WO2001032746A1 - Verfahren zur herstellung von polycarbonaten - Google Patents

Verfahren zur herstellung von polycarbonaten Download PDF

Info

Publication number
WO2001032746A1
WO2001032746A1 PCT/EP2000/010397 EP0010397W WO0132746A1 WO 2001032746 A1 WO2001032746 A1 WO 2001032746A1 EP 0010397 W EP0010397 W EP 0010397W WO 0132746 A1 WO0132746 A1 WO 0132746A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
phase
sodium hydroxide
hydroxide solution
separated
Prior art date
Application number
PCT/EP2000/010397
Other languages
English (en)
French (fr)
Inventor
Michael BÖDIGER
Steffen Kühling
Franky Bruynseels
Dirk Van Meirvenne
Réne DE CLEYN
Original Assignee
Bayer Aktiengesellschaft
Bayer Antwerpen N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft, Bayer Antwerpen N.V. filed Critical Bayer Aktiengesellschaft
Priority to BR0015263-3A priority Critical patent/BR0015263A/pt
Priority to JP2001535442A priority patent/JP2003514044A/ja
Priority to EP00974438A priority patent/EP1244726A1/de
Priority to US10/111,925 priority patent/US6835798B1/en
Priority to AU12747/01A priority patent/AU1274701A/en
Publication of WO2001032746A1 publication Critical patent/WO2001032746A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/24General preparatory processes using carbonyl halides and phenols
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]

Definitions

  • the invention relates to a process for the production of polycarbonates, the polycarbonate substrates obtainable by the process with particularly high purity and the moldings which can be produced from the polycarbonate substrate.
  • Polycarbonate is produced by the so-called phase interface process, in which dihydroxydiarylalkanes in the form of their alkali salts are reacted with phosgene in the heterogeneous phase in the presence of inorganic bases such as sodium hydroxide solution and an organic solvent in which the product polycarbonate is readily soluble.
  • phase interface process in which dihydroxydiarylalkanes in the form of their alkali salts are reacted with phosgene in the heterogeneous phase in the presence of inorganic bases such as sodium hydroxide solution and an organic solvent in which the product polycarbonate is readily soluble.
  • inorganic bases such as sodium hydroxide solution
  • organic solvent in which the product polycarbonate is readily soluble
  • EP-A-264885 proposes to stir the aqueous washing liquid with the polycarbonate solution and to separate the aqueous phase by centrifugation.
  • Japanese application JP-A-07 19 67 83 describes a process for the production of polycarbonate in which the content of iron in the sodium hydroxide solution used is to be below 2 ppm in order to achieve a favorable color behavior.
  • the object of the present invention is to provide an alternative and improved method for producing pure polycarbonate or polycarbonate substrates and to provide shaped polycarbonate bodies with a low foreign particle content. Surprisingly, it has now been found that polycarbonate or polycarbonate substrates with a low foreign particle content are obtained if a special process is used.
  • the application therefore relates to a process for the preparation of polycarbonate by the interfacial process, dihydroxydiarylalkanes in the form of their alkali metal salts being reacted with phosgene in the heterogeneous phase in the presence of sodium hydroxide solution and an organic solvent, characterized in that
  • the starting materials are low in Fe, Cr, Ni, Zn, Ca, Mg, Al metals or their homologues; b) the organic solvent is separated off and c) the polycarbonate obtained is worked up.
  • poor in the metals mentioned or their chemical homologues means that preferably not more than 2 ppm, preferably not more than 1 ppm and particularly preferably not more than 0.5 ppm and very particularly preferably not more than 0.2 ppm Total metal, in particular the metals listed above and their homologues, is contained in the starting materials.
  • the alkali metals are excluded from limit values.
  • the sodium hydroxide solution should preferably be low in the metals mentioned.
  • the sodium hydroxide solution should not contain more than 1 ppm, preferably not more than 0.5 ppm, preferably not more than 0.3 ppm, of alkaline earth metal or its homologues.
  • the sodium hydroxide solution should be based on a 100% by weight
  • the sodium hydroxide solution is preferably used in the process according to the invention as a 20-55% by weight, particularly preferably 30-50% by weight solution.
  • the starting materials bisphenol, in particular bisphenol and water, very particularly preferably the bisphenol, water and the organic solvent are low in metals, in particular low in Fe, Cr, Ni, Zn, Ca, Mg, Al.
  • This also includes embodiments in which sodium bisphenolate (solution) was previously produced from sodium hydroxide solution and bisphenol (s).
  • low-metal feedstocks are obtained by distilling the solvent in a preferred variant, crystallizing the bisphenol, preferably multiply crystallizing or distilling, and using water of VE quality.
  • the deionized water is preferably desalinated, degassed and / or silicified.
  • the quality criterion is e.g. the electrical conductivity (sum parameter for ionogenic
  • the demineralized water due to an electrical conductivity of 0.2 ⁇ S / cm (DIN 38404 C 8) and a SiO 2 concentration of 0.02 mg / kg (VGB 3.3 .1.1) or less marked.
  • the dissolved oxygen content in demineralized water is preferably less than 1 ppm, preferably less than 100 ppb. This oxygen content is preferably set for all starting materials and process steps.
  • At least the sodium hydroxide solution preferably also the bisphenol, particularly preferably the sodium hydroxide solution, the bisphenol and the water, are very particularly from the group of the starting materials preferably the sodium hydroxide solution, the bisphenol, the water and the organic solvent are filtered at least once, preferably twice, particularly preferably gradually three times before the start of the reaction.
  • Another object of the invention is a process for the production of polycarbonate by the phase interface process, wherein dihydroxydiarylalkanes in the form of their alkali metal salts are reacted with phosgene in the heterogeneous phase in the presence of sodium hydroxide solution and an organic solvent, characterized in that
  • the starting materials are low in Fe, Cr, Ni, Zn, Ca, Mg, Al metals or their homologues; d) the aqueous phase formed in the reaction is separated off and the separated organic polycarbonate phase is washed with an aqueous liquid, and e) the washed and separated from the washing liquid organic polycarbonate phase, optionally after filtration, is heated and filtered hot at least once; b) the organic solvent is separated off and c) the polycarbonate obtained is worked up.
  • reaction mixture is filtered in process step d) directly after the reaction and / or the organic polycarbonate phase obtained and separated is filtered and / or the organic polycarbonate phase separated in process step e) is filtered.
  • At least two of these filtrations are preferably carried out.
  • Step-by-step filtration starts with coarser filters and then changes to finer filters. It is preferred that the filtration of the two-phase media in process step d) is carried out using coarser filters.
  • filters with a small pore size are used for the hot filtration.
  • the polycarbonate phase is as homogeneous as possible. This is achieved by heating the organic polycarbonate phase, which generally still contains residues of aqueous washing liquid.
  • the washing liquid is dissolved and a clear solution is created.
  • the known freezing method can also be used to achieve a homogeneous solution.
  • membrane filters and sintered metal filters or bag filters are used as filters.
  • the pore size of the filter is usually 0.01 to 5 ⁇ m, preferably 0.02 to 1.5 ⁇ m, preferably approximately 0.05 ⁇ m to 1.0 ⁇ m.
  • Such filters are commercially available, for example, from
  • the aqueous phase is emulsified in the organic phase during the reaction. This creates droplets of different sizes.
  • the organic phase containing the polycarbonate is usually washed several times with an aqueous liquid and, after each washing process, is removed from the aqueous one Phase separated as much as possible.
  • the washing is preferably carried out with finely filtered, low-metal water.
  • the polymer solution is usually cloudy after washing and separating the washing liquid.
  • Aqueous liquid for separating the catalyst, a dilute mineral acid such as HC1 or H 3 PO 4 and for further purification deionized water are used as the washing liquid.
  • the concentration of HC1 or H 3 PO 4 in the washing liquid can be, for example, 0.5 to 1.0% by weight.
  • the organic phase is washed by way of example and preferably five times.
  • phase separation devices for separating the washing liquid from the organic phase.
  • the solvent is evaporated to obtain the high-purity polycarbonate.
  • Evaporation can be done in several evaporator stages.
  • the solvent or part of the solvent can be removed by spray drying.
  • the high-purity polycarbonate is then obtained as a powder.
  • extrusion is a suitable means for evaporating residual solvents.
  • Another technology is the strand evaporator technology.
  • Compounds which are preferably to be used as starting materials are bisphenols of the general formula HO-Z-OH, in which Z is an organic radical having 6 to 30 carbon atoms and containing one or more aromatic groups.
  • Z is an organic radical having 6 to 30 carbon atoms and containing one or more aromatic groups.
  • Examples of such compounds are bisphenols which belong to the group of dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, indane bisphenols, bis (hydroxyphenyl) ethers, bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) ketones and ⁇ , ⁇ '-bis (hydroxyphenyl) diisopropylbenzenes belong.
  • Particularly preferred bisphenols belonging to the above-mentioned connecting groups are 2,2-bis (4-hydroxyphenyl) propane (bisphenol-A / BPA), tetraalkyl-bisphenol-A, 4,4- (meta-phenylenediisopropyl) diphenol ( Bisphenol M), l, l-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexanone and optionally their mixtures.
  • Particularly preferred copolycarbonates are those based on the monomers bisphenol-A and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane.
  • the bisphenol compounds to be used according to the invention are reacted with carbonic acid compounds, in particular phosgene.
  • the polyester carbonates are obtained by reacting the bisphenols already mentioned, at least one aromatic dicarboxylic acid and optionally carbonic acid.
  • aromatic dicarboxylic acids are, for example, orthophthalic acid, terephthalic acid, isophthalic acid, 3,3'- or 4,4'-diphenyldicarboxylic acid and benzophenone dicarboxylic acids.
  • Inert organic solvents used in the process are, for example, dichloromethane, the various dichloroethanes and chloropropane compounds, chlorobenzene and chlorotoluene, dichloromethane and mixtures of dichloromethane and chlorobenzene are preferably used.
  • the reaction can be accelerated by catalysts such as tertiary amines, N-alkylpiperidines or onium salts.
  • catalysts such as tertiary amines, N-alkylpiperidines or onium salts.
  • Tributylamine, triethylamine and N-ethylpiperidine are preferably used.
  • a monofunctional phenol such as phenol, cumylphenol, p.-tert.-butylphenol or
  • 4- (l, l, 3,3-tetramethylbutyl) phenol can be used.
  • isatin biscresol can be used as branching agent.
  • the bisphenols are dissolved in an aqueous alkaline phase, preferably sodium hydroxide solution.
  • the chain terminators which may be required for the production of copolycarbonates are in amounts of 1.0 to 20.0 mol% per mole of bisphenol, dissolved in the aqueous alkaline phase or added to it in bulk in an inert organic phase.
  • phosgene is introduced into the mixer containing the other reaction components and the polymerization is carried out.
  • Chain terminators which may be used are both monophenols and monocarboxylic acids.
  • Suitable monophenols are phenol itself, alkylphenols such as cresols, p-tert-butylphenol, p-cumylphenol, pn-octylphenol, p-iso-octylphenol, pn-nonylphenol and p-iso-nonylphenol, halophenols such as p-chlorophenol, 2,4 - dichlorophenol, p-bromophenol and 2,4,6-tribromophenol and mixtures thereof.
  • Suitable monocarboxylic acids are benzoic acid, alkylbenzoic acids and halogenated benzoic acids.
  • Preferred chain terminators are the phenols of the formula (I)
  • R is hydrogen, tert-butyl or a branched or unbranched C 8 - and or
  • the preferred chain terminator is phenol and p-tert-butylphenol.
  • the amount of chain terminator to be used is 0.1 mol% to 5 mol%, based on moles of diphenols used in each case.
  • the chain terminators can be added before, during or after phosgenation.
  • branching agents can also be added to the reaction.
  • Preferred branching agents are the tri- or more than trifunctional ones known in polycarbonate chemistry. tional compounds, especially those with three or more than three phenolic OH groups.
  • Branches are exemplary and preferably also phloroglucin, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -hepten-2, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl ) heptane,
  • the amount of branching agents which may be used is 0.05 mol% to 2 mol%, based in turn on moles of diphenols used in each case.
  • the branching agents can either be introduced with the diphenols and the chain terminators in the aqueous alkaline phase, or added dissolved in an organic solvent before the phosgenation.
  • Some, up to 80 mol%, preferably from 20 to 50 mol%, of the carbonate groups in the polycarbonates can be replaced by aromatic dicarboxylic acid ester groups.
  • the polycarbonates according to the invention are both homopolycarbonates and
  • Copolycarbonates and their mixtures can be aromatic polyester carbonates or polycarbonates which are present in a mixture with aromatic polyester carbonates.
  • polycarbonate is used representing the polycarbonate substrates obtainable by the process according to the invention.
  • the polycarbonates have average molecular weights M w (determined by measuring the relative viscosity at 25 ° C. in dichloromethane and a concentration of
  • polycarbonate / 100 ml dichloromethane from 12,000 to 400,000, preferably from 23,000 to 80,000 and in particular from 24,000 to 40,000.
  • Shaped bodies according to the invention which are produced from the high-purity polycarbonate substrates according to the invention are, in particular, optical and magneto-optical data memories such as mini disks, compact disks or digital versatile disks, optical lenses and prisms, glazing for motor vehicles and headlights, glazing of other types such as for greenhouses, so-called double-walled sheets or Hollow chamber panels or solid panels.
  • optical and magneto-optical data memories such as mini disks, compact disks or digital versatile disks, optical lenses and prisms, glazing for motor vehicles and headlights, glazing of other types such as for greenhouses, so-called double-walled sheets or Hollow chamber panels or solid panels.
  • the preferred molecular weight range for the data carriers is 12,000 to 22,000, for lenses and panes 22,000 to 32,000 and that of plates and twin-walled plates 28,000 to 40,000. All molecular weights are based on the weight average molecular weight.
  • the moldings according to the invention optionally have a surface finish, for example a scratch-resistant coating.
  • the polycarbonates according to the invention are preferably used with a molecular weight of 12,000 to 40,000, since a material with a molecular weight in this area can be shaped very well in a thermoplastic manner.
  • the moldings can be produced by injection molding. For this, the resin is tempered temperatures melted from 300 to 400 ° C and the mold generally kept at a temperature of 50 to 140 ° C.
  • the high-purity polycarbonate body according to the invention is known in suitable, known
  • a further advantage of the process according to the invention is that the polycarbonate substrates obtained are characterized by a particularly low number of less than 250, in particular less than 150
  • BPA BPA is melted continuously with sodium hydroxide solution
  • sodium hydroxide solution has different concentrations and purities (see Table 1), with the original sodium hydroxide solution being further diluted to a 6.5% sodium hydroxide solution with filtered deionized water to dissolve the bisphenols.
  • This sodium bisphenolate solution is now filtered (0.6 ⁇ a filter) and used in the polycarbonate reaction. After the reaction, the reaction solution is filtered through a 1.0 ⁇ nom bag filter and fed to the laundry. Here it is washed with 0.6% hydrochloric acid and then washed 5 times with filtered deionized water.
  • the organic solution is separated from the aqueous solution and, after the organic solution has been heated to 55 ° C., is filtered first with a 0.6 ⁇ a filter and then through a 0.2 ⁇ a filter. After isolation, the poly 2,2-bis (4-hydroxylphenyl) propane carbonate is obtained.
  • Films are extruded from the polycarbonates produced with sodium hydroxide solution from experiments 1 to 3 and these are subjected to a film laser scan test using the known method described below.
  • the extrusion film is 200 ⁇ m thick and 60 mm wide.
  • a He-Ne laser spot diameter (spot diameter" of 0.1 mm) scans the film with a scanning frequency of 5000 Hz in the width direction and a transport speed of 5 m / s in the longitudinal direction. All interferences that scatter the continuous laser beam (from 0.10 mm diameter) are detected by a photomultiplier and counted by software.
  • the number of optical defects per kg of polycarbonate or per m 2 of film is a measure of the surface quality of this film or the purity of the PC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

Beschrieben wird ein Verfahren zur Herstellung von Polycarbonat mit Einsatzstoffen, die wenige Metall- oder Erdalkalimetallgehalt aufweisen.

Description

Verfahren zur Herstellung von Polycarbonaten
Die Erfindung betrifft ein Verfahren zur Herstellung von Polycarbonaten, die nach dem Verfahren erhältlichen Polycarbonate-Substrate mit besonders hoher Reinheit sowie die aus dem Polycarbonat-Substrat herstellbaren Formkörper.
Polycarbonat wird nach dem sogenannten Phasengrenzflächenverfahren hergestellt, dabei werden Dihydroxydiarylalkane in Form ihrer Alkalisalze mit Phosgen in hete- rogener Phase in Gegenwart von anorganischen Basen wie Natronlauge und einem organischen Lösungsmittel, in dem das Produkt Polycarbonat gut löslich ist, umgesetzt. Während der Reaktion ist die wässrige Phase in der organischen Phase verteilt und nach der Reaktion wird die organische, Polycarbonat enthaltende Phase mit einer wässrigen Flüssigkeit gewaschen, wobei unter anderem Elektrolyte entfernt werden sollen, und die Waschflüssigkeit anschließend abgetrennt(H. Schnell „Chemistry and
Physics of Polycarbonates", Polymerreview, Vol.IX S.33ff, Interscience Publishers, New York 1964).
Zum Waschen der Polycarbonat enthaltenden Lösung schlägt die EP-A-264885 vor, die wässrige Waschflüssigkeit mit der Polycarbonatlösung zu verrühren und die wässrige Phase durch Zentrifugieren abzutrennen.
In der japanischen Anmeldung JP-A-07 19 67 83 wird ein Verfahren zur Herstellung von Polycarbonat beschrieben, bei dem zur Erzielung eines günstigen Farbverhaltens der Gehalt von Eisen in der eingesetzten Natronlauge unterhalb von 2 ppm liegen soll.
Die Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines alternativen und verbesserten Verfahrens zur Herstellung von reinem Polycarbonat bzw. Polycar- bonat-Substraten sowie die Bereitstellung von Polycarbonat-Formkörpern mit niedrigem Fremdpartikelgehalt. Überraschenderweise wurde nun gefunden, das man Polycarbonat bzw. Polycarbo- nat-Substrate mit geringem Fremdpartikelgehalt erhält wenn nach einem speziellen Verfahren gearbeitet wird.
Gegenstand der Anmeldung ist daher ein Verfahren zur Herstellung von Polycarbonat nach dem Phasengrenzflächenverfahren, wobei Dihydroxydiarylalkane in Form ihrer Alkalisalze mit Phosgen in heterogener Phase in Gegenwart von Natronlauge und einem organischen Lösungsmittel umgesetzt wird, dadurch gekennzeichnet, das
a) die Einsatzstoffe arm an Fe-, Cr-, Ni-, Zn-, Ca-, Mg-, AI-Metallen oder ihren Homologen sind; b) das organische Lösungsmittel abgetrennt und c) das erhaltene Polycarbonat aufgearbeitet wird.
Im Sinne der Erfindung bedeutet arm an den genannten Metallen oder ihren chemischen Homologen, das vorzugsweise nicht mehr als 2 ppm, bevorzugt nicht mehr als 1 ppm und besonders bevorzugt nicht mehr als 0,5 ppm und ganz besonders bevorzugt nicht mehr als 0,2 ppm Gesamtmetall, insbesondere der oben aufgezählten Metalle und deren Homologen in den Einsatzstoffen enthalten ist. Von diesen
Grenzwerten sind die Alkalimetalle ausgenommen.
Bevorzugt sollte der Einsatzstoff Natronlauge arm an den genannten Metallen sein.
Insbesondere sollte bezogen auf einen 100 Gew.%igen NaOH-Gehalt die Natron- lauge jeweils nicht mehr als 1 ppm, vorzugsweise nicht mehr als 0,5 ppm, bevorzugt nicht mehr als 0,3 ppm an Erdalkalimetall oder dessen Homologen enthalten.
Insbesondere sollte der Einsatzstoff Natronlauge bezogen auf einen 100 Gew.%igen
NaOH-Gehalt nicht mehr als 1 ppm, vorzugsweise nicht mehr als 0,5 ppm, bevorzugt nicht mehr als 0,1 ppm Eisen enthalten. Die Natronlauge wird im erfindungsgemäßen Verfahren vorzugsweise als 20-55 Gew.-%ige, besonders bevorzugt 30-50 Gew.-%ige Lösung eingesetzt.
Natronlauge mit den oben angegebenen Grenzwerten ist nach dem literaturbekannten Membranverfahren erhältlich.
In einer bevorzugten Ausführungsform sind neben der Natronlauge auch die Einsatzstoffe Bisphenol, insbesondere Bisphenol und Wasser, ganz besonders bevorzugt das Bisphenol, Wasser und das organische Lösungsmittel metallarm, ins- besondere arm an Fe, Cr, Ni, Zn, Ca, Mg, AI.
Dabei sind auch Ausfuhrungsformen eingeschlossen, bei denen aus Natronlauge und Bisphenol(en) vorher Natriumbisphenolat(lösung) hergestellt wurde.
Diese metallarmen Einsatzstoffe werden dadurch erhalten, das das Lösungsmittel in einer bevorzugten Variante destilliert, das Bisphenol kristallisiert, bevorzugt mehrfach kristallisiert oder destilliert und Wasser in VE-Qualität eingesetzt wird.
Das VE- Wasser ist vorzugsweise entsalzt, entgast und/oder entkieselt. Als Quali- tätskriterium dient z.B. die elektrische Leitfähigkeit (Summenparameter für ionogene
Stoffe der noch in Spuren im Wasser vorhandenen Salze) wobei im erfindungsgemäßen Verfahren das VE- Wasser durch eine elektrische Leitfähigkeit von 0,2 μS/cm (DIN 38404 C 8) und einer Siθ2-Konzentration von 0,02 mg/kg (VGB 3.3.1.1) oder jeweils weniger gekennzeichnet ist. Der Gehalt an gelöstem Sauerstoff im VE- Wasser beträgt vorzugsweise weniger als 1 ppm, bevorzugt weniger als 100 ppb. Dieser Sauerstoffgehalt wird bevorzugt für alle Ausgangsstoffe und Verfahrensschritte eingestellt.
In einer weiter bevorzugten Ausführungsform werden aus der Gruppe der Ein- satzstoffe mindestens die Natronlauge, bevorzugt zusätzlich auch das Bisphenol, besonders bevorzugt die Natronlauge, das Bisphenol und das Wasser, ganz besonders bevorzugt die Natronlauge, das Bisphenol, das Wasser und das organische Lösungsmittel mindestens einmal, bevorzugt zweimal, besonders bevorzugt stufenweise dreimal vor dem Beginn der Reaktion filtriert.
Ein weiterer Gegenstand der Erfindung ist, ein Verfahren zur Herstellung von Polycarbonat nach dem Phasengrenzflächenverfahren, wobei Dihydroxydiarylalkane in Form ihrer Alkalisalze mit Phosgen in heterogener Phase in Gegenwart von Natronlauge und einem organischen Lösungsmittel umgesetzt wird, dadurch gekennzeichnet, das
a) die Einsatzstoffe arm an Fe-, Cr-, Ni-, Zn-, Ca-, Mg-, AI-Metallen oder ihren Homologen sind; d) die bei der Reaktion entstehende wässrige Phase abgetrennt und die abgetrennte organische Polycarbonat-Phase mit einer wässrigen Flüssigkeit gewaschen und e) die gewaschene und von der Waschflüssigkeit abgetrennte organische Polycarbonat-Phase, gegebenenfalls nach einer Filtration, erwärmt und mindestens einmal heiß filtriert wird; b) das organische Lösungsmittel abgetrennt und c) das erhaltene Polycarbonat aufgearbeitet wird.
In einer bevorzugten Ausführungsform wird in Verfahrensschritt d) direkt nach der Reaktion die Reaktionsmischung filtriert und/oder die erhaltenen und abgetrennte organische Polycarbonat-Phase filtriert und/oder die in Verfahrensschritt e) abge- trennte organische Polycarbonat-Phase filtriert.
Vorzugsweise werden mindestens zwei dieser Filtrationen, insbesondere alle drei Filtrationen durchgeführt.
In einer bevorzugten Variante wird, insbesondere bei der Heißfiltration, mindestens einmal, bevorzugt zweimal, besonders bevorzugt mindestens dreimal, insbesondere stufenweise filtriert. Bei der stufenweise Filtration beginnt man mit gröberen Filtern, um dann zu feineren Filtern zu wechseln. Bevorzugt ist, das man die Filtration der zweiphasigen Medien in Verfahrensschritt d) mit gröberen Filtern durchführt.
Im Verfahrensschritt e) werden für die Heißfiltration Filter mit kleiner Porengröße eingesetzt. Hierfür ist wichtig, das die Polycarbonat-Phase als möglichst homogene Lösung vorliegt. Dies wird durch Erwärmen der, im allgemeinen noch Reste von wässriger Waschflüssigkeit enthaltenden, organischen Polycarbonat-Phase erreicht.
Dabei wird die Waschflüssigkeit gelöst und eine klare Lösung entsteht. Die zuvor gelösten Verunreinigungen, insbesondere die gelösten Alkalisalze, fallen aus und können abfiltriert werden.
Zur Erreichung einer homogenen Lösung kann neben dem oben beschrieben Verfahren auch das bekannte Ausfri er- Verfahren eingesetzt werden.
Zur Durchführung der erfindungsgemäßen Filtration werden Membranfilter und Sintermetallfilter oder auch Beutelfilter als Filter eingesetzt. Die Porengröße der Filter betragen in der Regel 0,01 bis 5 μm, vorzugsweise 0,02 bis 1,5 μm, bevorzugt etwa 0,05 μm bis 1,0 μm. Solche Filter sind im Handel beispielsweise von den
Firmen Pall GmbH, D-63363 Dreieich, und Krebsböge GmbH, D-42477 Radevormwald, (Typ SIKA-R CU1 AS) erhältlich.
Durch die Kombination der erfindungsgemäßen Verfahren werden deutlich bessere Filterstandzeiten erhalten.
Die Durchführung der anderen Verfahrensschritte ist im allgemeinen bekannt. So wird während der Reaktion die wässrige Phase in der organischen Phase emulgiert. Dabei entstehen Tröpfchen unterschiedlicher Größe. Nach der Reaktion wird die organische, das Polycarbonat enthaltende Phase, üblicherweise mehrmals mit einer wässrigen Flüssigkeit gewaschen und nach jedem Waschvorgang von der wässrigen Phase soweit wie möglich getrennt. Die Wäsche erfolgt bevorzugt mit feinst- filtrietem, metallarmen Wasser. Die Polymerlösung ist nach der Wäsche und Abtrennung der Waschflüssigkeit üblicherweise trüb. Als Waschflüssigkeit werden wässrige Flüssigkeit zur Abtrennung des Katalysators, eine verdünnte Mineralsäure wie HC1 oder H3PO4 und zur weiteren Reinigung vollentsalztes Wasser eingesetzt.
Die Konzentration von HC1 oder H3PO4 in der Waschflüssigkeit kann beispielsweise 0,5 bis l,0 Gew.% betragen. Die organische Phase wird beispielhaft und vorzugsweise fünfmal gewaschen.
Als Phasentrennvorrichtungen zur Abtrennung der Waschflüssigkeit von der organischen Phase können grundsätzlich bekannte Trenngefäße, Phasenseparatoren, Zentrifugen oder Coalescer oder auch Kombinationen dieser Einrichtungen verwendet werden.
Zum Erhalt des hochreinen Polycarbonats wird das Lösungsmittel abgedampft. Das
Abdampfen kann in mehreren Verdampferstufen erfolgen. Gemäß einer weiteren bevorzugten Ausführungsform dieser Erfindung kann das Lösungsmittel oder ein Teil des Lösungsmittels durch Sprühtrocknung entfernt werden. Das hochreine Polycarbonat fällt dann als Pulver an. Gleiches gilt für die Gewinnung des hochreinen Polycarbonats durch Fällung aus der organischen Lösung und anschließender Resttrocknung. Beispielsweise ist die Extrusion ein geeignetes Mittel zur Verdampfung von Restlösungsmittel. Eine andere Technologie stellt die Strangverdampfer- technologie dar.
Als Einsatzstoffe bevorzugt einzusetzende Verbindungen sind Bisphenole der allgemeinen Formel HO-Z-OH, worin Z ein organischer Rest mit 6 bis 30 Kohlenstoffatomen ist, der eine oder mehrere aromatische Gruppen enthält. Beispiele solcher Verbindungen sind Bisphenole, die zu der Gruppe der Dihydroxydiphenyle, Bis(hydroxyphenyl)alkane, Indanbisphenole, Bis(hydroxyphenyl)ether, Bis(hydroxy- phenyl)sulfone, Bis(hydroxyphenyl)ketone und α,α'-Bis(hydroxyphenyl)diisopro- pylbenzole gehören. Besonders bevorzugte Bisphenole, die zu den vorgenannten Verbindungsgruppen gehören, sind 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol-A/BPA), Tetraalkyl- bisphenol-A, 4,4-(meta-Phenylendiisopropyl) diphenol (Bisphenol M), l,l-Bis-(4- hydroxyphenyl)-3,3,5-trimethylcyclohexanon sowie gegebenenfalls deren Gemische. Besonders bevorzugte Copolycarbonate sind solche auf der Basis der Monomere Bis- phenol-A und l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan. Die erfindungsgemäß einzusetzenden Bisphenolverbindungen werden mit Kohlensäureverbindungen, insbesondere Phosgen, umgesetzt.
Die Polyestercarbonate werden durch Umsetzung der bereits genannten Bisphenole, mindestens einer aromatischen Dicarbonsäure und gegebenenfalls Kohlensäure erhalten. Geeignete aromatische Dicarbonsäuren sind beispielsweise Orthophtalsäure, Terephthalsäure, Isophthalsäure, 3,3'- oder 4,4'-Diphenyldicarbonsäure und Benzo- phenondicarbonsäuren.
In dem Verfahren verwendete inerte organische Lösungsmittel sind beispielsweise Dichlormethan, die verschiedenen Dichlorethane und Chlorpropanverbindungen, Chlorbenzol und Chlortoluol, vorzugsweise werden Dichlormethan und Gemische aus Dichlormethan und Chlorbenzol eingesetzt.
Die Reaktion kann durch Katalysatoren, wie tertiäre Amine, N-Alkylpiperidine oder Oniumsalze beschleunigt werden. Bevorzugt werden Tributylamin, Triethylamin und N-Ethylpiperidin verwendet. Als Kettenabbruchmittel und Molmassenregler können ein monofunktionelles Phenol, wie Phenol, Cumylphenol, p.-tert.-Butylphenol oder
4-(l,l,3,3-Tetramethylbutyl)phenol verwendet werden. Als Verzweiger kann beispielsweise Isatinbiscresol eingesetzt werden.
Zur Herstellung der hochreinen Polycarbonate werden die Bisphenole in wässriger alkalischer Phase, vorzugsweise Natronlauge, gelöst. Die gegebenenfalls zur Herstellung von Copolycarbonaten erforderlichen Kettenabbrecher werden in Mengen von 1,0 bis 20,0 Mol % je Mol Bisphenol, in der wässrigen alkalischen Phase gelöst oder zu dieser in einer inerten organischen Phase in Substanz zugegeben. Anschließend wird Phosgen in den die übrigen Reaktionsbestandteile enthaltenden Mischer eingeleitet und die Polymerisation durchgeführt.
Gegebenenfalls einzusetzende Kettenabbrecher sind sowohl Monophenole als auch Monocarbonsäuren. Geeignete Monophenole sind Phenol selbst, Alkylphenole wie Kresole, p-tert.-Butylphenol, p-Cumylphenol, p-n-Octylphenol, p-iso-Octylphenol, p-n- Nonylphenol und p-iso-Nonylphenol, Halogenphenole wie p-Chlorphenol, 2,4- Dichlorphenol, p-Bromphenol und 2,4,6-Tribromphenol sowie deren Mischungen.
Geeignete Monocarbonsäuren sind Benzoesäure, Alkylbenzoesäuren und Halogen- benzoesäuren.
Bevorzugte Kettenabbrecher sind die Phenole der Formel (I)
R ^ 0H (I),
woπn
R Wasserstoff, tert.-Butyl oder ein verzweigter oder unverzweigter C8- und oder
C9-Alkylrest ist.
Bevorzugter Kettenabbrecher ist Phenol und p-tert.-Butylphenol.
Die Menge an einzusetzendem Kettenabbrecher beträgt 0,1 Mol-% bis 5 Mol-%, bezogen auf Mole an jeweils eingesetzten Diphenolen. Die Zugabe der Kettenabbrecher kann vor, während oder nach der Phosgenierung erfolgen.
Gegebenenfalls kann der Reaktion noch Verzweiger zugesetzt werden. Bevorzugte Verzweiger sind die in der Polycarbonatchemie bekannten tri- oder mehr als trifunk- tionellen Verbindungen, insbesondere solche mit drei oder mehr als drei phenolischen OH-Gruppen.
Verzweiger sind beispielhaft und vorzugsweise auch Phloroglucin, 4,6-Dimethyl-2,4,6- tri-(4-hydroxyphenyl)-hepten-2, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptan,
1 ,3,5-Tri-(4-hydroxyphenyl)-benzol, 1,1,1 -Tri-(4-hydroxyphenyl)-ethan, Tri-(4- hydroxyphenyl)-phenylmethan, 2,2-Bis-[4,4-bis-(4-hydroxyphenyl)-cyclohexyl]- propan, 2,4-Bis-(4-hydroxyphenyl-isopropyl)-phenol, 2,6-Bis-(2-hydroxy-5'-methyl- benzyl)-4-methylphenol, 2-(4-Hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propan, Hexa- (4-(4-hydroxyphenyl-isopropyl)-phenyl)-orthoterephthalsäureester, Tetra-(4-hydroxy- phenyl)-methan, Tetra-(4-(4-hydroxyphenyl-isopropyl)-phenoxy)-methan und 1,4-Bis- (4',4"-dihydroxytriphenyl)-methyl)-benzol sowie 2,4-Dihydroxybenzoesäure, Trimesin- säure, Cyanurchlorid und 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydro- indol.
Die Menge der gegebenenfalls einzusetzenden Verzweiger beträgt 0,05 Mol-% bis 2 Mol-%, bezogen wiederum auf Mole an jeweils eingesetzten Diphenolen.
Die Verzweiger können entweder mit den Diphenolen und den Kettenabbrechern in der wäßrig alkalischen Phase vorgelegt werden, oder in einem organischen Lösungsmittel gelöst vor der Phosgenierung zugegeben werden.
Ein Teil, bis zu 80 Mol%, vorzugsweise von 20 bis 50 Mol% der Carbonat-Gruppen in den Polycarbonaten können durch aromatische Dicarbonsäureester-Gruppen er- setzt sein.
Die erfindungsgemäßen Polycarbonate sind sowohl Homopolycarbonate als auch
Copolycarbonate und deren Gemische. Die erfindungsgemäßen Polycarbonate können aromatische Polyestercarbonate sein oder Polycarbonate, die im Gemisch mit aromatischen Polyestercarbonaten vorliegen. Der Begriff Polycarbonat steht stell- vertretend für die nach den erfindungsgemäßen Verfahren erhältlichen Polycarbonat- Substrate.
Die Polycarbonate haben mittlere Molekulargewichte Mw (ermittelt durch Messung der relativen Viskosität bei 25°C in Dichlormethan und einer Konzentration von
0,5 g Polycarbonat/100 ml Dichlormethan) von 12.000 bis 400.000, vorzugsweise von 23.000 bis 80.000 und insbesondere von 24.000 bis 40.000.
Erfindungsgemäße Formkörper die aus den erfindungsgemäßen hochreinen Polycarbonat-Substraten hergestellt werden sind insbesondere optische und magnetooptische Datenspeicher wie Mini Disk, Compact Disk oder Digital Versatile Disk, optische Linsen und Prismen, Verscheibungen für Kraftfahrzeuge und Scheinwerfer, Verscheibungen anderer Art wie für Gewächshäuser, sogenannte Stegdoppelplatten oder Hohlkammerplatten oder Massivplatten. Hergestellt werden diese Formkörper durch Spritzgußverfahren, Extrusionsverfahren und Extrusions-Blasformverfahren unter Verwendung des erfindungsgemäßen Polycarbonats mit dem geeigneten Molekulargewicht.
Der bevorzugte Molekulargewichtsbereich für die Datenträger beträgt 12.000 bis 22.000, für Linsen und Verscheibungen 22.000 bis 32.000 und derjenige von Platten und Hohlkammerplatten 28.000 bis 40.000. Alle Molekulargewichtsangaben beziehen sich auf das Gewichtsmittel der Molmasse.
Die erfindungsgemäßen Formkörper weisen gegebenenfalls eine Oberflächenvergü- tung auf, beispielsweise eine Kratzfestbeschichtung.
Zur Herstellung von optischen Linsen und Folien oder Scheiben für magnetooptische Datenträger werden die erfindungsgemäßen Polycarbonate vorzugsweise mit einem Molekulargewicht von 12.000 bis 40.000 eingesetzt, da sich ein Material mit einer Molmasse in diesem Bereich sehr gut thermoplastisch formen läßt. Die Formkörper können durch Spritzgußverfahren hergestellt werden. Dazu wird das Harz auf Tem- peraturen von 300 bis 400°C geschmolzen und die Form im allgemeinen auf einer Temperatur von 50 bis 140°C gehalten
Zur Herstellung beispielsweise eines plattenformigen Datenspeichermaterials wird der erfindungsgemäße hochreine Polycarbonatkörper in dafür geeigneten, bekannten
Kunststoffspritzgießmaschinen eingesetzt.
Neben der Erhöhung der Standfestigkeit der Filter ist ein weiterer Vorteil der erfindungsgemäßen Verfahren, das sich die erhaltenen Polycarbonat-Substrate durch eine besonders niedrige Anzahl von weniger als 250, insbesondere weniger als 150
Störstellen pro m2 gemessen an einer 200 μm Extrusionsfolie auszeichnen.
Die nachfolgende Beispiele dienen zur Erläuterung der Erfindung. Die Erfindung ist nicht auf die Beispiele beschränkt.
Beispiele
Beispiel 1
Zur Herstellung der Polycarbonate wird BPA (BPA wird als Schmelze kontinuierlich mit Natronlauge zusammengebracht) in Natronlauge unter Sauerstoffausschluß gemischt. Die eingesetzte Natronlauge weist unterschiedliche Konzentrationen und Reinheiten (s. Tab.l) auf, wobei zur Lösung der Bisphenole die Ursprungs- Natronlauge noch weiter auf eine 6,5 %ige Natronlauge mit filtriertem VE- Wasser verdünnt wird. Diese Natriumbisphenolatlösung wird nun filtriert (0,6 μa Filter) und in die Polycarbonatreaktion eingesetzt. Nach der Reaktion wird die Reaktionslösung über einen 1,0 μnom Beutelfilter filtriert und der Wäsche zugeführt. Hier wird mit 0,6 %ige Salzsäure gewaschen und anschließend mit filtriertem VE- Wasser noch 5 mal nachgewaschen. Die organische Lösung wird von den wässrigen abgetrennt und nach dem Erwärmen der organischen Lösung auf 55°C zuerst mit 0,6 μa Filter und anschließend über ein 0,2 μa Filter filtriert. Nach der Isolierung wird das Poly- 2,2-bis-(4-hydroxylphenyl)-propancarbonat erhalten. Das Polycarbonat weist ein mittleres Molekulargewicht von Mw = 26.000 auf.
Tabelle 1
Figure imgf000014_0001
Figure imgf000014_0002
Tabelle 2
Figure imgf000015_0001
Aus den Polycarbonaten hergestellt mit Natronlauge aus den Versuchen 1 bis 3 werden Folien extrudiert und diese, mittels der unten beschrieben bekannten Methode, einem Folien-Laser Scan Test unterzogen.
Die Extrusionsfolie ist 200 μm dick und 60 mm breit. Ein He-Ne-Laser ("Spot-dia- meter" von 0.1 mm) tastet die Folie, mit einer Scanfrequenz von 5000 Hz in der Breiterichtung und eine Transportgeschwindigkeit von 5 m/s in der Längsrichtung, ab. Dabei werden alle Störstellen, die eine Streuung des durchgehenden Laserstrahls (ab 0.10 mm Durchmesser) bewirken, durch einen Photomultiplier detektiert und softwaremäßig gezählt. Die Anzahl optische Störstellen pro kg Polycarbonat bzw. pro m2 Folie, ist ein Maß für die Oberflächenqualität dieser Folie bzw. Reinheit des PC.
Figure imgf000015_0002

Claims

Patentansprüche
1. Verfahren zur Herstellung von Polycarbonat nach dem Phasengrenzflächenverfahren, wobei Dihydroxydiarylalkane in Form ihrer Alkalisalze mit Phosgen in heterogener Phase in Gegenwart von Natronlauge und einem organischen Lösungsmittel umgesetzt werden, dadurch gekennzeichnet, das
a) die Einsatzstoffe arm an Fe-, Cr-, Ni-, Zn-, Ca-, Mg-, AI-Metallen oder ihren Homologen sind b) das organische Lösungsmittel abgetrennt und c) das erhaltene Polycarbonat aufgearbeitet wird.
2. Verfahren zur Herstellung von Polycarbonat nach dem Phasengrenzflächenverfahren, wobei Dihydroxydiarylalkane in Form ihrer Alkalisalze mit Phosgen in heterogener Phase in Gegenwart von Natronlauge und einem organischen Lösungsmittel umgesetzt werden, dadurch gekennzeichnet, das
a) die Einsatzstoffe arm an Fe-, Cr-, Ni-, Zn-, Ca-, Mg-, AI-Metallen oder ihren Homologen sind, d) die bei der Reaktion entstehende wässrige Phase, gegebenenfalls nach einer Filtration, abgetrennt und die abgetrennte organische Polycarbonat-Phase, gegebenenfalls nach einer Filtration, mit einer wässrigen Flüssigkeit gewaschen und e) die gewaschene und von der Waschflüssigkeit abgetrennte organische Polycarbonat-Phase, gegebenenfalls nach einer Filtration, erwärmt und mindestens einmal heiß filtriert wird, b) das organische Lösungsmittel abgetrennt und c) das erhaltene Polycarbonat aufgearbeitet wird.
3. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, das weniger als 2 ppm Metalle oder ihren Homologen in den Einsatzstoffen enthalten ist.
4. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, das die eingesetzte Natronlauge nicht mehr als 0,5 ppm Erdalkalimetall oder deren Homologe und/oder nicht mehr als 0,5 ppm Fe bezogen auf einen 100 Gew.%igen NaOH-Gehalt enthält.
5. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, das neben der Natronlauge zusätzlich auch der Einsatzstoff Bisphenol arm an Fe-, Cr-, Ni-, Zn-, Ca-, Mg-, AI-Metallen oder ihren Homologen ist.
6. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, das aus der Gruppe der Einsatzstoffe mindestens die Natronlauge vor dem Beginn der Reaktion filtriert wird.
7. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch ge- kennzeichnet, das in den letzten Filtrationsstufen Filter mit einer Porengröße von kleiner 2 μm eingesetzt werden.
8. Polycarbonat, erhältlich nach mindestens einem der in den vorstehenden Ansprüchen definierten Verfahren.
9. Polycarbonat gekennzeichnet durch eine Anzahl von weniger als 250 Störstellen pro m2 gemessen an einer 200 μm Extrusionsfolie.
10. Verwendung eines Polycarbonates wie in den Ansprüchen 9 und 10 definiert zur Herstellung transparenter Formkörper.
11. Verwendung gemäß Anspruch 11, dadurch gekennzeichnet, das als Formkörper laserlesbare Datenspeicher hergestellt werden.
12. Formkörper hergestellt aus Polycarbonat wie in einem der Ansprüche 9 und oder 10 definiert.
PCT/EP2000/010397 1999-11-03 2000-10-23 Verfahren zur herstellung von polycarbonaten WO2001032746A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR0015263-3A BR0015263A (pt) 1999-11-03 2000-10-23 Processo para a preparação de policarbonatos
JP2001535442A JP2003514044A (ja) 1999-11-03 2000-10-23 ポリカーボネートの製造方法
EP00974438A EP1244726A1 (de) 1999-11-03 2000-10-23 Verfahren zur herstellung von polycarbonaten
US10/111,925 US6835798B1 (en) 1999-11-03 2000-10-23 Method of producing polycarbonates
AU12747/01A AU1274701A (en) 1999-11-03 2000-10-23 Method of producing polycarbonates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19952848A DE19952848A1 (de) 1999-11-03 1999-11-03 Verfahren zur Herstellung von Polycarbonaten
DE19952848.9 1999-11-03

Publications (1)

Publication Number Publication Date
WO2001032746A1 true WO2001032746A1 (de) 2001-05-10

Family

ID=7927749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/010397 WO2001032746A1 (de) 1999-11-03 2000-10-23 Verfahren zur herstellung von polycarbonaten

Country Status (10)

Country Link
US (1) US6835798B1 (de)
EP (1) EP1244726A1 (de)
JP (1) JP2003514044A (de)
KR (1) KR100686675B1 (de)
CN (1) CN100349953C (de)
AU (1) AU1274701A (de)
BR (1) BR0015263A (de)
DE (1) DE19952848A1 (de)
TW (1) TWI268942B (de)
WO (1) WO2001032746A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128935A (ja) * 2001-10-25 2003-05-08 Teijin Chem Ltd 光学用透明熱可塑性樹脂成形材料および該材料よりなる光ディスク基板
JP2003128934A (ja) * 2001-10-25 2003-05-08 Teijin Chem Ltd 光学用透明熱可塑性樹脂成形材料および該材料よりなる光ディスク基板
JP2006313638A (ja) * 2006-07-25 2006-11-16 Teijin Chem Ltd 光ディスク基板の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004045822A1 (de) * 2004-09-22 2006-04-06 Bayer Materialscience Ag Verfahren zur Herstellung von Polycarbonat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215499A (en) * 1975-07-28 1977-02-05 Nippon Soda Co Ltd Method for production of ultrahigh purity sodium salt
DE3706205A1 (de) * 1987-02-26 1988-09-08 Bayer Ag Verfahren zur herstellung von polycarbonatloesungen
EP0460646A2 (de) * 1990-06-08 1991-12-11 Mitsubishi Chemical Corporation Polykarbonatharz-Zusammensetzung für optische Zwecke
EP0615996A1 (de) * 1992-02-27 1994-09-21 Ge Plastics Japan Limited Verfahren zur Herstellung von Polycarbonatzusammensetzungen mit optischer Güte
JPH07196783A (ja) * 1994-01-07 1995-08-01 Mitsui Toatsu Chem Inc 芳香族ポリカーボネートの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653793B2 (ja) 1986-10-22 1994-07-20 出光石油化学株式会社 ポリカ−ボネ−ト有機溶剤液の洗浄方法
JP3038803B2 (ja) * 1990-06-08 2000-05-08 三菱化学株式会社 光学用ポリカーボネート樹脂成形材料
JP3038804B2 (ja) * 1990-06-08 2000-05-08 三菱化学株式会社 光学用ポリカーボネート成形材料
JP3582746B2 (ja) * 1995-12-28 2004-10-27 日本ジーイープラスチックス株式会社 樹脂組成物
DE10001036A1 (de) * 2000-01-13 2001-07-19 Bayer Ag Polycarbonat-Substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215499A (en) * 1975-07-28 1977-02-05 Nippon Soda Co Ltd Method for production of ultrahigh purity sodium salt
DE3706205A1 (de) * 1987-02-26 1988-09-08 Bayer Ag Verfahren zur herstellung von polycarbonatloesungen
EP0460646A2 (de) * 1990-06-08 1991-12-11 Mitsubishi Chemical Corporation Polykarbonatharz-Zusammensetzung für optische Zwecke
EP0615996A1 (de) * 1992-02-27 1994-09-21 Ge Plastics Japan Limited Verfahren zur Herstellung von Polycarbonatzusammensetzungen mit optischer Güte
JPH07196783A (ja) * 1994-01-07 1995-08-01 Mitsui Toatsu Chem Inc 芳香族ポリカーボネートの製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 197711, Derwent World Patents Index; AN 1977-19178Y *
DATABASE WPI Week 199539, Derwent World Patents Index; AN 1995-299632 *
PATENT ABSTRACTS OF JAPAN vol. 1, no. 54 (C - 014) 25 May 1977 (1977-05-25) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 11 26 December 1995 (1995-12-26) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128935A (ja) * 2001-10-25 2003-05-08 Teijin Chem Ltd 光学用透明熱可塑性樹脂成形材料および該材料よりなる光ディスク基板
JP2003128934A (ja) * 2001-10-25 2003-05-08 Teijin Chem Ltd 光学用透明熱可塑性樹脂成形材料および該材料よりなる光ディスク基板
JP2006313638A (ja) * 2006-07-25 2006-11-16 Teijin Chem Ltd 光ディスク基板の製造方法

Also Published As

Publication number Publication date
DE19952848A1 (de) 2001-05-10
BR0015263A (pt) 2002-06-25
JP2003514044A (ja) 2003-04-15
CN1382174A (zh) 2002-11-27
CN100349953C (zh) 2007-11-21
EP1244726A1 (de) 2002-10-02
TWI268942B (en) 2006-12-21
KR20020053836A (ko) 2002-07-05
AU1274701A (en) 2001-05-14
KR100686675B1 (ko) 2007-02-27
US6835798B1 (en) 2004-12-28

Similar Documents

Publication Publication Date Title
EP1203042B1 (de) Polycarbonat und dessen formkörper
EP1237692B1 (de) Verfahren zur herstellung hochreiner polymergranulate
EP1240240B1 (de) Polycarbonat-substrate
WO2001032746A1 (de) Verfahren zur herstellung von polycarbonaten
EP1240249B1 (de) Polycarbonat-substrate
EP1250375B1 (de) Polycarbonat-substrate
EP0414071A2 (de) Polyorganosiloxan-Polycarbonat-Blockcopolymere und ihre Verwendung zur Herstellung optischer Datenspeicher
WO2001032747A1 (de) Optische datenträger und verfahren zu ihrer herstellung
DE4039023A1 (de) 2-stufen-verfahren zur herstellung von halogenfreien aromatischen polycarbonaten
WO2019121240A1 (de) Verfahren zur herstellung eines polycarbonats unter verwendung eines organischen lösungsmittels auf der grundlage von chlorkohlenwasserstoffen
DE10135314A1 (de) Aufarbeitung von Polymersyntheselösungen
EP1313791A1 (de) Verfahren zur herstellung von polycarbonat und produkten daraus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000974438

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008146446

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/00529/MU

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2001 535442

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020027005680

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027005680

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10111925

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2000974438

Country of ref document: EP