective type
  • Various types of electronic devices such as mobile phones, wristwatches, electronic books, notebook computers, etc. using a transflective liquid product can be displayed by switching between type display and transmissive display.
  • FIG. 1 is a view showing a first embodiment of the best mode for carrying out the present invention, in which a passive matrix drive type reflective liquid product device is removed by hand from a color filter formed on an opposed S plate.
  • FIG. 4 is a schematic top view showing a state viewed from the opposite plate side.
  • FIG. 2 is a schematic cross-sectional view of a reflection type liquid crystal device showing the metaphor of FIG. 1 including a color filter.
  • FIG. 3 is a partial perspective view of the reflective liquid according to the first embodiment.
  • FIG. 4 is a table showing parameter settings, brightness, and contrast ratio in Specific Examples 1 to 6 based on the first ⁇ example.
  • FIG. 5 is an explanatory diagram schematically showing, on a substrate surface, an example of the relationship between various angles set as parameters in the first embodiment.
  • FIG. 6 is a characteristic diagram showing a reflectance characteristic with respect to a liquid crystal applied voltage when the first embodiment is driven in a normally black mode.
  • FIG. 7 is a table showing parameter settings, brightness, and contrast ratio in specific examples 7 to 12 based on the second embodiment.
  • FIG. 8 is a third embodiment of the passive embodiment according to the best mode for carrying out the present invention. It is sectional drawing of the reflection type liquid crystal device of a Bumatrix drive system.
  • FIG. 9 is a sectional view of a passive-matrix-driven reflective liquid crystal device according to a fourth embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a reflective liquid product device according to a fifth embodiment of the best mode for carrying out the present invention in the vicinity of a reflective electrode.
  • FIG. 11 is a plan view of the reflective electrode of the fifth embodiment shown in FIG.
  • FIG. 12 is a perspective view of the reflective electrode of the fifth embodiment shown in FIG.
  • FIG. 13 is a cross-sectional view of a passive matrix driving type transflective liquid crystal device according to a sixth embodiment of the present invention.
  • FIG. 14 is a partial perspective view of the transmission-reflection type liquid product device of the sixth embodiment.
  • FIG. 15 is an enlarged view of the slit and the opening of the mouth provided in the transmission reflection debris of the embodiment.
  • FIG. L6 is a cross-sectional view of a passive matrix drive type transflective liquid crystal device which is an eighth embodiment of the best mode for carrying out the present invention.
  • FIG. 17 is a cross-sectional view of a passive matrix driving type transflective liquid crystal device according to a ninth embodiment of the best mode for carrying out the present invention.
  • FIG. 18 is a cross-sectional view of the transflective liquid crystal device i of the tenth embodiment in the best mode for carrying out the present invention, in the vicinity of the transflective electrode.
  • FIG. 19 is a plan view of the transflective electrode of the tenth embodiment shown in FIG.
  • FIG. 20 is a perspective view of the transflective electrode of the tenth embodiment shown in FIG.
  • FIG. 21 is a schematic plan view of a passive matrix drive type reflection type liquid crystal device which is a first embodiment of the best mode for carrying out the present invention.
  • FIG. 22 is a sectional view taken along the line AA ′ of FIG.
  • FIG. 23 is a partial perspective view showing the structures of the reflective electrode and the color filter in the reflective liquid crystal device of the eleventh embodiment.
  • FIG. 24 is an external view of various electronic devices according to a 12th embodiment of the best mode for carrying out the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION the best mode for carrying out the present invention will be described for each embodiment in order with reference to the drawings.
  • FIG. 1 is a schematic plan view showing the reflection type liquid crystal device viewed from the counter substrate side with a color filter formed on the counter plate removed for convenience
  • FIG. 3 is a schematic sectional view of a reflective liquid crystal 3 ⁇ 4K having a section A ′ including a color filter
  • FIG. 3 is a partial perspective view of the reflective liquid crystal.
  • the strip-shaped electrode is schematically illustrated by six trees vertically and horizontally, and in some cases, there is a limit of many trees, and in FIG.
  • each member In order to make each member have a throwing power that can be recognized on the figure Iffi, the scale of each layer and the member fi is scaled down. Also, in FIG. 3, the portions related to the stripe-shaped electrodes in three rows and three columns are enlarged and shown.
  • the reflection type liquid product [g of the 33 ⁇ 41 embodiment is arranged opposite to the first substrate 10 and the first top plate 10 [the transparent second substrate 20 g
  • the liquid waste 50 sandwiched between the first plate 10 and the second substrate 20 and the side of the first plate 10 facing the second plate 20 (ie, the upper surface in FIG. 2) ) Comprises a plurality of stripe-shaped reflective electrodes 14 ft iS, and an alignment film 15 disposed on the reflective electrodes 14.
  • the reflective liquid crystal device is disposed on a color filter 23 and a color filter 23 disposed on a side of the second substrate facing the first AS plate 10 (ie, a lower surface in FIG. 2).
  • the position of the color filter 23 may be formed between the reflective electrode 14 and the first substrate 10.
  • RGB red, blue, and green
  • color portions are arranged in a predetermined order for each pixel corresponding to each plane area where the reflective electrode 14 and the transparent electrode 21 intersect (see FIG. 3).
  • the first substrate 10 and the second substrate 2 ⁇ are formed around the liquid crystal layer 50 by a sealing material 3 1 (See FIGS. 1 and 2), and the liquid crystal layer 50 is sealed between the first substrate 10 and the second substrate 20 by a sealing material 31 and a sealing material 32.
  • the reflection type liquid crystal device includes a polarizing plate 105, a first retardation plate 106, and a second retardation plate 116 on a side of the second substrate 20 opposite to the liquid crystal layer 50. .
  • the first plate 10 Since transparency is not required for the first plate 10, for example, a quartz substrate as well as a semiconductor. An ffi plate or the like can be used, but the second tomb plate 20 is transparent or transparent to visible light.
  • a glass substrate or a quartz substrate is required because they are required to be at least translucent.
  • the reflection electrode 14 is made of, for example, a reflection film containing A 1 as a main component, and is formed by vapor deposition and sputtering.
  • the transparent electrode 21 is made of a transparent conductive film such as an IT film.
  • Each of the orientations 15 and 25 is composed of an organic thin film such as polyimide film, and the spin coat is formed by flexographic printing, and is subjected to a predetermined orientation treatment such as a rubbing treatment.
  • the liquid product 50 takes a predetermined alignment state by the alignment films 15 and 25 in a state where no electric field is applied to the reflection electrode 14 and the transparent electrode 21 I1.
  • the liquid crystal layer 50 is made of, for example, S-type liquid crystal in which one or several types of nematic liquid crystals are mixed.
  • the sealing material 31 is an adhesive made of, for example, a photocurable resin or a thermosetting resin.
  • a gap such as a glass fiber or a glass bead in the seal material for setting the distance between the two substrates to a predetermined value.
  • Material (spacer) is mixed.
  • such a gap material may be mixed in the liquid crystal layer 50 when the reflection type liquid crystal device is large in diagonal inches to about 10 inches or more.
  • the sealing material 32 is made of a resinous adhesive or the like that seals the injection port after vacuum injection of the liquid crystal through the injection port of the sealing material 31.
  • the color filter 23 is a color material film that transmits blue (B) light, green (G) light, and red (R) light for each pixel, and includes a delta arrangement, a stripe arrangement, a mosaic arrangement, a triangle arrangement, and the like. Take. In addition, at the boundary of each pixel, a light-shielding film called a black mask or a black matrix is formed. Color mixing is prevented.
  • a frame is formed in parallel with the inside of the sealing material 52, for example, by using the same or different material as the light shielding film in the color filter 23.
  • the periphery of the image display area is defined.
  • the second substrate 20A may be formed on one or both sides of the first S plate 10 side.
  • such a frame may be defined by an edge of a light-shielding case in which the reflective liquid crystal device can be moved.
  • the twist angle 0t of the liquid debris 50 consisting of the S ⁇ N liquid crystal force is limited to 230 to 260 degrees, and the liquid crystal And (optical difference)
  • the u) of the anisotropy ⁇ n and the layer thickness d has a minimum value of 0.85 ⁇ m or less and a maximum value of 0.70 ⁇ m or less J: (similarly, It goes without saying that the value is set to be smaller than the value of &&).
  • Such a twist ⁇ i) t can be accurately determined by the rubbing direction for ft! Muko 15 and the arrangement ', 1 film 25.
  • 1st I plate 106 ⁇ nd is 150 ⁇ 50 nm
  • ⁇ nd is 600 ⁇ 50 nm
  • ⁇ nd of if5 2 phase difference plate t 16 is 550 ⁇ 50 nm.
  • the angle I between the transmission axis or the absorption axis of No. 5 and the optical axis of the second-place hook plate 1 16 is 15 to 35 degrees
  • the angle 2 between the optical axis of the phase difference plate 1 16 and the optical axis is 60 to 80 degrees, and therefore, according to the reflective liquid product device of the 'J5 Example, the wavelength is around 550 nm.
  • the reflectance of the light is high, and bright and contrast reflective color display is possible. Furthermore, by using two phase difference plates, color correction can be performed relatively easily and accurately. It can be particularly beautiful display and white display (that is, almost no reddish, dark, greenish, etc.) Rukoto no black display and white display) is also possible.
  • the minimum value of the And of the liquid crystal is 0.85 ⁇ m or less and the maximum value thereof is 0.70 ⁇ or more, it can be used over a relatively wide operating temperature range required by the device specifications.
  • the change in transmittance with respect to the applied voltage of the liquid crystal device can be a monotonic change (for example, monotonically increasing in a normally black mode and monotonically decreasing in a normally white mode). It is also possible to accurately perform one gradation display.
  • the minimum value of ⁇ nd of the liquid crystal is 0.85 / m or less and the maximum value is 0.7 or more. In this embodiment, particularly, the liquid crystal layer thickness is specified.
  • the And of the liquid crystal is simply 0.70 to 0.85 / im. do it.
  • the ⁇ nd of the liquid crystal is changed to the total in each pixel. Since it may be difficult or impossible to make the thickness 0.70 to 0.85 ⁇ m over the region, in such a case, the minimum value of ⁇ nd of the liquid crystal is set to 0.85 as described above. / m or less ⁇ and its maximum value is 0.70 / m or less.
  • This reflective liquid product device is driven by a passive matrix drive system of a normally-black mode.
  • the amount of light transmitted through the optical plate 105 having a fixed transmission axis and absorption axis can be controlled in each image unit. And the gradation can be displayed in the same color.
  • the present embodiment as compared with a traditional reflective liquid crystal device in which reflection is performed by the reflector provided outside the first substrate, the presence of the transparent substrate between the liquid crystal layer and the reflector makes it possible. Double reflections and blurring of the display do not occur, and it is possible to obtain a sufficient coloration even when colorized. Moreover, according to the present embodiment, since the external light is reflected by the reflective electrode 14 on the upper side of the first substrate 10, the parallax in the display image is reduced and the brightness in the display image is improved as the optical path is shortened. .
  • the twist angle ⁇ t, the angle ⁇ 1 and the angle ⁇ 2 of the liquid crystal layer 50, the ⁇ nd of the liquid crystal, the ⁇ nd of the first retardation plate 106 and the ⁇ nd of the second retardation plate 116 Since ⁇ nd is within the above-described predetermined range, the brightness is brighter in the normally-black mode, and High contrast color display is realized.
  • the terminal portion of the reflective electrode 14 drawn out to the terminal region on the first substrate 10 and the terminal portion of the transparent electrode 21 drawn out to the terminal chain on the second substrate 10 are drawn out.
  • the terminals are mounted on, for example, a TAB (Tape Automated Bonding) substrate, and are data lines that supply both images ⁇ and scanning signals to the reflective electrode 14 and the transparent electrode 21 at a predetermined timing.
  • a driving LSI including a driving circuit and a scanning line driving circuit may be electrically and mechanically connected via a five-way conductive film.
  • Such a data line drive circuit or a scan line drive circuit is formed in a peripheral region on the I-substrate 10 or the second plate 20 outside the seal material 31 to provide a built-in drive circuit.
  • the liquid crystal device may be configured as a reflective liquid crystal device of the type, and furthermore, during manufacturing or at the time of shipment, an inspection circuit or the like for inspecting the quality, defects, etc. of the liquid crystal device is formed. i It may be a reflective liquid crystal device with built-in peripheral circuits.
  • a thin film transistor (FT) active matrix driving force-type and a TFD (Thin Film Diode) are used.
  • TFD Thin Film Diode
  • FT thin film transistor
  • TFD Thin Film Diode
  • Various known driving methods such as an active matrix driving method and a segment driving method can be adopted.
  • a plurality of strip-shaped or segment-shaped transparent electrodes are formed in accordance with the driving method, or a transparent electrode is formed on almost the entire surface of the 2 J plate 20. Or be formed.
  • the driving may be performed by a horizontal electric field parallel to the substrate between the adjacent reflective electrodes 14 on the first substrate 10 without providing the opposed seven poles on the second substrate 20L.
  • a normally white mode in addition to the normally black mode.
  • a microphone aperture lens may be formed on the second substrate 20 so as to correspond to one pixel.
  • a bright liquid crystal device can be realized by improving the light collection efficiency of the incident light.
  • a dichroic filter that produces RGB colors using light interference may be formed by depositing many interference layers having different refractive indices on the second substrate 20. ,. According to the counter substrate with the dichroic filter, a brighter color liquid crystal device can be realized.
  • the reflective electrode 14 by forming the reflective electrode 14 from a single layer containing A 1 as a main component, a relatively easy manufacturing process and a relatively low cost can be achieved. Thus, the reflectance can be improved. However, even if the main component of the reflective electrode 14 is another metal such as Ag (silver) or Cr (chromium), the effect of the first embodiment as described above can be obtained.
  • the main component of the reflective electrode 14 is another metal such as Ag (silver) or Cr (chromium
  • FIG. 4 shows the swist angle of the liquid crystal layer 50 described in Example 1 to Example 6;
  • FIG. 2 is a table showing the ruling (reflectance) and the contrast ratio at the time of the reflective display.
  • Body Example 3 has 1 Z 12 0 duty li 1 Z 13
  • the twist angle ⁇ t of the liquid crystal layer 50, the And of the liquid crystal layer 50, and the R 2 of the second retardation plate 1 16 ⁇ n d In each of the specific examples 1 to 6 in which the R 1 ⁇ nd, the angle 01, and the angle 02 of the first retardation plate 106 are set, a high reflectance exceeding 20% can be obtained. A very bright reflective display is obtained. At the same time, a high contrast display exceeding 10 can be obtained, and a high-order gradation display can be realized by a favorable property of increasing the reflectance with respect to the liquid crystal applied voltage.
  • the first retardation plate 106 and the second retardation plate 116 are composed of a biaxial retardation plate, preferably a biaxial retardation plate.
  • the reflection type liquid product device according to the second embodiment of the present invention will be described with reference to FIG.
  • the parameter settings for the 1st retarder 106, the 2nd phase plate 1 16 and the polarizer 105 are the same as the ⁇ 1 example, and the other W components and operations are This is the same as in the first embodiment shown in FIGS. 1 to 3.
  • the twist angle ⁇ t of the liquid crystal dust 50 composed of S ⁇ ⁇ liquid crystal is limited to 230 to 260 degrees as in the first embodiment.
  • the 1 ⁇ 2small ⁇ ' ⁇ is 0.85 / m or less, and its .11 maximum ilft is 0.70 ⁇ m or more.
  • the ⁇ nd of the second retardation plate 106 is 150 ⁇ 50 nm
  • the An of the second retardation plate 1 16 is 6 10 ⁇ 60 nm
  • the angle ⁇ 1 between the transmission axis or absorption axis of the polarizing plate i 05 and the optical axis of the second retardation plate 116 is 10 to 35 degrees
  • the angle ⁇ 2 between the optical axis of the phase difference plate 106 and the optical axis of the second phase difference plate 116 is 30 to 60 degrees. Therefore, according to the reflective liquid crystal device of the second embodiment, the reflectance for light near the wavelength of 550 nm is increased, and a bright, high-contrast reflective color display can be performed. Furthermore, by using two retarders, color correction can be performed relatively easily and accurately, and particularly beautiful black or white display (ie, almost reddish, bluish, greenish, etc.) Black display without White display) is also possible.
  • the liquid crystal has a minimum value of 0.85 ⁇ m or less and a maximum value of E1 of 0.7 ⁇ m or more. Therefore, the device specifications !: The change in transmittance with respect to the applied voltage of the liquid crystal device can be made monotonic in the required relatively wide operating temperature range, and color gradation display can be performed accurately. Become.
  • FIG. Fig. 7 shows the results of - ⁇ twist angle ⁇ t of the liquid crystal layer 50, mm nd of the liquid crystal layer 50, and ⁇ nd of the second retardation plate 1 16 in the example 7 to the specific example 12 (in the table of Fig. 3, , R 2 An), 53 ⁇ 4, ⁇ nd of the phase difference plate 106 (indicated by ⁇ nd in the table of FIG. 3), the angle ⁇ 1 and the degree 2, and the brightness in the reflective table (Reflectance) and contrast ratio are ⁇ .
  • the body example 7 to the specific example 12 shown in FIG. 7 are examples driven in a normally black mode by 1Z120 duty and 1Z13 bias.
  • a high reflectance exceeding 30% is obtained. That is, a very bright reflective display can be obtained.
  • a contrast display not exceeding “10” can be obtained.
  • FIG. 8 a reflective liquid crystal device according to a third embodiment of the present invention will be described with reference to FIG.
  • the same components as those in the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and their description is omitted.
  • irregularities are formed on the surface of the first substrate 10 as compared with the first or second embodiment, and accordingly, the reflective electrode 14 and the alignment film 15 are also formed with irregularities. Further, the difference is that the layer thickness d of the liquid crystal layer 50 slightly changes depending on the position in each pixel, and the other configuration is the same as that of the first or second embodiment.
  • the first substrate 10 ′ having the irregularities formed on the surface is used.
  • the surface of the reflective electrode 14 facing the liquid crystal layer 50 is made uneven so that the mirror surface is eliminated, and the light is seen on the scattering surface (white surface).
  • the viewing angle can be widened by scattering due to unevenness.
  • This uneven shape can be formed relatively easily by, for example, roughening the substrate itself with hydrofluoric acid.
  • ⁇ nd of the liquid crystal layer 50 has a minimum value (iltt at the convex portion) of 0.85 m or less, and [L and its maximum value (iltt) (Value at the concave part) is 0.70 ⁇ or less.
  • a transparent 1 ' carrier film is formed on the uneven surface of the reflective electrode 4 and the surface facing the liquid crystal layer 50 (the surface on which the alignment film 15 is formed) is to be flattened. Is desirable from the viewpoint of preventing poor alignment of the liquid crystal.
  • FIG. 9 a reflection type liquid product device according to a fourth embodiment of the present invention will be described with reference to FIG.
  • the same components as those in the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • an uneven film 10 u is formed on the surface of the first substrate 10 as compared with the first or second embodiment, and the reflection electrode I 4 and the alignment film 1 are formed by this. 5 is also formed in a four-convex shape, and the point at which the thickness d of the liquid crystal ⁇ 50 slightly varies depending on the position within the pixel is 3 ⁇ 4, and other configurations are the same as in the first or second embodiment. It is.
  • the surface facing the liquid crystal layer 50 of the reflective electrode 14 is formed in the same manner as in the third embodiment.
  • the surface is made uneven to remove the mirror effect, and can be applied to the scattering surface ( ⁇ color surface). Also, the viewing angle can be widened by scattering due to unevenness.
  • Such an uneven film 10u can be formed relatively easily by laminating a photosensitive acryl resin or the like under the reflective electrode 14.
  • FIG. 10 is a cross-sectional view showing a laminated structure of the reflective electrode 14 ′ in the fifth embodiment
  • FIG. 11 is a plan view thereof
  • FIG. 12 is a perspective view thereof.
  • the same components as those in the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and their description is omitted. .
  • the reflective electrode 14 ′ has a strip-shaped reflective film 14 1 and a transparent insulating film 14 2 disposed on the reflective film 14 1. And a striped transparent electrode 144 disposed on the insulating film 142.
  • the other configuration is the same as that of any of the first to fourth embodiments. is there.
  • the transparent electrode I 43 composed of an ITO film or the like laminated on the first J-plate 10 to control It is possible to control the intensity of external light emitted as display light via the liquid crystal dust 50 after reflection by the reflection crotch 141.
  • the insulating film 142 may be formed using, for example, silicon oxide as a main component.
  • FIG. 13 is a schematic cross-sectional view showing the configuration of the second embodiment. Components similar to those of the first 'J embodiment shown in FIG. 2 are denoted by the same reference numerals. The description is omitted as appropriate.
  • the transflective liquid crystal device of the sixth embodiment includes a transflective electrode 2 14 in place of the reflective i!
  • a polarizing plate t 07 and a phase difference plate 108 are provided on the first substrate 10 on the side opposite to the liquid waste 50.
  • a fluorescent tube 1 19 and a light guide plate 1 18 for guiding the light from the 1 ⁇ light tube 1 I9 from the polarizing plate 107 into the liquid crystal panel. It has.
  • Other configurations are the same as those in the first embodiment.
  • the transflective electrode 214 is made of a metal such as ⁇ g or 181 and has a slit, an opening, and the like. Therefore, the transflective electrode 2 14 reflects light incident from the second substrate 20 side, while transmitting light source light from the first substrate 10 side.
  • various examples of the slit and the opening of the transflective electrode 214 will be described with reference to FIG.
  • Fig. 15 (a) four rectangular slots may be arranged on each side of each pixel, or as shown in Fig. 15 (b), five rectangular slots may be arranged side by side. Arrangement Or a large number of circular apertures (eg, 2 ⁇ m diameter apertures) may be discretely arranged for each pixel as shown in FIG. 15 (c), or as shown in FIG. 15 (d). One relatively large rectangular slot may be placed for each pixel. Such an opening can be easily formed by a photo process using a resist, a Z developing process, and a peeling process.
  • a large number of circular apertures eg, 2 ⁇ m diameter apertures
  • the fliii shape of the opening may be a force as shown, a square shape, a polygonal shape, an oval shape, an irregular shape, or a slit shape extending over a plurality of pixels. Good. It is also possible to open the mouth at the same time as the reflection chips are formed, so that the number of manufacturing TJs can be reduced. In particular, in the case of a slit as shown in FIGS. 15 (a), (b) or (d), the width of the slit is preferably about 3 to 20 m. With this configuration, it is possible to achieve a bright and high-contrast image in both reflective display and transmissive display.
  • the light source used for the transmissive display is suitable for small liquid product equipment such as LED (Light Emitting Diode) elements and EL ( ⁇ 1 ec Lro-Lum incsccnce) elements.
  • a fluorescent tube 119 to introduce light from the side via a light guide plate is suitable.
  • a reflective polarizer may be further disposed between the first substrate 10 and the light guide plate 118 for the purpose of effectively using light.
  • the polarizing plate 105, the first retardation plate 106, and the second retardation plate 116 are disposed above the liquid crystal cell, and the polarization plate is disposed below the liquid crystal cell. Since the plate 1 7 and the phase difference plate 108 are arranged, good display control can be performed in both the reflective display and the transmissive display.
  • the first retardation plate 106 and the second retardation plate 116 reduce the influence on the color tone such as coloring due to the wavelength dispersion of light during the reflective display ( That is, the first retardation plate 106 and the second phase
  • the display at the time of reflection type display is optimized by using the difference plate 116), and the phase difference plate 108 affects the color tone such as coloring caused by the wavelength dispersion of light at the time of transmission type display. (That is, under the condition that the display in the reflective display is optimized by the first retardation plate 106 and the second retardation plate 116, the phase plate I 08 This optimizes the display during transmissive display).
  • the optical characteristics of the optical plate] 05, the first retardation plate 106, the second retardation plate 116, the liquid crystal layer 50, and the transmission / reflection range 214 are controlled by the contrast in the reflective display.
  • the optical characteristics of the polarizing plate 107 and the retardation plate 108 should be set to increase the contrast of the transmission display.
  • high contrast characteristics can be obtained in both the reflective display and the transmissive display.
  • the external light becomes linearly polarized light through the optical plate 105, and further, the phase difference plate 106 and the liquid crystal dust 5 ° portion in the voltage non-applied state (dark display state) are removed.
  • the liquid becomes right-circularly polarized light and passes through the transflective electrode 2 14, where it is reflected and reverses its traveling direction and is converted to left-handed circularly polarized light.
  • Polarizer 105, ⁇ ⁇ Retarder 106, 2 Retarder so that it is converted to linearly polarized light through part layer 50 and absorbed by optical plate 105 (ie, becomes darker).
  • the optical characteristics of the liquid crystal layer 50 and the transflective electrode 214 are set.
  • External light passing through the liquid crystal layer 50 in a pressure applied state (bright display state) passes through the liquid crystal layer 50, and is reflected by the transflective electrode 2 14 and emitted from the polarizing plate 105. Do (ie, become brighter).
  • the light source light emitted from the backlight and passing through the transflective electrode 214 through the polarizing plate 107 and the phase difference plate 108 causes the light of the above-mentioned reflective display.
  • the optical characteristics of the polarizing plate 107 and the phase difference plate 108 are set so that the light becomes the same as the left circularly polarized light reflected by the transflective electrode 214. Then, although the light source and the optical path are different from those in the reflective display, the light source light transmitted through the transflective electrode 214 in the transmissive display becomes the transflective electrode 211 in the reflective display.
  • the STN liquid strength and the swirl angle t of the liquid liquid scrap 50 are limited to 230 to 260 degrees, and the liquid crystal Ann has the minimum ⁇
  • Are less than 0.85 ⁇ m and 11 of them have iri large values of 0.70 / im or more.
  • Such a twist angle 0 t can be specified with high accuracy by a rubbing direction with respect to the alignment films 15 and 25.
  • the first phase; the And of the disc 106 is 150 ⁇ 50 nm or 600 ⁇ 50 nm, and the And of the second-place strap plate 16 is 550 ⁇ 50 nm.
  • the transmission axis ⁇ of the polarizing plate 105 is at an angle 0 1 between the absorption axis and the optical axis of the two phase difference plates 1 16 ⁇ 5 to 35 degrees, and the optical axis of the phase difference plate I 06 is The angle 02 formed between the two phase difference plates 1 16 and the optical axis is 60 to 80 degrees. Therefore, according to the reflective liquid product device iS of the embodiment, the reflectance for light having a wavelength of about 550 nm is high, and a bright reflective color display of contrast is possible. In addition, by using two retarders, color correction can be performed relatively easily and accurately, and particularly beautiful black and white displays (that is, almost reddish, bluish, greenish, etc.) Black display or white display).
  • the liquid crystal can be used in a relatively wide operating temperature range required for device specifications.
  • the change in transmittance with respect to the voltage applied to the device can be monotonically changed, and color gradation display can be performed accurately.
  • the minimum value of the liquid crystal nd is 0.85 ⁇ m or less and the maximum value is 0.70 ⁇ .
  • ⁇ nd of the liquid crystal is simply 0.70 to 0.85 / m. do it.
  • the ⁇ nd of the liquid crystal is changed over the entire pixel. Since it may be difficult or impossible to set the range to 0.7 to 0.85 m, in such a case, the minimum value of the ⁇ nd of the liquid crystal is 0.85 m or less as described above.
  • the maximum value ⁇ ' ⁇ may be set to be 0.70 ⁇ m or more.
  • the transflective liquid product device of the sixth embodiment is driven by a normally-black mode passive matrix drive system.
  • the distance between the liquid crystal layer and the reflection plate is lower than that of the conventional reflection type liquid crystal device that reflects light by the reflection plate provided outside the first substrate during the reflection display. Due to the presence of the transparent substrate, double reflection and blurring of display do not occur, and it is possible to obtain a sufficient color development even when colorized. Moreover, according to this embodiment, since the external light is reflected by the transflective electrode 214 on the upper side of the first substrate 10, the parallax in the display image is reduced and the display image is reduced by the shortened optical path. The brightness of the light is also improved.
  • the light from the lower surface of the first substrate 10 via the polarizing plate 107 in FIG. 13 passes through the opening of the transmission / reflection 1 pole 2 14, and the liquid crystal dust is removed.
  • the light exits from the light plate 105 side through 50, the second polarizing plate 20 and the polarizing plate 105.
  • both images ⁇ ⁇ and a scanning signal are supplied at a predetermined timing from the external circuit to the transmissive reflective electrode 2 14 and the transparent electrode 21, the transmissive reflective electrode 2 14 and the transparent 71 pole 21 intersect.
  • a boundary is sequentially applied to the liquid crystal layer 50 at each of the locations where the boundary is applied for each row, each column, or each pixel.
  • the light source light can be adjusted and the gradation can be displayed.
  • a detection circuit or the like may be formed to form a so-called semi-transmissive anti-reflective liquid product with built-in peripheral circuit.
  • the first retardation plate I 06 and the second retardation plate 116 may be composed of a bi-directional retardation plate, or may be composed of a uniaxial tension plate.
  • the TF ⁇ active matrix drive method in addition to the passive matrix drive method, the TF ⁇ active matrix drive method, TFD active matrix drive method, and segment drive Various known driving methods such as a driving method can be adopted.
  • a plurality of stripe-shaped or segment-shaped transparent electrodes are formed on the second substrate 20 as appropriate according to the driving method, or a transparent electrode is formed on almost the entire surface of the second substrate 20.
  • the driving may be performed by a horizontal electric field parallel to the substrate between the adjacent transflective electrodes 2 14 on the first substrate 10 without providing the counter electrode on the second substrate 20.
  • a normally white mode may be employed instead of the normally black mode.
  • the voltage-reflectance (transparency) of the liquid crystal cell Since the characteristics often differ, it is preferable to make the drive voltage different between the reflective display and the transmissive display, and to optimize each of them.
  • microlenses may be formed on the second substrate 20 so as to correspond to L pixels per pixel.
  • a dichroic filter that produces RGB colors using light interference may be formed by depositing many interference layers having different refractive indexes on the second substrate 20 h.
  • the transmission / reflection electrode 214 by forming the transmission / reflection electrode 214 from a single layer having ⁇ as a ⁇ component, a relatively easy manufacturing process and a relatively low The reflectivity can be improved at a low cost. Even if the main component of the semi-transmissive reflective electrode 2 14 is another metal such as Ag or Cr, the effect of the sixth embodiment as described above can be obtained.
  • the parameter settings relating to the I retardation plate 106, the second place I-difference plate 1L6, and the ifi light plate 105 are the same as those of the sixth embodiment, and other configurations and operations are as follows.
  • the twist angle 0 t of the liquid crystal layer 50 made of the STN liquid product is limited to 230 to 260 degrees as in the sixth embodiment.
  • the minimum value is 0.85 ⁇ m or less and the maximum value is 0.70 ⁇ or more.
  • the seventh embodiment differs from the sixth embodiment in that the ⁇ nd of the ⁇ 1 retardation plate 106 is 150 ⁇ 50 nm, and the And of the second retardation plate 1 16 is 6 1 0 ⁇ 60 nm, and the angle 0 1 between the transmission axis or absorption axis of the polarizing plate 105 and the optical axis of the second retardation plate 116 is 10 to 35 degrees, and the first An angle G2 between the optical axis of the phase difference plate 106 and the optical axis of the second phase difference plate 116 is 30 to 60 degrees.
  • the transflective liquid crystal device of the seventh embodiment the reflectance with respect to light near the wavelength of 550 nm is increased, and a bright, high-contrast reflective color display can be achieved. Furthermore, by using two retarders, color correction can be performed relatively easily and accurately, and particularly beautiful black or white display (ie, almost reddish, bluish, greenish, etc.) (Black display or white display) without any problem.
  • the minimum value of the ⁇ nd force of the liquid crystal is 0.85 m or less and the maximum value is 0.70 / m or more,
  • the change in transmittance with respect to the applied voltage of the liquid product device can be made monotonic in a relatively wide required operating temperature range, and color gradation display can be performed accurately.
  • FIG. 16 [V, 'i.
  • the same components as those in the ⁇ 6 ⁇ embodiment shown in FIG. 15 are denoted by the same reference characters ⁇ , and the description thereof is omitted.
  • the irregularities are formed on the surface of the first plate 10 as compared with the seventh embodiment, and the transmission and reflection electrodes 2 14 and
  • the point that the debris thickness d of the liquid product ⁇ 50 slightly varies depending on the position in each image is different, and the other configuration is the same as in the sixth or seventh example.
  • the surface facing the liquid crystal layer 50 of the ⁇ transmission / reflection ⁇ ! Pole 2 I 4 can be formed by using the first plate 10 ′ having irregularities on the ⁇ surface. Eliminates the surface feeling as a convex and makes it appear as a scattering surface ( ⁇ ' ⁇ color surface). Also, the viewing angle can be widened by scattering due to ⁇ convexity.
  • FIG. 17 a transmission-reflection type liquid product device according to a ninth embodiment of the present invention will be described with reference to FIG.
  • the same components as those in the sixth embodiment shown in FIGS. 13 to 15 are denoted by the same reference numerals, and their description is omitted.
  • an uneven film 10 u is formed on the surface of the first substrate 10, and accordingly, the transflective electrode 2 14 and the alignment film are formed.
  • 15 is also formed to be convex, and the difference is that the layer thickness d of the liquid crystal layer 50 varies slightly depending on the position in each pixel, and the other configuration is the same as that of the sixth or seventh embodiment. .
  • the uneven film 10u is formed on the first substrate 10 so that the liquid crystal layer 50 of the transmission / reflection electrode 2 14 is formed in the same manner as in the eighth embodiment. Makes the surface facing the surface uneven so that it does not have a mirror-like appearance and appears as a scattering surface (white surface). Also, the viewing angle can be widened by scattering due to unevenness. (10th embodiment)
  • FIG. 18 is a cross-sectional view showing a laminated structure of the transflective electrode 2 I 4 ′ in the tenth embodiment
  • FIG. 19 is a plan view thereof
  • the electrode 2 14 ′ is composed of a strip-shaped translucent reflective film 24 1, a transparent film I insulating film 24 2 disposed on the semi-transmissive reflective film 24 1, and an insulating film 24 2 Stripe-shaped transparent placed on top? It has a shoe structure including poles 2 4 3. The slit 241 h is drilled in the semi-transparent anti-reflection layer 24 1. One look 2 4 3 h is formed. Other configurations are the same as those of any of the sixth to ninth embodiments.
  • the alignment state of the liquid crystal layer 50 is controlled by using the transparent it electrode 243 made of an ITO film or the like laminated on the first plate 10.
  • the intensity of external light emitted as display light via the liquid product ( ⁇ ⁇ 50) after the transmission and reflection ( ⁇ 241) composed of ⁇ 1 ⁇ and the like can be controlled.
  • the insulating film 242 may be formed mainly of, for example, silicon oxide.
  • FIG. 21 is a schematic plan view of the first embodiment
  • FIG. 22 is a cross-sectional view taken along the line A- ⁇ ′
  • FIG. It is a partial perspective view showing the structure of the built-in reflective electrode layer.
  • the same components as those in the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and their description is omitted. I do.
  • the strip-shaped transparent electrode 3 extending in the horizontal direction in FIG. Fig.
  • the presence of the transparent plate between the liquid crystal debris and the reflective plate does not cause the reflection of the image or the blurring of the display. In other words, it is possible to obtain a sufficient color development even when colorized.
  • the external light is reflected by the reflector 314 on the side of the first recording plate 10, i in the -display image is reduced (n ⁇ n in the L display image).
  • the twist of the liquid crystal layer 50 can be maintained even if the W component in which a color filter is formed on the substrate 10 side as in the eleventh embodiment is employed.
  • Gt 0 t, angle 0 1 and angle () 2 ⁇ nd of the liquid product, 3 ⁇ 41 ⁇ nd of retardation plate 106 and ⁇ nd of second retardation plate 116 ! If put in H, the effect of I] is obtained.
  • the 12th embodiment is composed of various electronic apparatuses to which the reflective or transflective liquid crystal devices according to the first to 11th embodiments of the present invention described above are applied.
  • the liquid crystal device according to the first to eleventh embodiments is applied to, for example, a display section 1001 of a cellular phone 1000 as shown in FIG. 24 (a), a bright and high contrast can be obtained.
  • the display unit 1101 of the wristwatch 1100 as shown in FIG. 24 (b) it is bright and has a high contrast, and furthermore, there is no need to perform high-definition color display with almost no parallax.
  • An energy-type wristwatch can be realized.
  • a cover which can be freely opened and closed to a main body 1204 with a keyboard 122 is provided. If the present invention is applied to the provided display screen 126, it is possible to realize an energy-saving personal computer that is bright, contrast, and displays a high-definition color display with almost no parallax.
  • a liquid crystal television In addition to the child device, a liquid crystal television, a viewfinder type or a monitor irt visual type video tape recorder, a car navigation device, a child book, an electronic! Ii, a word processor, Engineering devices such as workstations (EWS), TV talk, POS terminals, ES with touch panel, etc. Apply reflective liquid packaging ⁇
  • wood invention is not limited to the above-described odor embodiment, and the embodiment can be appropriately modified without changing the gist of the wood invention.
  • the reflection type liquid product according to the present invention can be used as various types of low power consumption display devices which have both increased brightness and contrast ratio and are suitable for color display.
  • a transflective liquid product device has a high brightness and contrast ratio, particularly in a reflective display mode, and can be used as various display devices suitable for color display. Further, it can be used as a liquid crystal device constituting a display unit of various electronic devices.
  • the electronic apparatus according to the present invention includes a liquid crystal television, a viewfinder type or a monitor direct-view type video tape recorder, a car navigation system, an electronic organizer, a calculator, and a word processor configured using such a liquid crystal device. , Workstations, mobile phones, videophones, POS terminals, touch panels, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Description

明 細 書 反射型及び半透過反射型液晶装置並びに電子機器 技術分野
本発明は、 パッシブマトリクス駆動方式等の液晶装置及びこれを用いた電子機 器に関する。 詳細には、 本発明は、 基板の液品面側に反射層や半透過反射層を設 けた内面反射方式の反射型液品装置や半透過反射型液品装置、 更にこのような液 品装置を用いた電子機器に関する。 f i!i;技術
従来、 バックライ ト等の光源を いることなく、 外光を利用して表示を行う反 射型液品装 は、 低消費? 0;力化や小型軽 化等の観点から有利であるため、 特に 携帯性が K要視される携帯? ίί話や、 腕時計、 子手帳、 ノートパソコン等の携帯 用電チ機器に採用されている。 伝統的な反射型液晶装 ί¾では、 一対の基板間に液 品が挟持されるとともに、 ^側から液晶パネルや偏光板等を介して入射する外光 を、 該液品パネルの裏側に貼り付けられた反射板によって反射する構成となって いる。 し力、し、 これでは、 板等により隔てられた液晶から反射板までの光路が 長いため、 表示画像に視差が生じて、 二重写りとなり、 更にカラ一表示の場合に は、 上述した長い光路によって各色光が混じってしまうため高品位の画像表示を 行うことが極めて困難となる。 加えて液晶パネルに人射してから反射板までを往 復する問に外光は減衰するため、 基本的に明るい表示を行うことも困難である。 そこで、 最近では、 外光が入射する側と反対側に位置する基板に形成される表 示用電極を反射板としても兼用することによって、 反射位置を液晶層に近接させ た内面反射方式の反射型液晶装置が開発されている。 具体的には、 特開平 8— 1 1 4 7 9 9号公報には、 基板上に反射板を兼ねた画素電極を形成する技術が開示 されている。
他方、 反射型液晶装置においては、 外光を利用して表示を視認可能にしている ため、喑ぃ場所では表示を読みとることができない。 このため、明るい場所では、 通常の反射型液晶装置と同様に外光を利用する一方、 暗い場所では、 内部の光源 により表示を視認可能にした半透過反射型液晶装置が実開昭 5 7 - 0 4 9 2 7 1 公報ゃ特開平 8— 2 9 2 4 1 3 ^公報で提案されている。
ただし、 これらによれば、 液晶パネルの観察側と反対側の外面には半透過反射 板ゃバックライ 卜等が配置していると共に、 液晶屑と ^透過反射板との問には透 明基板が介在するため、 二重映りや表示のにじみなどが発生してしまう。 更に力 ラ一フィルタを組み合わせると、 視差によって二重映りや表示のにじみなどが発 生し、 十分な発色を得ることができないという問題点がある t) そこで、 特開平 7 - 3 1 8 9 2 9号公報では、 液晶セルの内面に f-透過反射膜を ¾ねた画素電極を けた^透過反射 ¾液品装 ϊδが提案されている。
5 J1の 示
しかしながら、 丄- 特 - 8― 1 1 4 7 9 9 公報に, id,使された反射型液晶装 i によれば、 るさ及びコン トラス ト比を同時に高めるのは極めて困難である。 特にカラ一表示の場合に、 色 it!正のために位扣差板 (位相差フィルム) を 1枚或 いは複数枚用いると、 明るさ及びコン トラス ト比を高めると同時に色補正を的確 に行うことは、 一層困難となるという Πί]題点がある。
他方、 特開平 7— 3 1 8 9 2 9 ^公報に記載された半透過反射型液品装置によ れば、 やはり反射型表示時において明るさ及びコン トラス 卜比を同時に髙めるの は極めて困難である。 特にカラー表示の場合に、 色補正のために位相差板を 1枚 或いは複数枚用いると、 反射型表示時において明るさ及びコン トラス ト比を高め ると同時に色補正を的確に行うことは一層困難となるという問題点がある。
因みに本件出願人は、 特願平 1 0— 1 6 0 8 6 6号において、 新規な半透過反 射型液晶装置を提案しているが、 この液晶装置では、 特に反射型表示時において 十分な反射率を得ることが出来ず、 表示が暗くなってしまうという問題点があつ た。
本発明は、 上述の問題点に鑑みなされたものであり、 明るさ及びコン トラス ト 比が共に高められておりカラ一表示にも適した反射型液晶装置、 特に反射型表示 時において明るさ及びコン トラス ト比が共に高められておりカラー表示にも適し た半透過反射型液晶装置、 並びにこのような反射型又は半透過反射型液晶装置を 備えた液晶装置を備えた電子機器を提供することを技術的課題とする。
本発明の第 1の反射型液品装置は上記技術的課題を解決するために、 第 1基板 と、 該第 1基板に対向配置された透明の第 2基板と、 前記第 1及び第 2基板間に 挟持された液晶と、 前記第 L基板の前記第 2基板に対向する側に配置された反射 電極屑と、 前記第 2 ½板の前記第 1基板と反対側に設けられた偏光板と、 該偏光 板と前記第 2墓板との問に配置された第 1位相差板と、 前記 (ϋ光板と前記第 1位 相差板との問に配置された第 2位相差板とを備えており、 前記液晶のッイス ト角 は、 2 3 0〜 2 6 0度であり、 前記液晶の A n d (光学 ¾方性 Δ nと層厚 dの積) はその ¾小値が 0 . 8 5 m以下であり 曰-つその最大 ilftが 0 . 7 0 μ m以上であ り、 ΓΐίΠ ^ I位扣差板の Δ n dは、 1 5 0 ± 5 0 n m又は 6 0 0 ± 5 0 n mであ り、 Ι'ΐίί記第 2位扣差板の Δ n dは、 5 5 0 ± 5 0 n mであり、 前記偏光板の透過 #1乂は吸収蚰と ύίί記第 2位相 ¾板の光軸とのなす角度 1は、 1 5〜 3 5度であ り、 前記第 1位相差板の光軸と Γΐίί記第 2位相差板の光軸とのなす角度 G 2は、 6 0〜8 0度である。
本発明の第 2の反射型液晶 ¾ は上記技術的課題を解決するために、 第 1基板 と、 ή 第 1 Α¾板に対向配 [Sされた透明の第 2 S板と、 前記 1及び ίΠ 2基板間に 挟持された液晶と、 前記第 1 &板の前記第 2基板に対向する側に配置された反射 ^極屑と、 前記第 2 板の前記第 1基板と反対側に設けられた偏光板と、 該偏光 板と前記第 2基板との問に配置された第 1位相差板と、 前記偏光板と前記第 1位 相差板との問に配置された第 2位相差板とを備えており、 前記液晶のッイス ト角 は、 2 3 0〜 2 6◦度であり、 前記液晶の A n dはその最小値が 0 . 8 5 μ m以 下であり且つその最大値が 0 . 7 0 μ m以上であり、 前記第 1位相差板の A n d は、 1 5 0 ± 5 0 n mであり、 前記第 2位相差板の A n dは、 6 1 0 ± 6 0 n m であり、 前記偏光板の透過軸又は吸収軸と前記第 2位相差板の光軸とのなす角度 Θ 1は、 1 0〜 3 5度であり、 前記第 1位相差板の光軸と前記第 2位相差板の光 軸とのなす角度 6 2は、 3 0〜6 0度である。
本発明の第 1及び第 2の反射型液晶装置によれば、 偏光板の側から入射した外 光は、 偏光板、 透明な第 2基板及び液晶を介して、 第 1基板上に設けられた反射 電極層により反射し、 再び液晶、 第 2基板及び偏光板を介して偏光板の側から出 射する。 従って、 例えば第 1基板上に設けられた反射電極層 (反射電極) と第 2 基板上に設けられた透明電極 (対向電極) との問の電界を用いて液晶の配向状態 を制御することにより、 反射電極層による反射後に液晶を介して表示光として出 財する外光強度を制御できる。 このよ うに、 液品と反射板との問の透 Π月基板の存 Eにより二道映りや表示のにじみなどが発生することがなくなり、 カラ一化した 場合にも十分な発色を得ることが可能となる。 そして、 偏光板と第 2基板との間 に配 された第 1及び第 2位相差板という 2枚の位相差板を川いることにより、 色補正も比蛟的容易に 1Lつ的確に行うことができる。 なお、 反射電極層とは反射 機能と' ,' 極機能とを ¾ね備えた^屑もしくは多^の のことをいう。
ここで、 液品のッイス 卜 ^は、 2 3 0〜 2 6 0度であるため、 例えば 「 1 0」 以 I:といった^ぃコン 卜ラス 卜比が: ¾-¾可能となる π 同時に、 液品の Δ n dは、 その i 小値が 0. 8 5 μ m以ドであり LLつその/ ώ大値が 0. 7 0 μ m以上である ため、 装^仕様上要求される比蛟的広い動作温度範囲において ¾該液品装置の印 加 li圧に対する透過率の変化を^調変化 (即ち、 i]i調增加乂は lit調減少) とする ことができ、 階調表示を的確に行うことも可能となる D
Kに、 第 1 の反射型液品装その場合には、 第 1位相差板の Δ n dは、 1 5 0土 5 0 n m又は 6 0 0 ± 5 0 n m (即ち、 1 0 0〜 2 0 0 n m乂は 5 5 0〜 6 5 0 n m) であり、 第 2位相差板の A n dは、 5 5 0 ± 5 0 n m (即ち、 5 0 0〜 6 0 0 n m ) であるため、 , 表示が、 赤みや み等を帯びる事態を効果的に回避す ることが可能となる。 これらに加えて、 β〗度 () 1 (即ち、 偏光板の透過軸又は吸 収軸と第 2位相差板の光軸とのなす角度) は、 1 5〜 3 5度であり、角度 G 2 (即 ち、 第 1位相差板の光軸と第 2位相差板の光軸とのなす角度) は、 6 0〜8 0度 であるが故に、 明るさ及びコン トラス 卜比を同時に高めることができ、 しかも 2 枚の位相差板を用いることによりカラー表示又は白黒表示の際に色補正が的確に 施された高品位の反射型表示が可能となる。
他方、 第 2の反射型液晶装置の場合には、 第 1位相差板の A n dは、 1 5 0土 5 0 n m (即ち、 1 0 0〜 2 00 n m) であり、 第 2位相差板の Δ n dは、 6 1 0 ± 6 0 n m (即ち、 5 5 0〜 6 7 0 nm) であるため、 黒表示が、 赤みや青み 等を帯びる事態を効果的に回避することが可能となる。 これらに加えて、 角度 0 1は、 1 0〜3 5度であり、 角度 0 2は、 30〜 60度であるが故に、 明るさ及 びコン トラス ト比を同時に高めることができ、 しかも 2枚の位相差板を用いるこ とによりカラー表示又は白黒表示の際に色補正が的確に施された高品位の反射型 示が可能となる。
本発明の第 1又は第 2の反射型液晶装置の一の態搽では、前記液晶の Δ n dは、 0. 70〜0. 8 5 mである。
この態様によれば、 前記液晶の A n dは、 0. 70〜0. 8 5 /i mである (即 ち、 液晶の A n dの最小値が 0. 70 μ m以上であり ϋつ液晶の A n dの最大値 が 0. 8 5 m以下である) ので、 装置仕様上要求される広い動作温度範囲にお いて当該液品装 の印加電圧に対する透過率の変化を、 より良好に単調変化とす ることができ、 階調^ を非常に的確に行うことも可能となる。
本発明の第 1又は第 2の反射 ¾液晶装置では特に、 液晶の Δ n dは、 液晶の層 厚 dが画像衷示颃城内或いは各闹桌の開口領城内で一定であれば、このような 0. 70〜0. 8 5 μ πιという条件で、 非常に良好な結采 (即ち、 上記良好な透過率 の変化及び階調表示) が得られる。 しかしながら、 例えば反射電極層の表面に凹 凸が設計上意識的に或いは無意識的に形成されており液品の屑厚 dが各画素内の 全ての領域で一定とならないような場合には、 係る液晶の Δ n dの範囲を各画素 内の全ての領域で 0. 7 0〜0. 8 5 mとするのが困難或いは不可能となり得 る。 そのような場合には、 上述のように液晶の Δ n dを、 その最小値が 0. 8 5 μ m以下であり且つその最大値が 0. 70 μ m以上であるように設定すれば、 実 用上十分に良好な結果 (即ち、 上記良好な透過率の変化及び階調表示) が得られ る。
本発明の第 1又は第 2の反射型液晶装置の他の態様では、 前記第 1基板もしく は前記第 2基板の液晶側の面にカラーフィルタを備える。
この態様によれば、反射電極層を用いて液晶の配向状態を制御することにより、 反射電極層による反射後に液晶を介して表示光として出射する外光強度を制御で きる。 そして反射光は、 カラーフィルタを介して反射するため、 カラーの反射型 表示が可能となる。 この際、 偏光板と第 2基板との間に配置された 2枚の位相差 板を用いることにより、 色補正も比較的容易に且つ的確に行うことができる。 こ れらの結果、 明るさ及びコン トラス ト比を同時に高めることができ、 しかも色再 現性の高い高品位のカラーの反射型表示が可能となる。
本発明の第 1又は第 2の反射型液晶装置の他の態様では、 前記反射電極層は、 ' —屑の反射電極からなる。 '
この態様によれば、 第 1人 ξ板上に設けられた反射電極を用いて液晶の配向状態 を制御することにより、 反射電極による反射後に液晶を介して表示光として出射 する外光強度を制御できる,, 尚、 このような反射電極は、 例えば A 1 (アルミ二 ゥム) 等の金属膜から形成すればよい。
或いは本発明の^ 1 又は第 2の反射型液品装 Eの他の態様では、 Γιίί記反射電極 は、 反射膜と、 該反射 fl : に配 Sされた透明の絶縁膜と、 該絶緣 ^上に配置さ れた透明 ?1極とを む を冇する。
この態様によれば、 第 1人 ¾板卜」こ祯層された透明電極を川いて液品の配向状態 を制御することにより、 反射^による反射後に液晶を介して衷-示光として出射す る外光強度を制御できる。 尚、 このような透明電極は、 例えば I T O U nd ium T in Ox ide) 膜から形成すればよく、 絶縁膜は、 例えば酸化シリコンを主成分として形 成すればよい。 他方、 反射膜は、 例えば八 1等の金属膜から形成すればよい。 本発明の第 1 又は第 2の反射型液晶装 gの他の態様では、 ノ一マリ一ブラック モー ドでパッシブマ 卜 リ クス駆動される。
この態様によれば、 例えば S T N液品を用いてノーマリ一ブラックモードのパ ッシブマ ト リ クス駆動方式により、 明るさ及びコン トラス ト比が高く、 しかも力 ラー表示の際に色補正が的確に施された高品位の反射型表示が可能となる。
本発明の第 1又は第 2の反射型液晶装置の他の態様では、 前記第 1基板の前記 第 2基板に対向する側の表面に凹凸が形成されている。
この態様によれば、 液晶を介して反射される外光は、 基板の凹凸表面上に形成 されることで凹凸状に形成された反射電極層により反射されるので、 凹凸のサイ ズゃ形状等を制御することで最適な反射特性を得ることが可能となる。 よって最 終的には、 より明るく高品位の表示を行うことが可能となる。 尚、 このような凹 凸の形成方法としては、 例えば、 第 1基板の表面を凹凸状に形成する方法でもよ いし、 平坦な第 1基板上の表面上に凹凸膜を形成する方法でもよい。 更に、 平坦 な第 1基板上に反射電極層自体を凹凸状に形成することも可能である。
本発明の第 1の半透過反射型液晶装置は上記課題を解決するために、 透明の第 1基板と、 該第 1基板に対向配置された透明の第 2基板と、 前記第 1及び第 2基 板問に挟持された液晶と、前記第 1 «板の前記液品と反対側に設けられた光源と、 Ιίί記第 1 板の前記第 2基板に対向する側に配置された^透過反射電極層と、 前 第 2基板の前記第 L基板と反対側に設けられた (Μ光板と、 該偏光板と前記第 2 ½板との問に《置された第 1位相差板と、 前記偏光板と前記第〖位相差板との間 に配置された第 2位相差板とを備えており、 記液品のツイス 卜角は、 230〜 260度であり、 前.記液晶の A n dはその最小値が 0. 8 5 / m以下であり且つ その ½火 ilftが 0. 70 μ m以ヒであり、 Γ!ί了記第 1位相差板の Δ n dは、 1 50土 50 n m又は 600 ± 50 n mであり、 ιϊί了記第 2 相差板の A n dは、 5 5 0土 50 n mであり、 前記偏光板の透過軸又は吸収軸と前記第 2位相差板の光軸との なす ft度り 1 は、 1 5〜 35度であり、 前記第 1位相差板の光軸と |)ίί記第 2位相 差板の光軸とのなす角度 Θ 2は、 60〜80度である。
本発明の第 2の半透過反射¾液品装置は上記課题を解決するために、 透明の第 1 S板と、 該第】 S板に対向配^された透明の第 2 J£板と、 前記第 1及び第 2基 板問に挟持された液晶と、前記^ 1基板の前記液晶と反対側に設けられた光源と、 前 π 第 1基板の前記第 2基板に対向する側に配置された半透過反射電極層と、 前 ^第 2基板の前記第 1基板と反対側に設けられた偏光板と、 該偏光板と前記第 2 基板との問に配置された第 1位相差板と、 前記偏光板と前記第 1位相差板との間 に配置された第 2位相差板とを備えており、 前記液晶のツイス ト角は、 230〜 260度であり、 前記液晶の A n dはその最小値が◦ . 8 5 / m以下であり且つ その最大値が 0. 70 μ m以上であり、 前記第 1位相差板の Δ n dは、 1 50土 50 n mであり、 前記第 2位相差板の A n dは、 6 1 0 ± 60 n mであり、 前記 偏光板の透過軸又は吸収軸と前記第 2位相差板の光軸とのなす角度 0 1は、 1 0 〜3 5度であり、 前記第 1位相差板の光軸と前記第 2位相差板の光軸とのなす角 度 Θ 2は、 30〜 60度である。
本発明の第 1及び第 2の半透過反射型液晶装置によれば、 反射型表示時には、 偏光板の側から入射した外光は、 偏光板、 透明な第 2基板及び液晶を介して、 第 1基板上に設けられた半透過反射電極層により反射し、 再び液晶、 第 2基板及び 偏光板を介して偏光板の側から出射する。 従って、 例えば第 1基板上に設けられ た^透過反射電極屑 ( 透過反射電極) と第 2某板上に設けられた透明電極 (対 向電極) との問の? g界を用いて液品の配向状態を制御することにより、 ^透過反 射電極屑による反射後に液晶を介して表示光として出射する外光強度を制御でき る。 このように、 液品と反射板との問の透明基板の存在により二重映りや表示の にじみなどが発生することはなくなり、 カラー化した場合にも十分な発色を得る ことが可能となる。 そして、 光板と第 2基板との問に配置された第 1及び第 2
Figure imgf000010_0001
2枚の ί 扣 &を川いることにより、 色補正も比蛟的容易に aつ 的確に うことができる。 なお、 ^透過反射? ¾極^とは^透過反射機能と電極機 能とを兼ね備えた もしくは多^の^のことをいう。
他方、 透過型表 時には、 光源から発せられ、 透過反 ? 極屑の透過領域を 1 ½板側から透過する光源光は、 液品、 ^2人 板及び ίι光板を介して偏光板の 側から出射する。 従って、 例えば第 1基板と光源との問に他の 光板を、 第 2基 板上の偏光板との問で透過軸及び吸収軸が所定関係となるように配置すれば、 第
1基板上に設けられた ^透過反射范極層 (、 透過反射電極) と第 2基板上に設け られた透明電極 (対向電極) との 1の電界を用いて液晶の ι¾! ,)状態を制御するこ とにより、 透過反射 極^を透過後に液晶を介して ¾示光と して出射する光源 光強度を制御できる。
ここで、 液晶のッイス 卜角は、 2 30〜 260度であるため、 例えば 「 1 0」 以上といった高いコン トラス 卜比を実現可能となる。 同時に、 液晶の A n dは、 その最小値が 0. 8 5 μ m以下であり且つその最大値が 0. 70 // m以上である ため、 装置仕様上要求される比較的広い動作温度範囲において当該液晶装置の印 加電圧に対する透過率の変化を単調変化 (即ち、 単調増加又は単調減少) とする ことができ、 階調表示を的確に行うことも可能となる。
更に、 第 1の半透過反射型液晶装置の場合には、 第 1位相差板の A n dは、 1 50± 50 nm (即ち、 1 00〜 200 nm) 又は 600 ± 50 nm (即ち、 5 50〜 6 50 n m) であり、第 2位相差板の Δ n dは、 5 50 ± 50 nm (即ち、 5 0 0〜 6 0 0 nm) であるため、 黒表示が、 赤みや青み等を帯びる事態を効果 的に回避することが可能となる。 これらに加えて、 角度 0 1 (即ち、 偏光板の透 過軸又は吸収軸と第 2位相差板の光軸とのなす角度) は、 1 5〜 3 5度であり、 角度 Θ 2 (即ち、 第 1位相差板の光軸と第 2位相差板の光軸とのなす角度) は、 6 0〜 8 0度であるが故に、 明るさ及びコン トラス ト比を同時に卨めることがで き、 しかも 2枚の位扣差板を用いることによりカラー表示又は白黒表示の際に色 補正が的確に施された高品位の反射型表示が可能となる。
他方、 ΐίί 2の半透過反射型液晶装置の場合には、 第 1位相差板の Δ n dは、 1 5 0 ± .5 0 n m (即ち、 1 0 0〜 2 0 0 n m) であり、第 2位相差板の Δ n dは、 6 1 0 ± 6 0 n m (即ち、 5 5 0〜 6 7 0 n m) であるため、 ,' ¾表示が、 赤みや ^み等を带びる7 IT-態を効果的に 避可能となる。 これらに加えて、 角度 G 1は、 1 0〜 3 5度であり、 ί 度 0 2は、 3 0〜 6 0度であるが故に、 明るさ及びコン トラス 卜比を同時に ';めることができ、 しかも 2枚の位相差板を用いることによ りカラ一表示又は白黑表示の際に色補正が的確に施された 品位の表示が可能と なる。
木発明の第 1又は第 2の半透過反射型液晶装置の一の態様では、 前記液晶の Δ n dは、 0. 7 0〜 0. 8 5 μ πιである。
この態様によれば、 前記液品の A n dは、 0. 7 0〜0. 8 5 μ πである (即 ち、 液品の A n dの¾小値が 0. 7 0 μ m以上であり且つ液品の A n dの最大値 が 0. 8 5 μ m以下である) ので、 装置仕様上要求される広い動作温度範囲にお いて当該液品装置の印加電圧に対する透過率の変化を、 より良好に単調変化とす ることができ、 階調表示を非常に的確に行うことも可能となる。
本発明の第 1又は第 2の半透過反射型液晶装置では特に、 液晶の A n dは、 液 晶の層厚 dが画像表示領域内或いは各画素の開口領域内で一定であれば、 このよ うな 0. 7 0〜0. 8 5 μ mという条件で、 非常に良好な結果が得られる。 しか しながら、 液晶の層厚 dが各画素内の全ての領域で一定とならないような場合に は、 係る液晶の Δ n dの範囲を各画素内の全ての領域で 0. 7 0〜 0. 8 5 μ m とするのが困難或いは不可能となり得る。 そのような場合には、 上述のように液 晶の Δ n dを、 その最小値が 0. 8 5 m以下であり且つその最大値が 0. 7 0 n m以上であるように設定すれば、 実用上十分に良好な結果が得られる。
本発明の第 i又は第 2の半透過反射型液晶装置の他の態様では、 前記第 1基板 もしくは前記第 2基板の液晶側の面にカラーフィルタを備える。
この態様によれば、 反射型表示時には、 第 1基板上に設けられた ΐ透過反射電 極層を川いて液晶の配向状態を制御することにより、 ^透過反射電極層による反 射後に液晶を介して表示光として出射する外光強度を制御できる。 そして反射光 は、カラ一フィルタを介して反射されるため、カラ一の反射型表示が可能となる。 他方、 透過型表示時には、 基板上に設けられた半透過反射電極屑を用いて液 品の «向状態を制御することにより、 半透過反射電極層を透過後に液晶を介して ^示光として出射する光源光強度を制御できる。 そして光源光は、 カラ一フィル タを介して出射するため、 カラーの透過型表示が可能となる。 これらの結果、 明 るさ及びコン トラス 卜比を 1 時に めることができ、 しかも色 ^現性の高い高品 位の力ラー表示が可能となる。
本発明の第 1又は ¾ 2の半透過反射型液品装 [Sの他の態様では、 前記半透過反 射 ¾fe屑は、 ス リ ッ 卜が形成された反射層からなる。
この態様によれば、 第 1 ^板上に設けられたスリ ッ 卜が形成された反射層を用 いて液品の配向状態を制御することにより、 反射型表示時には、 反射? ί!極による 反射後に液晶を介して表示光として出射する外光強度を制御でき、 透過型表示時 には、 スリ ッ トを透過後に液品を介して表示光として出射する光源光強度を制御 できる。尚、 このような反射? I極は、例えば Λ 1等の金展,膜から形成すればよい。 また半透過反射電極層としては、このようなスリ ッ 卜が形成された反射層以外に、 例えば、 間隙を光が透過可能なように第 2基板に垂直な方向から平面的に見て相 互に分断された反射層でもよいし、 光を透過可能な規則的或いは不規則的な複数 の開口部が設けられた反射層でもよい。
この態様では、 前記スリ ッ トの幅は、 3〜 2 0 μ mであってもよい。
このように構成すれば、 反射型表示時にも透過型表示時にも、 明るく高コント ラス 卜な表示が可能となる。
或いは本発明の第 1又は第 2の半透過反射型液晶装置の他の態様では、 前記半 透過反射電極層は、 半透過反射膜と、 該半透過反射膜上に配置された透明の絶縁 膜と、 該絶縁膜上に配置された透明電極とを含む積層構造を有する。
この態様によれば、 第 1基板上の半透過反射膜上に積層された透明電極を用い て液晶の配向状態を制御することにより、 反射型表示時には、 半透過反射膜によ る反射後に液晶を介して表示光として出射する外光強度を制御でき、 透過型表示 には、 透過反射膜及び透明電極を透過後に液品を介して表示光として出射す る光源光強度を制御できる。 尚、 このような透明電極は、 例えば I T O膜から形 成すればよく、 絶縁膜は、 例えば酸化シリ コンを主成分と して形成すればよい。 他方、 このような半透過反射膜は、 例えばスリ ッ トゃ開口部が設けられた Λ 1等 の金厲膜から形成すればよい。
木発明の第 1 又は笫 2の f-透過反射 ¾液品装 i の他の態様では、 当該液晶装置 は、 ノ一マリ一ブラックモードでパッシブマ 卜リ クス駆動される。
この態様によれば、 例えば S T N液品を用いてノ一マリ一ブラックモードのバ ッシブマ卜リ クス駆動方式により、 明るさ及びコントラス ト比が高く、 しかも力 ラ一^示又は [ -J ¾表示の際に色 ΜΓιΕが的確に施された^品位の 示が可能となる。 本発明の第 又は第 2の半透過反射型液品装^の他の態様では、 前記第 1基板 と前記光源との問に配 t¾された他の偏光板と、 前記第 1基板と前記他の偏光板と の問に配 52された他の ί、ϊ相^板とを更に備える。
この態様によれば、 第 2基板側の偏光板の透過軸と第 1基板側の偏光板の透過 軸とが所定関係を持つように ί偏光板を配置すれば、 透過型表 時において、 電 圧印加による液晶の配向状態の変化により、 第 2基板側の偏光板から出射する光 源光 (透過光) の変調が可能となる。 更に第 2基板側の他の位相差板により、 透 過型表示時における色補正を比較的容易に行える。
本発明の第 1又は第 2の半透過反射型液晶装置の他の態様では、 前記第 1基板 の前記第 2基板に対向する側の表面に凹凸が形成されている。
この態様によれば、 液晶を介して反射される外光は、 基板の凹凸表面上に形成 されることで凹凸状に形成された半透過反射電極層により反射されるので、 凹凸 のサイズゃ形状等を制御することで最適な反射特性を得ることが可能となる。 よ つて最終的には、 より明るく高品位の表示を行うことが可能となる。 尚、 このよ うな凹凸の形成方法としては、 例えば、 第 1基板の表面を凹凸状に形成する方法 でもよいし、平坦な第 1基板上の表面上に凹凸膜を形成する方法でもよい。更に、 平坦な第 1基板上に半透過反射電極層自体を凹凸状に形成することも可能である。 本発明の電子機器は上記課題を解决するために、 上述した本発明の第 1又は第 2の反射型液晶装置若しくは第 1又は第 2の半透過反射 ¾液晶装置 (それらにつ いてのヒ述した各種態様も含む) を備える。
本発明の電子機器によれば、 ¾差による二遺映りや表示のにじみがなく、 明る く ^コン トラス トの反射型^示が可能な反射型液品装置や、 明るく高コン トラス 卜の反射型表示と透過型表示とを切り換えて表示することのできる ^透過反射型 液品¾ [§を用いた携帯電話、 腕時計、 電子 -帳、 ノートパソコン等の各種の電子 機器を^ ¾できる。
本 njiのこのような作川及び他の利得は次に説 njiする雄の形態から明らかに される。 図面の ΙΙί ίな説明
図 1は、 本発明を 施するための最良の形態における第 1 施例であるパッシ ブマトリクス駆動方式の反射 ¾液品装置を、 対向 S板上に形成されるカラーフィ ルタを便 ¾上取り除いて対向 板側から ¾た様子を示す図式的甲-面図である。 図 2は、 図 1 の Λ— Λ ' 断而を、 カラーフィルタを含めて示す反射型液晶装置 の図式的断面図である。
図 3は、 第 1実施例の反射型液 ¾ ^の部分的な斜視図であろ。
図 4は、 第 1 ^施例に基づく具体例 1〜 体例 6におけるパラメータ設定と明 るさ及びコン トラス ト比を示す表である。
図 5は、 第 1実施例でパラメータ設定された各種角度の関係の一例を基板面上 で図式的に示す説明図である。
図 6は、 第 1実施例をノーマリーブラックモードで駆動する際の液晶印加電圧 に対する反射率特性を示した特性図である。
図 7は、 第 2実施例に基づく具体例 7〜具体例 1 2におけるパラメ一タ設定と 明るさ及びコン トラス ト比を示す表である。
図 8は、 本発明を実施するための最良の形態における第 3実施例であるパッシ ブマ卜リクス駆動方式の反射型液晶装置の断面図である。
図 9は、 本発明を実施するための最良の形態における第 4実施例であるパッシ ブマトリクス駆動方式の反射型液晶装置の断面図である。
図 1 0は、 本発明を実施するための最良の形態における第 5実施例の反射型液 品装置の反射電極付近における断面図である。
図 1 1は、 図 1 0に示した第 5実施例の反射電極の平面図である。
図 1 2は、 図 1 0に示した第 5実施例の反射電極の斜視図である。
図 1 3は、 本発明を実施するための最良の形態における第 6 ¾施例であるパッ シブマ 卜リクス駆動方式の半透過反射型液晶装置の断面図である。
図 1 4は、 第 6 ¾施例の^透過反射型液品装置の部分的な斜視図である。 図 1 5は、 笫 6 ^施例の ^透過反射屑に設けられるス リ ッ トや 口部に係る各 具休例を^す拡大、 而図である。
図 L 6は、 木発明を ¾施するための最良の形態における第 8 施例であるパッ シブマ 卜リクス駆動方式の^透過反射型液晶装置の断面図である。
図 1 7は、 本発明を^施するための最良の形態における第 9 ' 施例であるパッ シブマトリクス駆動方式の半透過反射型液晶装置の断面図である。
図 1 8は、 本発明を; ¾施するための最良の形態における第 1 0実施例の半透過 反射型液晶装 i の半透過反射電極付近における断面図である。
図 1 9は、 図 1 8に示した第 1 0 ¾施例の半透過反射電極の、 面図である。 図 2 0は、 図 1 8に示した第 1 0実施例の半透過反射電極の斜視図である。 図 2 1は、 本発明を実施するための最良の形態における第 1 1実施例であるパ ッシブマ卜リクス駆動方式の反射型液晶装置の図式的平面図である。
図 2 2は、 図 2 1の A— A ' 断面図である。
図 2 3は、 第 1 1実施例の反射型液晶装置における反射電極及びカラーフィル タの構造を示す部分的な斜視図である。
図 2 4は、 本発明を実施するための最良の形態における第 1 2実施例である各 種電子機器の外観図である。 発明を実施するための最良の形態 以下、 本発明を実施するための最良の形態について実施例毎に順に図面に基づ いて説明する。
以下、 本発明の実施例を図面に基づいて説明する。
(第 1実施例)
先ず、 本発明による笫 1実施例に係る反射型液品装置の構成について、 図 1か ら図 3を参照して説明する。 第 1実施例は、 本発明をパッシブマ 卜リクス駆動方 式の反射型液品装置に適用したものである。 尚、 図 1は、 この反射型液晶装置を 対向 板上に形成されるカラーフィルタを便宜上取り除いて対向基板側から見た 様子を す図式的平面図であり、 図 2は、 図 1の A— A ' 断面を、 カラーフィル タを含めて^す反射型液晶 ¾ Kの図式的断面図であり、 図 3は、 この反射型液晶 の; 分的な斜視図である。 また、 図 1 では、 説明の便宜上ス トライプ状電極 を縦横 6木づつ図式的に している力';、 際には、多数木の范極が存在しており、 図 2においては、 各層や各部材を図 Iffi上で認識可能な投度の大きさとするため、 各層や^部材 fi こ縮尺を ¾ならしめてある。 また、 図 3では、 縦横 3本づつのス 卜ライブ状電極にかかる部分を拡人して示している。
さて、 図 1から図 3において、 3¾ 1実施例の反射型液品装 [gは、 第 1基板 1 0 と、 第 1 «板 1 0に対向配 [gされた透明の第 2基板 2 0と、 第 1 板 1 0及び第 2基板 2 0問に挾持された液品屑 5 0と、 第 1 ¾板 1 0の第 2 板 2 0に対向す る側 (即ち、 図 2で上側表面) に ft iSされた複数のス トライブ状の反射電極 1 4 と、 反射電極 1 4上に配置された配向膜 1 5とを備える。 反射型液晶装置は、 第 2基板上の第 1 AS板 1 0に対向する側 (即ち、 図 2で下側表面) に配置された力 ラーフィルタ 2 3と、 カラーフィルタ 2 3上に配置されたカラ一フィルタ平坦化 膜 2 4と、 カラーフィルタ平坦化膜 2 4上において反射電極 1 4と相交差するよ うに配置された複数のス トライブ状の透明電極 2 1 と、 透明電極 2 1上に配置さ れた配向膜 2 5とを備えて構成されている。 尚、 カラーフィルタ 2 3の位置は反 射電極 1 4と第 1基板 1 0の問に形成しても良い。また、カラーフィルタ 2 3は、 反射電極 1 4と透明電極 2 1 とが相交差する各平面領域に対応する画素毎に R G B (赤青緑) の各色部分が所定順序で配列されている (図 3参照) 。
第 1基板 1 0及び第 2基板 2◦は、 液晶層 5 0の周囲において、 シール材 3 1 により貼り合わされており (図 1及び図 2参照) 、 液晶層 5 0は、 シール材 3 1 及び封止材 3 2により、 第 1基板 1 0及び第 2基板 2 0間に封入されている。 更 に反射型液晶装置は、 第 2基板 2 0の液晶履 5 0と反対側に、 偏光板 1 0 5、 第 1位相差板 1 0 6及び第 2位相差板 1 1 6を備えている。
第 1 ½板 1 0には、 透明性が要求されないため、 例えば石英基板はもちろん半 導体. ffi板等を用いることができるが、 第 2墓板 2 0には、 可視光に対して透明或 いは少なく とも半透明であることが要求されるので、 例えばガラス基板や石英基 板等が/?]いられる。
反射 ¾極 1 4は、 例えば A 1 を主成分とする反射膜からなり、 蒸着ゃスパッタ により形成される。 方、 透明電極 2 1は、 例えば I T〇膜などの透明導電性 膜からなる。
配向^ 1 5及び 2 5は 々、 ポリイ ミ ド萍膜などの冇機薄膜からなり、 スピン コ一卜乂はフレキソ印刷により形成され、 ラビング処理等の所 Άίίの配向処理が施 されている。
液品^ 5 0は、 反射電極 1 4及び透明電極 2 1 I 1で電界が印加されていない状 態で配向膜 1 5及び 2 5により所定の配向状態をとる。 液晶層 5 0は、 例えば一 種又は数種類のネマテイ ツク液晶を混合した S Τ Ν液晶からなる。
シール材 3 1 は、 例えば光硬化性樹脂や熱硬化性樹脂からなる接着材である。 特に、 該反射型液品装 [Sが対 ¾数インチ程度以下の小型である場合には、 シー ル材中に両基板問の距離を所定値とするためのグラスファイバーやガラスビーズ 等のギャップ材 (スぺーサ) が混入される。 但し、 このようなギャップ材は、 当 該反射型液晶装置が対角数ィンチ〜 1 0インチ程度或いはそれ以上の大型である 場合には、 液晶層 5 0内に混入されてもよい。 また、 封止材 3 2は、 シール材 3 1の注入口を介して液晶を真空注入した後に、 当該注入口を封止する樹脂性接着 材等からなる。
カラーフィルタ 2 3は、 青色 (B ) 光、 緑色 (G ) 光及び赤色 (R ) 光を画素 毎に夫々透過する色材膜されて、デルタ配列や、ス トライプ配列、モザイク配列、 トライアングル配列等をとる。 また、 各画素の境界には、 ブラックマスク或いは ブラックマトリクスと称される遮光膜から形成されて、 これにより、 各画素間の 混色が防止されている。
また、 図 1及び図 2では省略しているが、 シ一ル材 5 2の内側に並行して、 例 えばカラ一フィルタ 2 3中の遮光膜と同じ或いは異なる材料によって額縁が形成 されて、 画像表示領域の周辺が規定されている。 このような額縁は、 第 2基板 2 0侧乂は第 1 S板 1 0側のいずれかー 若しくは両カ Ίこ形成されてよい。 或いは このような額縁は、 反射型液晶装置を人れる遮光性のケースの縁により規定して もよい。
第 1 -施例では特に、 S τ N液晶力ゝらなる液品屑 5 0のツイス ト角 0 tは、 2 3 0〜 2 6 0度に限定されており、 液晶の A n d (光学異方性 Δ nと層厚 dとの u ) は、 その敁小値が 0 . 8 5 μ m以下であり且つその /¾大値が 0 . 7 0 μ m 以 J:である (似し、 該 ΐιΐΗ、値が当該 /&大 ίιώより小さく 定されることは言うま でもない) 。 このようなツイス ト ^ i) tは、 ft!向股 1 5及び配卜',1膜 2 5に対する ラビング 向により 精度でお i定"了能である。 1位 I差板 1 0 6の Δ n dは、 1 5 0 ± 5 0 n m乂は 6 0 0 ± 5 0 n mであり、 if5 2位相差板 t 1 6の Δ n dは、 5 5 0 ± 5 0 n mである。 偏光板〖 0 5の透過軸又は吸収軸と 2位扣差板 1 1 6の光軸とのなす Λ度 Iは、 1 5〜 3 5度であり、 第 1位扣^板 L 0 6の光軸 と第 2位相差板 1 1 6の光軸とのなす角度り 2は、 6 0〜 8 0度である。従って、 第 'J5施例の反射 ¾液品装置によれば、 波長 5 5 0 n m付近の光に対する反射率 が高くなり、 明るく ^コン トラス トの反射型カラー表示が可能となる。 更に、 2 枚の位相差板を川いることにより、 色補正も比較的容易に iLつ的確に行うことが でき、 特に美しい黑表示や白表示 (即ち、 赤み、 靑み、 緑み等を殆ど带びること のない黒の表示や白の表示) も可能となる。
更に、 液晶の A n dが、 その最小値が 0 . 8 5 μ m以下であり且つその最大値 が 0 . 7 0 μ π以上であるため、 装置仕様上要求される比較的広い動作温度範囲 において当該液晶装置の印加電圧に対する透過率の変化を単調変化 (例えば、 ノ —マリ一ブラックモードの場合には単調増加、 ノーマリ一ホワイ トモ一ドの場合 には単調減少) とすることができ、 カラ一の階調表示を的確に行うことも可能と なる。 但し、 このように液晶の Δ n dはその最小値が 0 . 8 5 / m以下であり且 つその最大値が 0 . 7 以上であるが、 本実施例では特に、 液晶層厚を規定 する両基板の最上層表面 (即ち配向膜 1 5或いはその下地となる反射電極 1 4の 表面) が平坦であるため、 液晶の A n dは単純に 0 . 7 0〜0 . 8 5 /i mとすれ ばよい。 他方、 後述の実施例の如く液晶層厚を規定する両基板の最上層表面に凹 凸がある場合には (第 3及び第 4実施例参照) 、 係る液晶の Δ n dを各画素内の 全領域に渡って 0 . 7 0〜 0 . 8 5 μ mとするのが困難或いは不可能となり得る ので、 そのような場合に -ヒ述の如く液晶の Δ n dをその最小値が 0 . 8 5 / m以 ^であり ίΐつその最大値が 0 . 7 0 / m以 I;もあるように設定すればよい。
次に、 以 の如く構成された第 1実施例の反射型液品装置の動作について図 2 を参照して説明する。 この反射 ¾液品装置は、 ノーマリ一ブラックモードのパッ シブマ トリ クス駆動方式により駆動される。
図 2において、 ,;光板 1 0 5の侧 (即ち、 図 2で上側) から人射した外光は、 ^光板 1 0 5、 透明な第 2 板 2 0及び液晶層 5 0を介して第 L人 ζ板 1 0上に設 けられた反射電極 1 4により反射し、 び液晶層 5 0、 第 2基板 2 0及び偏光板 L 0 5を介して偏光板 1 0 5側から出射する。 ここで、 外部回路から反射電極 1 4及び透明; 極 2 1に、画像信^及び^査信 を所定のタイミングで供給すれば、 反射電極 1 4及び透 njlT :極 2 1が交差する個所における液晶屑 5 0部分には、 行 毎又は列每若しくは画素毎に ϊΐΐ界が順次印加される。 従って、 この印加電圧によ り液晶屑 5 0の配向状態を各画桌-単位で制御することにより、 透過軸及び吸収軸 が固定された^光板 1 0 5を透過する光量を各画 *単位で変調し、 カラ一の階調 示が可能となる。
このように本実施例によれば、 第 1基板の外側に設けた反射板により反射する 伝統的な反射型液晶装置と比べて、 液晶層と反射板との間の透明基板の存在によ り二重映りや表示のにじみなどが発生することはなくなつて、 カラー化した場合 にも十分な発色を得ることが可能となる。 しかも本実施例によれば、 第 1基板 1 0の上側における反射電極 1 4により外光を反射するので、 光路が短くなる分だ け表示画像における視差が低減され且つ表示画像における明るさも向上する。 そ して特に、 液晶層 5 0のツイス ト角 Θ t、 角度 θ 1及び角度 Θ 2並びに液晶の Δ n d、 第 1位相差板 1 0 6の Δ n d及び第 2位相差板 1 1 6の Δ n dは、 夫々上 述した所定範囲に人っているため、 ノ一マリ一ブラックモードにより明るく且つ 高コン トラス 卜のカラ一表示が実現される。
以上説明した第 1実施例では、 反射電極 1 4の第 1基板 1 0上の端子領域に引 き出された端子部及び透明電極 2 1 の第 2基板 1 0上の端子鎖城に引き出された 端子部には、 例えば T A B (Tape Automated bond ing)基板上に実装されており、 反射? 極 1 4及び透明電極 2 1 に両像 β号や走査信号を所定タィ ミングで供給す るデータ線駆動回路や走査線駆動回路を含む駆動用 L S I を、 5¾方性導電フィル ムを介して電気的及び機械的に接続するようにしてもよい。 或いは、 シ一ル材 3 1の外側の第 I基板 1 0又は第 2 板 2 0上の周辺領域に、 このよ うなデータ線 駆動回路や走査線駆動回路を形成して、 所^駆動回路内蔵型の反射型液晶装置と して構成してもよく、 更に、 製造途中や出荷時の ¾該液晶装 isの品質、 欠陥等を 検杏するための検^回路等を形成して所 iil'i周辺回路内蔵型の反射型液晶装置とし てもよレ、,,
加えて第 1実施例では、 パッシブマ 卜リ クス駆動方式以外にも、 丁 F T (Thin Fi lm Trans i s tor:薄膜トランジスタ) アクティブマ ト リ クス駆動力-式や、 T F D (Thi n F i l m D i ode: 薄膜ダイオード) アクティブマトリクス駆動方式、 セグメン ト駆動方式等の公知の各種駆酖方式を採用可能である。また第 2 板 2 0上には、 駆動方式に応じて適 S、 複数のス 卜ライプ状ゃセグメン ト状の透明? 極が形成さ れたり、 2 J¾板 2 0のほぼ全面に透明電極が形成されたりする。 或いは、 第 2 基板 2 0 Lに対向 7 極を設けることなく、 第 1 ¾板 1 0上の相隣接する反射電極 1 4問における基板に平行な横電界で駆動してもよい。 また、 ノーマリ一ブラッ クモードに限らずにノーマリーホワイ トモードを採用してもよレ、。 更に、 第 2基 板 2 0上に 1画素に 1個対応するようにマイク口レンズを形成してもよレ、。 この ようにすれば、 入射光の集光効率を向上することで、 明るい液晶装置が実現でき る。 更にまた、 第 2基板 2 0上に、 何層もの屈折率の相違する干渉層を堆積する ことで、 光の干渉を利用して、 R G B色を作り出すダイクロイツクフィルタを形 成してもよレ、。 このダイクロイツクフィルタ付き対向基板によれば、 より明るい カラー液晶装置が実現できる。
また図 2に示したように第 1実施例では、 反射電極 1 4を、 A 1 を主成分とす る単一層から形成することにより、 比較的容易な製造プロセス且つ比較的低コス トで反射率の向上を図ることができる。 但し、 反射電極 1 4の主成分を A g (銀) や C r (クロム) 等の他の金属としても、 上述の如き第 1実施例における効果は 得られる。
ここで、 第 1実施例に基づく各具体例について図 4から図 6を参照して説明す る。 図 4は、 ¾体例 1〜 -体例 6における、 ヒ述した液晶層 5 0のッイス 卜角 Θ
1、 液晶屑 5 0の Δ n d、 2位相差板 1 L 6のリタデ一シヨ ン A n d (図 4の ^中では、 R 2 A n dと^す。 Δ nは位相差板の光学異方性、 dは位相差板厚 み) 、 第 1位相差板 1 0 6のリタデーシヨン Δ n d (図 4の表中では、 R 1 厶 1"> 01と¾1す) 、 度 ϋ 1及び^度り 2を、 反射型表示時における るさ (反射率) 及びコン トラス 卜比と共に示す表である。
は体例 1〜 14体例 3は、 1 Z 1 2 0デューティ liつ 1 Z 1 3バイアスによりノ
—マリーブラックモードで $))される例であり、 -体例 4〜 ft体例 6は、 1 Z 2 4 0デューティ LLつ 1 Z 1 3バイアスによりノ一マリ一ブラックモードで駆動さ れる例である。
例えば図 5に示したように、 各具体例における各角度り 1 、 ひ 2及びり tの設 定に従って、 外光の人射側から、 偏光板 1 0 5の吸収軸の方向 Λ 1、 第 2位相差 板 1 1 6の遅相軸の 向 Λ 2、 第〗位相差板 1 0 6の遅相蚰の方向 Λ 3、 配向膜
2 5のラビング方向 Λ 4及び配向膜 L 5のラビング方向 A 5を矢々設定すれば、 ^反射率 (約 2 4 %〜: 3 2 % ) が得られ、 同時に |;¾コン 卜ラス ト比 (約 L L〜 l 9 ) が得られる。 尚、 図 5では、 ス トライブ状の反射電極 1 4の仲びる方向を X 方向 (横方向) とし、 ス トライプ状の透明電極 2 1の伸びる方向を y方向 (縦方 向) としてある。
更に、 図 6に示したように、 このようなパラメータ設定を採用した反射型液晶 装置を上述の L Z 1 2 0デューティ且つ 1 1 3バイアスによりノーマリ一ブラ ックモードで駆動した場合、 例えば液晶印加電圧が約 2 . O V〜約 2 . 2 Vに増 加するのに応じて、 反射率が約 0 %から最大値たる約 6 0 %に至るまで滑らかに 単調増加する特性が得られる。
図 4から図 6から明らかなように、 上述した第 1実施例にしたがって、 液晶層 5 0のツイス ト角 Θ t、 液晶層 5 0の A n d、 第 2位相差板 1 1 6の R 2 Δ n d、 第 1位相差板 1 06の R 1 Δ n d、 角度 0 1及び角度 0 2が設定されてい る各具体例 1〜具体例 6では、 20%を超える高い反射率が得られるので、 視覚 非常に明るい反射型表示が得られる。 同時に 1 0を超える高いコン トラス 卜の 表示が得られると共に、 液晶印加電圧に対する良好な反射率の増加特性により高 ん',位の階調表示も可能となる。
尚、 本実施例を含む本発明の各極実施例において、 第 1位相差板 1 06及び第 2位相差板 1 1 6は夬々、 好ましくは 2軸性位相差板からなり、 条件 N X〉 N z > N y (fHし、 Ν χ : X軸方向の屈折率、 Ν ζ : Ζ軸方向の屈折率、 N y : Y軸 方向の ill fr率) を満たす。 このように構成すれば、 視角を広げることができる。 ίΠし、 これら第 1位相差板 1 06及び第 2位扣差板 I 1 6を 1軸性位相差板から 成しても ヒ述した木実施例の利益は得られる。
(笫 2'太施例)
次に、 木発 の笫 2 施例に係る反射型液品装 について図 7を参! Kiして説明 する。 木発叨の^ 2 ¾施例は 1位相差板 1 06, 2位相^板 1 1 6及び偏光 板 1 0 5に係るパラメータ設定が^ 1 施例と ¾なり、 その他の W成や動作は、 図 1から図 3に示した第 1 ' -施例と同様である。
即ち^ 2 施例では、 先ず S Τ Ν液晶からなる液晶屑 5 0のツイス ト角 Θ tに ついては第 1 ' 施例と同様に、 2 30〜 2 60度に限定されており、 液晶層 50 の厶 n dについても第〗 ^施例と 様に、 その ½小 ίΐΐ'ίが 0. 8 5 / m以下であり .11つその最大 ilftが 0. 70 μ m以上である。
そして第 2 ^施例では第 ί 施例とは ¾なり、第〖位相差板 1 06の Δ n dは、 1 50 ± 50 nmであり、 第 2位相差板 1 1 6の A n dは、 6 1 0 ± 60 nmで あり、 偏光板 i 05の透過軸又は吸収軸と第 2位相差板 1 1 6の光軸とのなす角 度 θ 1 は、 1 0〜 3 5度であり、 第 1位相差板 1 06の光軸と第 2位相差板 1 1 6の光軸とのなす角度 Θ 2は、 30〜60度である。 従って、 第 2実施例の反射 型液晶装置によれば、 波長 5 50 nm付近の光に対する反射率が高くなり、 明る く高コン トラス トの反射型カラー表示が可能となる。 更に、 2枚の位相差板を用 いることにより、 色補正も比較的容易に且つ的確に行うことができ、 特に美しい 黒表示や白表示 (即ち、 赤み、 青み、 緑み等を殆ど帯びることのない黒の表示や 白の表示) も可能となる。
そして第 2実施例では、 第 1実施例の場合と同様に、 液晶の A n dが、 その最 小値が 0. 85 μ m以下であり E1つその最大値が 0. 7◦ μ m以上であるため、 装置仕様 !:要求される比較的広い動作温度範囲において当該液晶装置の印加電圧 に対する透過率の変化を単調変化とすることができ、 カラーの階調表示を的確に 行うことも可能となる。
ここで、 第 2実施例に基づく各具体例について図 7を参照して説明する。 図 7 は、 -ί本例 7〜具体例 1 2における液晶層 50のツイス ト角 β t、 液晶層 50の 厶 n d、第 2位相差板 1 1 6の Δ n d (図 3の表中では、 R 2 A n dと記す) 、 5¾ 、ϊ相差板 1 06の Δ n d (図 3の表中では、 Δ n dと記す) 、 角度 Θ 1及び 度り 2を、 反射型表^時における明るさ (反射率) 及びコン トラス ト比 と に す ^である。 尚、 図 7に示した 体例 7〜具体例 1 2は、 1 Z 1 20デ ユーティ つ 1 Z 1 3バイアスによりノ一マリ一ブラックモ一ドで駆動される例 である。
図 7から明らかなように、 上述した第 2 ^施例にしたがって、 液晶屈 50のッ イス 卜角 Θ t、 液晶層 50の A n d、 第 2位相差板 1 1 6の R 2 A n d、 第 1 位相差板 1 06の A n d. 角度 0 1及び角度 0 2が設定されている各具体 例 7〜 体例 1 2では、 いずれも 30%を超える高い反射率が得られる。 即ち視 党上非常に明るい反射型表示が得られる。 M時に 「 1 0」 を超える いコン トラ ス 卜の表示が得られる。
(第 3実施例)
次に、 本発明の第 3実施例に係る反射型液晶装置について、 図 8を参照して説 明する。 尚、 図 8に示す第 3実施例では、 図 1から図 3に示した第 1実施例と同 様の構成要素には同様の参照符号を付しそれらの説明は省略する。
第 3実施例では、 第 1又は第 2実施例と比べて、 第 1基板 1 0の表面に凹凸が 形成されており、 これに伴って反射電極 1 4及び配向膜 1 5も凹凸に形成されて おり、 更に液晶層 50の層厚 dが各画素内で位置によって多少変化する点が異な り、 その他の構成については第 1又は第 2実施例と同様である。
このように第 3実施例では、 表面に凹凸が形成された第 1基板 1 0 ' を用いる ことで、 反射電極 1 4の液晶層 5 0に面する表面を凹凸として鏡面感を無く し、 散乱面(白色面) に見せる。 また、凹凸による散乱によって視野角を広げられる。 この凹凸形状は、 基板自身をフッ酸によって荒らすこと等によって比較的簡単に 形成できる。 第 3実施例では、 第 1又は第 2実施例と同様に、 液晶層 5 0の Δ n dはその最小値(凸部における iltt) が 0 . 8 5 m以下であり [Lつその最大値(凹 部における値) が 0 . 7 0 μ ηι以ヒである。 尚、 反射電極〗 4の凹凸表面上に透 明な、 1':坦化膜を形成して、液晶層 5 0に面する表面(配向膜 1 5を形成する表面) を平坦化しておく ことが液晶の配向不良を防ぐ観点から望ましい。
(第 4 ' 施例)
次に、 本発 の第 4実施例に係る反射型液品装 について、 図 9を参照して説 Iリ 1する。 、 図 9に す第 4 ¾施例では、 図 1から図 3に 7jf;した第 1 施例と同 様の構成要素には同様の参照符 を付しそれらの説明は 略する。
第 4実施例では、 第 I 又は第 2 ¾施例と比べて、 第 1基板 1 0の表面に凹凸膜 1 0 uが形成されており、 これに作つて反射 ¾極 I 4及び配向膜 1 5も四凸に形 成されており、 ϋίに液晶^ 5 0の屑厚 dが^画素内で位置によって多少変化する 点が ¾なり、 その他の構成については第 1又は第 2実施例と同様である。
このように第 4実施例では、第 1基板 1 0 Jこ凹凸膜 I 0 uを形成することで、 第 3実施例の と同様に、 反射電極 1 4の液晶層 5 0に面する表 [ を凹凸とし て鏡而感を無く し、 散乱面 (^色面) に ¾せる。 また、 凹凸による散乱によって 視野角を広げられる。 このような凹凸膜 1 0 uは、 反射電極 1 4の下地に感光性 のァクリル樹脂等を積層することで比較的簡単に形成できる。
(第 5実施例)
次に、 本発明の第 5実施例に係る反射型液晶装置について、 図 1 0から図 1 2 を参照して説明する。 ここに、 図 1 0は、 第 5実施例における反射電極 1 4 ' の 積層構造を示す断面図であり、 図 1 1は、 その平面図であり、 図 1 2は、 その斜 視図である。 尚、 図 1 0から図 1 2に示す第 5実施例では、 図 1から図 3に示し た第 1実施例と同様の構成要素には同様の参照符号を付しそれらの説明は省略す る。
図 1 0から図 1 2に示すように、 第 5実施例では、 第 1から第 4実施例におけ る単一層からなる反射電極 1 4に替えて、 反射電極 1 4 ' は、 ス トライプ状の反 射膜 1 4 1 と、 該反射膜 1 4 1上に配置された透明の絶縁膜 1 4 2と、 該絶縁膜 1 4 2上に配置されたス トライプ状の透明電極 1 4 3とを含む積層構造を有して おり、 その他の構成については第 1から第 4実施例のいずれかと同様である。 こ のように構成すれば、 第 1 J 板 1 0上に積層された I T O膜等からなる透明電極 I 4 3を Wいて液晶履 5 0の配向状態を制御することにより、 Λ 1膜等からなる 反射股 1 4 1 による反射後に液晶屑 5 0を介して表示光として出射する外光強度 を制御できる。 この場合の絶縁膜 1 4 2は、 例えば酸化シリ コンを主成分として 形成すればよい。
(第 6 ' 施例)
次に、 木発明の^ 6 -施例に係る^透過反射型液晶装 について、 図 1 3から 1 5を参照して説明する,, 第 6 ' -施例は、 本発明を^透過反射 液品装置に適 用したものである。 ここで図 1 3は、 第 2実施例の構成を示す図式的断面図であ るが、 図 2に示した第 1 'J施例と 様の構成要素については同様の参照符号を付 し、 その説明は適宜 ί¾、略する。
図 1 3及び図 1 4において、 第 6実施例の ^透過反射型液晶装置は、 第 1実施 例における反射 i!ite l 4に^えて、 半透過反射電極 2 1 4を備えるとともに、 第 I実施例の構成に加えて、 第 1基板 1 0の液品屑 5 0と反対側に、 偏光板 t 0 7 及び位桕差板 1 0 8を個えている。 更に、 偏光板 1 0 7の外側には、 蛍光管 1 1 9と、 1ϋ·光管 1 I 9からの光を偏光板 1 0 7から液晶パネル内に導くための導光 板 1 1 8とを備えている。 その他の構成については、 第 1実施例の場合と同様で ある。
半透過反射電極 2 1 4は、 Λ gや八 1などの金属からなり、 スリ ッ トや開口部 などを備えるものである。 このため、 半透過反射電極 2 1 4は、 第 2基板 2 0の 側から入射する光を反射する一方、 第 1基板 1 0側からの光源光を透過する。 ここで、 半透過反射電極 2 1 4のスリ ッ トや開口部の各種具体例について図 1 5を参照して説明する。
図 1 5 ( a ) に示すように、 画素毎に 4つの矩形スロッ トを四方に配置しても よいし、 図 1 5 ( b ) に示すように画素毎に 5つの矩形スロッ トを横並びに配置 してもよいし、 図 1 5 ( c ) 示すように画素毎に多数の円形開口 (例えば、 2 μ m径の開口) を離散配置してもよいし、 図 1 5 ( d ) 示すように画素毎に 1つの 比較的大きな矩形スロッ トを配置してもよい。 このような開口部は、 レジス トを 用いたフォ 卜工程 Z現像工程/剥離工程で容易に作製することができる。 開口部 の、 fliii形状は、 図示のほ力、にも、 ιΕ方形でもよいし、 或いは、 多角形、 楕円形、 不規則形でもよいし、 複数の画素に跨って延びるス リ ッ ト状でもよい。 また、 反 射屑を形成するときに同時に^口部を開孔することも可能であり、 このようにす れば製造 TJ 数を^やさず济む。 特に、 図 1 5 ( a ) 、 ( b ) 又は (d ) に示し た如きス リ ッ トの場合、 ス リ ッ トの幅は、 好ましくは約 3〜 2 0 mとされる。 このように構成すれば、 反射 示時にも透過型表示時にも、 明るく高コン トラ ス 卜な Λ が可能となる。 尚、 このようなス リ ッ 卜や問口部を ,¾:ける以外に、 例 えば、 Ή隙を光が透過可能なように^ 2 2 0に ¾ιΚな方向から、 而的に見て 相互に分断された ' 一屑の 透過反射電極 2 1 4としてもよい。
説 0Πを図 I 3に Rす。 図 1 3において、 蛍光 ; I 1 9と共にバックライ トを構 成する 光板 1 1 8は、 ^面全 ί本に散乱用の; miiiが形成された、 或いは散乱用の 印刷^が形成されたァク リル樹脂板などの透明体であり、 光源である ¾光管 1 1 9の光を端面にて受けて、 図の hiSiからほぼ均 な光を放出するようになってい る。
尚、 透過型表示 に点灯される光源としては、 小型の液品装置川には、 L E D (Light Emitting Diode) 素子や、 E L ( Ε 1 ec Lro-Lum i ncsccnce) 素子等力';適し ており、 大型の液品装置 fflには、 導光板を介して側方から光を導入する蛍光管 1 1 9等が適している。 第 1基板 1 0と導光板 1 1 8との間には、 更に、 反射偏光 子を光の有効利用目的で配置してもよい。
このように第 6実施例では、 液晶セルの上側に偏光板 1 0 5、 第 1位相差板 1 0 6及び第 2位相差板 1 1 6が配置されており、 液晶セルの下側に偏光板 1 ◦ 7 及び位相差板 1 0 8が配置されているので、 反射型表示と透過型表示とのいずれ においても良好な表示制御ができる。 より具体的には、 第 1位相差板 1 0 6及び 第 2位相差板 1 1 6によって、 反射型表示時における光の波長分散に起因する色 付きなどの色調への影響が低減される (即ち、 第 1位相差板 1 0 6及び第 2位相 差板 1 1 6を用いて反射型表示時における表示の最適化が図られる) と共に、 位 相差板 1 0 8によって、 透過型表示時における光の波長分散に起因する色付きな どの色調への影響が低減される (即ち、 第 1位相差板 1 0 6及び第 2位相差板 1 1 6により反射型表示時における表示の最適化が図られた条件下で、 更に、 位相 ^板 I 0 8により透過型表示時における表示の最適化が図られる) 。 なお、 各位 扣差板については、 液晶セルの着色補償、 もしくは視角補償により複数枚或いは 3枚以丄:の位相差板を配置することも可能である。 このように位相差板を複数枚 用いれば若色補償或いは視覚補償の最適化をより容易に行える。
更にまた、 光板】 0 5、 第 1位相差板 1 0 6、 第 2位相差板 1 1 6、 液晶層 5 0及び^透過反射范極 2 1 4における光学特性を反射型表示時におけるコン ト ラス トを める ^定とすると に、 この条件卜一で偏光板 1 0 7及び位相差板 1 0 8における光学特 '½を透過型表示 ΠΪにおけるコン トラス 卜を髙める設定とするこ とにより、 反射型 ^示と透過型表示とのいずれにおいても高いコン トラス 卜特性 を得ることができる。 例えば、 反射型表示時には、 外光が、 ^光板 1 0 5を通つ て直線偏光となり、 更に位相差板 1 0 6及び電圧非印加状態 (暗表示状態) にあ る液晶屑 5◦部分を迎つて右円偏光となって半透過反射電極 2 1 4に违し、 ここ で反射されて進行方向が逆転すると共に左円偏光に変換され、 f耳び ?ίί圧非印加状 態にある液品層 5 0部分を通って直線偏光に変換され、 光板 1 0 5で吸収され る (即ち、 暗くなる) ように、 偏光板 1 0 5、 ίΠ ΐ位相差板 1 0 6、 2位相差 板 1 1 6、液晶層 5 0及び半透過反射電極 2 1 4における光学特性が設定される。 この時、 ? 圧印加状態 (明表示状態) にある液晶層 5 0部分を通る外光は、 液晶 層 5 0部分を素通りするため、 半透過反射電極 2 1 4で反射して偏光板 1 0 5か ら出射する (即ち、 明るくなる) 。 一方、 透過型表示時には、 バックライ 卜から 発せられ、 偏光板 1 0 7及び位相差板 1 0 8を介して半透過反射電極 2 1 4を透 過する光源光が、 上述した反射型表示時における半透過反射電極 2 1 4で反射さ れる左円偏光と同様な光となるように、 偏光板 1 0 7及び位相差板 1 0 8の光学 特性が設定される。 すると、 反射型表示時と比べて光源及び光路が異なるにも拘 わらず、 透過型表示時における半透過反射電極 2 1 4を透過する光源光は、 反射 型表示時における半透過反射電極 2 1 4で反射する外光と同様に電圧非印加状態 (喑表示状態) にある液晶層 50部分を通って直線偏光に変換され、 偏光板 1 0 5で吸収される (即ち、 喑くなる) 。 この時、 ¾圧印加状態 (明表示状態) にあ る液晶層 50部分を通る光は、 液晶層 50部分を素通り して (I光板 1 0 5から出 射する (即ち、 明るくなる) 。
以上説明したように、 本灾-施例の液品装 ϊ!¾では、 (I光板 1 0 5、 第 1位相差板 1 06及び第 2位相差板 1 1 6、 びに偏光板 1 0 7及び位相差板 1 08を備える ので、 反射型表示と透過型 示とのいずれにおいても良好な色補償と高いコント ラス ト特性を得ることが可能となる。 尚、 これらの光学特性の設定については、 ^験的又は理論的に若しくはシミユレーション等により、 液晶装置の仕様上要求 される明るさゃコン トラス 卜比に a合った設定とすることができる。
® 6 %施例では特に、 S T N液品力、らなる液品屑 5 0のッイス ト角り tは、 2 30〜 260度に限定されており、 液晶の A n dは、 その最小 ί|ΐϊが 0. 8 5 μ m 以下であり 11つその iri大値が 0. 70 /i m以上である。 このようなツイス ト角 0 tは、 配向膜 1 5及び配向膜 2 5に対するラビング方向により高精度で規定可能 である。 第 1位相; ¾板 1 06の A n dは、 1 5 0 ± 50 n m又は 600 ± 50 n mであり、 第 2位扣差板 1 1 6の A n dは、 5 50 ± 50 n mである。 偏光板 1 05の透過軸乂は吸収軸と 2位相差板 1 1 6の光軸とのなす角度 0 1 は、 丄 5 〜 3 5度であり、 1位相差板 I 06の光軸と ¾ 2位相差板 1 1 6の光軸とのな す角度 0 2は、 60〜 8 0度である。 従って、 ; 6 ¾施例の反射型液品装 iSによ れば、 波長 5 50 n m付近の光に対する反射率が高くなり、 明るく コン トラス 卜の反射型カラー表示が可能となる。更に、 2枚の位相差板を用いることにより、 色補正も比較的容易に iiつ的確に行うことができ、特に美しい黒表示や白表示(即 ち、 赤み、 青み、 緑み等を殆ど帯びることのない黒の表示や白の表示) も可能と なる。
更に、 液晶の Δ n dが、 その最小値が 0. 8 5 μ m以下であり且つその最大値 が 0. 70 y m以上であるため、 装置仕様上要求される比較的広い動作温度範囲 において当該液晶装置の印加電圧に対する透過率の変化を単調変化とすることが でき、 カラーの階調表示を的確に行うことも可能となる。 但し、 このように液晶 の厶 n dはその最小値が 0. 8 5 μ m以下であり且つその最大値が 0. 70 μ πι 以上であるが、 本実施例では特に、 液晶層厚を規定する両基板の最上層表面が、 平坦であるため、液晶の Δ n dは、単純に 0 . 7 0〜0 . 8 5 / mとすればよい。 他方、 後述の実施例の如く液晶層厚を規定する両基板の最上層表面が凹凸である 場合には (第 8及び第 9実施例参照) 、 係る液晶の Δ n dを各画素全体に渡って 0 . 7 0〜0 . 8 5 mとするのが困難或いは不可能となり得るので、 そのよう な場合にヒ述の如く液晶の Δ n dをその最小値が 0 . 8 5 m以下であり ϋつそ の最大 ίΐΐ'ίが 0 . 7 0 μ m以上もあるように設定すればよい。
次に、 以 1;の如く構成された第 6実施例の半透過反射型液晶装 の動作につい て図 1 3を参照して説明する。 第 6実施例の ^透過反射型液品装置は、 ノーマリ —ブラックモ一ドのパッシブマトリクス駆動方式により駆動される。
まず、 反射 ¾表 について説明する。
この 介には第 1 ^施例の ¾合と^様に、 図 1 3において、 ( 光板 1 0 5の側 (即ち、 | 1 3でヒ侧) から人射した外光は、 ( 光板 1 0 5、 透明な ¾ 2基板 2 0及び液品屑 5 0を介して第 I J¾板 1 0上に設けられた^透過反射? 極 2 1 4に より反射し、 F?び液品 5 0、 第 2 ¾板 2 0及び i 光板 1 0 5を介して偏光板 1 0 5側から出射する。 ここで、 外部回路から半透過反射電極 2 1 4及び透明電極 2 I に、 両像 ^ 及び走杏 t を所定のタイミングで供給すれば、 透過反射電 極 2 1 4及び透明 ¾極 2 1が交差する個所における液晶屑 5 0部分には、 行毎又 は列 f5若しくは画尜 ¾に^界が順次印加される。 従って、 この印加? 圧により液 品層 5 0の配 状態を各画素^位で制御することにより、 偏光板 1 0 5を透過す る光量を変調し、 カラーの階調表示が可能となる。
このように本実施例によれば、 反射型表示の際に、 第 1基板の外側に設けた反 射板により反射する伝統的な反射型液晶装置と比べて、 液晶層と反射板との間の 透明基板の存在により 二重映りや表示のにじみなどが発生することはなくなって、 カラー化した場合にも十分な発色を得ることが可能となる。 しかも本実施例によ れば、 第 1基板 1 0の上側における半透過反射電極 2 1 4により外光を反射する ので、 光路が短くなる分だけ表示画像における視差が低減され且つ表示画像にお ける明るさも向上する。 そして特に、 液晶層 5 0のッイス ト角 0 t、 角度 0 1及 び角度 0 2並びに液晶層 5 0の Δ n d、 第 1位相差板 1 0 6の Δ n d及び第 2位 相差板 1 1 6の A n dは、 夫々上述した所定範囲に人っているため、 ノ一マリ一 ブラックモードにより明るく ELつ高コントラス 卜のカラー表示が実現される。
次に透過型表示について説明する。
この場合には、 図 1 3において第 1基板 1 0の下側から偏光板 1 0 7を介して 人財した光源光は、 透過反射1極 2 1 4の ΠΗ口部を透過し、 液晶屑 5 0、 第 2 人 ξ板 2 0及び偏光板 1 0 5を介して 光板 1 0 5側から出射する。 ここで、 外部 回路から 透過反射電極 2 1 4及び透明電極 2 1に、 両像^ ^及び走査信号を所 定タイ ミングで供給すれば、 透過反射電極 2 1 4及び透明 71極 2 1 が交差する 個所における液晶層 5 0部分には、 行毎又は列毎若しくは画素毎に ' 界が順次印 加さォ Lる。これにより液品屑 5 0の配向状態を各画素 i位で制御することにより、 光源光を变調し、 階調 示が '可能となる。
以ヒ説 Iリ 1した第 6 施例では、 第 1 ' 施例のお 0と Ιι )様に、 透過反射電極 2 1 4の^ 1 板 1 0 I:の端 f- i域に引き出された端 f部及び透明? 極 2 1 の第 2 墓板 I 0 ヒの端了-敏域に' J Iき出された端子部には、 例えば Τ Λ B «板上に実装さ れており、 データ線駆^回路や^查線駆動回路を含む駆動用 L S 1 を、 ¾方性導 電フィルムを介して? ϋ気的及び機械的に接続するようにしてもよい,, 或いは駆動 回路内蔵型の 透過反射型液 装匿として構成してもよく、 !3!に、 検 ¾回路等を 形成して所謂周辺回路内蔵型の半透過反^型液品 ¾^としてもよい。 更に、 第 1 位相差板 I 0 6及び 2位相差板 1 1 6を 2籼性 相差板から構成してもよいし、 1軸性位扣差板から構成してもよレ、。
加えて第 6:¾施例では、 第 1 ^施例の場合と同様に、 パッシブマ 卜リクス駆動 方式以外にも、 T F Τアクティブマ ト リ クス駆動方式や、 T F Dアクティブマト リクス駆動方式、セグメント駆動方式等の公知の各種駆動方式を採用可能である。 また第 2基板 2 0上には駆動方式に応じて適宜、 複数のス トライブ状ゃセグメン 卜状の透明電極が形成されたり、 第 2基板 2 0のほぼ全面に透明電極が形成され たりする。 或いは、 第 2基板 2 0上に対向電極を設けることなく、 第 1基板 1 0 上の相隣接する半透過反射電極 2 1 4間における基板に平行な横電界で駆動して もよい。 また、 ノーマリーブラックモードに限らずにノーマリーホワイ トモード を採用してもよい。 反射型表示と透過型表示とでは液晶セルの電圧一反射率 (透 過率) 特性が異なる場合が多いので、 反射型表示時と透過型表示時とで駆動電圧 を相異ならせ、 各々で最適化した方が好ましい。 更に、 第 2基板 20上に 1画素 L個対応するようにマイクロレンズを形成してもよい。 更にまた、 第 2基板 20 hに、何層もの屈折率の相違する干渉層を堆積することで、光の干渉を利用して、 R G B色を作り出すダイクロイツクフィルタを形成してもよい。
また図 1 3に示したように第 6実施例では、 ^透過反射電極 2 1 4を、 Λ 1 を ΐ成分とする単一層から形成することにより、 比較的容易な製造プロセス且つ比 較的低コス 卜で反射率の向上を図ることができる。 ί[ίし、 半-透過反射電極 2 1 4 の主成分を A gや C r等の他の金属としても、 上述の如き第 6突施例における効 ^は得られる。
(第 7¾施例)
次に、 木発 の第 7' 施例に係る半透過反射型液品装置について説明する。 本 発明の^ 7 施例は I位相差板 1 06、 第 2位札 I差板 1 L 6及び ifi光板 1 05 に係るパラメータ設定が第 6実施例と ¾なり、 その他の構成や動作は、 図 1 3か ら図 1 5に示した第 6: ^施例と同様である。
即ち第 7'J5施例では、 先ず STN液品からなる液晶層 5 0のツイス ト角 0 tに ついては第 6実施例と同様に、 2 30〜 260度に限定されており、 液晶層 50 の厶 n dについても第 6突施例と 様に、 その ¾小値が 0. 8 5 μ m以下であり 且つその敁大値が 0. 7 0 μ ηι以上である。
そして第 7実施例では第 6実施例とは ¾なり、笫 1位相差板 1 06の Δ n dは、 1 50 ± 50 nmであり、 第 2位相差板 1 1 6の A n dは、 6 1 0 ± 60 nmで あり、 偏光板 1 05の透過軸又は吸収軸と第 2位相差板 1 1 6の光軸とのなす角 度 0 1は、 1 0〜3 5度であり、 第 1位相差板 1 06の光軸と第 2位相差板 1 1 6の光軸とのなす角度 G 2は、 3 0〜60度である。 従って、 第 7実施例の半透 過反射型液晶装置によれば、波長 5 50 nm付近の光に対する反射率が高くなり、 明るく高コントラス トの反射型カラー表示が可能となる。 更に、 2枚の位相差板 を用いることにより、 色補正も比較的容易に ϋつ的確に行うことができ、 特に美 しい黒表示や白表示 (即ち、 赤み、 青み、 緑み等を殆ど帯びることのない黒の表 示や白の表示) も可能となる。 更に、 第 6実施例の場合と同様に、 液晶の A n d力'、 その最小値が 0 . 8 5 m以下であり且つその最大値が 0 . 7 0 / m以上であるため、 装置仕様上要求さ れる比較的広い動作温度範囲において当該液品装置の印加電圧に対する透過率の 変化を単調変化とすることができ、 カラーの階調表示を的確に行うことも可能と なる。
(第 8実施例)
次に、 本発明の第 8実施例に係る^透過反射型液晶装置について、 図 1 6を参 照して説明する [V,'i、 図 1 6に示す第 8実施例では、 図 1 3から図 1 5に示した ^ 6 ¾施例と同様の構成耍素には同様の参照符 ^を付しそれらの説明は ί¾、略する。 第 8 ¾施例では、 6 乂は 7 ¾施例と比べて、 第 1 板 1 0の表而に凹凸が 形成されており、 これに作って,透過反射電極 2 1 4及び | 向膜 1 5 も凹凸に形 成されており、 !iに液品^ 5 0の屑厚 dが各画 ^内で位 ΪΚによって多少変化する 点が ½なり、 その他の構成については第 6又は第 7 ^施例と同様である。
このように^ 8 ¾施例では、 ^面に凹凸が形成された第 1 板 1 0 ' を用いる ことで、 ΐ透過反射 ΐί!極 2 I 4の液晶層 5 0に面する表面を [川凸として鎞面感を 無く し、 散乱而 (Ι'Ί色面) に見せる。 また、 囬凸による散乱によって視野角を広 げられる。
(第 9実施例)
次に、 本発明の第 9 -施例に係る^透過反射型液品装置について、 図 1 7を参 照して説明する。 尚、 Μ 1 7に示す第 9実施例では、 図 1 3から図 1 5に示した 第 6実施例と 様の構成要素には同様の参照符号を付しそれらの説明は省略する。 第 9実施例では、 第 6又は第 7実施例と比べて、 第 1基板 1 0の表面に凹凸膜 1 0 uが形成されており、 これに伴って半透過反射電極 2 1 4及び配向膜 1 5も 囬凸に形成されており、 更に液晶層 5 0の層厚 dが各画素内で位置によって多少 変化する点が異なり、その他の構成については第 6又は第 7実施例と同様である。 このように第 9実施例では、第 1基板 1 0上に凹凸膜 1 0 uを形成することで、 第 8実施例の場合と同様に、 ΐ透過反射電極 2 1 4の液晶層 5 0に面する表面を 凹凸として鏡面感を無く し、 散乱面 (白色面) に見せる。 また、 凹凸による散乱 によって視野角を広げられる。 (第 1 0実施例)
次に、 本発明の第 1 ◦実施例に係る半透過反射型液晶装置について、 図 1 8か ら図 2 0を参照して説明する。 ここに、 図 1 8は、 第 1 0実施例における半透過 反射電極 2 I 4 ' の積層構造を示す断面図であり、図 1 9は、その平面図であり、 図 2◦は、 その斜視図である。 尚、 図 1 8力、ら図 2 0に示す第 1 0 ¾施例では、 図 1 3から図 1 5に示した第 6実施例と 様の構成要素には同様の参照符号を付 しそれらの説明は 、略する。
図 1 8力、ら図 2 0に示すように、 第 1 0実施例では、 第 6から第 9実施例にお ける —屑からなる、 透過反射電極 2 1 4に替えて、ず-透過反射電極 2 1 4 'は、 ス トライプ状の ^透過反射膜 2 4 1 と、 該半透過反射膜 2 4 1上に配置された透 Iリ Iの絶緣膜 2 4 2と、 该絶緣膜 2 4 2上に配 ΰ' されたス トライプ状の透明?!極 2 4 3とを含む 履構造を冇している。 半透過反 股 2 4 1には、 ス リ ッ ト 2 4 1 hが問孔されており、 これに応じて透明電極 4 3には、 ?1み 2 4 3 hが形成さ れている。その他の構成については第 6から第 9実施例のいずれかと同様である。 このように構成すれば、 反射表示時には、 第 1 ^板 1 0上に積層された I T O 膜等からなる透明' it極 2 4 3を用いて液晶層 5 0の配向状態を制御することによ り、 Λ 1 ^等からなる 透過反射胶 2 4 1による反^後に液品) ¾ 5 0を介して表 示光として出射する外光強度を制御できる。 また透過表示時には、 第 1基板 1 0 上に ίΙ^された I T O膜等からなる透明? g極 2 4 3を用いて液品層 5 0の配向状 態を制御することにより、 Λ 1膜等からなる半透過反射膜 2 4 1を透過後に液晶 層 5 0を介して表示光として出射する光源光強度を制御できる。 この場合の絶縁 膜 2 4 2は、 例えば酸化シリ コンを主成分として形成すればよレ、。
(第 1 L実施例)
次に、 本発明の第 1 1実施例に係る反射型液晶装置について、 図 2 1から図 2 3を参照して説明する。 ここに、図 2 1は、第 1 1実施例の図式的平面図であり、 図 2 2は、 その A— Λ ' 断面図であり、 図 2 3は、 第 1 1実施例におけるカラー フィルタが組み込まれた反射電極層の構造を示す部分的な斜視図である。 尚、 図 2 1から図 2 3に示す第 1 1実施例では、 図 1から図 3に示した第 1実施例と同 様の構成要素には同様の参照符号を付しそれらの説明は省略する。 図 2 1から図 2 3に示すように、 第 1 1実施例では、 第 1実施例と比べて、 第 2基板 2 0側に、 図 2 1中横方向に伸びるス トライプ状の透明電極 3 2 1を備え る点と、 第 1 S板 1 0側に、 図 2 L中縦方向に仲びるス トライブ状の透明電極 3 1 4 a、 カラ一フィルタ 3 2 3、 カラーフィルタ 3 2 3の平坦化膜 3 2 4、 及び 透明范極 3 1 4 a と共に反射? 1Ϊ極屌を構成するベタ状の反射板 3 1 4 bを備える (特に、 カラ一フィルタ 3 2 3が係る反射? 極屑中に形成されている) 点とが異 なり、 その他の構成については第 1実施例と同様である。
第 1 1実施例の如く構成しても、 第 1実施例の場合と同様に、 液晶屑と反射板 との問の透明 ¾板の存在により二 E映りや表示のにじみなどが発生することはな くなつて、 カラー化した場合にも十分な発色を得ることが可能となる。 しかも第 1 ¾板 1 0のヒ側における反射板 3 1 4 により外光を反射するので、 -示画像 における i が低減され(Lつ ^示顾像における nj]るさも向 hする。 そして特に、 液品/ 5 0のッイス ト ft 0 t、 /り度 () 1及び 度 0 びに液品の Δ n d、 第 1 位相 ¾板 1 0 6の Δ n d及び第 2位相差板 1 1 6の Δ n dは、 夬々 ヒ述した所定 範 fflに人っているため、 ノーマリーブラックモードにより明るく辻つ卨コン トラ ス 卜のカラー表示が実現される。
尚、 上述した第 2から 1 0 ^施例においても、 第 1 1 ¾施例の如く笫 1基板 1 0側にカラ一フィルタを形成する W成を採用しても、 液晶層 5 0のツイス ト角 0 t、 角度 0 1及び角度 () 2 ^びに液品の Δ n d、 ¾ 1位相差板 1 0 6の Δ n d 及び第 2位相差板 1 1 6の Δ n dを夫々上述した所定範! Hに入れれば、 I ]様の効 果が得られる。
(第 1 2実施例)
次に、 本発明の第 1 2実施例について、 図 2 4を参照して説明する。 第 1 2実 施例は、 上述した本発明の第 1から第 1 1 実施例の反射型又は半透過反射型液晶 装置を適用した各種の電子機器からなる。
先ず、 第 1から第 1 1実施例における液晶装置を、 例えば図 2 4 ( a ) に示す ような携帯電話 1 0 0 0の表示部 1 0 0 1に適用すれば、 明るく高コン トラス ト であり、 しかも視差が殆ど無く高精細のカラー表示を行う省エネルギ型の携帯電 話を実現できる。 また、 図 2 4 ( b ) に示すような腕時計 1 1 0 0の表示部 1 1 0 1に適用すれ ば、 明るく高コン トラス トであり、 しかも視差が殆ど無く高精細のカラー表示を 行う省エネルギ型の腕時計を実現できる。
更に、 図 2 4 ( c ) に示すようなパーソナルコンピュータ (或いは、 情報端末) ί 2 0 0において、 キーボード 1 2 0 2付きの本体 1 2 0 4に開閉自在に取り付 けられるカバ一内に設けられる表示画面 1 2 0 6に適用すれば、 明るく ^コン ト ラス 卜であり、 しかも視差が殆ど無く高精細のカラ一表示を行う省エネルギ型の パーソナルコンピュータを実現できる。
以上図 2 4に示した?:子機器の他にも、 液晶テレビ、 ビューファインダ型又は モニタ irt視型のビデオテープレコーダ、 カーナビゲ一シヨ ン装置、 ; 子 帳、 電 !ii、 ワー ドプロセッサ、 エンジニアリ ング ' ワークステーショ ン (E W S ) 、 テ レビ ¾話、 P O S端末、 タツチバネルを備えた装 ES等などの ¾子機器にも、 第 1 から第 1 1 ^施例の反射 ¾又は、 μ透過反射型液品装^を適用"了能である。
尚、 木発明は、 以上説明した'臭施例に限るものではなく、 木発明の要旨を変え ない範囲で実施例を適 変^して^施することができる。 産業上の利用可能性
本発明に係る反射型液品装 は、 明るさ及びコン トラス ト比が共に高められ おりカラ一表示にも適した低消费電力の各種の 示装^と して利用可能であり 、 本発明に係る半透過反射型液品装置は、 特に反射型表示時において明るさ及 びコン 卜ラス ト比が共に卨められおりカラ一表示にも適した各種の表示用装置 と して利用可能であり、 更に、 各種の電子機器の表示部を構成する液晶装置と して利用可能である。 また、 本発明に係る電子機器は、 このような液晶装置を 用いて構成された液晶テレビ、 ビューファインダ型又はモニタ直視型のビデオ テープレコーダ、 カーナビゲ一シヨ ン装置、 電子手帳、 電卓、 ワードプロセッ サ、 ワークステーショ ン、 携帯電話、 テレビ電話、 P O S端末、 タツチパネル 等として利用可能である。

Claims

請 求 の 範 囲
1. 第 1基板と、
該第 1基板に対向配置された透明の第 2基板と、
|]tl記第 1及び第 2某板問に挟持された液品と、
前記第 1基板の前記第 2基板に対向する側に配置された反射電極層と、 前記第 2 ¾板の前記第 1 «板と反対側に ^けられた (|ΐ光板と、
該偏光板と前記第 2基板との問に配 ϋされた第 1位相差板と、
前記 (I 光板と Ιϊί了記第 1位相差板との問に 1¾置された第 2位相差板と
を備えており、
Ι'ΐΐί 液品のツイス ト は、 2 3 0〜 2 6 0度であり、
1)1] 液品の Δ n d (光学 )} ' Δ nと屑 1 - dの嵇) はその }も '\、値が 0. 8 5 μ m以下であり 11つその最大 ίΐΐϊが 0. 7 0 μ m以上であり、
前記第 1位扣差板の A n cUi、 l 5 0 ± 5 0 n m又は 6 0 0 ± 5 0 n mであり、 前記第 2位扣^板の Δ n dは、 5 5 0 ± 5 0 n mであり、
前記偏光板の透過軸又は吸収軸と 記第 2位扣差板の光軸とのなす角度 ί) 1は. t 5〜: 3 5度であり、
前記第 1位桕差板の光軸と前記第 2位相 i板の光軸とのなす角度 2は、 6 0 〜 8 0度である反射型液品装匿。
2. 第 1基板と、
該第 1基板に対向配置された透明の第 2基板と、
前記第 1及び第 2基板間に挟持された液晶と、
前記第 1基板の前記第 2基板に対向する側に配置された反射電極層と、 前記第 2基板の前記第 1基板と反対側に設けられた偏光板と、
該偏光板と前記第 2基板との間に配置された第 1位相差板と、
前記偏光板と前記第 1位相差板との間に配置された第 2位相差板と
を備えており、
前記液晶のッイス ト角は、 2 3 0〜 2 6 0度であり、
前記液晶の Δ n d (光学異方性 Δ nと層厚 dの積) はその最小値が 0. 8 5 μ m以下であり且つその最大値が 0. 70 μ πι以上であり、
前記第 1位相差板の Δ n dは、 1 50 ± 50 nmであり、
前記第 2位相差板の Δ n dは、 6 1 0 ± 60 n mであり、
前記偏光板の透過軸又は吸収軸と前記第 2位相差板の光軸とのなす角度 0 1は、 1 0〜 3 5度であり、
前記第 1位相差板の光軸と前記第 2位相差板の光軸とのなす角度 0 2は、 30 〜 60度である反射型液品装置。
3. 前記液晶の A n dは、 0. 70〜0. 8 5 μ mである請求項 1 に記載の反射 型液品装 (S。
4. ι'ιίί記液晶の Δ n dは、 0. 70〜 0. 85 mである請求项 2に記載の反射 型液晶装^。
5. m^ 1 板もしく は .id第 2 j£板の液 ,, myの而にカラーフィルタを備えた 求项 1 に ^載の反射型液品 ¾g。
6. Γιίί記 I ½板もしくは ι'ιίί ^第 2 板の液品側の而にカラ一フィルタを備えた 求项 2に ^跛の反射 ¾液 ¾i 。
7. 前記反射' 極屈は、 i—/ の反射電極からなる請求項 1に記載の反射型液晶 装置。
8. 前記反射? 0:極層は、 ^ ^の反射電極からなる請求项 2に; の反射型液晶 装置。
9. 記反射電極層は、 反射膜と、 該反射膜上に配置された透明の絶縁膜と、 該 絶縁膜上に配置された透明電極とを含む積層構造を有する請求項 1 に記載の反射 型液晶装置。
1 0. 前記反射電極層は、 反射膜と、 該反射膜上に配置された透明の絶縁膜と、 該絶縁膜上に配置された透明電極とを含む積層構造を有する請求項 2に記載の反 射型液晶装置。
1 1. ノーマリ一ブラックモードでパッシブマトリクス駆動される請求項 1に記 載の反射型液晶装置。
1 2. ノーマリ一ブラックモードでパッシブマトリクス駆動される請求項 2に記 載の反射型液晶装置。
1 3 . 前記第 1基板の前記第 2基板に対向する側の表面に凹凸が形成されている 請求項 1に記載の反射型液晶装置。
I 4 . 前記第 1基板の前記第 2基板に対向する側の表面に凹凸が形成されている 請求項 2に記載の反射型液晶装置。
1 5 . 透明の第 1 板と、
該第 I ¾板に対向 された透明の第 2基板と、
前記^ 1及び第 2 板問に挟持された液晶と、
前記^ 1 板の前記液品と反対側に設けられた光源と、
前記 I ^板の前記第 2 J 板に対向する側に ffii された ^透過反射電極層と、 ½記 ¾ 2 ^板の前記^ I ½板と反対側に設けられた偏光板と、
该 te';光板と 2 板との問に配置された 1位相差板と、
ι'ιίί記 (ΐπί光板と riti jd ui 1
Figure imgf000038_0001
板と
を備えており、
ί記液品のツイス ト) ¾は、 2 3 0〜 2 6 0度であり、
前記液品の A n d (光学 —性 Δ nと層厚 dの積) はその ¾小 ίが 0 . 8 5 μ m以下であり 11つその设大 ilffが 0 . 7 0 μ m以 であり、
前記^ 1位相差板の Δ n dは、 1 5 0 ± 5 0 n m又は 6 0 0 ± 5 0 n mであり、 前記第 2位相差板の Δ n dは、 5 5 0 ± 5 0 n mであり、
前記 板の透過軸乂は吸収軸と !ϊίί記第 2位 差板の光'灿とのなす ft度り 〖は、 1 5〜 3 5度であり、
前記第 1位相差板の光軸と ΓΐίΓ記第 2位相差板の光軸とのなす角度 2は、 6 0 〜8 0度である半透過反射型液品装置。
1 6 . 透明の第 1基板と、
該第 1基板に対向配置された透明の第 2基板と、
前記第 1及び第 2基板間に挟持された液晶と、
前記第 1基板の前記液晶と反対側に設けられた光源と、
前記第 1基板の前記第 2基板に対向する側に配置された半透過反射電極層と、 前記第 2基板の前記第 1基板と反対側に設けられた偏光板と、
該偏光板と前記第 2基板との間に配置された第 1位相差板と、 前記偏光板と前記第 1位相差板との間に配置された第 2位相差板と を備えており、
前記液晶のツイス ト角は、 2 3 0〜 2 6 0度であり、
前記液晶の Δ n d (光学 ¾方性 Δ nと層厚 dの積) はその最小値が 0. 8 5 μ m以下であり iiつその最大 ί|ΙΪが 0. 7 0 μ m以ヒであり、
前記第 1位相差板の Δ n dは、 1 5 0 ± 5 0 n mであり、
前記第 2位扣差板の Δ n dは、 6 1 0 ± 6 0 n mであり、
前記偏光板の透過軸又は吸収軸と前記第 2位相差板の光軸とのなす角度 0 1は、 L 0〜 3 5度であり、
前記^ I il ^板の光籼と 第 2位相 ^板の光軸とのなす ίή度 0 2は、 3 0 〜 6 0 ^である^透過反射 ¾液品装 :。
1 7. |、|ίί記液品の Δ n dは、 0. 7 0〜 0. 8 5 mである 'ί求项 1 5に; Ε載の
^透過反射型の液品装 ia。
1 8. Πίί記液品の A n dは、 0. 7 0〜0. 8 5 / mである '求 : 1 6に記載の ^透過反射型の液晶装 Ϊ3。
1 9. ιΐΐί記第 1 «板もしくは前記第 2基板の液品側の ιΰίにカラ一フィルタを備え た請求项 1 5に記載の ^透過反射型液^装 S。
2 0. ΐΐίί記第 1 腿もしく ϋπίί,ίιΖ^ 2 ^板の液品側の ιίι了にカラ一フィルタを備え た請求 1 6に記載の 透過反射型液品装置。
2 1 . 前記半透過反射 ¾極屑は、 スリ ッ トが形成された反射層からなる請求項 1 5に記載の ΐ透過反射型液品装^。
2 2. 前記半透過反射電極層は、 スリ ツ 卜が形成された反射層からなる請求項 1 6に記載の半透過反射型液晶装置。
2 3. 前記スリ ッ 卜の幅は、 3〜 2 0 / mである請求項 2 1に記載の半透過反射 型液晶装置。
2 4. 前記スリ ッ トの幅は、 3〜 2 0 mである請求項 2 2に記載の半透過反射 型液晶装置。
2 5. 前記半透過反射電極層は、 半透過反射膜と、 該半透過反射膜上に配置され た透明の絶縁膜と、 該絶縁膜上に配置された透明電極とを含む積層構造を有する 請求項 1 5に記載の半透過反射型液晶装置。
26. 前記半透過反射電極層は、 ^透過反射膜と、 該半透過反射膜上に配置され た透明の絶縁膜と、 該絶縁膜上に配置された透明電極とを含む積層構造を有する 請求項 1 6に記載の、 透過反財型液晶装置。
2 7. ノ一マリ一ブラックモードでパッシブマトリ クス駆動される請求項 1 5に ^跛の ^透過反射 液品装^。
28. ノ一マリ一ブラックモ一 ドでノ ッシブマ ト リ クス駆動される^求项 1 6に 戕の^透過反射 ¾液品装 ίδ。
2 9. I'jij記^ 1 «板と前記光源との問に配置された他の 光板と、
Γιΐί記第 1 ¾板と ^記他の 光板との に された他の位相差板と
を史に tt'iえた,; ϊί求项 1 5に, i 叔の^透過反射^液品装^。
30. iiii d ) 1 板と ι'ιίίή 光源との問に ι βϊされた他の^光板と、
w 1 板と r!in 他の (u光板との問に i¾iaされた他の位扣 7 板と
を更に備えた 求项 1 6に, i ,成の 透過反射型液品装
3 1 . ύίί^ίΠ〖 ,板の 2 ½板に対向する側の表面に凹凸が形成されている
^求项 1 5に ^載の、 透過反射 ¾液品装 iS。
3 2. |]ίΐ !L! i 1 ^板の前記Α · 2 板こ対向する側の表面に凹凸が形成されている 求 ί 1 6に; in,成の 'μ透過反射 ¾液品装^。
3 3. 1 ί求项 1 に ^截の反射 ¾液品装匿を備えた? Ιΐ 機器。
3 4. 求项 2に記載の反射 ¾液晶装 Εを備えた? II子機器。
3 5. 求项 1 5に記載の ^透過反射型液品装 Εを備えた電子機器。
36. 請求項 1 6に記載の^透過反射型液品装置を備えた電子機器。
PCT/JP2000/007770 1999-11-02 2000-11-02 Afficheur a cristaux liquides a reflexion, afficheur a cristaux liquides semi-emetteur et dispositif electronique WO2001033290A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE60042318T DE60042318D1 (de) 1999-11-02 2000-11-02 Reflektierende lcd, halbdurchlässige reflektierende lcd und elektronische vorrichtung
EP00971786A EP1152281B1 (en) 1999-11-02 2000-11-02 Reflective lcd, semitransmitting reflective lcd and electronic device
US09/869,719 US6738115B1 (en) 1999-11-02 2000-11-02 Reflective LCD, semitransmitting reflective LCD and electronic device
JP2001535116A JP3692445B2 (ja) 1999-11-02 2000-11-02 液晶装置及び電子機器
CN008024936A CN1335943B (zh) 1999-11-02 2000-11-02 反射型及半透射反射型液晶装置以及电子设备
US10/767,819 US6970215B2 (en) 1999-11-02 2004-01-29 Reflective LCD, semitransmitting reflective LCD and electronic device
US11/203,459 US7379133B2 (en) 1999-11-02 2005-08-12 Reflective LCD, semitransmitting reflective LCD and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/312933 1999-11-02
JP31293399 1999-11-02
JP2000000933 2000-01-06
JP2000/933 2000-01-06

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/869,719 A-371-Of-International US6738115B1 (en) 1999-11-02 2000-11-02 Reflective LCD, semitransmitting reflective LCD and electronic device
US09869719 A-371-Of-International 2000-11-02
US10/767,819 Division US6970215B2 (en) 1999-11-02 2004-01-29 Reflective LCD, semitransmitting reflective LCD and electronic device

Publications (1)

Publication Number Publication Date
WO2001033290A1 true WO2001033290A1 (fr) 2001-05-10

Family

ID=26567379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007770 WO2001033290A1 (fr) 1999-11-02 2000-11-02 Afficheur a cristaux liquides a reflexion, afficheur a cristaux liquides semi-emetteur et dispositif electronique

Country Status (8)

Country Link
US (3) US6738115B1 (ja)
EP (1) EP1152281B1 (ja)
JP (1) JP3692445B2 (ja)
KR (1) KR100418275B1 (ja)
CN (1) CN1335943B (ja)
DE (1) DE60042318D1 (ja)
TW (1) TW573164B (ja)
WO (1) WO2001033290A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004151333A (ja) * 2002-10-30 2004-05-27 Optrex Corp 液晶表示装置
WO2007069781A1 (en) * 2005-12-14 2007-06-21 Fujifilm Corporation Liquid crystal display device
JP2021173975A (ja) * 2020-04-30 2021-11-01 日本化薬株式会社 液晶表示装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215591A (ja) * 2002-01-25 2003-07-30 Alps Electric Co Ltd 半透過反射型液晶表示装置
JP3956287B2 (ja) * 2002-04-26 2007-08-08 株式会社 日立ディスプレイズ 液晶表示装置
CN2563599Y (zh) * 2002-05-14 2003-07-30 邵剑心 一种新型硅基液晶彩色微显示器件
JP3815461B2 (ja) * 2002-11-22 2006-08-30 セイコーエプソン株式会社 液晶表示装置及び電子機器
US6909486B2 (en) * 2003-02-18 2005-06-21 Ran-Hong Raymond Wang Liquid crystal display viewable under all lighting conditions
JP3925432B2 (ja) * 2003-02-28 2007-06-06 ソニー株式会社 液晶表示装置
KR100713885B1 (ko) * 2003-04-14 2007-05-07 비오이 하이디스 테크놀로지 주식회사 반투과형 액정표시장치
JP4779288B2 (ja) * 2003-05-28 2011-09-28 富士ゼロックス株式会社 画像表示装置
CN100476505C (zh) 2003-07-18 2009-04-08 晶荧光学科技有限公司 一种三维/二维可切换的彩色投影显示装置及其方法
JP2005091897A (ja) * 2003-09-18 2005-04-07 Sharp Corp 液晶表示装置
CN100376932C (zh) * 2003-12-12 2008-03-26 鸿富锦精密工业(深圳)有限公司 液晶显示装置
JP2005234038A (ja) * 2004-02-17 2005-09-02 Seiko Epson Corp 誘電体多層膜フィルタ及びその製造方法並びに固体撮像デバイス
CN100464225C (zh) * 2004-12-30 2009-02-25 群康科技(深圳)有限公司 半穿透半反射式液晶显示装置
US7633583B2 (en) 2005-05-23 2009-12-15 Ran-Hong Raymond Wang Controlling polarization for liquid crystal displays
DE102006023993A1 (de) * 2005-05-23 2007-03-08 Wang, Ran-Hong, Tustin Polarisationssteuerung für Flüssigkristallanzeigen
TW200712653A (en) * 2005-09-28 2007-04-01 Jemitek Electronics Corp Liquid crystal having function of micro-reflection
JP4491466B2 (ja) * 2006-07-31 2010-06-30 エプソンイメージングデバイス株式会社 電気光学装置、電子機器
TW200848842A (en) * 2007-06-05 2008-12-16 Wintek Corp Pixel unit
CN102654659B (zh) * 2012-04-06 2014-10-08 京东方科技集团股份有限公司 一种检测液晶基板的设备及方法
US10073569B2 (en) * 2014-01-28 2018-09-11 Apple Inc. Integrated polarizer and conductive material
CN107219685B (zh) * 2017-07-28 2020-07-31 京东方科技集团股份有限公司 显示装置及显示装置的显示方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124824A (en) * 1988-12-07 1992-06-23 Mitsubishi Denki Kabushiki Kaisha Liquid crystal display device comprising a retardation compensation layer having a maximum principal refractive index in the thickness direction
JPH05181111A (ja) * 1991-07-11 1993-07-23 Casio Comput Co Ltd 液晶プロジェクタ
JPH08114797A (ja) * 1994-10-14 1996-05-07 Seiko Epson Corp 反射型液晶表示装置およびその製造方法
US5753937A (en) * 1994-05-31 1998-05-19 Casio Computer Co., Ltd. Color liquid crystal display device having a semitransparent layer on the inner surface of one of the substrates
JP2000258773A (ja) * 1999-01-07 2000-09-22 Matsushita Electric Ind Co Ltd 反射型液晶表示素子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303075A (en) * 1990-04-09 1994-04-12 Seiko Epson Corporation Liquid crystal display with phase difference plate having particular .DELTA.Δnxd at 45° angle to surface
JPH06160856A (ja) 1992-11-17 1994-06-07 Casio Comput Co Ltd 液晶表示素子
JP3294988B2 (ja) 1996-03-26 2002-06-24 シャープ株式会社 液晶表示装置
US5745200A (en) * 1994-04-28 1998-04-28 Casio Computer Co., Ltd. Color liquid crystal display device and liquid crystal display apparatus
JP3301219B2 (ja) 1994-06-09 2002-07-15 カシオ計算機株式会社 液晶表示装置
JP3075134B2 (ja) * 1995-04-04 2000-08-07 株式会社日立製作所 反射型液晶表示装置
JP3774575B2 (ja) 1997-09-22 2006-05-17 株式会社日立製作所 反射型液晶表示装置
JPH11271758A (ja) 1998-03-20 1999-10-08 Alps Electric Co Ltd 反射型液晶表示装置
JP3361451B2 (ja) 1998-03-24 2003-01-07 出光興産株式会社 反射型液晶表示装置用カラーフィルタ及びそれを用いた反射型液晶表示装置
JP3058620B2 (ja) * 1998-04-28 2000-07-04 京セラ株式会社 液晶表示装置
KR20000053405A (ko) 1999-01-07 2000-08-25 마츠시타 덴끼 산교 가부시키가이샤 반사형 액정 표시 장치
EP1074874A4 (en) * 1999-02-23 2004-07-28 Citizen Watch Co Ltd LIQUID CRYSTAL DISPLAY
JP2000284275A (ja) * 1999-03-31 2000-10-13 Hitachi Ltd 反射型液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124824A (en) * 1988-12-07 1992-06-23 Mitsubishi Denki Kabushiki Kaisha Liquid crystal display device comprising a retardation compensation layer having a maximum principal refractive index in the thickness direction
JPH05181111A (ja) * 1991-07-11 1993-07-23 Casio Comput Co Ltd 液晶プロジェクタ
US5753937A (en) * 1994-05-31 1998-05-19 Casio Computer Co., Ltd. Color liquid crystal display device having a semitransparent layer on the inner surface of one of the substrates
JPH08114797A (ja) * 1994-10-14 1996-05-07 Seiko Epson Corp 反射型液晶表示装置およびその製造方法
JP2000258773A (ja) * 1999-01-07 2000-09-22 Matsushita Electric Ind Co Ltd 反射型液晶表示素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1152281A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004151333A (ja) * 2002-10-30 2004-05-27 Optrex Corp 液晶表示装置
WO2007069781A1 (en) * 2005-12-14 2007-06-21 Fujifilm Corporation Liquid crystal display device
JP2007163894A (ja) * 2005-12-14 2007-06-28 Fujifilm Corp 液晶表示装置
US8031309B2 (en) 2005-12-14 2011-10-04 Fujifilm Corporation Liquid crystal display device having retardation film on inside of substrate compensating for light of a particular wavelength
JP2021173975A (ja) * 2020-04-30 2021-11-01 日本化薬株式会社 液晶表示装置

Also Published As

Publication number Publication date
CN1335943A (zh) 2002-02-13
US20040183969A1 (en) 2004-09-23
EP1152281A1 (en) 2001-11-07
EP1152281B1 (en) 2009-06-03
JP3692445B2 (ja) 2005-09-07
US6970215B2 (en) 2005-11-29
CN1335943B (zh) 2010-05-26
US7379133B2 (en) 2008-05-27
KR20010093236A (ko) 2001-10-27
TW573164B (en) 2004-01-21
EP1152281A4 (en) 2005-03-16
US6738115B1 (en) 2004-05-18
DE60042318D1 (de) 2009-07-16
KR100418275B1 (ko) 2004-02-14
US20050270456A1 (en) 2005-12-08

Similar Documents

Publication Publication Date Title
WO2001033290A1 (fr) Afficheur a cristaux liquides a reflexion, afficheur a cristaux liquides semi-emetteur et dispositif electronique
TW556027B (en) Color filter substrate, method for manufacturing the same, liquid crystal display panel, and electronic equipment
TW499613B (en) Reflection type liquid crystal display apparatus
TW200404183A (en) Color filter, electro-optical device, electronic apparatus, method of manufacturing color filter substrate, and method of manufacturing electro-optical device
KR20070002197A (ko) 반사투과형 액정 표시 장치 및 그 제조 방법
JP3726569B2 (ja) 半透過反射型及び反射型液晶装置並びにこれらを用いた電子機器
TW200307827A (en) Substrate for electro-optic panel and the manufacturing method thereof, electro-optic panel and electronic machine
US7580094B2 (en) Transreflective LCD panel and electronic device using the same
JP4205303B2 (ja) 電気光学装置および電子機器
US6765639B2 (en) Circuit for liquid crystal display device and electronic equipment, controlling rotational direction of light reflected in boundary domain
JP4114336B2 (ja) カラーフィルタ基板、カラーフィルタ基板の製造方法、液晶表示パネル、液晶表示装置及び電子機器
KR100904520B1 (ko) 액정표시장치용 컬러필터 기판과 그 제조방법
JP4042540B2 (ja) カラーフィルタ基板、その製造方法、液晶表示パネルおよび電子機器
JP4042758B2 (ja) 液晶装置及び電子機器
JP3799883B2 (ja) 半透過反射型及び反射型の液晶装置並びにこれらを用いた電子機器
JP3652303B2 (ja) 液晶表示装置およびこの液晶表示装置を配設した携帯端末または表示機器
JP3823669B2 (ja) 液晶装置及びこれを用いた電子機器
JP2001201745A (ja) 液晶装置及びこれを用いた電子機器
KR101396938B1 (ko) 액정표시장치 및 그 설계 방법
JP3783575B2 (ja) 電気光学装置及びその製造方法並びに電子機器
JP4258231B2 (ja) 電気光学装置、およびそれを用いた電子機器
JPH09101514A (ja) 液晶表示素子の製造方法
JP4335158B2 (ja) カラーフィルタ基板、その製造方法、液晶表示パネルおよび電子機器
JP2003043464A (ja) 液晶装置、電子機器、およびカラーフィルタの製造方法
TWI244568B (en) Liquid crystal display (LCD) panel with dual-display mode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00802493.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2001 535116

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 09869719

Country of ref document: US

Ref document number: 1020017008328

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000971786

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000971786

Country of ref document: EP