WO2001020294A2 - Verfahren und vorrichtung zur quantitativen gasanalyse - Google Patents

Verfahren und vorrichtung zur quantitativen gasanalyse Download PDF

Info

Publication number
WO2001020294A2
WO2001020294A2 PCT/DE2000/003254 DE0003254W WO0120294A2 WO 2001020294 A2 WO2001020294 A2 WO 2001020294A2 DE 0003254 W DE0003254 W DE 0003254W WO 0120294 A2 WO0120294 A2 WO 0120294A2
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
measuring chamber
radiation
sample
adapter
Prior art date
Application number
PCT/DE2000/003254
Other languages
English (en)
French (fr)
Other versions
WO2001020294A3 (de
Inventor
Holger Müller
Udo Schmale
Original Assignee
Mueller Holger
Udo Schmale
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mueller Holger, Udo Schmale filed Critical Mueller Holger
Priority to EP00967587A priority Critical patent/EP1212598A2/de
Priority to US10/088,428 priority patent/US6903823B1/en
Priority to CA002384786A priority patent/CA2384786A1/en
Publication of WO2001020294A2 publication Critical patent/WO2001020294A2/de
Publication of WO2001020294A3 publication Critical patent/WO2001020294A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • G01N2033/4977Physical analysis of biological material of gaseous biological material, e.g. breath metabolic gass from microbes, cell cultures, plant tissues and the like

Definitions

  • the invention relates to a method and a device for quantitative gas analysis with the features of the preamble of claim 1 and of the claim.
  • a gas sample is taken from a sample bottle.
  • the CO 2 concentration is then determined using gas chromatography.
  • this procedure is very labor-intensive, and errors can occur when transferring the gas sample into the gas chromatograph.
  • the atmosphere above the sample is influenced by gas sampling.
  • the sampling syringe must be decontaminated and disposed of after each sampling.
  • a gas sample is taken from the sample bottle using a closed pump system that contains a gas analyzer.
  • the atmosphere of the sample bottle is also changed.
  • the closed pump system When examining several samples, the closed pump system must be decontaminated in a technically complex manner after each measurement.
  • the sample bottle is placed in the beam path of an infrared absorption measuring unit.
  • the C0 2 concentration is determined by the attenuation of the radiation at a characteristic wavelength, for example 4.24 ⁇ m.
  • the measurement result can be falsified by condensed moisture. Shaking the bottles can contaminate the inside of the bottle, which in turn affects the measurement. Therefore quantitative measurements are only possible with high technical effort and high costs.
  • the invention is therefore based on the object of creating a generic method and a device for carrying out the method, so that gas lyses and especially quantitative measurements of gas concentrations can be carried out permanently, trouble-free and inexpensively.
  • the object is achieved according to the invention in the above-mentioned generic method in that at least one radiation source and at least one detector device are fixed to the measuring chamber in a defined orientation and that the measuring radiation emitted by the radiation source passes through the measuring chamber at least once and after exiting the measuring chamber is detected by the detector device.
  • the sample atmosphere to be measured from the sample system containing a sample which has reached the separate measuring chamber by diffusion, is passed through by the measuring radiation in the measuring chamber at least once.
  • Neither a removal of the gas sample itself nor a measuring or detection device within the measuring chamber is required.
  • the diffusion connection takes place with a seal against the ambient atmosphere, so that short-term as well as continuous, longer-lasting measurements are reliably possible without interference from moisture or dirt.
  • the establishment of the diffusion connection between the sampling atmosphere contained in a sample system and a measuring chamber via a measuring adapter that can be separated from the sensor device is not limited to a specific sample system; many types of different sample systems such as sample bottles or crimp neck bottles are suitable, but also open sample systems such as pipes and pipes the like, for a measurement in the context of the method according to the invention.
  • the procedure allows Order of different sensor devices for different measuring adapters and measuring chambers.
  • a diffusion line, a cannula or simple openings which are formed in a measuring chamber bottom of a measuring chamber fitted as a stopper in a bottle neck, can be used.
  • the measurement itself is carried out after setting the diffusion equilibrium between the gas in the measuring chamber and the sample atmosphere.
  • the method offers a simple and inexpensive way of analyzing the sample atmosphere quantitatively. Elaborate pumping devices and the like, which could be used repeatedly, but would have to be decontaminated after each use, are not required.
  • the preferably one-time use of the measuring adapter (disposable article), which can be produced inexpensively as a mass article, prevents cross-contamination of different samples.
  • the measuring adapter can be heated with a required amount of heat.
  • the radiation source and the detector device can be defined in a defined orientation on the measuring chamber, that the measuring chamber of at least one for measuring radiation of the radiation source permeable cover is limited, and that the measuring radiation emitted by the radiation source after passage through the measuring chamber is detected by the detector device.
  • This device does not require any sensors or other measuring devices in the measuring chamber, since outside the measuring chamber a change in the measuring radiation is detected after it has passed through the measuring chamber.
  • the defined arrangement of the radiation source and the detector device on the measuring chamber ensures an exact, reproducible measurement result, it being expedient if the measuring chamber is contained in a measuring adapter which can be attached to the sample system.
  • the device it is possible to create a diffusion connection to any sample system by means of a simple, inexpensive measuring adapter, so that the respective sample atmosphere can get into the measuring chamber without taking the gas sample from the sample system.
  • the sample atmosphere is kept ready separated from the ambient atmosphere and can be measured and quantitatively analyzed by the separate sensor device arranged outside the measuring chamber.
  • the radiation source and the detector device are arranged in a sensor head which can be coupled to the measuring adapter. Thanks to the removable sensor head, many identical or different sample systems or sample atmospheres can be examined with just one sensor head.
  • the measuring adapter can permanently, e.g. B. stay in diffusion contact with the sample system for several weeks, the measurement can be carried out continuously or discontinuously with a sensor head.
  • the measuring adapter can preferably contain the measuring chamber. It is also expedient that the radiation source is contained in the measuring adapter, also together with the measuring chamber.
  • the measuring adapter has a universal connection for different sample systems.
  • Such a measuring adapter can be used as a disposable measuring adapter due to its inexpensive manufacture. Complicated decontamination of the measuring device is therefore eliminated.
  • the measuring adapter can also be used on open sample systems, e.g. Pipelines are coupled.
  • the measuring chamber can be designed differently and can be arranged in different positions with respect to the radiation source and the detector device.
  • the measuring chamber contains a first radiation-permeable cover or disk at the entrance of the measuring radiation into the measuring chamber and a second radiation-permeable cover at the exit of the measuring radiation from the measuring chamber.
  • the measuring radiation enters the measuring chamber through the first disk and leaves it after passing through the second cover in the direction of the detector device. If the first cover and the second cover on the measuring chamber are arranged approximately opposite one another, the measuring radiation can traverse the measuring chamber in a straight path, the measuring chamber in particular between see the radiation source and the detector device can be arranged.
  • the measuring radiation can also be directed by optical elements from the radiation source to the measuring chamber and / or from the measuring chamber to the detector device, so that different arrangements of the radiation source and the detector device can be selected.
  • the measuring chamber is delimited on the one hand by the transparent cover adjacent to the radiation source and the detector device and on the other hand by a measuring chamber wall reflecting the measuring radiation, so that the measuring radiation emitted by the radiation source is reflected after passing through the measuring chamber to the detector device.
  • the radiation source and the detector device can be arranged in the sensor head next to one another with an approximately parallel measurement beam exit from the radiation source and measurement beam input into the detector device.
  • the measuring chamber opens in a funnel or pyramid shape to a coupled sensor head and the measuring chamber walls reflect the measuring radiation. This results in a double reflection of the measuring radiation on the opposite funnel walls.
  • the reflecting measuring chamber wall is a lower reflection plate with openings as a diffusion connection parallel to the upper cover.
  • the radiation source and the detector device can be arranged at an angle to one another, so that the Measurement radiation is directed from the reflection plate directly to the detector device.
  • the measuring adapter is designed as a stopper for a sample bottle, which can be inserted in particular into a bottle neck of the sample bottle.
  • a sample bottle is e.g. B. a standardized crimp neck bottle.
  • the length of the measuring chamber can be comparatively long, so that gases with a low absorption coefficient can be monitored quantitatively due to the long path of the measuring radiation through the measuring chamber.
  • a diffusion connection can be formed in the measuring chambers described in that the reflecting measuring chamber wall or reflection plate has at least one opening, the opening diameter being a determining factor for the time period for setting the diffusion equilibrium.
  • the sample system or the sample bottle is closed with an elastomeric closure and the diffusion connection of the measuring adapter is a cannula for penetrating the closure.
  • the size or diameter of the measuring chamber is not dependent on or limited by the size of the bottle neck. In order to achieve the equilibrium between the sample atmosphere and the gas atmosphere in the measuring chamber in the shortest possible time, it is advisable to make the diameter of the cannula as large as possible, its length as short as possible and the volume of the measuring chamber as small as possible. The optimized dimensions are determined by the kinetics of the sample to be examined. IC
  • one source can be used as a reference to compensate for the aging of the other radiation sources, since it is not used as often and the aging is therefore negligible. In principle, this is possible with any gas concentration.
  • the measuring process can be carried out after a z.
  • B. automatic switchover to the second radiation source can be continued essentially without interruption.
  • the sensor device can have at least two detector devices, so that a reference measurement can be carried out simultaneously.
  • the radiation source irradiates both detectors to the same extent (same light path), one detector providing a concentration-dependent signal in the presence of the gas concentration to be measured, while the other detector serves only as a reference and therefore does not provide a concentration-dependent signal.
  • the measuring adapter and the sensor head which are designed as separate components of the device according to the invention, are expediently brought into a defined position with respect to one another via their housing or an integrated positioning unit for carrying out a measurement and then mechanically stably connected to one another by means of a coupling device. It is advantageous if the coupling device is provided essentially on the sensor head, since in In this case, the measuring adapter is constructed more simply and can be manufactured more cost-effectively.
  • the coupling device can also be arranged exclusively on the sensor head or can be a separate component.
  • a broadband thermal emitter LEDs (light emitting diodes), diode lasers and in particular infrared emitters or UV light emitters can be provided as the radiation source.
  • the radiation-permeable cover or pane can consist of soda-lime glass, borosilicate glass, quartz glass, silicon or sapphire, calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), germanium (Ge) or zinc selenide (ZnSe).
  • sensor heads that are equipped with different sensor devices can be provided for coupling to the measuring adapter or adapters.
  • the gas concentration measurement by a sensor device in the measuring chamber is preferably carried out by means of gas-specific absorption of electromagnetic radiation.
  • the measuring adapter is designed such that the electromagnetic radiation emitted by the sensor head in the measuring chamber interacts with the diffused sample atmosphere and can then be detected by the sensor head.
  • the simple and mass-producible form of the measuring adapter ters e.g. B. as a plastic injection molded part, after a one-time type calibration of the sensor head with a measuring adapter, no further calibration for identical measuring adapters is necessary.
  • Figure 1 is a side view in section and in cal atic representation of an inventive device on a sample bottle.
  • FIG. 2 shows a sectional view of an exemplary embodiment of the device according to the invention
  • FIG. 3 shows the measuring adapter of the device in a sectional view along the plane A-A in FIG. 2;
  • FIG. 4 shows a further embodiment of the measuring adapter of the device in a sectional view along the plane A-A in FIG. 2;
  • FIG. 5 shows a sectional view of a further exemplary embodiment of the device according to the invention.
  • FIG. 6 shows the measuring adapter of the device in a sectional view along the plane B-B in FIG. 5;
  • FIG. 7 shows a top view of the device with a coupling device; 8 shows a sectional view of a further exemplary embodiment of the device according to the invention;
  • FIG. 10 is a top plan view of an exemplary embodiment of the measuring adapter of the device.
  • FIG. 11 is a top plan view of a further exemplary embodiment of the measuring adapter of the device.
  • FIG. 13 shows a bottom view of an exemplary embodiment of the sensor head of the device
  • 15 is a bottom view of a further embodiment of the sensor head of the device.
  • FIG 16 shows a side view in section of a further exemplary embodiment, in which the measuring adapter contains the radiation source.
  • Fig. 17 in a sectional view a further embodiment in which the measuring adapter a pipe is attached.
  • FIG. 18 shows a measurement curve of the device according to the invention for monitoring the CO 2 production of a yeast culture.
  • a solid, semi-solid, liquid or gaseous sample 1 to be examined is located in a sample bottle 2, which is sealed with an elastomeric closure, e.g. B. a septum 10, and a crimp cap 11 attached to the bottle neck 21 is firmly closed.
  • a sample atmosphere 3 forms above sample 1 within sample bottle 2.
  • An exemplary embodiment of a device for quantitative gas analysis contains a measuring adapter 4 and a sensor head 5, which is connected by a flexible cable 6 to an electronic measuring and control device 7.
  • the measuring adapter 4 has a housing 8 with which it can be fixed on the sample bottle 2, as well as a measuring chamber 9 formed in the housing 8 and a cannula 20 connected to the measuring chamber 9.
  • the cannula 20 After piercing the septum 10, establishes a connection between the interior of the sample bottle 2 and the measuring chamber 9, so that the sample atmosphere 3 can reach the measuring chamber 9 by means of diffusion.
  • the gas atmosphere within the measuring chamber 9 is thus in a diffusion equilibrium with the sample atmosphere 3 in the sample bottle 2.
  • the time ⁇ required for the establishment of the equilibrium is essentially determined by the length and the transverse Cut surface of the cannula 20 and the volume of the measuring chamber 9 determined. In order to ensure that the change in the sample composition is recorded over time, the time ⁇ must be less than the changes over time in the sample composition. This condition is taken into account in the design of the cannula 20 and the measuring chamber 9.
  • the measurement of the gas concentration in the measuring chamber 9 takes place with the aid of the sensor head 5, which has a coupling device 14 such as, for. B. has a screw connection shown in Fig. 1, which ensures a firm connection between the sensor head 5 and the measuring adapter 4.
  • the sensor head 5 contains a housing 12 with a sensor device 13, which is assigned to the measuring chamber 9 and enables continuous or quasi-continuous contactless measurement and monitoring of the concentration and composition of the gas atmosphere in the measuring chamber 9, from which conclusions can be drawn about the properties of sample 1 in the sample bottle 2 can be pulled.
  • Fig. 2 shows an embodiment of the measuring chamber 9 and the sensor device 13 of the device according to the invention.
  • the sensor device 13 contains a radiation source 16 for generating electromagnetic radiation in the relevant spectral range and a detector device 17 for detecting the residual radiation after passing through the measuring chamber 9.
  • Die Radiation source 16 and detector device 17 are constructed in such a way that preferably only the selective wavelength-specific attenuation of the radiation intensity due to the interaction with the gas molecules to be detected in the measuring chamber 9 will measure.
  • a wavelength-selecting element for. B. an optical filter.
  • the measuring chamber 9 is covered on its upper side facing the detector device 17 with a window which is permeable to the measuring radiation, in particular an optical window 15, which is sealed or fixed on the housing 8 with a seal 18, which can also be an adhesive.
  • the optical window 15 consists of a material that is transparent in the relevant spectral range.
  • the window 15 can e.g. B. consist of a piece of monocrystalline silicon and can also have an anti-reflective layer.
  • the inner walls 22 of the measuring chamber 9 are shaped and machined in such a way that reflection and continuation of the radiation emitted by the radiation source 16 to the detector device 17 is ensured.
  • the reflecting walls 22 of the measuring chamber 9 can be arranged at an angle of 45 ° to the direction of the emitted and reflected radiation 24, as shown in FIG. 2.
  • the z. B. are formed as mutually associated circumferential shoulders 23, a releasable, yet mechanically strong, stable and reproducible alignment and positioning of the sensor head 5 on the measuring adapter 4 and thus the sensor device 13 on the measuring chamber 9 is achieved. From A high quality mechanical processing of the contacting surfaces resulting precision of this coupling ensures quantitative gas concentration measurements in the measuring chamber 9 even after repeated coupling / uncoupling of the sensor head 5 to the measuring adapter 4.
  • FIG. 3 shows the measuring adapter 4 according to FIG. 2 with a conical or funnel-shaped measuring chamber 9, in which the cone angle of the walls 22 is 90 ° and which is covered by a round window 15.
  • FIG. 4 shows a further embodiment of the measuring adapter 4 according to FIG. 2 with a measuring chamber 9, rectangular in plan view on the upper side, with two plane walls 22 reflecting the incident radiation 24 to the detector device 17 in a wedge shape at a wedge angle of 90 ° to one another.
  • the measuring chamber 9 is covered by a rectangular window 15.
  • the radiation source 16 of the sensor device 13 and the detector device 17 are spaced apart from one another on an optical axis 25 and arranged opposite one another.
  • the measuring chamber 9 is tubular and is gas-tightly covered by two opposite optical windows 15. If the sensor head 5 is arranged on the measuring adapter 4, the measuring chamber 9 is between the
  • FIG. 6 shows the housing 8 of the measuring adapter 4 according to FIG. 5 with the tubular measuring chamber 9 and the two windows 15.
  • Fig. 7 shows an embodiment of the coupling device 14 as a closure part which is pivotally mounted on the housing 12 of the sensor head 5 and can be locked with a recess 19 on a pin 26 on the housing 8 of the measuring adapter 4, around the sensor head 5 on the measuring adapter 4 in a defined position keep locked.
  • the material of the windows 15 used is such that the electromagnetic radiation can fall through the windows 15 onto the detector device 17.
  • Lime-soda glass and borosilicate glass are suitable up to a wavelength range of approx. 5 ⁇ m and quartz glass up to approx. 2.5 ⁇ m.
  • silicon or sapphire up to 6.7 ⁇ m
  • Calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), germanium (Ge) or zinc selenide (ZnSe) can also be used.
  • the optical filter can also be used as a window material.
  • the windows used can be provided with an anti-reflection layer.
  • the concentration range of the gas to be detected can also be specified by the length of the radiation path 24 or the light path of the light beam in the measuring chamber 9.
  • a measuring chamber can be used in which the light path is extended by multiple reflections. For this purpose a variety of different arrangements.
  • the measuring adapter 4 is in the manner of a stopper for the sample container 2, the z. B. is a crimp bottle (see Fig. 8) formed.
  • the measuring chamber 9 is, for example, cylindrical or rectangular in cross section and is arranged in the bottle neck 21 of the crimp neck bottle.
  • the underside of the measuring chamber 9, which extends into the bottle neck 21, is closed with a cover or plate 29 reflecting the measuring radiation, in which one or more openings 33 are formed on the edge, which form a diffusion connection 33 and through which the gas to be detected can get into the measuring chamber 9 from the sample bottle 2.
  • the measuring chamber 9 is covered with a cover which is permeable to the measuring radiation, such as, for. B. an optical window 15, which is attached and sealed with a seal or with an adhesive 18.
  • a seal is placed 28 on the bottle neck 21, on which a flange of the measuring adapter 4 is placed.
  • a crimp cap 11 encompasses the bottle neck 21 and is fixed by crimping both on the lower edge of the bottle neck and on the upper side of the flange.
  • the sensor head 5 contains an approximately pot-shaped housing 12 for placement on the bottle neck 21.
  • the inside diameter of the housing wall is adapted to the crimp cap 11 in such a way that it offers a guide for the sensor head 5.
  • Inside the housing 12 is the sensor device 13 with a radiation source
  • a flexible cable 6 connects the sensor device 13 to an electronic measuring and control device 7 according to the previous example.
  • the radiation source 16 and the detector device 17 are arranged at an angle ⁇ to one another such that the measuring radiation emitted by the radiation source 16 from the reflecting plate 29 to the detector device
  • the crimp cap 11 also has an opening in the region of the recess 30.
  • a locking mechanism 32 is integrated on the inner wall of the housing, which engages to fix the sensor head 5 on the measuring adapter 4 under the edge of the bottle neck. Due to the short diffusion distances, the length of which is determined by the thickness of the plate and z. B.
  • the measuring adapter 4 can have a measuring chamber 9 with a long length, ie with a large distance between the optical disk 15 and the reflecting plate 29. By the long path of the measuring radiation 24 through the measuring chamber 9, gases with a low absorption coefficient can be monitored quantitatively.
  • the measuring adapter 9 is a simple and inexpensive to produce injection molded part with a glued-on optical window, which consists for example of silicon, which can be provided with an anti-reflection layer.
  • measuring chamber 9 in the measuring adapter 4 which is designed as a plug, is round instead of channel-shaped, no positioning device is required, since all parts are arranged symmetrically to one another (FIG. 11).
  • the measuring adapter 9 can be integrated directly into a rubber seal 34, which z. B. surrounds the circumference like a sleeve or which is an applied coating with a sealing effect, so that an additional attachment of a seal is omitted (Fig. 12).
  • the sensor device 13 shown in a bottom view in FIG. 13 contains a detector 17 and a radiation source 16.
  • a detector 17 and two radiation sources 16 and 16 ⁇ are integrated in the sensor device 13.
  • one radiation source 16 is used as the measuring source and the other radiation source 16 x is used as reference source to compensate for the aging of the measuring source at certain time intervals.
  • the radiation sources 16 and 16 ⁇ are arranged symmetrically to the detector 17, so that with both radiation sources 16 and 16 ⁇ the same light path to the detector 17 is given.
  • the sensor device 13 can also include two detectors 17 and 17 and a radiation source 16 (FIG. 15). One detector is used to measure the relevant gas concentration and the other detector is used as a reference.
  • the selection of the radiation receiver or detector devices 17 and one or more radiation sources 16 can be used to achieve selective, quantitative detection of a specific gas or also a plurality of gases.
  • the selectivity of the radiation receivers can be guaranteed by the selection of certain interference filters.
  • the interference filter can, for example, only be translucent at certain wavelengths, such as e.g. B. at 4.24 microns for carbon dioxide (C0 2 ), at 3.4 microns for hydrocarbons, at
  • the interference filters can also be arranged in front of one or more radiation sources.
  • radiation sources such.
  • B. broadband thermal emitters LEDs (light emitting diodes), diode lasers, infrared emitters or UV light emitters can be used.
  • the sensor head (5) only contains the detector device (17), for example a single detector, double detector, double detector with beam splitter, and the contact pins (40), while the radiation source (16) is located in the measuring adapter.
  • the contact surfaces (36) After touching place the sensor head on the measuring adapter (4) the contact surfaces (36) so that at least one radiation source in the measuring adapter is put into operation.
  • the radiation source (16) is integrated directly into the measuring adapter (4).
  • the measuring chamber (9) is provided with an optically transparent disc (15) and sealing compound (35).
  • the radiation source is contacted with cables (38) on the contact surfaces (36) via a solder joint (37).
  • the sample atmosphere can diffuse into the measuring chamber via diffusion connections (41).
  • Bushings (39) are provided in the measuring adapter for the cables (38).
  • the sensor head (5) contains a detector device (17). This can be, for example, a single detector, a double detector or the like.
  • the sensor head is connected to measuring electronics via a flexible cable (6).
  • the radiation source (16) is put into operation via the contact pins (40) after the sensor head (5) has been put on.
  • Fig. 17 shows an embodiment in which the measuring adapter (4) is attached to a pipe (43). This makes it possible for the sample atmosphere in the pipeline to be measured without the sensor device coming into contact with it. In addition, several measuring points can be examined in succession with one sensor head.
  • the measuring adapter can be replaced at any time since it is designed as an inexpensive single-use item.
  • Several measuring adapters (4) can be connected to a pipe (43) via a connection (42). This connection can be designed, for example, as a screw thread or snap device.
  • the sensor head from FIG. 1 can be plugged onto the measuring adapter for measuring the sample atmosphere (3). 18 shows the measurement curve which was recorded with a device according to the invention.
  • Candida parapsilosis Continuous monitoring of the growth of a yeast culture, Candida parapsilosis, was carried out with the developed measuring system. The C ⁇ 2 concentration was continuously recorded. In parallel, the same yeast culture was monitored in a second flask with a photometer for half an hour.
  • the growth can also other microorganisms such as
  • Salmonella typhymurium or E. coli bacteria are monitored. Generally with this development is the presence of microorganisms that e.g. Produce and detect carbon dioxide.
  • the device can also be used to monitor an internal atmosphere of a system from the outside. It does not matter whether the system is a closed circuit or z.
  • B. is a pipe through which a gas flows.

Abstract

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur quantitativen Gasanalyse, bei dem mittels einer Sensoreinrichtung die Gasanalyse einer Probenatmosphäre durchgeführt wird, indem eine Diffusionsverbindung zwischen der in einem Probensystem enthaltenen Probenatmosphäre und einer Messkammer hergestellt wird und mit der Sensoreinrichtung die Gasanalyse der in die Messkammer diffundierten Probenatmosphäre durchgeführt wird, wobei der Sensorkopf (5) an den Messadapter (4) ankoppelbar ist und wobei die Strahlungsquelle (16) und die Detektoreinrichtung (17) an der Messkammer (9) in definierter Ausrichtung festgelegt werden und die von der Strahlungsquelle (16) ausgesandte Messstrahlung (24) zumindest einmal die Messkammer (9) durchquert und nach Austritt aus der Messkammer (9) von der Detektoreinrichtung (17) detektiert wird.

Description

Verfahren und Vnrrirh nng y.πr qiiaπri tativpri
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur quantitativen Gasanalyse mit den Merkmalen des Oberbegriffs des Anspruchs 1 bzw. des Anspruchs .
Es ist bekannt, zur Messung biologischer Aktivitäten Kohlendioxid als repräsentativen Parameter zu verwenden. Solche Messungen biologischer Aktivitäten werden beispielsweise zum Nachweis der Anwesenheit von Mikroorganismen in einer Probe, beispielsweise Blut, eingesetzt. Ebenfalls kann der biologische oder der chemische Sauerstoffbedarf (BOD, COD) auf diese Art und Weise bestimmt werden. Ein weiteres Anwendungsbeispiel der C02-Messung ist die Kompostierung von Kunststoffen, bei der die Kunststoffe mit Mikroorga- nismen und Nährlösung versetzt werden. Eine Überwachung des Abbaufortschritts bei der Kompostierung wird durch die Änderung der gemessenen Kohlendioxidkonzentration über einen längeren Zeitraum von bis zu etwa 150 Tagen vorgenommen.
Unterschiedliche Verfahren zur Messung sind vorgeschlagen worden. Gemäß einer ersten Verfahrensweise wird eine Gasprobe aus einer Probenflasche entnommen. Anschließend wird die C02-Konzentration mit Hilfe der Gaschromatographie bestimmt. Diese Verfahrensweise ist jedoch sehr arbeitsintensiv, wobei Fehler bei der Überführung der Gasprobe in den Gaschromatographen auftreten können. Zusätzlich wird durch die Gaspro- benentnahme die Atmosphäre über der Probe beeinflußt. Des weiteren muß nach jeder Probenentnahme die Entnahmespritze dekontaminiert und entsorgt werden.
Bei einer weiteren vorgeschlagenen Verfahrensweise wird eine Gasprobe aus der Probenflasche mit Hilfe eines geschlossenen Pumpensystems entnommen, das einen Gasanalysator enthält. Hierbei wird die Atmosphäre der Probenflasche ebenfalls verändert. Bei der Untersuchung von mehreren Proben muß das geschlossene Pumpensystem nach jeder Messung in technisch aufwendiger Weise dekontaminiert werden.
Des weiteren ist es bekannt, das erzeugte C02 durch die Wandung der Probenflasche zu detektieren. Hierzu wird die Probenflasche in den Strahlengang einer Infrarot-Absorptionsmeßeinheit gebracht. Die C02- Konzentration wird durch die Abschwächung der Strahlung bei einer charakteristischen Wellenlänge, beispielsweise 4,24 μm, bestimmt. Bei diesem Verfahren bestehen jedoch hohe Anforderungen an die Flaschen- qualität hinsichtlich der Wanddicke und des Materials, woraus sich hohe Kosten ergeben.
Zusätzlich kann das Meßergebnis durch auskondensierte Feuchtigkeit verfälscht werden. Durch Schütteln der Flaschen können die Flascheninnenwandungen verschmutzt werden, was wiederum die Messung beeinträchtigt. Daher sind quantitative Messungen nur mit hohem technischen Aufwand und hohen Kosten möglich.
Schließlich ist in der EP 0 425 587 Bl zur Messung der C02-Konzentration vorgeschlagen worden, optische Sensoren, z. B. auf Basis von Fluorophoren, zu ver- wenden. Die entsprechende sensitive Membran wird dabei in das zu untersuchende Gefäß eingebracht, z. B. am Boden, der Wandung oder in eine Meßkammer integriert, die mit Hilfe einer Kanüle durch Diffusion mit der Probenflasche in Kontakt steht. Die optischen Eigenschaften der Membran werden von außen überwacht. Von Nachteil ist jedoch, daß die optischen Eigenschaften des Sensors durch andere Gase (NH3, Alkohole, ... ) gestört werden können und daß die Langzeitstabilität der Sensoren unzureichend ist.
Mit den bekannten Verfahren sind somit dauerhafte und störungsfreie quantitative Messungen von Gaskonzentrationen in geschlossenen oder offenen Systemen entweder nicht zuverlässig oder technisch nur sehr auf- wendig durchführbar.
Der Erfindung liegt daher die Aufgabe zugrunde, ein gattungsgemäßes Verfahren und eine Vorrichtung zum Ausführen des Verfahrens zu schaffen, so daß Gasana- lysen und insbesondere quantitative Messungen von Gaskonzentrationen dauerhaft, störungsfrei und kostengünstig durchgeführt werden können.
Die Aufgabe wird bei dem oben angegebenen, gattungsgemäßen Verfahren erfindungsgemäß dadurch gelöst, daß mindestens eine Strahlungsquelle und mindestens eine Detektoreinrichtung an der Meßkammer in definierter Ausrichtung festgelegt werden und daß die von der Strahlungsquelle ausgesandte Meßstrahlung zumindest einmal durch die Meßkammer verläuft und nach Austritt aus der Meßkammer von der Detektoreinrichtung detek- tiert wird. Mit diesem Verfahren wird die zu messende Probenatmosphäre aus dem eine Probe enthaltenden Pro- bensystem, die durch Diffusion in die separate Meßkammer gelangt ist, von der Meßstrahlung in der Meßkammer zumindest einmal durchlaufen. Dabei ist weder eine Entnahme der Gasprobe selbst noch eine Meß- oder Detektiereinrichtung innerhalb der Meßkammer erfor- derlich. Die Diffusionsverbindung erfolgt unter Abdichtung gegenüber der Umgebungsatmosphäre, so daß kurzzeitige wie auch kontinuierliche, länger andauernde Messungen ohne Störungen durch Feuchtigkeit oder Verschmutzungen zuverlässig möglich sind. Die Herstellung der Diffusionsverbindung zwischen der in einem Probensystem enthaltenen Probennahmeatmosphäre und einer Meßkammer über einen von der Sensoreinrichtung trennbaren Meßadapter ist nicht auf ein bestimmtes Probensystem beschränkt, vielmehr eignen sich viele Arten von unterschiedlichen Probensystemen wie Probenflaschen oder Rollrandflaschen, aber auch offene Probensysteme, wie Rohrleitungen und dergleichen, für eine Messung im Rahmen des erfindungsgemäßen Verfahrens. Das Verfahren gestattet schließlich die Zu- Ordnung unterschiedlicher Sensoreinrichtungen zu unterschiedlichen Meßadaptern und Meßkammern.
Zur Diffusion der Probenatmosphäre aus dem Probensy- stem in die Meßkammer können eine Diffusionsleitung, eine Kanüle oder einfache Öffnungen, die in einem Meßkammerboden einer in einem Flaschenhals als Stopfen angebrachten Meßkammer ausgebildet sind, verwendet werden. Die Messung selbst wird nach Einstellung des Diffusionsgleichgewichts zwischen dem Gas in der Meßkammer und der Probenatmosphäre vorgenommen. Das Verfahren bietet auf diese Weise eine einfache und kostengünstige Möglichkeit, die Probenatmosphäre quantitativ zu analysieren. Aufwendige Pump- einrichtungen und dergleichen, die zwar wiederholt verwendet werden könnten, jedoch nach jedem Einsatz dekontaminiert werden müßten, sind nicht erforderlich.
Durch die vorzugsweise einmalige Verwendung des als Massenartikel preiswert herstellbaren Meßadapters (Wegwerfartikel) wird eine Kreuzkontamination unterschiedlicher Proben ausgeschlossen.
Um der Auskondensation von Feuchtigkeit im Meßadapter entgegenzuwirken, kann der Meßadapter mit einer erforderlichen Wärmemenge beheizt werden.
Zur Lösung der Aufgabe ist des weiteren vorgesehen, daß bei einer oben angegebenen, gattungsgemäßen Vorrichtung erfindungsgemäß die Strahlungsquelle und die Detektoreinrichtung an der Meßkammer in definierter Ausrichtung festlegbar sind, daß die Meßkammer von zumindest einer für eine Meßstrahlung der Strahlungs- quelle durchlässigen Abdeckung begrenzt ist, und daß die von der Strahlungsquelle ausgesandte Meßstrahlung nach Durchgang durch die Meßkammer von der Detektoreinrichtung detektiert wird. Diese Vorrichtung er- fordert in der Meßkammer keine Sensoren oder sonstigen Meßeinrichtungen, da außerhalb der Meßkammer eine Veränderung der Meßstrahlung nach ihrem Durchgang durch die Meßkammer festgestellt wird. Die definierte Anordnung der Strahlungsquelle und der Detektor- einrichtung an der Meßkammer sorgt hierbei für ein exaktes, reproduzierbares Meßergebnis, wobei es zweckmäßig ist, wenn die Meßkammer in einem an dem Probensystem anbringbaren Meßadapter enthalten ist. Mit der Vorrichtung ist es möglich, mittels eines einfachen, preiswerten Meßadapters einen Diffusionsanschluß an einem beliebigen Probensystem zu schaffen, so daß die jeweilige Probenatmosphäre ohne Entnahme der Gasprobe aus dem Probensystem in die Meßkammer gelangen kann. In der Meßkammer wird die Pro- benatmosphäre von der Umgebungsatmosphäre abgetrennt bereitgehalten und kann von der separaten, außerhalb der Meßkammer angeordneten Sensoreinrichtung gemessen und quantitativ analysiert werden.
Besonders vorteilhaft ist es, dass die Strahlungsquelle und die Detektoreinrichtung in einem Sensorkopf angeordnet sind, der an den Meßadapter ankoppelbar ist. Durch den abnehmbaren Sensorkopf können viele gleiche oder unterschiedliche Probensysteme bzw. Probenatmosphären mit nur einem Sensorkopf untersucht werden.
Der Meßadapter kann dauerhaft, z. B. mehrere Wochen, im Diffusionskontakt mit dem Probensystem bleiben, wobei die Messung mit einem Sensorkopf kontinuierlich oder diskontinuierlich durchgeführt werden kann.
Der Meßadapter kann vorzugsweise die Meßkammer ent- halten. Ebenso ist es zweckmäßig, dasß im Meßadapter die Strahlungsquelle enthalten ist, auch zusammen mit der Meßkammer.
Für die beliebige Kopplung ist es zweckmäßig, wenn der Meßadapter einen Universalanschluß für unterschiedliche Probensysteme aufweist. Ein derartiger Meßadapter kann aufgrund seiner kostengünstigen Herstellung als Wegwerf-Meßadapter verwendet werden. Eine aufwendige Dekontaminierung der Meßeinrichtung entfällt somit.
Dabei kann der Meßadapter ebenso an offene Probensysteme, wie z.B. Rohrleitungen angekoppelt werden.
Die Meßkammer kann unterschiedlich gestaltet und in unterschiedlichen Stellungen zu der Strahlungsquelle und der Detektoreinrichtung angeordnet sein. Beispielsweise enthält die Meßkammer eine erste strahlungsdurchlässige Abdeckung oder Scheibe am Eintritt der Meßstrahlung in die Meßkammer und eine zweite strahlungsdurchlässige Abdeckung am Austritt der Meßstrahlung aus der Meßkammer. Die Meßstrahlung tritt durch die erste Scheibe in die Meßkammer ein und verläßt sie nach ihrer Durchquerung durch die zweite Ab- deckung in Richtung zur Detektoreinrichtung. Wenn die erste Abdeckung und die zweite Abdeckung an der Meßkammer sich in etwa gegenüberliegend angeordnet sind, kann die Meßstrahlung auf geradem Weg die Meßkammer durchqueren, wobei die Meßkammer insbesondere zwi- sehen der Strahlungsquelle und der Detektoreinrichtung angeordnet sein kann. Andererseits kann die Meßstrahlung auch durch optische Elemente von der Strahlungsquelle zur Meßkammer und/oder von der Meßkammer zur Detektoreinrichtung gelenkt werden, so daß unterschiedliche Anordnungen der Strahlungsquelle und der Detektoreinrichtung gewählt werden können.
In einer weiteren Ausführungsform ist die Meßkammer einerseits von der der Strahlungsquelle und der Detektoreinrichtung benachbarten durchlässigen Abdek- kung und andererseits von einer die Meßstrahlung reflektierenden Meßkammerwand begrenzt, so daß die von der Strahlungsquelle ausgesandte Meßstrahlung nach Durchgang durch die Meßkammer zur Detektoreinrichtung reflektiert wird. Dabei können die Strahlungsquelle und die Detektoreinrichtung in dem Sensorkopf nebeneinander mit in etwa parallelem Meßstrahlaustritt aus der Strahlungsquelle und Meßstrahleingang in die De- tektoreinrichtung angeordnet sein.
In einer bevorzugten Gestaltung öffnet sich die Meßkammer trichter- oder pyramidenförmig zu einem angekoppelten Sensorkopf und die Meßkammerwände reflek- tieren die Meßstrahlung. Hierbei ergibt sich eine doppelte Reflexion der Meßstrahlung an den gegenüberliegenden Trichterwänden.
Eine weitere bevorzugte Ausgestaltung sieht vor, daß die reflektierende Meßkammerwand eine zur oberen Abdeckung parallele untere Reflexionsplatte mit Öffnungen als Diffusionsverbindung ist. Hierbei können die Strahlungsquelle und die Detektoreinrichtung unter einem Winkel zueinander angeordnet sein, so daß die Meßstrahlung von der Reflexionsplatte direkt zu der Detektoreinrichtung gelenkt wird. Diese Gestaltung ist insbesondere dann vorteilhaft, wenn der Meßadapter als ein Stopfen für eine Probenflasche gebildet ist, der insbesondere in einen Flaschenhals der Probenflasche einsetzbar ist. Eine derartige Probenflasche ist z. B. eine genormte Rollrandflasche. Die Länge der Meßkammer kann hierbei vergleichsweise groß sein, so daß durch den langen Weg der Meßstrahlung durch die Meßkammer Gase mit niedrigem Absorptionskoeffizienten quantitativ überwacht werden können.
Eine Diffusionsverbindung kann bei den beschriebenen Meßkammern dadurch gebildet sein, daß die reflektie- rende Meßkammerwand oder Reflexionsplatte zumindest eine Öffnung aufweist, wobei der Öffnungsdurchmesser für die Zeitdauer zur Einstellung des Diffusionsgleichgewichts mitbestimmend ist.
Bei einer weiteren Ausgestaltung ist das Probensystem bzw. die Probenflasche mit einem elastomeren Verschluß verschlossen und die Diffusionsverbindung des Meßadapters ist eine Kanüle zum Durchdringen des Verschlusses. Hierbei ist die Größe oder der Durchmesser der Meßkammer nicht von der Größe des Flaschenhalses abhängig bzw. beschränkt. Um das Gleichgewicht zwischen der Probenatmosphäre und der Gasatmosphäre in der Meßkammer in möglichst kurzer Zeit zu erreichen, ist es zweckmäßig, den Durchmesser der Kanüle mög- liehst groß, ihre Länge möglichst kurz und das Volumen der Meßkammer möglichst klein zu gestalten. Die optimierten Abmessungen werden durch die Kinetik der zu untersuchenden Probe bestimmt. I C
Bei der Verwendung von mindestens zwei Strahlungsquellen kann die eine Quelle als Referenz zum Ausgleich der Alterung der anderen Strahlungsquellen herangezogen werden, da sie nicht so häufig betrieben wird und somit die Alterung vernachlässigbar ist. Dies ist prinzipbedingt bei jeder Gaskonzentration möglich.
Wenn die Sensoreinrichtung zumindest zwei Strahlungs- quellen aufweist, kann bei Ausfall der einen Strahlungsquelle der Meßvorgang nach einer z. B. automatischen Umschaltung auf die zweite Strahlungsquelle im wesentlichen unterbrechungsfrei fortgeführt werden.
Des weiteren kann die Sensoreinrichtung zumindest zwei Detektoreinrichtungen aufweisen, so daß gleichzeitig eine Referenzmessung durchgeführt werden kann. Die Strahlungsquelle bestrahlt im gleichen Maße (gleicher Lichtweg) beide Detektoren, wobei der eine Detektor bei Vorhandensein der zu messenden Gaskonzentration ein konzentrationsabhängiges Signal liefert, während der andere Detektor nur als Referenz dient und somit kein konzentrationsabhängiges Signal liefert .
Der Meßadapter und der Sensorkopf, die als separate Bauteile der erfindungsgemäßen Vorrichtung ausgebildet sind, werden zweckmäßigerweise zur Durchführung einer Messung über ihre Gehäuse bzw. eine integrierte Positioniereinheit in eine definierte Position zueinander gebracht und anschließend mittels einer Koppeleinrichtung mechanisch stabil miteinander verbunden. Dabei ist es vorteilhaft, wenn die Koppeleinrichtung im wesentlichen am Sensorkopf vorgesehen ist, da in diesem Fall der Meßadapter einfacher aufgebaut und kostengünstiger herstellbar ist. Die Koppeleinrichtung kann auch ausschließlich am Sensorkopf angeordnet sein oder kann ein eigenes Bauteil sein.
Als Strahlungsquelle können ein breitbandiger thermischer Strahler, LEDs (light emitting diodes) , Diodenlaser und insbesondere Infrarotstrahler oder UV- Lichtstrahler vorgesehen sein.
Die strahlungsdurchlässige Abdeckung oder Scheibe kann aus Kalk-Soda-Glas, Borsilikatglas, Quarzglas, Silizium oder Saphir, Calciumfluorid (CaF2) , Barium- fluorid (BaF2) , Germanium (Ge) oder Zinkselenid (ZnSe) bestehen.
Für eine Vielfalt der Anwendungsmöglichkeiten können Sensorköpfe, die mit unterschiedlichen Sensoreinrichtungen ausgestattet sind, zum Ankoppeln an den oder die Meßadapter vorgesehen sein. Die Gaskonzentrationsmessung durch eine Sensoreinrichtung in der Meßkammer wird vorzugsweise mittels gasspezifischer Absorption elektromagnetischer Strahlung vorgenommen. Hierbei ist der Meßadapter derart ausgebildet, daß die vom Sensorkopf ausgestrahlte elektromagnetische Strahlung in der Meßkammer mit der eindiffundierten Probenatmosphäre in Wechselwirkung tritt und anschließend vom Sensorkopf detektiert werden kann.
Durch die definierte Positionierung des Sensorkopfes zum Meßadapter und durch die mechanisch stabile Kopplung der beiden Bauteile ist keine Nachkalibrierung vor jeder Messung nötig. Zusätzlich ist durch die einfache und massenproduzierbare Form des Meßadap- ters, z. B. als Kunststoffspritzteil, nach einer einmaligen Typenkalibierung des Sensorkopfes mit einem Meßadapter keine weitere Kalibrierung für baugleiche Meßadapter notwendig.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf Zeichnungen näher erläutert. Es zeigt:
Fig. 1 in einer Seitenansicht im Schnitt und in sche atischer Darstellung eine erfindungsgemäße Vorrichtung auf einer Probenflasche;
Fig. 2 in einer Schnittansicht ein Ausführungsbei- spiel der erfindungsgemäßen Vorrichtung;
Fig. 3 in einer Schnittansicht entlang der Ebene A-A in Fig. 2 den Meßadapter der Vorrichtung;
Fig. 4 in einer Schnittansicht entlang der Ebene A-A in Fig. 2 eine weitere Ausführungsform des Meßadapters der Vorrichtung;
Fig. 5 in einer Schnittansicht ein weiteres Ausführungsbeispiel der erfindungsgemäßen Vorrichtung;
Fig. 6 in einer Schnittansicht entlang der Ebene B-B in Fig. 5 den Meßadapter der Vorrichtung;
Fig. 7 in einer Draufsicht die Vorrichtung mit einer Koppeleinrichtung; Fig. 8 in einer Schnittansicht ein weiteres Ausführungsbeispiel der erfindungsgemäßen Vorrichtung;
Fig. 9 in einer Schnittansicht den Meßadapter der Vorrichtung;
Fig. 10 in einer oberen Draufsicht ein Ausführungs- beispiel des Meßadapters der Vorrichtung;
Fig. 11 in einer oberen Draufsicht ein weiteres Ausführungsbeispiel des Meßadapters der Vorrichtung;
Fig. 12 in einer Schnittansicht den Meßadapter mit einer Dichtung;
Fig. 13 in einer Unteransicht ein Ausführungsbei- spiel des Sensorkopfs der Vorrichtung;
Fig. 14 in einer Unteransicht ein weiteres Ausführungsbeispiel des Sensorkopfs der Vorrichtung; und
Fig. 15 in einer Unteransicht ein weiteres Ausführungsbeispiel des Sensorkopfs der Vorrichtung.
Fig. 16 in einer Seitenansicht im Schnitt ein wei- teres Ausführungsbeispiel, bei dem der Meßadapter die Strahlungsquelle enthält.
Fig. 17 in einer Schnittansicht ein weiteres Ausführungsbeispiel, bei dem der Meßadapter an einer Rohrleitung angebracht ist.
Fig. 18 eine Meßkurve der erfindungsgemäßen Vorrichtung zur Überwachung der C02-Produktion einer Hefekultur.
Eine zu untersuchende feste, halbfeste, flüssige oder gasförmige Probe 1 befindet sich in einer Probenfla- sehe 2, die mit einem elastomeren Verschluß, z. B. einem Septum 10, und einer am Flaschenhals 21 angebrachten Bördelkappe 11 fest verschlossen ist. Innerhalb der Probenflasche 2 bildet sich über der Probe 1 eine Probenatmosphäre 3.
Ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur quantitativen Gasanalyse enthält einen Meßadapter 4 und einen Sensorkopf 5, der durch ein flexibles Kabel 6 mit einer elektronischen Meß- und Steuerungsvorrichtung 7 verbunden ist. Der Meßadapter 4 weist ein Gehäuse 8, mit dem er auf der Probenflasche 2 fixierbar ist, sowie eine in dem Gehäuse 8 ausgebildete Meßkammer 9 und eine mit der Meßkammer 9 verbundene Kanüle 20 auf. Beim Anbringen des Meßadap- ters 4 an der Probenflasche 2 stellt die Kanüle 20 nach dem Durchstechen des Septums 10 eine Verbindung zwischen dem Inneren der Probenflasche 2 und der Meßkammer 9 her, so daß die Probenatmosphäre 3 mittels Diffusion in die Meßkammer 9 gelangen kann. Die Gasatmosphäre innerhalb der Meßkammer 9 befindet sich dadurch in einem Diffusionsgleichgewicht mit der Probenatmosphäre 3 in der Probenflasche 2. Die für die Einstellung des Gleichgewichts erforderliche Zeit τ wird im wesentlichen durch die Länge und die Quer- schnittsfläche der Kanüle 20 und dem Volumen der Meßkammer 9 bestimmt. Damit die zeitliche Erfassung der Veränderung der Probenzusammensetzung gewährleistet ist, muß die Zeit τ kleiner sein als die zeitlichen Änderungen der Probenzusammensetzung. Diese Bedingung wird bei der konstruktiven Auslegung der Kanüle 20 und der Meßkammer 9 berücksichtigt.
Die Messung der Gaskonzentration in der Meßkammer 9 erfolgt mit Hilfe des Sensorkopfes 5, der eine Koppeleinrichtung 14 wie z. B. eine in Fig. 1 dargestellte Schraubverbindung besitzt, die eine feste Verbindung zwischen dem Sensorkopf 5 und dem Meßadapter 4 gewährleistet. Der Sensorkopf 5 enthält ein Gehäuse 12 mit einer Sensoreinrichtung 13, die der Meßkammer 9 zugeordnet ist und eine kontinuierliche oder quasikontinuierliche berührungslose Messung und Überwachung der Konzentration und Zusammensetzung der Gasatmosphäre in der Meßkammer 9 ermöglicht, woraus Schlußfolgerungen über die Eigenschaften der Probe 1 in der Probenflasche 2 gezogen werden können.
Fig. 2 stellt eine Ausführungsform der Meßkammer 9 und der Sensoreinrichtung 13 der erfindungsgemäßen Vorrichtung dar. Die Sensoreinrichtung 13 enthält eine Strahlungsquelle 16 zum Erzeugen elektromagnetischer Strahlung im relevanten spektralen Bereich und eine Detektoreinrichtung 17 zum Detektieren der Reststrahlung nach dem Durchgang durch die Meßkammer 9. Die Strahlungsquelle 16 und die Detektoreinrichtung 17 sind derart aufgebaut, daß vorzugsweise nur die selektive wellenlängenspezifische Abschwächung der Strahlungsintensität durch die Wechselwirkung mit den zu detektierenden Gasmolekülen in der Meßkammer 9 ge- messen wird. Dafür kann z. B. in der Meßstrahlungs- oder Meßlichtstrecke (schematisch als Meßstrahlung oder Strahlungsweg 24 dargestellt) zwischen der Strahlungsquelle 16 und der Detektoreinrichtung 17 ein wellenlängenselektierendes Element, z. B. ein optisches Filter, angeordnet sein.
Die Meßkammer 9 ist auf ihrer der Detektoreinrichtung 17 zugewandten Oberseite mit einem für die Meßstrah- lung durchlässigen Fenster, insbesondere optischen Fenster 15 abgedeckt, das am Gehäuse 8 mit einer Dichtung 18, die auch ein Klebstoff sein kann, gasdicht abgedichtet bzw. festgelegt ist. Das optische Fenster 15 besteht aus einem Material, das im rele- vanten spektralen Bereich transparent ist. Das Fenster 15 kann z. B. aus einem Stück monokristallinen Silizium bestehen und kann auch eine Antireflexions- schicht aufweisen. Die inneren Wandungen 22 der Meßkammer 9 sind derart geformt und bearbeitet, daß eine Reflexion und Weiterführung der von der Strahlungsquelle 16 ausgestrahlten Strahlung zur Detektoreinrichtung 17 gewährleistet ist. So können die reflektierenden Wandungen 22 der Meßkammer 9 unter einem Winkel von 45° zur Richtung der ausgesendeten und re- flektierten Strahlung 24 angeordnet sein, wie in Fig. 2 dargestellt ist.
Durch definierte Kontaktflächen zwischen dem Meßadapter 4 und dem Sensorkopf 5, die z. B. als einander zugeordnete umlaufende Absätze 23 gebildet sind, wird eine lösbare und dennoch mechanisch feste, stabile und reproduzierbare Ausrichtung und Positionierung des Sensorkopfs 5 am Meßadapter 4 und somit der Sensoreinrichtung 13 an der Meßkammer 9 erzielt. Die aus einer hochwertigen mechanischen Verarbeitung der kontaktierenden Flächen resultierende Präzision dieser Ankopplung gewährleistet quantitative Gaskonzentrationsmessungen in der Meßkammer 9 auch nach einer mehr- maligen An-/Abkoppelung des Ξensorkopfs 5 an dem Meßadapter 4.
Fig. 3 zeigt den Meßadapter 4 gemäß Fig. 2 mit einer kegel- oder trichterförmigen Meßkammer 9, bei der der Kegelwinkel der Wandungen 22 90° beträgt und die von einem runden Fenster 15 abgedeckt ist.
Fig. 4 zeigt eine weitere Ausführungsform des Meßadapters 4 gemäß Fig. 2 mit einer in Draufsicht an der Oberseite rechteckigen Meßkammer 9 mit zwei die einfallende Strahlung 24 zur Detektoreinrichtung 17 reflektierende ebene Wandungen 22 keilförmig unter einem Keilwinkel von 90° zueinander stehen. Die Meßkammer 9 wird von einem rechteckigen Fenster 15 abge- deckt.
Bei der in Fig. 5 dargestellten Ausführungsform der erfindungsgemäßen Vorrichtung ist die Strahlungsquelle 16 der Sensoreinrichtung 13 und die Detektorein- richtung 17 auf einer optischen Achse 25 voneinander beabstandet und sich gegenüberliegend angeordnet. Die Meßkammer 9 ist rohrförmig gebildet und von zwei sich gegenüberliegenden optischen Fenstern 15 gasdicht abgedeckt. Wenn der Sensorkopf 5 auf dem Meßadapter 4 angeordnet ist, ist die Meßkammer 9 zwischen der
Strahlungsquelle 16 und der Detektoreinrichtung 17 angeordnet und entlang der optischen Achse 25 ausgerichtet. Fig. 6 zeigt das Gehäuse 8 des Meßadapters 4 gemäß Fig. 5 mit der rohrförmigen Meßkammer 9 und den beiden Fenstern 15.
Fig. 7 zeigt ein Ausführungsbeispiel der Koppeleinrichtung 14 als Verschlußteil, das am Gehäuse 12 des Sensorkopfes 5 verschwenkbar gelagert ist und mit einer Ausnehmung 19 an einem Zapfen 26 am Gehäuse 8 des Meßadapters 4 verriegelbar ist, um den Sensorkopf 5 am Meßadapter 4 in definierter Position verriegelt zu halten.
Das Material der verwendeten Fenster 15 ist derart beschaffen, daß die elektromagnetische Strahlung durch die Fenster 15 hindurch auf die Detektoreinrichtung 17 fallen kann. Bis zu einem Wellenlängenbereich von ca. 5 μm eignet sich Kalk-Soda-Glas sowie Borsilikatglas und bis ca. 2,5 μm auch Quarzglas. Für höhere Wellenlängenbereiche kann Silizium oder Saphir (bis 6,7 μm) als Fenster- oder Scheibenmaterial verwendet werden. Des weiteren kann auch Calciumfluorid (CaF2) , Bariumfluorid (BaF2) , Germanium (Ge) oder Zinkselenid (ZnSe) verwendet werden. Auch kann der optische Filter als Fenstermaterial verwendet werden. Zusätzlich können die verwendeten Fenster mit einer Antireflexionsschicht versehen werden.
Durch die Länge des Strahlungsweges 24 bzw. des Lichtweges des Lichtstrahls in der Meßkammer 9 kann zusätzlich der Konzentrationsbereich des zu detektie- renden Gases vorgegeben werden. So kann bei der quantitativen Messung geringer Gaskonzentrationen eine Meßkammer verwendet werden, in der durch Mehrfachreflexionen der Lichtweg verlängert wird. Hierfür eig- nen sich eine Vielzahl unterschiedlicher Anordnungen.
Eine weitere Ausführungsform der Erfindung ist in den Fig. 8 bis 10 dargestellt. Der Meßadapter 4 ist in der Art eines Stopfens für den Probenbehälter 2, der z. B. eine Rollrandflasche ist (siehe Fig. 8), gebildet. Die Meßkammer 9 ist im Querschnitt beispielsweise zylindrisch oder rechteckig und ist in dem Flaschenhals 21 der Rollrandflasche angeordnet. Die Un- terseite der Meßkammer 9, die in den Flaschenhals 21 hineinreicht, ist mit einer die Meßstrahlung reflektierenden Abdeckung oder Platte 29 verschlossen, in der eine oder mehrere Öffnungen 33 randseitig ausgebildet sind, die eine Diffusionsverbindung 33 bilden und durch die das zu detektierende Gas aus der Probenflasche 2 in die Meßkammer 9 gelangen kann.
An der Oberseite des Meßadapters 4 ist die Meßkammer 9 mit einer die Meßstrahlung durchlässigen Abdeckung wie z. B. einem optischen Fenster 15 abgedeckt, das daran mit einer Dichtung oder mit einem Klebstoff 18 befestigt und abgedichtet ist. Beim Anbringen des Meßadapters 4 an der Probenflasche 2 wird auf den Flaschenhals 21 eine Dichtung gelegt 28, auf der ein Flansch des Meßadapters 4 aufgesetzt wird. Eine Bördelkappe 11 umfaßt den Flaschenhals 21 und ist sowohl am Unterrand des Flaschenhales wie auch an der Flanschoberseite durch Bördeln festgelegt.
Der Sensorkopf 5 enthält ein in etwa topfförmiges Gehäuse 12 zum Aufsetzen auf den Flaschenhals 21. Der Innendurchmesser der Gehäusewand ist derart an die Bördelkappe 11 angepaßt, daß sie eine Führung für den Sensorkopf 5 bietet. Im Inneren des Gehäuses 12 ist die Sensoreinrichtung 13 mit einer Strahlungsquelle
16 zum Erzeugen von elektromagnetischer Meßstrahlung und mit einer Detektoreinrichtung 17 zum Empfangen der Meßstrahlung aufgenommen. Ein flexibles Kabel 6 verbindet die Sensoreinrichtung 13 mit einer elektronischen Meß- und Steuerungsvorrichtung 7 entsprechend dem vorangegangenen Beispiel. Die Strahlungsquelle 16 und die Detektoreinrichtung 17 sind unter einem Winkel α derart zueinander angeordnet, daß die von der Strahlungsquelle 16 ausgesandte Meßstrahlung von der reflektierenden Platte 29 zu der Detektoreinrichtung
17 gemäß dem schematisch dargestellten Strahlungsweg 24 reflektiert wird. Wenn die Meßkammer 9, wie in Fig. 2-4 dargestellt ist, kegelförmig oder trichter- förmig ausgeführt ist, wird der Winkel α zwischen der Detektoreinrichtung 17 und der Strahlungsquelle 16 null Grad. Die Sensoreinrichtung 13 weist einen hervorstehenden Zapfen 31 auf, der in eine zugeordnete Aussparung 30 in dem Meßadapter 4 eingreift und somit eine exakte Positionierung der Sensoreinrichtung am Meßadapter 4 ermöglicht. Die Bördelkappe 11 weist im Bereich der Aussparung 30 ebenfalls eine Öffnung auf. Ein Arretiermechanismus 32 ist an der Gehäuseinnenwand integriert, der zum Festlegen des Sensorkopfes 5 an dem Meßadapter 4 unter den Flaschenhalsrand greift. Durch die kurzen Diffusionsstrecken, deren Länge von der Dicke der Platte festgelegt ist und z. B. 0,5 mm beträgt, kann die Probenatmosphäre 3 aus der Probenflasche 2 schnell in die Meßkammer 9 dif- fundieren, so daß auch schnelle kinetische Vorgänge überwacht werden können. Der Meßadapter 4 kann eine Meßkammer 9 mit einer großen Länge, d. h. mit einem großen Abstand zwischen der optischen Scheibe 15 und der reflektierenden Platte 29, gebildet sein. Durch den langen Weg der Meßstrahlung 24 durch die Meßkammer 9 können Gase mit niedrigem Absorptionskoeffizienten quantitativ überwacht werden.
Der Meßadapter 9 ist ein einfach und kostengünstig herstellbares Spritzgußteil mit einem aufgeklebten optischen Fenster, das beispielsweise aus Silizium besteht, welches mit einer Antireflexionsschicht versehen werden kann.
Ist die Meßkammer 9 in dem Meßadapter 4, der als Stopfen ausgearbeitet ist, rund statt kanalförmig gestaltet, so wird keinerlei Positionierungsvorrichtung benötigt, da alle Teile symmetrisch zueinander ange- ordnet sind (Fig. 11) .
Der Meßadapter 9 kann direkt in eine Gummidichtung 34 integriert werden, die ihn z. B. am Umfang hülsenartig umgibt oder die eine aufgebrachte Beschichtung mit Dichtungswirkung ist, so daß eine zusätzliche Anbringung einer Dichtung entfällt (Fig. 12) .
Die in Fig. 13 in einer Unteransicht dargestellte Sensoreinrichtung 13 enthält einen Detektor 17 und eine Strahlungsquelle 16.
In Fig. 14 sind in die Sensoreinrichtung 13 ein Detektor 17 und zwei Strahlungsquellen 16 und 16 λ integriert. Hier wird eine Strahlungsquelle 16 als Meßquelle benutzt und die andere Strahlungsquelle 16 x in bestimmten Zeitintervallen als Referenzquelle zum Ausgleich der Alterung der Meßquelle herangezogen. Die Strahlungsquellen 16 und 16 λ sind symmetrisch zum Detektor 17 angeordnet, so daß bei beiden Strahlungs- quellen 16 und 16 λ der gleiche Lichtweg zum Detektor 17 gegeben ist.
Die Sensoreinrichtung 13 kann ebenfalls zwei Detekto- ren 17 und 17 und eine Strahlungsquelle 16 beinhalten (Fig. 15) . Dabei wird der eine Detektor zur Messung der relevanten Gaskonzentration und der andere Detektor als Referenz herangezogen.
Bei den beschriebenen Ausführungsbespielen kann durch die Auswahl des oder der Strahlungsempfänger bzw. Detektoreinrichtungen 17 und einer oder mehrerer Strahlungsquellen 16 die selektive, quantitative Detektion eines bestimmten Gases oder auch mehrerer Gase er- reicht werden. Die Selektivität der Strahlungsempfänger kann durch die Wahl bestimmter Interferenzfilter gewährleistet werden. Die Interferenzfilter können beispielsweise nur bei bestimmten Wellenlängen lichtdurchlässig sein wie z. B. bei 4,24 μm für Kohlendi- oxid (C02) , bei 3,4 μm für Kohlenwasserstoffe, bei
5,3 μm für NO, bei 10,9 μm für Freon usw.. Die Interferenzfilter können auch vor einer oder vor mehreren Strahlungsquellen angeordnet sein. Als Strahlungsquellen können z. B. breitbandige thermische Strah- 1er, LEDs (light emitting diodes) , Diodenlaser, Infrarotstrahler oder UV-Lichtstrahler verwendet werden.
Fig. 16 zeigt ein weiteres Ausführungsbeispiel. Hier beinhaltet der Sensorkopf (5) nur noch die Detektoreinrichtung (17), z.B. ein Einfachdetektor, Doppeldetektor, Doppeldetektor mit Beamsplitter, und die Kontaktstifte (40), während sich die Strahlungsquelle (16) im Meßadapter befindet. Diese berühren nach Auf- setzen des Sensorkopfes auf den Meßadapter (4) die Kontaktflächen (36), so daß mindestens eine Strahlungsquelle in dem Meßadapter in Betrieb genommen wird. Die Strahlungsquelle (16) wird direkt in den Meßadapter (4) integriert. Die Meßkammer (9) wird mit einer optisch durchlässigen Scheibe (15) und Dichtmasse (35) versehen. Die Strahlungsquelle wird mit Kabeln (38) an den Kontaktflächen (36) über eine Lötstelle (37) kontaktiert. Die Probenatmosphäre kann über Diffusionsverbindungen (41) in die Meßkammer diffundieren. Für die Kabel (38) sind Durchführungen (39) in dem Meßadapter vorgesehen. Der Sensorkopf (5) beinhaltet eine Detektoreinrichtung (17) . Diese kann z.B. ein Einfachdetektor, ein Doppeldetektor o.a. sein. Über ein flexibles Kabel (6) wird der Sensorkopf mit einer Meßelektronik verbunden. Die Strahlungsquelle (16) wird nach Aufsetzen des Sensorkopfes (5) über die Kontaktstifte (40) in Betrieb genommen.
Fig. 17 zeigt ein Ausführungsbeispiel, bei dem der Meßadapter (4) an eine Rohrleitung (43) angebracht ist. Dadurch ist es möglich, daß die Probenatmosphäre in der Rohrleitung vermessen werden kann, ohne daß die Sensoreinrichtung mit dieser in Kontakt kommt. Zusätzlich können somit mehrere Meßstellen mit einem Sensorkopf nacheinander untersucht werden. Der Meßadapter kann, da er als kostengünstiger Einmalartikel konzipiert ist, jederzeit ausgewechselt werden. An eine Rohrleitung (43) können mehrere Meßadapter (4) über einen Anschluß (42) angeschlossen werden. Dieser Anschluß kann z.B. als Schraubgewinde oder Schnappvorrichtung ausgebildet sein. Der Sensorkopf aus Fig. 1 kann zur Messung der Probenatmosphäre (3) auf den Meßadapter aufgesteckt werden. Fig. 18 zeigt die Meßkurve, die mit einer erfindungsgemäßen Vorrichtung aufgenommen wurde. Dabei wurde eine kontinuierliche Überwachung des Wachstums einer Hefekultur, Candida Parapsilosis, mit dem entwickelten Meßsystem durchgeführt. Hierbei wurde kontinuierlich die CÖ2-Konzentration aufgenommen. Parallel dazu wurde die gleiche Hefekultur in einem zweiten Kolben mit einem Photometer halbstündig überwacht. Ebenso kann das Wachstum andere Mikroorganismen wie z.B.
Salmonella typhymurium oder E. Coli Bakterien überwacht werden. Generell ist mit dieser Entwicklung das Vorhandensein von Mikroorganismen, die z.B. Kohlendioxid produzieren, zu detektieren.
Die Vorrichtung kann auch verwendet werden, um eine innere Atmosphäre eines Systems von außen zu überwachen. Dabei spielt es keine Rolle, ob das System ein geschlossener Kreislauf oder z. B. ein Rohr ist, durch das ein Gas strömt.

Claims

Patentansprüche
1. Verfahren zur quantitativen Gasanalyse, bei dem mittels einer Sensoreinrichtung die Gasanalyse einer Probenatmosphäre durchgeführt wird, indem eine Diffusionsverbindung zwischen der in einem Probensystem enthaltenen Probenatmosphäre und einer Meßkammer über einen von der Sensoreinrichtung (13, 16, 17) trennbaren Meßadapter her- gestellt wird und mit der Sensoreinrichtung die
Gasanalyse der in die Meßkammer diffundierten Probenatmosphäre durchgeführt wird, wobei die mindestens eine Strahlungsquelle (16) und die mindestens eine Detektoreinrichtung (17) an der Meßkammer (9) in definierter Ausrichtung festgelegt werden und die von der Strahlungsquelle (16) ausgesandte Meßstrahlung (24) zumindest einmal durch die Meßkammer (9) verläuft und nach Austritt aus der Meßkammer (9) von der Detek- toreinrichtung (17) detektiert wird.
2. Verfahren nach /Anspruch 1, dadurch gekennzeichnet, daß der die Meßkammer (9) enthaltende und von der Sensoreinrichtung (13, 16, 17) trennbare Meßadapter (4) beheizt wird.
3. Verfahren nach 7Anspruch 1 oder 2, dadurch gekennzeichnet, daß jeweils ein die Meß- ka mer (9) enthaltender Meßadapter (4) für die
Messung einer Probenatmosphäre verwendet wird.
4. Vorrichtung zur quantitativen Gasanalyse einer in einem Probensystem enthaltene Probenatmoshä- re, enthaltend einen eine Meßkammer (9) enthaltenden Meßadapter (4) und einen eine Strahlungsquelle (16) und eine Detektoreinrichtung (17) enthal- tende Sensoreinrichtung zum Durchführen der
Gasanalyse der in die Meßkammer diffundierten Probenatmosphäre, wobei die Strahlungsquelle (16) und die Detektoreinrichtung (17) in einem Sensorkopf (5) angeordnet sind, der an den Meß- adapter (4) ankoppelbar ist, die Strahlungsquelle (16) und die Detektoreinrichtung (17) an der Meßkammer (9) in definierter Ausrichtung festlegbar sind, die Meßkammer (9) von zumindest einer für eine Meßstrahlung (24) der Strahlungsquelle (16) durchlässigen Abdeckung (15) begrenzt ist, und die von der Strahlungsquelle (16) ausgesandte Meßstrahlung (24) nach Durchgang durch die Meßkammer (9) von der Detektoreinrichtung (17) de- tektiert wird.
5. Vorrichtung nach 7Anspruch 4, dadurch gekennzeichnet, daß die Meßkammer (9) in einem an dem Probensystem (2) anbringbaren Meß- adapter (4) enthalten ist.
6. Vorrichtung nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß die Strahlungsquelle (16) in einem an dem Probensystem (2) anbringba- ren Meßadapter (4) enthalten ist.
7. Vorrichtung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß der Meßadapter (4) einen Universalanschluß für unterschiedliche Probensysteme (2) aufweist.
8. Vorrichtung nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß der Meßadapter (4) an ein offenes Probensystem ankoppelbar ist.
9. Vorrichtung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß der Meßadapter (4) an eine Rohrleitung ankoppelbar ist.
10. Vorrichtung nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, daß die Meßkammer (9) eine erste strahlungsdurchlässige Abdeckung (15) am Eintritt der Meßstrahlung (24) in die Meßkam- mer (9) und eine zweite strahlungsdurchlässige
Abdeckung (15) am Austritt der Meßstrahlung (24) aus der Meßkammer (9) aufweist.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die erste Abdeckung
(15) und die zweite Abdeckung (15) an der Meßkammer (9) sich in etwa gegenüberliegend angeordnet sind.
12. Vorrichtung nach einem der Ansprüche 4 bis 11, dadurch gekennzeichnet, daß die Meßkammer (9) zwei in etwa gegenüberliegende strahlungsdurchlässige Abdeckungen (15) aufweist und zwischen der Strahlungsquelle (16) und der Detektorein- richtung (17) angeordnet ist.
13. Vorrichtung nach einem der 7Ansprüche 4 bis 9, dadurch gekennzeichnet, daß das Licht der Strahlungsquelle (16) mit Hilfe von optischen Elemen- ten, wie Spiegeln oder Lichtleitern, in die Meßkammer (9) eingekoppelt wird.
14. Vorrichtung nach einem der Ansprüche 4 bis 9 oder 13, dadurch gekennzeichnet, daß das aus der Meßkammer (9) austretende Licht mit Hilfe von optischen Elementen, wie Spiegeln oder Lichtleitern, auf die Detektoreinrichtung (17) gelenkt wird.
15. Vorrichtung nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, daß die Meßkammer (9) einerseits von der der Strahlungsquelle (16) und der Detektoreinrichtung (17) benachbarten durch- lässigen /Abdeckung (15) und andererseits von einer die Meßstrahlung (24) reflektierenden Meßkammerwand (22; 29) begrenzt ist, so daß die von der Strahlungsquelle (16) ausgesandte Meßstrahlung (24) nach Durchgang durch die Meßkammer (9) zur Detektoreinrichtung (17) reflektiert wird.
16. Vorrichtung nach /Anspruch 15, dadurch gekennzeichnet, daß die reflektierende Meßkammerwand (22; 29) zumindest eine Öffnung (20; 33) als Diffusionsverbindung aufweist.
17. Vorrichtung nach 7Anspruch 15 oder 16, dadurch gekennzeichnet, daß sich die Meßkammer
(9) trichter- oder pyramidenförmig zu einem an- gekoppelten Sensorkopf (5) öffnet und die Meßkammerwände (22) die Meßstrahlung (24) reflektieren.
18. Vorrichtung nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß die reflektierende Meßkammerwand (29) eine zur Abdeckung (15) parallele Reflexionsplatte (29) mit Öffnungen (33) als Diffusionsverbindung ist.
19. Vorrichtung nach einem der Ansprüche 4 bis 18, dadurch gekennzeichnet, daß der Meßadapter (4) als ein Stopfen für eine Probenflasche (2) gebildet ist, der insbesondere in einen Flaschen- hals (21) der Probenflasche (2) einsetzbar ist.
20. Vorrichtung nach einem der Ansprüche 4 bis 18, dadurch gekennzeichnet, daß das Probensystem bzw. die Probenflasche (2) mit einem elastomeren Verschluß (10) verschlossen ist und daß die Diffusionsverbindung des Meßadapters (4) eine Kanüle (20) zum Durchdringen des Verschlusses (10) ist.
21. Vorrichtung nach einem der Ansprüche 4 bis 20, dadurch gekennzeichnet, daß die Sensoreinrichtung (13) zumindest zwei Strahlungsquellen (16) aufweist.
22. Vorrichtung nach einem der Ansprüche 4 bis 21, dadurch gekennzeichnet, daß die Sensoreinrichtung (13) zumindest zwei Detektoreinrichtungen (17) aufweist.
23. Vorrichtung nach einem der Ansprüche 4 bis 22, dadurch gekennzeichnet, daß eine Koppeleinrichtung (14, 23; 32) für eine Koppelung des Sensorkopfes (5) mit einem jeweiligen Meßadapter (4) vorgesehen ist.
24. Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, daß im wesentlichen der Sensorkopf (5) die Koppeleinrichtung (14, 23) aufweist.
25. Vorrichtung nach einem der Ansprüche 4 bis 24, dadurch gekennzeichnet, daß eine Einrichtung
(23; 30, 31) für eine definierte Zuordnung zwi- sehen dem Sensorkopf (5) und dem Meßadapter (9) vorgesehen ist.
26. Vorrichtung nach einem der Ansprüche 4 bis 25, dadurch gekennzeichnet, daß an den oder die Meß- adapter (4) Sensorköpfe (5) mit unterschiedlichen Sensoreinrichtungen (16, 17) ankoppelbar sind.
27. Vorrichtung nach einem der Ansprüche 4 bis 26, dadurch gekennzeichnet, daß als Strahlungsquelle
(16) ein breitbandiger thermischer Strahler, LEDs (light emitting diodes) , Diodenlaser, Infrarotstrahler oder UV-Lichtstrahler vorgesehen sind.
28. Vorrichtung nach einem der Ansprüche 4 bis 27, dadurch gekennzeichnet, daß die strahlungsdurchlässige Abdeckung oder Scheibe (15) aus Kalk- Soda-Glas, Borsilikatglas, Quarzglas, Silizium oder Saphir, Calciumfluorid (CaF2) , Bariumfluorid (BaF2) , Germanium (Ge) oder Zinkselenid (ZnSe) besteht.
PCT/DE2000/003254 1999-09-15 2000-09-15 Verfahren und vorrichtung zur quantitativen gasanalyse WO2001020294A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00967587A EP1212598A2 (de) 1999-09-15 2000-09-15 Verfahren und vorrichtung zur quantitativen gasanalyse
US10/088,428 US6903823B1 (en) 1999-09-15 2000-09-15 Method and device for the quantitative gas analysis
CA002384786A CA2384786A1 (en) 1999-09-15 2000-09-15 Method and device for the quantitative gas analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19944260.6 1999-09-15
DE19944260A DE19944260C2 (de) 1999-09-15 1999-09-15 Verfahren und Vorrichtung zur quantitativen Gasanalyse

Publications (2)

Publication Number Publication Date
WO2001020294A2 true WO2001020294A2 (de) 2001-03-22
WO2001020294A3 WO2001020294A3 (de) 2001-09-27

Family

ID=7922148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003254 WO2001020294A2 (de) 1999-09-15 2000-09-15 Verfahren und vorrichtung zur quantitativen gasanalyse

Country Status (5)

Country Link
US (1) US6903823B1 (de)
EP (1) EP1212598A2 (de)
CA (1) CA2384786A1 (de)
DE (1) DE19944260C2 (de)
WO (1) WO2001020294A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527297A (zh) * 2014-10-16 2016-04-27 罗伯特·博世有限公司 用于监测药物用的对象、尤其用于容器的孔塞的监测单元
EP2904379A4 (de) * 2012-12-28 2017-01-18 Halliburton Energy Services, Inc. Optisch transparente folien zur messung optisch dicker flüssigkeiten

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216653A1 (de) * 2002-04-15 2003-11-06 Biotechnologie Kempe Gmbh Sonde zur Alkoholmessung in Flüssigkeiten
DE10353291B4 (de) * 2003-11-14 2011-07-14 ebro Electronic GmbH & Co. KG, 85055 Meßgerät zur Bestimmung des CO2-Gehalts eines Getränks
GB0403612D0 (en) * 2004-02-18 2004-03-24 Univ Glasgow Method, apparatus and kit for breath diagnosis
DE102004028023B4 (de) * 2004-06-09 2006-07-06 Perkinelmer Optoelectronics Gmbh & Co.Kg Sensoreinheit zur Erfassung eines Fluids, insbesondere zur Erfassung von Erdgas, Kohlenwasserstoffen, Kohlendioxid oder dgl. in Umgebungsluft
DE102005022288B4 (de) 2005-05-13 2007-08-16 Tyco Electronics Raychem Gmbh Gassensoranordnung und Messverfahren zur Verbesserung der Langzeitstabilität
DE102005049522B3 (de) * 2005-10-17 2007-06-06 Gasbeetle Gmbh Gassensoranordnung
DE102010047103A1 (de) * 2010-09-29 2012-03-29 Carl Zeiss Jena Gmbh Flansch zum Abschluss eines optischen Geräts gegenüber einem Probenstrom und optisches Gerät zur teilweisen Anordnung in einem Probenstrom
NL2008737C2 (nl) 2012-05-01 2013-11-04 Consultatie Implementatie Tech Beheer B V Afsluitelement voor het afsluiten van een houder voor monsters.
WO2015010709A1 (en) * 2013-07-22 2015-01-29 Sentec Ag Sensor for detection of gas and method for detection of gas
US20150063408A1 (en) * 2013-09-04 2015-03-05 Decagon Devices, Inc. Gaseous concentration measurement apparatus
DE102016003285A1 (de) * 2016-03-18 2017-09-21 Dräger Safety AG & Co. KGaA In-situ-Gasmesssystem für Gasreaktoren mit kritischen Umgebungen
ES2886263T3 (es) * 2016-08-19 2021-12-16 Becton Dickinson Co Conjunto de adaptador para unión a una botella
US11333612B2 (en) * 2016-09-02 2022-05-17 Specific Technologies, LLC Connectors for colorimetric sensors
WO2018152372A1 (en) 2017-02-16 2018-08-23 iSense LLC Sensor arrays with nucleophilic indicators
US11071977B2 (en) * 2017-03-13 2021-07-27 William Brinton Biological sample analysis device
US10955370B2 (en) * 2018-01-24 2021-03-23 International Business Machines Corporation Container cap to test volatile organic compounds
DE102020101218A1 (de) * 2020-01-20 2021-07-22 UMS - Umwelt-, Membran- und Sensortechnik GmbH & Co. KG Gassensor mit sporadisch betriebener Referenzlichtquelle
KR102387415B1 (ko) * 2020-06-16 2022-04-15 대한민국 센서를 이용한 퇴비 부숙도 측정장치
KR102409579B1 (ko) * 2020-06-16 2022-06-16 대한민국 퇴비 부숙도 자동 측정 장치
WO2024064017A1 (en) * 2022-09-19 2024-03-28 Indrio Technologies, Inc. Multipass hydrogenated palladium optical cavities for detection of hydrogen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188126A (en) * 1977-05-13 1980-02-12 Commissariat A L'energie Atomique Photometer with concave mirrors and field optics
US4220715A (en) * 1978-08-03 1980-09-02 Johnston Laboratories, Inc. Apparatus for and method of detection of significant bacteriuria in urine samples through measurement of head space gas oxygen consumption in a closed-vial system
US4889992A (en) * 1987-11-12 1989-12-26 Max Hoberman Automatic infrared microorganism detection instrument
EP0425587A1 (de) * 1989-05-12 1991-05-08 Avl Medical Instr Ag Verfahren zur feststellung biologischer aktivitäten in einer probe und vorrichtung zur durchführung des verfahrens.
US5232839A (en) * 1990-06-14 1993-08-03 Difco Laboratories Incorporated Detecting microbiological growth
WO1994020013A1 (en) * 1993-03-05 1994-09-15 Sahagen Armen N Probe for monitoring a fluid medium
WO1997008337A1 (en) * 1995-08-25 1997-03-06 Unipath Limited Methods and apparatus for detecting microorganisms
EP0905229A2 (de) * 1997-09-01 1999-03-31 Jochen Prof. Dr.-Ing. Büchs Verfahren und Vorrichtung zur Ermittlung und Überwachung des physiologischen Zustandes mikrobieller Kulturen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625189A (en) * 1993-04-16 1997-04-29 Bruce W. McCaul Gas spectroscopy
DE19518913C1 (de) * 1995-05-29 1996-11-28 Mueller Wolf Ruediger Dr Ing Verfahren und Vorrichtung zur Überprüfung der aeroben biologischen Abbaubarkeit von Testsubstanzen
US5880850A (en) * 1996-04-18 1999-03-09 American Air Liquide Inc Method and system for sensitive detection of molecular species in a vacuum by harmonic detection spectroscopy
DE19619673C2 (de) * 1996-05-15 1998-11-05 Draegerwerk Ag Vorrichtung zur Kalibrierung eines Gasmeßgerätes
DE19650302A1 (de) * 1996-12-04 1998-06-10 Ruhrgas Ag Verfahren sowie Vorrichtung zur Bestimmung der Gasbeschaffenheit einer Gasmischung
FR2764380B1 (fr) * 1997-06-06 1999-08-27 Gaz De France Procede et dispositif de determination en temps reel du pouvoir calorifique d'un gaz naturel par voie optique
DE19836215A1 (de) * 1997-08-12 1999-02-18 Elementar Analysensysteme Gmbh Vorrichtung und Verfahren für die Elementar-Analytik
DE19821136C2 (de) * 1997-08-25 2000-06-08 Wwu Wissenschaftliche Werkstat Vorrichtung zur Analyse des Abgases von Kraftfahrzeugen
DE19750133C2 (de) * 1997-10-04 2000-04-06 Wwu Wissenschaftliche Werkstat Vorrichtung für die Überwachung und Regelung der CO¶2¶-Konzentration im Innenraum eines Kraftfahrzeuges
DE29802972U1 (de) * 1998-02-20 1998-08-27 Wwu Wissenschaftliche Werkstat Gasmeßstift als Vorrichtung zur Luftüberwachung im alltäglichen Gebrauch
DE19830019A1 (de) * 1998-07-04 2000-01-13 Wwu Wissenschaftliche Werkstat Lachgasmessung in Operationsräumen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188126A (en) * 1977-05-13 1980-02-12 Commissariat A L'energie Atomique Photometer with concave mirrors and field optics
US4220715A (en) * 1978-08-03 1980-09-02 Johnston Laboratories, Inc. Apparatus for and method of detection of significant bacteriuria in urine samples through measurement of head space gas oxygen consumption in a closed-vial system
US4889992A (en) * 1987-11-12 1989-12-26 Max Hoberman Automatic infrared microorganism detection instrument
EP0425587A1 (de) * 1989-05-12 1991-05-08 Avl Medical Instr Ag Verfahren zur feststellung biologischer aktivitäten in einer probe und vorrichtung zur durchführung des verfahrens.
US5232839A (en) * 1990-06-14 1993-08-03 Difco Laboratories Incorporated Detecting microbiological growth
WO1994020013A1 (en) * 1993-03-05 1994-09-15 Sahagen Armen N Probe for monitoring a fluid medium
WO1997008337A1 (en) * 1995-08-25 1997-03-06 Unipath Limited Methods and apparatus for detecting microorganisms
EP0905229A2 (de) * 1997-09-01 1999-03-31 Jochen Prof. Dr.-Ing. Büchs Verfahren und Vorrichtung zur Ermittlung und Überwachung des physiologischen Zustandes mikrobieller Kulturen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2904379A4 (de) * 2012-12-28 2017-01-18 Halliburton Energy Services, Inc. Optisch transparente folien zur messung optisch dicker flüssigkeiten
US10113958B2 (en) 2012-12-28 2018-10-30 Halliburton Energy Services, Inc. Optically transparent films for measuring optically thick fluids
US10830695B2 (en) 2012-12-28 2020-11-10 Halliburton Energy Services, Inc. Optically transparent films for measuring optically thick fluids
CN105527297A (zh) * 2014-10-16 2016-04-27 罗伯特·博世有限公司 用于监测药物用的对象、尤其用于容器的孔塞的监测单元
CN105527297B (zh) * 2014-10-16 2020-12-08 罗伯特·博世有限公司 用于监测药物用的对象、尤其用于容器的孔塞的监测单元

Also Published As

Publication number Publication date
WO2001020294A3 (de) 2001-09-27
DE19944260A1 (de) 2001-04-12
US6903823B1 (en) 2005-06-07
DE19944260C2 (de) 2001-10-04
EP1212598A2 (de) 2002-06-12
CA2384786A1 (en) 2001-03-22

Similar Documents

Publication Publication Date Title
WO2001020294A2 (de) Verfahren und vorrichtung zur quantitativen gasanalyse
DE4109118C2 (de) Verfahren zum automatischen Auswerten eines Probeninhaltsstoffes einer Wasserprobe
US7688448B2 (en) Through-container optical evaluation system
EP1425590B1 (de) System, verfahren und computerprogramm zum durchführen von optischen transmissionsmessungen und zum auswerten ermittelter messgrössen
DE19535046C2 (de) Handgerät zum Pipettieren und photometrischen Messen von Proben
EP0144713B1 (de) Anordnung zur optischen Messung von Stoffkonzentrationen
WO2003067228A1 (de) Verfahren für untersuchungen an flüssigkeiten sowie vorrichtung hierfür
DE2255471C3 (de) Vorrichtung zur optischen Untersuchung von kleinen Flüssigkeitsproben
WO2010040655A1 (de) Mobile wasser-analyseanordnung und verfahren zur bestimmung eines analyts in einer wasserprobe
EP3449237B1 (de) Spektroskopiezelle in aussenwandung eines bioreaktor- und/oder mischbehälters und spektroskopieverfahren
EP0376110A2 (de) Testträger-Analysesystem
AT404514B (de) Vorrichtung und verfahren zur messung der konzentration von stoffen in flüssigkeiten
DE10352924A1 (de) Vorrichtung und Verfahren zur qualitativen und/oder quantitativen Analyse von Inhaltsstoffen in Flüssigkeiten, insbesondere in Getränke- und Prozessflüssigkeiten
EP1183524B1 (de) Messung von trübungen mittels reflektometrie
WO1993016370A1 (de) Gerät zur analyse einer medizinischen probe
DE10016023A1 (de) Optische Vorrichtung zur gleichzeitigen Mehrfachmessung mittels Polarimetrie und Spektrometrie sowie Verfahren zur Regelung/Überwachung physikalisch-chemischer und biotechnischer Prozesse mittels dieser Vorrichtung
DE102005039539B3 (de) Messvorrichtung zur optischen Bestimmung einer Schadgaskonzentration in Transmission sowie ein Detektionsmittel als auch ein Verfahren hierfür
WO2015000987A1 (de) Verfahren zur ermittlung der konzentration eines stoffes in einem verformbaren behälter
DE4215165A1 (de) Raster-scanning-lichtquelle und deren anwendung
EP3650839B1 (de) Labor-gasmessgerät
DE4332290C2 (de) Vorrichtung zur Messung der Photosynthese-Aktivitäten von Pflanzen
DE19619391C1 (de) Verfahren zur Bestimmung des Anteils eines Gases in einer Gasprobe
DE10348958B4 (de) Verfahren zur Bestimmung der Temperatur von wässrigen Flüssigkeiten mit optischen Mitteln
WO2003023499A2 (de) Optische vorrichtung, system und verwendung
EP1630543A1 (de) Sensor zur spektroskopischen Bestimmung gelöster Komponenten in einem fluiden Medium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP RU US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP RU US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000967587

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2384786

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10088428

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000967587

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP