WO2001024354A2 - Einrichtung und verfahren zur spektralen formung eines sendesignals in einem funksender - Google Patents

Einrichtung und verfahren zur spektralen formung eines sendesignals in einem funksender Download PDF

Info

Publication number
WO2001024354A2
WO2001024354A2 PCT/DE2000/003346 DE0003346W WO0124354A2 WO 2001024354 A2 WO2001024354 A2 WO 2001024354A2 DE 0003346 W DE0003346 W DE 0003346W WO 0124354 A2 WO0124354 A2 WO 0124354A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission signal
inputs
filter circuit
phase
Prior art date
Application number
PCT/DE2000/003346
Other languages
English (en)
French (fr)
Other versions
WO2001024354A3 (de
Inventor
Michael Schneider
Peter Jung
Tideya Kella
Jörg PLECHINGER
Markus Doetsch
Peter Schmidt
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to DE50001744T priority Critical patent/DE50001744D1/de
Priority to EP00967607A priority patent/EP1221194B1/de
Priority to JP2001527428A priority patent/JP3451253B2/ja
Priority to AT00967607T priority patent/ATE237192T1/de
Priority to DK00967607T priority patent/DK1221194T3/da
Publication of WO2001024354A2 publication Critical patent/WO2001024354A2/de
Publication of WO2001024354A3 publication Critical patent/WO2001024354A3/de
Priority to US10/112,292 priority patent/US7072422B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties

Definitions

  • the invention relates to a device and a method for spectrally shaping a transmission signal in a radio transmitter, in particular a mobile radio transmitter, according to the preambles of claims 1 and 7.
  • the signal shaping is usually accomplished by at least two digital filters, which are arranged in the inphasal branch (I branch) or in the quadrature branch (Q branch) of the signal path in the radio transmitter.
  • Each digital filter has a large number of multipliers (see Fig. 3).
  • the filters can make up up to about 70% of the chip area. It is therefore disadvantageous that, due to the multiple use of identical components (filters, multipliers), a considerable amount of hardware is required for the spectral signal shaping.
  • the invention has for its object to provide a device for spectrally shaping a discrete-value transmission signal in a radio transmitter, the implementation effort can be kept relatively low.
  • the invention further aims to provide a method for spectrally shaping a discrete-value transmission signal in a radio transmitter, by means of which the implementation effort for the corresponding hardware can be reduced. To achieve the object, the features of claims 1 and 7 are provided.
  • the basic principle of the invention is to operate the multipliers of the filter circuit in multiplex mode and thereby enable both the I component and the Q component of the transmission signal to be spectrally shaped with one and the same filter circuit. As a result, the number of multipliers actually implemented on a transmitter chip and thus the need for chip area can be significantly reduced.
  • Another advantage of the invention is that the two output signals (I component, Q component of the transmission signal) after filtering - due to the multiplexing - at a higher rate than the corresponding signals at the inputs of the signal shaping device according to the invention available. This is advantageous because for further signal processing to suppress interference in everyone
  • a particularly preferred embodiment of the invention is characterized in that several filter coefficients are assigned to a single multiplier.
  • the filter circuit used several times (namely for the I and Q branches), but also each multiplier is used several times (namely for the different filter coefficients), i.e. even more hardware-efficient.
  • a first preferred embodiment of the device according to the invention is characterized in that the I and Q signal components present at the inputs are each fed to a shift register consisting of N memory locations and M signal taps per memory location, and that the multiplexing unit is made up of N x M multiplexers, each with two multiplexer inputs.
  • the multipliers work alternately in the I and Q branches of the signal path.
  • a second preferred embodiment which realizes the aforementioned multiple use of the multipliers with regard to different filter coefficients, is characterized in that the I and Q signal components present at the inputs each consist of a shift register
  • N memory locations and M signal taps per memory location are supplied, and that the multiplexing unit is constructed from N multiplexers, each with 2 x M multiplexer inputs.
  • a multiplier then works for M multiplexer work cycles in the I branch and for the next M multiplexer work cycles in the Q branch, etc.
  • FIG. 1 is a block diagram of a radio transmitter for general explanation of the signal processing in the same.
  • Fig. 2 is a block diagram showing the signal path of four transmission signals with a spectral shaping of the I and Q signal components according to the prior art
  • FIG. 3 shows a circuit diagram of a single RRC filter according to the prior art
  • 4 shows a circuit diagram of a modulator for four data signals with a spectral signal shaping device according to the invention
  • FIG. 5 shows a circuit diagram of a first embodiment of the spectral signal shaping device from FIG. 4; FIG. and
  • FIG. 6 shows a circuit diagram of a second embodiment of the spectral signal shaping device from FIG. 4.
  • FIG. 1 shows the basic structure of a transmitting device SE of a radio transmitter, which is already known as such, as is used, for example, in a base station or a mobile station of a mobile radio system.
  • the transmitting device SE receives an analog source signal QS (for example generated by a microphone) and feeds it to an encoder COD.
  • the encoder COD comprises an analog-digital converter for digitizing the source signal QS and can furthermore contain a source encoder, a channel encoder, an interleaver and a block former, which code the digitized source signal QS in a suitable manner, and provide error protection coding , nest and divide into data blocks.
  • the encoder COD outputs a discrete-value data signal that consists of a data sequence ⁇ d n ⁇ of the elements d 0 , d i; ... consists.
  • the data sequence ⁇ d n ⁇ is fed to a modulator device MOD, which modulates the data sequence for radiation via a high-frequency carrier and - in the case of a CDMA (code division multiple access) system - imprints a subscriber-specific spreading code on each data symbol.
  • a CPM (continuous phase modulation) method with continuous phase and constant complex can be used for modulation Envelopes are used, and one of the known spread coding methods, for example DS (direct sequencing) CDMA, MC (multi carrier) CDMA or FH (frequency hopping) CDMA, can be used for CDMA subscriber coding.
  • the modulator device MOD also divides the data signal into the I branch and the Q branch.
  • the I and Q signal components output by the modulator device MOD are fed to a digital-to-analog converter DAC, which generates the corresponding analog I and Q signal components.
  • These are each mixed up in mixing stages MI1 or MI2 by means of a high-frequency carrier of frequency f with a 90 ° phase shift, superimposed and radiated via an antenna A as a radio signal.
  • the modulator device MOD 1 shows a modulator device MOD 1 according to the prior art.
  • the modulator device MOD 1 has four data inputs D1, D2, D3 and D4 and is therefore suitable for the simultaneous establishment of four physical channels.
  • the data sequences ⁇ d nl ⁇ , ⁇ d n2 ⁇ , ⁇ d n3 ⁇ and ⁇ d n4 ⁇ are present at the data inputs D1, D2, D3 and D4.
  • the data sequences ⁇ d n ⁇ , ⁇ d n2 ⁇ , ⁇ d n3 ⁇ and ⁇ d n ⁇ are sampled by sampling stages AI, A2, A3, A4 in oversampling (oversampling factor Q).
  • This increases the data rate in each signal path from 1 / T S to l / T c , where T s denotes the symbol duration of the individual data symbols d ni (or d n2 , d n3 , d u4 ) and T c the (shorter) chip duration referred to, which represents the time base for the later CDMA coding.
  • the data rate l / T c at the output of the scanning stages AI, A2, A3, A4 is 4.096 x 10 6 samples per second .
  • the (oversampled) data symbols are then multiplied by multipliers M with a complex scrambling code S and two CDMA codes Cl (for the data symbols d n ⁇ and d n2 ) or C2 (for the data symbols d n3 and d n4 ).
  • S r , c r ⁇ and c r2 denote the real parts and Si, cu and c ⁇ 2 the imaginary parts of the elements of the code sequences mentioned above.
  • the further signal processing is explained on the basis of the Q and I signal components assigned to the data inputs D1 and D2, which are shown in the upper half of FIG. 2.
  • the processing of the Q and I signal components assigned to the data inputs D3 and D4 is corresponding.
  • the Q and I signal components are input to a device for spectral signal shaping ESF ', the scope of which is shown in FIG. 2 by a dashed line.
  • the device for spectral signal shaping ESF ' comprises a sampling stage a1 or a2, which increase the signal rate to a multiple M of the chip rate l / T c by repeated oversampling.
  • Digital filters DF1, DF2, which are used for spectral shaping of the Q signal component or the I signal component, are connected downstream of the sampling stages al and a2.
  • the spectrally shaped Q signal components are added by an adder AD5 and the spectrally shaped I signal components are added by an adder AD6.
  • the Q and I signal components are optionally a frequency subjected to correction (not shown) and then passed on to the digital-to-analog converter DAC according to FIG. 1.
  • FIG. 3 shows the structure of a known filter DF1 or DF2, as used in the modulator device MOD 'shown in FIG. 2.
  • the filter has a shift register with 55 memory locations T and 56 multipliers M and 55 adders AD.
  • the multipliers M are present with one input of parallel taps, between and behind the storage locations T and are supplied with the filter coefficients C 0 ,..., C 55 at their other input.
  • the adders AD add up the multiplication results calculated by the multipliers M.
  • the coefficients C 0 , ..., C 55 of the filter result from the samples of the filter transfer function at a rate of M / T c .
  • M 4-fold oversampling
  • FIG. 4 shows the block diagram of a modulator device MOD, as can be used in the present invention.
  • the same parts as in the previous figures are identified with the same reference numerals or with the same circuit symbols.
  • the data sequences ⁇ d n ⁇ , ⁇ d n ⁇ , ⁇ d n3 ⁇ , ⁇ d n4 ⁇ with a word length 1 and the data symbol rate l / T s are in turn present at the data inputs D1, D2, D3, D4.
  • the individual data symbols d n ⁇ , dn2, d n3 , d n4 can be found in the set of values ⁇ l, -l ⁇ .
  • the data symbols are weighted in multiplication by weight factors wl, w2, w3 and w4 in the symbol cycle.
  • the data signals available at the outputs of the weighting unit have a word length q we > 1. Your data rate is unchanged l / T s .
  • the weight factors wl, w2, w3, w4 can be understood as "volume factors".
  • the Q-times oversampled data symbols d n ⁇ , d n2 , d n3 , d n4 are then spread encoded in the spreading encoder SC by impressing a channel-specific digital spreading code sequence.
  • a first spreading code sequence C1 consisting of Q digital chips ci is impressed on the data symbols dm supplied by the first data input D1.
  • the corresponding procedure is followed with regard to the data symbols d n2 , d n3 , d n4 supplied by the further data inputs D2, D3, D4.
  • each data symbol is given a "fingerprint" of its channel, as it were.
  • the spread-coded data signals are available with a signal rate of l / T c and an (unchanged) word width of q we .
  • a channel adder CA is located in the signal path behind the spreading encoder SC.
  • the channel adder CA comprises two adders AD1, AD2 operating in the chip clock.
  • the adder AD1 adds the signal data originating from the data inputs D1, D3 and the adder AD2 adds the signal data originating from the data inputs D2 and D4.
  • Data signals with a signal rate of are present at the two outputs of the channel adder CA. 1 / T C and a (possibly increased) word length of q ca.
  • a complex scrambler CS is used to impress a base station identifier on the data signals.
  • the signals output by the channel adder CA are multiplied in the manner shown by the real or imaginary parts s q or si of the elements of a complex-value scrambling code sequence S and subsequently added crosswise as shown.
  • the complex scrambler CS is used to generate the I and Q signal components of the transmission signal, which are available at the output of the complex scrambler CS with a signal rate of l / T c and a word length of q sc .
  • the device for spectral signal shaping ESFl / 2 fed to its inputs E1, E2.
  • the device for spectral signal shaping ESF1 / 2 provides the spectrally shaped (i.e. modulated) I or Q signal components at its outputs AI, A2. After a frequency correction (not shown) according to FIG. 1, these are converted into analog signals and emitted as radio signals.
  • FIG. 5 and 6 show two embodiments ESF1 and ESF2 of the device according to the invention for spectral signal shaping in block diagram form.
  • the I signal component and the Q signal component are each fed to a shift register SR with ten memory locations T1, T2, ..., T10.
  • Each memory location T1, T2, ..., T10 stores a data word with the word length q sc .
  • the data words are shifted through the shift register SR in the chip clock I / T c .
  • each shift register SR has a total of 40 taps.
  • the ins A total of 80 taps from the two shift registers SR are fed to a multiplexing unit MUXEl.
  • the multiplexing unit MUXEl comprises 40 multiplexers MUX1, MUX2, ..., MUX40. Each multiplexer MUX1, MUX2, ..., MUX40 has two multiplexer inputs. The first tap of the first memory cell T1 of the shift register SR in the I signal path leads to the one multiplexer input of the first multiplexer MUX1 and the first tap of the first memory cell T1 of the shift register SR in the Q signal path leads to the second multiplexer input of the first multiplexer MUX1.
  • the second taps of the two shift registers SR lead to the two multiplexer inputs of the second multiplexer MUX2, ..., and the two fortieth taps of the shift register SR lead to the two multiplexer inputs of the fortyth multiplexer MUX40.
  • the multiplexers MUX1, MUX2, ..., MUX40 alternately pass on the signal words originating from the I and the Q signal components, with intermediate memories in the multiplexers MUX1, MUX2, .. for the temporary storage of the signal words that are not currently being output at the multiplexer output. ., MUX40 are available.
  • signal words of the word width q sc of the I and Q signal components are available with a signal rate of 2 / T c (alternately).
  • the forty outputs of the multiplexing unit MUXE1 are fed to a filter circuit FS1.
  • the filter circuit FS1 comprises forty multipliers M1, M2, ..., M40 and four adders ADD1, ADD2, ADD3 and ADD4.
  • Each multiplier Ml, M2, ..., M40 multiplies an output signal of the multiplexing unit MUXEl by a single filter coefficient g lr g 2 , ..., go •
  • the filter coefficients g lt g 2 , ..., g 0 become
  • the spectral filter function can be, for example, an RRC (root raised cosine) function.
  • RRC root raised cosine
  • Such a filter circuit is called an RRC filter circuit.
  • the RRC function is defined by the function (1 + cos x) 1 2/2 1 2 in the range 0 ⁇ x ⁇ , which reflects the functional relationship of the filter edge of the RRC in the spectral range.
  • the adders ADD1, ADD2, ADD3, ADD4 each have ten add inputs.
  • the ten adder inputs of the adder ADD1 are connected to the outputs of the multipliers Ml, M5, M9, M13, Ml7, M21, M25, M29, M33 and M37, the inputs of the adder ADD2 are connected to the outputs of the multipliers M2, M6, MIO, M14, M18, M22, M26, M30, M34, M38, etc.
  • the four adders ADD1 to ADD4 are assigned to the four taps 1 to 4 of each memory location T1, T2, ..., T10 of the shift register SR.
  • the filter circuit FS1 is followed by a demultiplexing unit DMUXE1.
  • the demultiplexing unit DMUXE1 first demultiplexes each adder output with respect to the I and Q signal components and then separately multiplexes the results of the four adders ADD1, ADD2, ADD3, ADD4 for the I signal component and the Q signal component. In this way, a four-times oversampled (filtered) I signal component arises at the output AI of the device for spectral signal shaping ESF1 and a four-times oversampled (filtered) Q signal component at the output A2.
  • FIG. 6 A second embodiment of the device according to the invention for spectral signal shaping ESF2 is shown in FIG. 6.
  • the device ESF2 also has two shift registers SR, each with ten memory locations T1, T2, ..., T10 and four taps per memory location.
  • ESF2 comprises only ten multiplexers MUX1 ', MUX2', ..., MUX10 ', the are combined in a multiplexing unit MUXE2.
  • Each multiplexer MUX1 ', MUX2', ..., MUX10 ' has eight multiplexer inputs and a corresponding number of buffer memories.
  • the eight multiplexer inputs of the multiplexer MUX1 ' are connected to the four taps of the two memory locations T1 with respect to the I signal component and the Q signal component, etc.
  • each of the ten multiplexers MUX1', MUX2 ', ..., MUX10' exactly one memory location pair Tl, Tl; T2, T2; ...; T10, T10 assigned to the two shift registers SR.
  • the ten outputs of the multiplexing unit MUXE2 each have a signal rate of 8 / T c .
  • the ten outputs of the multiplexing unit MUXE2 are fed to a filter circuit FS2.
  • the filter circuit FS2 comprises ten multipliers Ml, ..., MIO and an adder ADD, the ten inputs of which are connected to the outputs of the multipliers Ml, ..., MIO.
  • the multipliers Ml, ..., MIO work in 8 times the chip clock.
  • the filter coefficients gi to g 0 shown in FIG. 6 are again determined by ten samples with 4x oversampling of the spectral filter function (in particular RRC function).
  • each multiplier M1,..., MIO here processes a sequence of, for example, exactly four filter coefficients, ie the multiplier M1 processes the filter coefficients g_ . -, the multiplier M2 processes the filter coefficients g 5 _ 8 , ....
  • each multiplier Ml, ..., MIO processes four samples of the I signal component and then four samples of the Q signal component, each with the filter coefficients assigned to it.
  • the results of the ten multipliers M1, ..., MIO are then added in the adder ADD.
  • the addition results are communicated to a demultiplexer DMUXE2 with a buffer memory at a signal rate of 8 / T c .
  • the demultiplexer DMUXE2 divides the addition results back into the I signal component and the Q signal component, which are output at a signal rate of 4 / T c at the outputs AI and A2 of the device for spectral signal shaping ESF2.
  • both embodiments ESF1 and ESF2 have in common that the multipliers of the filter coefficients are multiplexed for both the I and the Q signal components, thereby achieving a reduction in the number of multipliers implemented.
  • the known filter structure shown in FIG. 3 would comprise 2 x 40 multipliers, whereas the number of the ESFl (see FIG. 5) was 1 x 40 Multipliers and in the execution of the ESF2 (see Fig. 6) results in a number of 1 x 10 multipliers.
  • the chip area required for the transmitter chip is also reduced.
  • a further advantageous common feature of the two embodiments is that the input signals for the device for spectral signal shaping ESFl / 2 do not have to be oversampled, but the output signals of the units ESFl / 2 have to be provided with those required for further signal processing (eg 4- times) oversampling are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Eine Einrichtung (ESF1) zur spektralen Formung eines wertediskre ten Sendesignals in einem Funksender weist einen ersten Eingang (E1) zur Entgegennahme einer Inphasal-Komponente des Sendesignals und einen zweiten Eingang (E2) zur Entgegennahme einer Quadratur-Komponente des Sendesignals auf. Die Einrichtung (ESF1) umfasst eine Filterschaltung (FS1) mit einer Mehrzahl von Multiplizierern (M1-40). Im Signalweg vor der Filterschaltung (FS1) ist eine Multiplexiereinheit (MUXE1) und im Signalweg hinter der Filterschaltung (FS1) ist eine Demultiplexiereinheit (DMUXE1) angeordnet.

Description

Beschreibung
Einrichtung und Verfahren zur spektralen Formung eines Sende- signals in einem Funksender
Die Erfindung betrifft eine Einrichtung und ein Verfahren zur spektralen Formung eines Sendesignals in einem Funksender, insbesondere Mobilfunksender, nach den Oberbegriffen der Ansprüche 1 und 7.
Es ist bereits bekannt, ein wertediskretes (digitales) Sendesignal vor dem Umsetzen in ein analoges Basisbandsignal und dem Heraufmischen des letzteren in einen hochfrequenten Verkehrskanal einer Signalformung zu unterziehen, um eine schmalbandige und damit Frequenz-Resourcen-schonende Informationsübertragung zu ermöglichen. Die Signalformung wird üblicherweise durch mindestens zwei digitale Filter bewerkstelligt, die im Inphasal-Zweig (I-Zweig) bzw. im Quadratur- Zweig (Q-Zweig) des Signalwegs im Funksender angeordnet sind. Jedes digitale Filter weist eine große Anzahl von Multiplizierern auf (siehe Fig. 3) .
Bei einem typischen DSP- (digital signal processor) -Senderchip für einen Mobilfunksender können die Filter bis zu etwa 70 % der Chipfläche ausmachen. Nachteilig ist also, daß aufgrund der vielfachen Verwendung identischer Komponenten (Filter, Multiplizierer) ein beträchtlicher Hardware-Realisierungs- aufwand für die spektrale Signalformung erforderlich ist.
Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung zur spektralen Formung eines wertediskreten Sendesignals in einem Funksender zu schaffen, deren Realisierungsaufwand verhältnismäßig gering gehalten werden kann. Ferner zielt die Erfindung darauf ab, ein Verfahren zur spektralen Formung ei- nes wertediskreten Sendesignals in einem Funksender anzugeben, durch das der Realisierungsaufwand für die entsprechende Hardware verringert werden kann. Zur Lösung der Aufgabe sind die Merkmale der Ansprüche 1 und 7 vorgesehen.
Das Grundprinzip der Erfindung besteht darin, die Multiplizierer der Filterschaltung im Multiplexbetrieb zu betreiben und dadurch zu ermöglichen, daß sowohl die I-Komponente als auch die Q-Komponente des Sendesignals mit ein- und derselben Filterschaltung spektral geformt werden. Dadurch läßt sich die Anzahl der tatsächlich auf einem Senderchip realisierten Multiplizierer und damit auch der Bedarf an Chipfläche deutlich reduzieren.
Ein weiterer Vorteil der Erfindung besteht darin, daß die beiden Ausgangssignale (I-Komponente, Q-Komponente des Sendesignals) nach der Filterung - bedingt durch die Multiplexie- rung - mit einer höheren Rate als die entsprechenden Signale an den Eingängen der erfindungsgemäßen Signal-Formungseinrichtung vorliegen. Dies ist vorteilhaft, da für die weitere Signalverarbeitung zur Unterdrückung von Störungen in jedem
Fall eine Überabtastung vorgenommen werden müßte, die sich bei der Erfindung aber "automatisch" ergibt.
Eine besonders bevorzugte Ausführungsform der Erfindung kenn- zeichnet sich dadurch, daß einem einzelnen Multiplizierer mehrere Filterkoeffizienten zugeordnet sind. In diesem Fall wird nicht nur die Filterschaltung mehrfach (nämlich für den I- und den Q-Zweig) genutzt, sondern es wird auch jeder Multiplizierer mehrfach (nämlich für die unterschiedlichen Fil- terkoeffizienten) verwendet, d.h. noch Hardware-effizienter eingesetzt .
Eine erste bevorzugte Ausführungsform der erfindungsgemäßen Einrichtung kennzeichnet sich dadurch, daß die an den Ein- gangen anliegenden I- und Q-Signalkomponenten jeweils einem Schieberegister bestehend aus N Speicherplätzen und M Signalabgriffen pro Speicherplatz zugeführt werden, und daß die Multiplexiereinheit aus N x M Multiplexern mit jeweils zwei Multiplexereingängen aufgebaut ist. In diesem Fall arbeiten die Multiplizierer alternierend im I- und Q-Zweig des Signalweges .
Eine zweite bevorzugte Ausführungsform, die die bereits erwähnte Mehrfach-Nutzung der Multiplizierer bezüglich verschiedener Filterkoeffizienten realisiert, kennzeichnet sich dadurch, daß die an den Eingängen anliegenden I- und Q-Sig- nalkomponenten jeweils einem Schieberegister bestehend aus
N Speicherplätzen und M Signalabgriffen pro Speicherplatz zugeführt werden, und daß die Multiplexiereinheit aus N Multiplexern mit jeweils 2 x M Multiplexereingängen aufgebaut ist. Hier arbeitet ein Multiplizierer dann für M Multiplexer- Arbeitstakte im I -Zweig und für die nächsten M Multiplexer- Arbeitstakte im Q-Zweig, usw.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Die Erfindung wird nachfolgend anhand von zwei Ausführungsformen unter Bezugnahme auf die Zeichnung näher erläutert; in dieser zeigt :
Fig. 1 ein Blockschaltbild eines Funksenders zur allgemeinen Erläuterung der Signalverarbeitung in demselben;
Fig. 2 ein Blockschaltbild, das den Signalweg von vier Sendesignalen mit einer spektralen Formung jeweils der I- und Q- Signalkomponenten nach dem Stand der Technik darstellt;
Fig. 3 ein Schaltbild eines einzelnen RRC-Filters nach dem Stand der Technik; Fig. 4 ein Schaltbild eines Modulators für vier Datensignale mit einer erfindungsgemäßen spektralen Signal-Formungseinrichtung;
Fig. 5 ein Schaltbild einer ersten Ausführungsform der spektralen Signal-Formungseinrichtung aus Fig. 4; und
Fig. 6 ein Schaltbild einer zweiten Ausführungsform der spektralen Signal -Formungseinrichtung aus Fig. 4.
Fig. 1 zeigt die als solche bereits bekannte prinzipielle Struktur einer Sendeeinrichtung SE eines Funksenders, wie er beispielsweise in einer Basisstation oder einer Mobilstation eines Mobilfunksystems eingesetzt wird.
Die Sendeeinrichtung SE nimmt ein (beispielsweise durch ein Mikrofon erzeugtes) analoges Quellensignal QS entgegen und führt dieses einem Codierer COD zu. Der Codierer COD umfaßt in nicht dargestellter Weise einen Analog-Digital-Umsetzer zur Digitalisierung des Quellensignals QS und kann ferner einen Quellencodierer, einen Kanalcodierer, einen Verschach- teler und einen Blockbildner enthalten, die das digitalisierte Quellensignal QS in geeigneter Weise Quellen-codieren, fehlerschutzcodieren, verschachteln und in Datenblöcke unterteilen.
Der Codierer COD gibt ein wertediskretes Datensignal aus, das aus einer Datenfolge {dn} der Elemente d0, di; ... besteht.
Die Datenfolge {dn} wird einer Modulatoreinrichtung MOD zugeführt, die die Datenfolge für die Abstrahlung über einen hochfrequenten Träger moduliert und - bei einem CDMA(code di- vision multiple access) -System - jedem Datensymbol einen Teilnehmer-individuellen Spreizcode aufprägt. Zur Modulation kann beispielsweise ein CPM- (continuous phase modula- tion) Verfahren mit stetiger Phase und konstanter komplexer Einhüllenden verwendet werden, und für die CDMA-Teilnehmercodierung kann eines der bekannten Spreizcodierverfahren, beispielsweise DS- (direct sequencing) CDMA- , MC- (multi carri- er) CDMA oder auch FH- (frequency hopping) CDMA eingesetzt wer- den.
Die Modulatoreinrichtung MOD nimmt ferner eine Aufteilung des Datensignals in den I -Zweig und den Q-Zweig vor. Die von der Modulatoreinrichtung MOD ausgegebenen I- und Q-Signalkompo- nenten werden einem Digital-Analog-Umsetzer DAC zugeführt, der die entsprechenden analogen I- und Q-Signalkomponenten erzeugt. Diese werden jeweils in Mischstufen MI1 bzw. MI2 mittels eines hochfrequenten Trägers der Frequenz f unter 90° Phasenversatz zueinander hochgemischt, überlagert und über eine Antenne A als Funksignal abgestrahlt.
Fig. 2 zeigt eine Modulatoreinrichtung MOD1 nach dem Stand der Technik. Die Modulatoreinrichtung MOD1 weist vier Dateneingänge Dl, D2 , D3 und D4 auf und eignet sich somit zum gleichzeitigen Aufbau von vier physikalischen Kanälen.
An den Dateneingängen Dl, D2 , D3 und D4 liegen die Datenfolgen {dnl}, {dn2}, {dn3} und {dn4} an.
Die Datenfolgen {dnι}, {dn2}, {dn3} und {dn } werden von Abtaststufen AI, A2 , A3, A4 in Überabtastung (Überabtastfaktor Q) abgetastet. Dadurch wird die Datenrate in jedem Signalweg von 1/TS auf l/Tc erhöht, wobei Ts die SymbolZeitdauer der einzelnen Datensymbole dni (bzw. dn2, dn3, du4 ) bezeichnet und Tc die (kürzere) Chipzeitdauer bezeichnet, die die Zeitbasis für die spätere CDMA-Codierung darstellt. Im Falle eines UMTS- (universal mobile telecommunications Systems) -Senders der dritten Mobilfunk-Generation beträgt die Datenrate l/Tc am Ausgang der Abtaststufen AI, A2 , A3, A4 (d.h. die Chipra- te) 4,096 x 106 Abtastungen pro Sekunde. Die (überabgetasteten) Datensymbole werden anschließend von Multiplizierern M mit einem komplexen Verwürfelungs-Code S und zwei CDMA-Codes Cl (für die Datensymbole dnι und dn2) bzw. C2 (für die Datensymbole dn3 und dn4) multipliziert. Dabei be- zeichnen sr, crι und cr2 die Realteile und Si, cu und cι2 die Imaginärteile der Elemente der vorstehend genannten Codefolgen.
Durch Addition der Real- und Imaginärteile der so erzeugten Signale in den Addierern AD1, AD2 , AD3 und AD4 werden die
I -Komponenten und die Q-Komponenten der entsprechenden digitalen Sendesignale erzeugt.
Die weitere Signalbearbeitung wird anhand der den Datenein- gangen Dl und D2 zugeordneten Q- und I-Signalkomponenten erläutert, die in der oberen Hälfte der Fig. 2 dargestellt sind. Die Verarbeitung der den Dateneingängen D3 und D4 zugeordneten Q- und I-Signalkomponenten ist entsprechend.
Die Q- und I -Signalkomponenten werden einer Einrichtung zur spektralen Signalformung ESF' eingegeben, deren Umfang in Fig. 2 durch eine gestrichelte Linie dargestellt ist. Die Einrichtung zur spektralen Signalformung ESF' umfaßt bezüglich jede Signalkomponente eine Abtaststufe al bzw. a2 , die die Signalrate durch eine nochmalige Überabtastung auf ein Mehrfaches M der Chiprate l/Tc erhöhen.
Den Abtaststufen al bzw. a2 sind digitale Filter DF1, DF2 nachgeschaltet, die zur spektralen Formung der Q- Signalkomponente bzw. der I -Signalkomponente dienen. Die
Struktur der digitalen Filter DF1, DF2 gemäß dem Stand der Technik wird noch in Fig. 3 näher erläutert.
Die spektral geformten Q-Signalkomponenten werden von einem Addierer AD5 addiert und die spektral geformten I -Signal - komponenten werden von einem Addierer AD6 addiert . Die Q- und I-Signalkomponenten werden gegebenenfalls einer Frequenz- korrektur (nicht dargestellt) unterzogen und dann gemäß Fig. 1 an den Digital-Analog-Umsetzer DAC weitergegeben.
Fig. 3 zeigt den Aufbau eines bekannten Filters DF1 bzw. DF2 , wie es in der in Fig. 2 dargestellten Modulatoreinrichtung MOD' eingesetzt wird. Das Filter weist ein Schieberegister mit 55 Speicherplätzen T und 56 Multiplizierer M sowie 55 Addierer AD auf. Die Multiplizierer M liegen mit ihrem einen Eingang an Parallelabgriffen vor, zwischen und hinter den Speicherplätzen T an und werden an ihrem anderen Eingang mit den Filterkoeffizienten C0, ... , C55 versorgt. Die Addierer AD addieren die von den Multiplizierern M berechneten Multiplikationsergebnisse auf.
Die Koeffizienten C0, ... , C55 des Filters ergeben sich aus den Abtastwerten der Filter-Übertragungsfunktion bei einer Rate von M/Tc. Bei der hier dargestellten Ausführung mit 56 Filterkoeffizienten C0, ..., C55 finden bei einer M = 4-fachen Überabtastung in dem Filter vierzehn Chips der Q- bzw. I -Signalkomponente Platz.
Fig. 4 zeigt das Blockschaltbild einer Modulatoreinrichtung MOD, wie sie in der vorliegenden Erfindung zum Einsatz kommen kann. Dieselben Teile wie in den vorhergehenden Figuren sind mit denselben Bezugszeichen gekennzeichnet bzw. mit den gleichen Schaltungssymbolen dargestellt.
An den Dateneingängen Dl, D2 , D3 , D4 liegen wiederum die Datenfolgen {dnι}, {dn }, {dn3}, {dn4} mit einer Wortbreite 1 und der Datensymbolrate l/Ts an. Die einzelnen Datensymbole dnι, dn2, dn3, dn4 können dem Wertevorrat {l, -l} entnommen sein.
In einer optionalen Gewichtungseinheit WG werden die Datensymbole durch Multiplikation mit Gewichtsfaktoren wl , w2 , w3 bzw. w4 im Symboltakt gewichtet. Die an den Ausgängen der Gewichtungseinheit bereitstehenden Datensignale weisen eine Wortbreite qwe > 1 auf. Ihre Datenrate ist unverändert l/Ts. Die Gewichtsfaktoren wl , w2 , w3 , w4 können als "Lautstärken- Faktoren" aufgefaßt werden. Durch Verwendung kanalweise unterschiedlicher Gewichtsfaktoren wl , w2 , w3 , w4 können unter- schiedliche Funkdistanzen bezüglich der verschiedenen Kanäle berücksichtigt und/oder bei Verwendung kanalweise verschiedener Spreizfaktoren Q die dadurch bewirkten unterschiedlichen Kanalenergien kompensiert werden.
Die Abtaststufen AI, A2 , A3, A4 erhöhen die Signalrate um den Überabtastfaktor (= Spreizfaktor) Q und stellen an ihrem Ausgang ein hochratiges Signal im Chipzeit-Takt l/Tc zur Verfügung. Der Überabtastfaktor Q kann beispielsweise zwischen 4 und 512 betragen, d.h. Ts = 4TC...512TC.
Die Q-fach überabgetasteten Datensymbole dnι, dn2, dn3, dn4 werden dann in dem Spreizcodierer SC durch Aufprägen einer kanalspezifischen digitalen Spreizcodefolge spreizcodiert. Auf die von dem ersten Dateneingang Dl zugeführten Daten- symbole dm wird jeweils eine erste Spreizcodefolge Cl bestehend aus Q digitalen Chips ci aufgeprägt. Bezüglich der von den weiteren Dateneingängen D2 , D3 , D4 zugeführten Datensymbole dn2, dn3, dn4 wird entsprechend verfahren. Durch Aufprägen der Spreizcodefolgen Cl, C2 , C3 , C4 erhält jedes Da- tensymbol gleichsam einen "Fingerabdruck" seines Kanals. Am
Ausgang des Spreizcodierers SC stehen die spreizcodierten Datensignale mit einer Signalrate von l/Tc und einer (unveränderten) Wortbreite von qwe bereit.
Im Signalweg hinter dem Spreizcodierer SC befindet sich ein Kanaladdierer CA. Der Kanaladdierer CA umfaßt zwei im Chiptakt arbeitende Addierer AD1, AD2. Der Addierer AD1 addiert die von den Dateneingängen Dl, D3 stammenden Signaldaten und der Addierer AD2 addiert die von den Dateneingängen D2 und D4 stammenden Signaldaten. An den beiden Ausgängen des Kanal - addierers CA liegen Datensignale mit einer Signalrate von 1/TC und einer (gegebenenfalls erhöhten) Wortbreite von qca vor.
Ein komplexer Verwürfler CS dient zum Aufprägen einer Basis- stations-Kennung auf die Datensignale. Zu diesem Zweck werden die von dem Kanaladdierer CA ausgegebenen Signale in der dargestellten Weise mit den Real- bzw. Imaginärteilen sq bzw. si der Elemente einer komplexwertigen Verwürfelungs-Codefolge S multipliziert und nachfolgend wie gezeigt kreuzweise addiert. Ferner dient der komplexe Verwürfler CS zur Erzeugung der I- und Q-Signalkomponenten des Sendesignals, die am Ausgang des komplexen Verwürflers CS mit einer Signalrate von l/Tc und einer Wortbreite von qsc zur Verfügung stehen.
Diese beiden Signalkomponenten werden der erfindungsgemäßen
Einrichtung zur spektralen Signalformung ESFl/2 an ihren Eingängen El, E2 zugeführt. An ihren Ausgängen AI, A2 stellt die Einrichtung zur spektralen Signalformung ESFl/2 die spektral geformten (d.h. modulierten) I- bzw. Q-Signalkomponenten be- reit. Diese werden nach einer nicht dargestellten Frequenzkorrektur gemäß Fig. 1 in Analogsignale umgesetzt und als Funksignal abgestrahlt .
Die Fig. 5 und 6 zeigen zwei Ausführungsformen ESFl bzw. ESF2 der erfindungsgemäßen Einrichtung zur spektralen Signalformung in Blockschaltbildform.
Nach Fig. 5 werden die I -Signalkomponente und die Q-Signal- komponente jeweils einem Schieberegister SR mit zehn Spei- cherplätzen Tl, T2 , ..., T10 zugeführt. Jeder Speicherplatz Tl, T2 , ..., T10 speichert ein Datenwort der Wortbreite qsc . Die Datenwörter werden im Chiptakt l/Tc durch die Schieberegister SR hindurchgeschoben.
An jedem Speicherplatz Tl, T2 , ..., T10 beider Schieberegister SR befinden sich jeweils vier Abgriffe, so daß jedes Schieberegister SR insgesamt 40 Abgriffe aufweist. Die ins- gesamt 80 Abgriffe der beiden Schieberegister SR werden einer Multiplexiereinheit MUXEl zugeführt.
Die Multiplexiereinheit MUXEl umfaßt 40 Multiplexer MUX1 , MUX2, ..., MUX40. Jeder Multiplexer MUX1 , MUX2 , ..., MUX40 hat zwei Multiplexereingänge . Der erste Abgriff der ersten Speicherzelle Tl des Schieberegisters SR im I -Signalpfad führt zu dem einen Multiplexereingang des ersten Multiplexers MUX1 und der erste Abgriff der ersten Speicherzelle Tl des Schieberegisters SR im Q-Signalpfad führt zu dem zweiten Multiplexereingang des ersten Multiplexers MUX1. In analoger Weise führen jeweils die zweiten Abgriffe der beiden Schieberegister SR zu den beiden Multiplexereingängen des zweiten Multiplexers MUX2 , ..., und die beiden vierzigsten Abgriffe der Schieberegister SR führen zu den beiden Multiplexereingängen des vierzigsten Multiplexers MUX40.
Die Multiplexer MUX1 , MUX2 , ..., MUX40 leiten abwechselnd die von den I- und den Q-Signalkomponenten stammenden Signal - Wörter weiter, wobei zur Zwischenspeicherung der momentan gerade nicht am Multiplexerausgang ausgegebenen Signalwörter Zwischenspeicher in den Multiplexern MUX1 , MUX2 , ..., MUX40 vorhanden sind.
An den vierzig Ausgängen der Multiplexiereinheit MUXEl stehen mit einer Signalrate von 2/Tc (abwechselnd) Signalwörter der Wortbreite qsc der I- und Q-Signalkomponenten bereit.
Die vierzig Ausgänge der Multiplexiereinheit MUXEl werden ei- ner Filterschaltung FSl zugeführt. Die Filterschaltung FSl umfaßt vierzig Multiplizierer Ml, M2 , ..., M40 sowie vier Addierer ADD1, ADD2, ADD3 und ADD4. Jeder Multiplizierer Ml, M2 , ..., M40 multipliziert ein Ausgangssignal der Multiplexiereinheit MUXEl mit einem einzigen Filterkoeffizienten gl r g2, ..., go • Die Filterkoeffizienten gl t g2, ..., g0 werden
(in diesem speziellen Ausführungsbeispiel) durch eine 4-fache Überabtastung der auf ein Zeitintervall von 10 Tc begrenzten Impulsantwort der zugrundeliegenden spektralen Filterfunktion (d.h. der Übertragungsfunktion der Filterschaltung) bestimmt.
Die spektrale Filterfunktion kann beispielsweise eine RRC- (root raised cosine) Funktion sein. Eine solche Filterschaltung wird als RRC-Filterschaltung bezeichnet. Die RRC-Funk- tion ist durch die Funktion (1 + cos x) 1 2/21 2 im Bereich 0 < x < π definiert, welche den funktionalen Zusammenhang der Filterflanke des RRC im Spektralbereich wiedergibt.
Die Addierer ADD1, ADD2 , ADD3 , ADD4 weisen jeweils zehn Addiereingänge auf . Die zehn Addiereingänge des Addierers ADD1 sind mit den Ausgängen der Multiplizierer Ml, M5 , M9, M13, Ml7, M21, M25, M29, M33 und M37 verbunden, die Eingänge des Addierers ADD2 sind mit den Ausgängen der Multiplizierer M2 , M6, MIO, M14, M18, M22, M26, M30, M34, M38 verbunden, usw. Mit anderen Worten sind die vier Addierer ADD1 bis ADD4 den vier Abgriffen 1 bis 4 jedes Speicherplatzes Tl, T2 , ..., T10 der Schieberegister SR zugeordnet.
Der Filterschaltung FSl ist eine Demultiplexiereinheit DMUXE1 nachgeschaltet. Die Demultiplexiereinheit DMUXE1 demultiplext zunächst jeden Addiererausgang in bezug auf die I- und Q-Signalkomponenten und multiplext anschließend jeweils getrennt für die I -Signalkomponente und die Q-Signalkomponente die Ergebnisse der vier Addierer ADD1 , ADD2 , ADD3 , ADD4. Auf diese Weise entsteht an dem Ausgang AI der Einrichtung zur spektralen Signalerformung ESFl eine vierfach überabgetastete (gefilterte) I -Signalkomponente und an dem Ausgang A2 eine vierfach überabgetastete (gefilterte) Q-Signalkomponente .
Eine zweite Ausfuhrungsform der erfindungsgemäßen Einrichtung zur spektralen Signalformung ESF2 ist in Fig. 6 dargestellt. Die Einrichtung ESF2 weist ebenfalls zwei Schieberegister SR mit jeweils zehn Speicherplätzen Tl, T2 , ..., T10 und vier Abgriffen pro Speicherplatz auf. Im Unterschied zu ESFl umfaßt ESF2 nur zehn Multiplexer MUX1 ' , MUX2 ' , ..., MUX10 ' , die in einer Multiplexiereinheit MUXE2 zusammengefaßt sind. Jeder Multiplexer MUX1 ' , MUX2 ' , ..., MUX10 ' weist acht Multiple- xereingänge und eine entsprechende Anzahl von Pufferspeichern auf. Die acht Multiplexereingänge des Multiplexers MUX1 ' sind mit den vier Abgriffen der beiden Speicherplätze Tl bezüglich der I-Signalkomponente und der Q-Signalkomponente verbunden, usw. Mit anderen Worten ist jeder der zehn Multiplexer MUX1 ' , MUX2 ' , ..., MUX10' genau einem Speicherplatzpaar Tl, Tl ; T2 , T2 ; ... ; T10, T10 der beiden Schieberegister SR zugeordnet.
Die zehn Ausgänge der Multiplexiereinheit MUXE2 weisen jeweils eine Signalrate von 8/Tc auf.
Die zehn Ausgänge der Multiplexiereinheit MUXE2 werden einer Filterschaltung FS2 zugeführt. Die Filterschaltung FS2 umfaßt zehn Multiplizierer Ml, ..., MIO sowie einen Addierer ADD, dessen zehn Eingänge mit den Ausgängen der Multiplizierer Ml, ... , MIO in Verbindung stehen.
Die Multiplizierer Ml, ..., MIO arbeiten im 8-fachen Chipzeittakt. Die in Fig. 6 dargestellten Filterkoeffizienten gi bis g0 werden wiederum durch zehn Abtastwerte mit 4-facher Überabtastung der spektralen Filterfunktion (insbesondere RRC-Funktion) ermittelt. Im Unterschied zu der Ausführung der Filterschaltung FSl in Fig. 5 verarbeitet jeder Multiplizierer Ml, ..., MIO hier jedoch eine Sequenz von z.B. genau vier Filterkoeffizienten, d.h. der Multiplizierer Ml verarbeitet die Filterkoeffizienten g_.- , der Multiplizierer M2 verarbeitet die Filterkoeffizienten g5_8, .... und der Multi- plizierer MIO verarbeitet die Filterkoeffizienten g37- 0- Da die Multiplizierer Ml, ..., MIO wie erwähnt im 8-fachen Chipzeittakt arbeiten, verarbeitet jeder Multiplizierer Ml, ..., MIO sequentiell vier Abtastungen der I-Signalkomponente und danach vier Abtastungen der Q-Signalkomponente jeweils mit den ihm zugeordneten Filterkoeffizienten. In dem Addierer ADD werden anschließend die Ergebnisse der zehn Multiplizierer Ml, ..., MIO addiert.
Die Additionsergebnisse werden mit einer Signalrate von 8/Tc einem Demultiplexer DMUXE2 mit Pufferspeicher mitgeteilt. Der Demultiplexer DMUXE2 teilt die Additionsergebnisse wieder in die I-Signalkomponente und die Q-Signalkomponente auf, welche mit einer Signalrate von 4/Tc an den Ausgängen AI bzw. A2 der Einrichtung zur spektralen Signalformung ESF2 ausgegeben wer- den.
Beiden Ausführungsformen ESFl und ESF2 ist gemeinsam, daß die Multiplizierer der Filterkoeffizienten im Multiplexverfahren sowohl für die I- als auch die Q-Signalkomponente verwendet werden, wodurch eine Reduktion der Anzahl der implementierten Multiplizierer erreicht wird. Bei einer mit den Ausführungsformen ESFl und ESF2 vergleichbaren Gedächtnislänge von 10 Tc würde die in Fig. 3 gezeigte bekannte Filterstruktur 2 x 40 Multiplizierer umfassen, wohingegen sich in der Aus- führung der ESFl (siehe Fig. 5) eine Anzahl von 1 x 40 Multiplizierern und in der Ausführung der ESF2 (siehe Fig. 6) eine Anzahl von 1 x 10 Multiplizierern ergibt. Mit der Reduktion der Anzahl der Multiplizierer reduziert sich gleichzeitig die benötigte Chipfläche für den Senderchip.
Eine weitere vorteilhafte Gemeinsamkeit beider Ausführungsformen besteht darin, daß die Eingangssignale für die Einrichtung zur spektralen Signalformung ESFl/2 nicht (mehr) überabgetastet vorliegen müssen, die Ausgangssignale der Ein- heiten ESFl/2 jedoch mit der für die weitere Signalverarbeitung erforderlichen (z.B. 4-fachen) Überabtastung bereitgestellt werden.

Claims

Patentansprüche
1. Einrichtung zur spektralen Formung eines wertediskreten Sendesignals in einem Funksender (SE) , - mit einem ersten Eingang (El) zur Entgegennahme einer Inphasal-Komponente des Sendesignals und mit einem zweiten Eingang (E2) zur Entgegennahme einer Quadratur-Komponente des Sendesignals,
- mit einer eine Mehrzahl von Multiplizierern (Ml, ..., M40) umfassenden wertediskreten Filterschaltung (FSl, FS2), und
- mit einem ersten Ausgang (AI) zum Bereitstellen der gefilterten Inphasal-Komponente des Sendesignals und mit einem zweiten Ausgang (A2) zum Bereitstellen der Quadratur-Komponente des Sendesignals, d a d u r c h g e k e n n z e i c h n e t, daß im Signalweg hinter den beiden Eingängen (El, E2 ) und vor der Filterschaltung (FSl, FS2) eine Multiplexiereinheit (MUXEl, MUXE2) und im Signalweg hinter der Filterschaltung (FSl, FS2) und vor den beiden Ausgängen (AI, A2 ) eine Dermal - tiplexiereinheit (DMUXE1, DMUXE2 ) angeordnet sind.
2. Einrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß einem einzelnen Multiplizierer (Ml, ..., MIO) mehrere Filterkoeffizienten zugeordnet sind.
3. Einrichtung nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t, daß die an den Eingängen (El, E2 ) anliegenden Inphasal- und Quadratur-Signalkomponenten jeweils einem Schieberegister (SR) bestehend aus N Speicherplätzen (Tl, ..., T10) und M Signalabgriffen pro Speicherplatz (Tl, ..., T10) zugeführt werden, und daß die Multiplexiereinheit (MUXEl) aus N x M Multiplexern (MUX1, MUX40) mit jeweils zwei Multiplexer- eingängen aufgebaut ist.
4. Einrichtung nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß die an den Eingängen (El, E2) anliegenden Inphasal- und Quadratur-Signalkomponenten jeweils einem Schieberegister (SR) bestehend aus N Speicherplätzen (Tl, ..., T10) und
M Signalabgriffen pro Speicherplatz (Tl, ..., T10) zugeführt werden, und daß die Multiplexiereinheit aus N Multiplexern mit jeweils 2 x M Multiplexiereingängen aufgebaut ist.
5. Einrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß die den Multiplizierern (Ml, ..., M40) zugeordneten Filterkoeffizienten derart gewählt sind, daß die Filterschaltung (FSl, FS2) eine RRC-Filterung durchführt.
6. Einrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß die an den Ausgängen (AI, A2) bereitgestellten Inphasal - und Quadratur-Komponenten eine mehrfach, insbesondere 4-fach höhere Abtastrate als die entsprechenden Inphasal- und Quadratur-Komponenten an den Eingängen (El, E2) aufweisen.
7. Verfahren zur spektralen Formung eines wertediskreten Sendesignals in einem Funksender, - bei dem eine Inphasal-Komponente und eine Quadratur-Komponente des Sendesignals in einer eine Mehrzahl von Multiplizierern (Ml, ..., M40) umfassenden wertediskreten Filterschaltung (FSl, FS2) gefiltert werden, d a d u r c h g e k e n n z e i c h n e t, daß im Signalweg vor der Filterung eine Multiplexierung der Inphasal- und Quadratur-Komponenten des Sendesignals durchgeführt wird.
8. Verfahren nach Anspruch 7 d a d u r c h g e k e n n z e i c h n e t, daß einem einzelnen Multiplizierer (Ml, ..., MIO) mehrere Filterkoeffizienten zugeordnet sind.
9. Verfahren nach Anspruch 7 oder 8 d a d u r c h g e k e n n z e i c h n e t, daß die Filterschaltung (FSl, FS2) eine RRC-Filterung durch- führt .
PCT/DE2000/003346 1999-09-29 2000-09-22 Einrichtung und verfahren zur spektralen formung eines sendesignals in einem funksender WO2001024354A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE50001744T DE50001744D1 (de) 1999-09-29 2000-09-22 Einrichtung und verfahren zur spektralen formung eines sendesignals in einem funksender
EP00967607A EP1221194B1 (de) 1999-09-29 2000-09-22 Einrichtung und verfahren zur spektralen formung eines sendesignals in einem funksender
JP2001527428A JP3451253B2 (ja) 1999-09-29 2000-09-22 無線トランスミッタにおける伝送信号のスペクトル形成をするためのデバイスおよび方法
AT00967607T ATE237192T1 (de) 1999-09-29 2000-09-22 Einrichtung und verfahren zur spektralen formung eines sendesignals in einem funksender
DK00967607T DK1221194T3 (da) 1999-09-29 2000-09-22 Indretning og fremgangsmåde til spektral formning af et transmissionssignal i en radiosender
US10/112,292 US7072422B2 (en) 1999-09-29 2002-03-28 Device and method for spectrally shaping a transmission signal in a radio transmitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19946722.6 1999-09-29
DE19946722A DE19946722A1 (de) 1999-09-29 1999-09-29 Einrichtung und Verfahren zur spektralen Formung eines Sendesignals in einem Funksender

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/112,292 Continuation US7072422B2 (en) 1999-09-29 2002-03-28 Device and method for spectrally shaping a transmission signal in a radio transmitter

Publications (2)

Publication Number Publication Date
WO2001024354A2 true WO2001024354A2 (de) 2001-04-05
WO2001024354A3 WO2001024354A3 (de) 2001-08-16

Family

ID=7923747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003346 WO2001024354A2 (de) 1999-09-29 2000-09-22 Einrichtung und verfahren zur spektralen formung eines sendesignals in einem funksender

Country Status (8)

Country Link
US (1) US7072422B2 (de)
EP (1) EP1221194B1 (de)
JP (1) JP3451253B2 (de)
CN (1) CN1149804C (de)
AT (1) ATE237192T1 (de)
DE (2) DE19946722A1 (de)
DK (1) DK1221194T3 (de)
WO (1) WO2001024354A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7058383B2 (en) * 2003-05-30 2006-06-06 Ipr Licensing, Inc. Signal interfacing techinques to simplify integrated circuit radio designs
US8799037B2 (en) 2010-10-14 2014-08-05 Palto Alto Research Center Incorporated Computer-implemented system and method for managing motor vehicle parking reservations
US20120288035A1 (en) * 2011-05-11 2012-11-15 Udo Karthaus Base-band to radio frequency up-converter
JP6102262B2 (ja) * 2013-01-07 2017-03-29 富士通株式会社 信号処理装置および信号処理方法
CN105915483B (zh) * 2016-06-06 2019-02-15 西安电子科技大学 基于fpga的非递归cpm调制器及解调器
KR102638529B1 (ko) 2023-08-17 2024-02-20 주식회사 파워이십일 전력 계통 어플리케이션과의 인터페이스를 위한 온톨로지데이터 관리 시스템 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458385A2 (de) * 1990-05-18 1991-11-27 Siemens Telecomunicazioni S.P.A. Rein digitalisches Verfahren zur Erzeugung mehrstufiger Modulationssignale
EP0693844A2 (de) * 1994-07-20 1996-01-24 Nippon Telegraph And Telephone Corporation Digitaler Quadraturmodulator
US5818867A (en) * 1996-09-09 1998-10-06 Itt Industries, Inc. QPSK/QBL-MSK waveform enhancement
EP0944215A2 (de) * 1998-03-19 1999-09-22 General Instrument Corporation Nyquist-Filterung in Quadraturamplitudenmodulatoren

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358853A (en) 1981-01-22 1982-11-09 Codex Corporation Digital modem transmitter
US4644561A (en) * 1985-03-20 1987-02-17 International Mobile Machines Corp. Modem for RF subscriber telephone system
DE4313772C1 (de) 1993-04-27 1994-06-01 Ant Nachrichtentech Nichtrekursives Halb-Band-Filter
US5783974A (en) * 1997-01-27 1998-07-21 Hitachi America, Ltd. Digital interpolation up sampling circuit and digital modulator using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458385A2 (de) * 1990-05-18 1991-11-27 Siemens Telecomunicazioni S.P.A. Rein digitalisches Verfahren zur Erzeugung mehrstufiger Modulationssignale
EP0693844A2 (de) * 1994-07-20 1996-01-24 Nippon Telegraph And Telephone Corporation Digitaler Quadraturmodulator
US5818867A (en) * 1996-09-09 1998-10-06 Itt Industries, Inc. QPSK/QBL-MSK waveform enhancement
EP0944215A2 (de) * 1998-03-19 1999-09-22 General Instrument Corporation Nyquist-Filterung in Quadraturamplitudenmodulatoren

Also Published As

Publication number Publication date
WO2001024354A3 (de) 2001-08-16
DK1221194T3 (da) 2003-06-02
CN1149804C (zh) 2004-05-12
DE19946722A1 (de) 2001-04-05
DE50001744D1 (de) 2003-05-15
ATE237192T1 (de) 2003-04-15
US7072422B2 (en) 2006-07-04
JP2003510938A (ja) 2003-03-18
EP1221194A2 (de) 2002-07-10
EP1221194B1 (de) 2003-04-09
CN1377546A (zh) 2002-10-30
US20020131520A1 (en) 2002-09-19
JP3451253B2 (ja) 2003-09-29

Similar Documents

Publication Publication Date Title
DE69719886T2 (de) Orthogonales Modulationsverfahren
DE69434231T2 (de) Signalubertragung mit veranderlicher datenrate in einem spreizspektrum kommunikationssystem unter verwendung von nebenklassen (coset)-kodierung
DE69533086T2 (de) Kodierung für mehrfach-zugriff unter verwendung limitierter sequenzen für mobile radio nachrichtenübertragung
DE69725646T2 (de) Spreizspektrumnachrichtenübertragungssystem
DE69717394T2 (de) Verfahren zur mit IS-95 Standard kompatiblen Breitbandkommunikation
DE69619268T2 (de) Effizienter apparat zur gleichzeitigen modulierung und digitalen strahlformung für eine gruppenantenne
DE69635689T2 (de) CDMA-Basisstationssender
DE69838242T2 (de) Komplexes orthogonales Spreizverfahren für Mehrkanäle und zugehörende Vorrichtung
DE60126087T2 (de) Kommunikationsgerät mit konfigurierbarem sigma-delta modulator
DE10027216B4 (de) Vorrichtung und Verfahren zum Modulieren einer Datennachricht durch Verwendung von Codes mit orthogonalem veränderlichem Spreizungsfaktor (OVSF) in einem Mobilkommunikationssystem
EP1825646B1 (de) Konvertieren eines komplexwertigen Startsignals in ein komplexwertiges Endsignal mit einer höheren oder niedrigeren Frequenz
DE60033705T2 (de) Effizienter Spreizer für Spreizspektrumübertragungssysteme
EP1216516B1 (de) Verfahren und vorrichtung zum erzeugen von spreizcodierten signalen
DE69934105T2 (de) Amplitudenbegrenzung in einem CDMA System
WO2006063766A1 (de) Frequenzumsetzer zum spektralen umsetzen eines startsignals und verfahren zur spektralen umsetzung eines startsignals
DE112009001199T5 (de) Modulator mit doppelter Funktion
EP1815589B1 (de) Mischer zum mischen eines signals und verfahren zum mischen eines signals
EP1221194B1 (de) Einrichtung und verfahren zur spektralen formung eines sendesignals in einem funksender
DE102008027389B4 (de) Sendeschaltung und Verfahren zum Senden einer zu übertragenden Bitfolge
DE60313901T2 (de) Mehrstufige Entspreizung von Spreizspektrum-Kommunikationssignalen
DE102004064108B4 (de) Verfahren und Schaltung zum Begrenzen der Leistung eines aus spreizkodierten Signalen zusammengesetzten Signals
EP1317803A2 (de) Verfahren zur systemunabhängigen digitalen auswertung von mobilkommunikations-empfangssignalen verschiedener mobilfunkstandards
EP1219039B1 (de) Einrichtung und verfahren zur verarbeitung eines digitalen datensignals in einem cdma-funksender
EP1234399B1 (de) Verfahren und einrichtung zur verarbeitung eines digitalen datensignals in einem cdma-funksender
DE69625034T2 (de) Übertragungseinrichtung, sender, empfänger und übertragungsverfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000967607

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 527428

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10112292

Country of ref document: US

Ref document number: 008135576

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000967607

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000967607

Country of ref document: EP