WO2001019753A1 - Polymere organometallique ponte utilisable dans la preparation de materiau ceramique composite et procede de production - Google Patents

Polymere organometallique ponte utilisable dans la preparation de materiau ceramique composite et procede de production Download PDF

Info

Publication number
WO2001019753A1
WO2001019753A1 PCT/JP2000/006145 JP0006145W WO0119753A1 WO 2001019753 A1 WO2001019753 A1 WO 2001019753A1 JP 0006145 W JP0006145 W JP 0006145W WO 0119753 A1 WO0119753 A1 WO 0119753A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
total number
bonding
units
group
Prior art date
Application number
PCT/JP2000/006145
Other languages
English (en)
French (fr)
Inventor
Akira Kohyama
Yutai Katoh
Takemi Yamamura
Mitsuhiko Sato
Yoshizumi Tanaka
Original Assignee
Japan Science And Technology Corporation
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11258688A external-priority patent/JP3043761B1/ja
Priority claimed from JP25868999A external-priority patent/JP3406866B2/ja
Application filed by Japan Science And Technology Corporation, Ube Industries, Ltd. filed Critical Japan Science And Technology Corporation
Priority to DE60018589T priority Critical patent/DE60018589T2/de
Priority to EP00957047A priority patent/EP1221433B1/en
Publication of WO2001019753A1 publication Critical patent/WO2001019753A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers

Definitions

  • the present invention relates to an organometallic crosslinked polymer for producing a ceramic composite material and a method for producing the same.
  • the present invention relates to an organometallic cross-linked polymer suitable for producing a ceramic composite material having low activation properties and excellent heat resistance.
  • Ceramic materials such as SiC and Si 3 N 4 , which have excellent heat resistance and mechanical properties, have been developed as materials used in extreme environments such as the field of nuclear power, space, and aviation. Ceramic materials are also used as components exposed to severe conditions such as heat exchangers and mechanical seals.
  • SiC is not only excellent in heat resistance and abrasion resistance, but also takes advantage of the fact that long-lived radionuclides are not easily generated even under neutron irradiation conditions. It is a promising material in various fields.
  • SiC has a high melting point of 2600 ° C, it is a brittle material by itself. Therefore, a SiC fiber / SiC composite material reinforced with SiC fiber has been proposed [A. Lacombe and C. Bonnet, 2nd Int.Aerospace Planes Conf.Proc.AIAA-90-5208 (l990), CW Hollenberg et al. ., J. Nucl. Mat., 219, (1995) 70.86].
  • precursors such as organic silicon polymers are used as raw materials for fibers and matrix.
  • the organic silicon polymer is mineralized, a method of suppressing crystallization at a high temperature with an amorphous material or a method of crosslinking an organic metal compound with the organic silicon polymer to densify the crystal of a crystalline material.
  • a method of suppressing crystallization at a high temperature with an amorphous material or a method of crosslinking an organic metal compound with the organic silicon polymer to densify the crystal of a crystalline material has been adopted.
  • Most organometallic compounds used from Japan have had the problem of harmful induced activation under radiative environments.
  • carbon as a decomposition residue after thermal decomposition is likely to remain in the ceramic composite material as surplus carbon. The remaining surplus carbon causes a decrease in the heat resistance and high-temperature strength of the ceramic composite material. Disclosure of the invention
  • the present invention has been devised in order to solve such a problem.
  • a low activation metal By selecting a low activation metal and controlling the structure of the organometallic crosslinking polymer, it is possible to suppress the residual carbon residue.
  • An object of the present invention is to provide an organometallic crosslinking polymer for producing a ceramics composite material, which has excellent low activation properties, heat resistance, and high-temperature strength.
  • the organometallic crosslinked polymer for producing a ceramic composite material of the present invention mainly comprises one Si—CH 2 —bond unit and one Si—Si—bond unit, and comprises a hydrogen atom, a lower alkyl group.
  • Group, aryl group, phenyl group or silyl group is bonded to the side chain of the silicon, and the number ratio of the total number of one Si—CH 2 —linking unit to the total number of one Si—Si—linking unit is An organic silicon polymer portion having a number ratio of silicon to carbon in a range of 20: 1 to 1:20 and a silicon to carbon number ratio of 2: 1 to 1: 2; and a silicon atom of the organic silicon polymer portion.
  • M metal
  • the total number of one Si—CH 2 —bond unit and one Si—Si—bond unit and one M—Si—bond unit It is characterized in that the number ratio to the total number of M-0-Si-bond units is in the range of 2: 1 to 500: 1, and the number average molecular weight is 500 to 100,000.
  • the metal (M) at least one selected from Mo, Dy, Gd, Tb, Nd, and Er may be used instead of V, Be, Cr, Ga, Ge, Se, and Fe. .
  • This organometallic crosslinking polymer mainly comprises one Si—CH 2 —linking unit and —Si—Si—linking unit, and includes a hydrogen atom, a lower alkyl group, an aryl group, and a phenyl group.
  • a silyl group is bonded to the side chain of the silicon, and the number ratio of the total number of one Si—CH 2 —bonding unit to the total number of one Si—Si—bonding unit is 20: 1 to 1:20,
  • An organic silicon polymer having a number ratio of silicon to carbon of 2: 1 carbon 1: 2 and a number average molecular weight in the range of 500 to 100,000, and one Si—CH 2 — bond of the organic silicon polymer the number ratio of the total number of units and single Si_ Si- bond units of the total number and M- X bond unit or M- R 2 binding unit is from 10: 1 to 200: organometallic compounds of the formula (1) in 1 comprising ratio
  • the resulting mixture is heated and reacted in an inert atmosphere to reduce at least a portion of the silicon atoms of the organic silicon polymer to the organic metal. It is prepared by binding a metal atom of the compound.
  • M at least one metal selected from V, Be, Cr, Ga, Ge, Se, Fe or Mo, Dy, Gd, Tb, Nd , At least one selected from Er
  • R 1 carbonyl group, cyclopentadiene group or acetyl acetate group
  • R 2 halogen atom
  • n natural number of ⁇ 3 Best mode for carrying out the invention
  • the organometallic crosslinking polymer for producing a ceramics composite material according to the present invention is not contaminated with impurities such as oxygen and improves heat resistance without generating excess carbon.
  • the ratio of the number of CH 2 —bonding units to one Si — Si—bonding unit is specified in the range of 20: 1 to 1:20.
  • a large number of Si—Si—bond units leads to high reaction activity and oxidation
  • the heat resistance tends to be significantly reduced.
  • the number of one Si—CH 2 —linking units increases, the stability of the polymer improves, but as the number ratio of C / Si increases, excess carbon is generated and the heat resistance decreases, increasing the viscosity. As a result, handling of composite materials during production is hindered.
  • the metal element of the organometallic compound to be subjected to the crosslinking polymerization one or more of V, Be, Cr, Ga, Ge, Se, Fe or one or more of Mo, Dy, Gd, Tb, Nd. Er or Two or more are used.
  • Metal elements such as V, Be, Cr, Ga, Ge, Se, and Fe are unlikely to cause harmful activation in a radiation environment, and can be used to produce organometallic compounds such as acetyl acetonate as a raw material.
  • metal elements such as Mo, Dy.Gd, Tb, Nd, and Er exhibit an action of promoting densification when mineralizing the organometallic crosslinked polymer, and also have a function as a raw material such as acetyl acetate.
  • Organometallic compounds can be made.
  • any metal element has the effect of improving heat resistance and radiation resistance by changing the polymer into a cross-linked structure, and is suitable for an organic metal cross-linked polymer for the production of ceramics composite materials. ing.
  • the amount of the metal element is too large, the cross-linking structure is increased and the viscosity of the polymer is increased, which causes a decrease in workability during impregnation and a decrease in mechanical properties. Conversely, if the amount of the metal element is too small, the heat resistance will decrease, the densification will not proceed, and the mechanical properties will decrease.
  • the number ratio of the total number of —Si—CH 2 —bond units and one Si—Si—bond unit to the total number of _ M _Si—bond units and one M—0—Si—bond unit is from 2: 1.
  • an organometallic cross-linked polymer suitable for the production of ceramic composites that promotes densification and exhibits high activation properties while ensuring good workability is obtained.
  • the polydimethylsilane was heat-treated at 420 ° C in a nitrogen stream, and a colorless, transparent, slightly viscous liquid was collected in a distillation receiver.
  • This liquid has a number-average molecular weight of 980 as measured by the VPO method and is mainly composed of three-dimensional units consisting of one Si—CH 2 —, —Si—Si—, —Si—CH 3 _, —Si—H— It was an organic silicon polymer with a random structure.
  • the synthesized organometallic crosslinked polymer has a number average molecular weight of about 2800, and has one Si—CH 2 , —Si—Si—, one Ga—Si— and —Ga—O—Si—
  • the bonding unit number ratio was about 50: 4: 3: 2, and the CZSi number ratio was about 1.1.
  • the polydimethylsilane was heat-treated at 420 ° C in a nitrogen stream, and a colorless, transparent, slightly viscous liquid was collected in a distillation receiver.
  • This liquid has a number-average molecular weight of 980 as measured by the VPO method, and is mainly composed of one Si—CH 2 —, —Si-Si—, one Si—CH 3 —, — Si—H— three-dimensional unit. It was an organic silicon polymer with a random structure.
  • the synthesized organometallic cross-linked polymer has a number average molecular weight of about 2800, and has one Si_CH 2 , -Si-Si-, one Gd-Si- and -Gd-O-Si- bonding unit, and each bond
  • the unit number ratio was about 50: 4: 3: 2
  • the C / Si number ratio was about 1.2.
  • X direction: Y direction: Z direction 1: 1: 0.2, Dimensions: 120mm width X 240mm length X 5mm thickness).
  • the closed porosity of the obtained ceramics composite material was measured by the Archimedes method. As a result, the closed porosity was as low as 8% by volume, indicating that the material was sufficiently densified. In addition, it had a tensile strength of 540MPa at 550MPa and 1400 ° C in air atmosphere, and showed excellent heat resistance. Comparative Example 1:
  • Example 3 30 g of the same organic silicon polymer used in Comparative Example 1 and 5 g of titanium acetyl acetate were weighed and mixed. Then, 300 ml of xylene was added to the mixture to prepare a mixed solution of a homogeneous phase. The mixed solution was subjected to a reflux reaction while heating and stirring at 130 ° C for 1 hour in a nitrogen atmosphere. After the completion of the reflux reaction, xylene as a solvent was distilled off, and a polymerization reaction was further performed at 300 ° C for 4 hours to obtain an organometallic crosslinked polymer containing Si and Ti.
  • Example 3 30 g of the same organic silicon polymer used in Comparative Example 1 and 5 g of titanium acetyl acetate were weighed and mixed. Then, 300 ml of xylene was added to the mixture to prepare a mixed solution of a homogeneous phase. The mixed solution was subjected to a reflux reaction while heating and stirring at 130 ° C for 1 hour in
  • the synthesized organometallic crosslinked polymer had a number average molecular weight of about 600, and the elemental analysis by ICP showed that the VZSi number ratio in the polymer was about 0.03.
  • Example 4 30 g of the same organic silicon polymer used in the comparative example and 6 g of triscyclopentagenenyl neodymium (m) were weighed and mixed. Then, 300 ml of xylene was added to the mixture to prepare a mixed solution of a homogeneous phase. The mixed solution was refluxed while heating and stirring at 130 ° C. for 1 hour in a nitrogen atmosphere. After the completion of the reflux reaction, the solvent xylene was distilled off, and a polymerization reaction was further performed at 300 ° C. for 4 hours to obtain an organometallic crosslinked polymer containing Si and Nd.
  • the synthesized organometallic crosslinking polymer had a number average molecular weight of about 600, and the elemental analysis by ICP showed that the Nd / Si number ratio in the polymer was about 0.03.
  • an organometallic polymer is bridged and polymerized using a metal such as V, Be, Ge, Se, Fe, Mo, Tb, Nd, or Er.
  • a hanging polymer is obtained.
  • the organometallic crosslinking polymer hardly remains as surplus carbon after firing due to the specified molecular structure, and therefore, the strength at high temperatures is dramatically improved.
  • the effect of activation due to neutron irradiation can be reduced. Therefore, the obtained ceramics composite material has a high density, exhibits excellent mechanical properties and heat resistance, and is used in a wide range of fields from space and aerospace applications to nuclear power applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Ceramic Products (AREA)
  • Silicon Polymers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

明細書
セラ ミ ッ クス複合材料製造用有機金属橋掛け重合体及びその製造方 法 技術分野
本発明は、 低放射化特性を有し耐熱性に優れたセラミ ックス複合 材料の製造に適した有機金属橋掛け重合体に関する。 背景技術
原子力分野, 宇宙 · 航空分野等の極限環境下で使用される材料と して、 耐熱性や機械的特性に優れた SiC, Si 3 N 4等、 種々のセラミ ツ クス材料が開発されてきた。 セラ ミ ッ クス材料は、 熱交換器, メカ 二力ルシール等の過酷な条件に曝される部材としても使用されてい る。
なかでも、 SiCは、 耐熱性及び耐摩耗性に優れていることは勿論、 中性子照射条件下でも長寿命の放射性核種が発生しにくいことを活 用し、 宇宙 *航空用途から原子力用途までの広範囲な分野において 有望視されている材料である。
SiCは、 融点が 2600 °Cと高温特性に優れているものの、 それ自体 では脆い材料である。 そこで、 SiC繊維で強化した SiC繊維/ SiC複 合材料が提案されている [ A. Lacombe and C. Bonnet, 2nd Int. Aerospace Planes Conf.Proc.AIAA-90-5208(l990) , C. W. Hollenberg et al., J. Nucl. Mat., 219,(1995)70.86参照] 。
セラミ ックス複合材料の製造に際し、 繊維及びマ ト リ ックスの原 料として有機ケィ素重合体等の前躯体が使用されている。 この場合、 有機ケィ素重合体を無機化するとき、 非晶質材料では高温での結晶 化抑制や、 結晶質材料では結晶の緻密化のため有機ケィ素重合体に 有機金属化合物を架橋させる方法が採用されている。 しかし、 従来 から使用されている大半の有機金属化合物では、 放射環境下におい て有害な誘導放射化が生じる問題があった。 また、 加熱分解後の分 解残渣である炭素分が余剰炭素としてセラ ミ ツクス複合材料に残存 し易い。 残存した余剰炭素は、 セラミ ックス複合材料の耐熱性及び 高温強度を低下させる原因になる。 発明の開示
本発明は、 このような問題を解消すべく案出されたものであり、 低放射化金属を選定して有機金属橋掛け重合体の構造を制御するこ とにより、 余剰炭素の残留を抑制し、 低放射化特性, 耐熱性, 高温 強度の何れにも優れたセラミ ックス複合材料製造用の有機金属橋掛 け重合体を提供することを目的とする。
本発明のセラミックス複合材料製造用有機金属橋掛け重合体は、 その目 的を達成するため、 主として一 Si— CH2—結合単位及び一 Si— Si—結合単 位からなり、 水素原子, 低級アルキル基, ァリール基, フ Iニル基又はシ リル基がケィ素の側鎖に結合しており、 一 Si— CH2—結合単位の全数と一 Si— Si—結合単位の全数との個数比が 20: 1から 1: 20の範囲にあり、 ケィ 素と炭素との個数比が 2: 1から 1: 2の範囲にある有機ケィ素ポリマー部分 と、 該有機ケィ素ポリマー部分のケィ素原子の少なくとも一部が V, Be, Cr, Ga, Ge, Se, Feから選ばれた少なくとも 1種の金属 (M) 又は金属 (M) 及び酸素を介して結合している部分とからなり、 前記有機ケィ素ポ リマー部分の一 Si— CH2—結合単位及び一 Si— Si—結合単位の全数と一 M 一 Si—結合単位及び一 M— 0— Si—結合単位の全数との個数比が 2: 1から 5 00 : 1の範囲にあり、 数平均分子量が 500〜: 100,000であることを特徴とす る。
金属 (M) としては、 V, Be, Cr, Ga, Ge, Se, Feに代えて、 Mo, D y, Gd, Tb, Nd, Erから選ばれた少なく とも 1種を使用することも できる。
9 この有機金属橋掛け重合体は、 主と して一 Si— CH 2—結合単位及 び— Si— Si—結合単位からなり、 水素原子, 低級アルキル基, ァリ ール基, フ Iニル基又はシリル基がケィ素の側鎖に結合しており、 一 Si— CH 2—結合単位の全数と一 Si— Si—結合単位の全数との個数 比が 20 : 1カゝら 1 : 20、 ケィ素と炭素との個数比が 2 : 1カゝら 1 : 2、 数 平均分子量が 500〜: 100,000の範囲にある有機ケィ素ポリマーに、 該 有機ケィ素ポリマーの一 Si— CH 2—結合単位及び一 Si_ Si—結合単 位の全数と M— X結合単位又は M— R2結合単位の全数との個数比が 10 : 1から 200 : 1なる量比で式 (1) の有機金属化合物を混合し、 得 られた混合物を不活性雰囲気中で加熱反応させて前記有機ケィ素ポ リマーのケィ素原子の少なく とも一部を前記有機金属化合物の金属 原子と結合させることにより製造される。
MX, 又は MR 1 R: n ) ( 1 ) ただし、 M : V, Be, Cr, Ga, Ge, Se, Feから選ばれた少なく と も 1種の金属又は Mo, Dy, Gd, Tb, Nd, Erから選ば れた少なく とも 1種
X: ァセチルァセ トキシ基
R 1 : カルボ二ル基, シクロペンタジェン基又はァセチルァ セ トキシ基
R2 : ハロゲン原子
n : :!〜 3の自然数 発明を実施するための最良の形態
本発明に従ったセラ ックス複合材料製造用有機金属橋掛け重合 体は、 酸素等の不純物で汚染されず、 且つ余剰炭素を生成すること なく耐熱性を向上させるため、 分子構造中の一 Si— CH2—結合単位 と一 Si _ Si—結合単位の個数比を 20 : 1カゝら 1 : 20の範囲に特定して いる。 一 Si— Si—結合単位が多いと、 反応活性度が高く なつて酸化 し、 構造中に不用意に酸素を取り込んでしまうため耐熱性が著しく 低下し易い。 逆に一 Si— CH2—結合単位が多く なると、 ポリマーの 安定性は向上するものの、 C/Siの個数比が多くなつて余剰炭素が生 成して耐熱特性が低下し、 粘度の上昇に起因して複合材料製造時の 取扱いに支障を来す。
橋掛け重合に供する有機金属化合物の金属元素としては、 V, Be, Cr, Ga, Ge, Se, Feの 1種又は 2種以上又は Mo, Dy, Gd, Tb, Nd. Erの 1種又は 2種以上が使用される。
V, Be, Cr, Ga, Ge, Se, Fe等の金属元素は、 放射環境下にお いて有害な放射化が生じ難く、 原料となるァセチルァセ トネ一 ト等 の有機金属化合物を作製できる。 他方、 Mo, Dy. Gd, Tb, Nd, E r等の金属元素は、 有機金属橋掛け重合体の無機化に際し緻密化を促 進させる作用を呈すると共に、 原料となるァセチルァセ トネ一 ト等 の有機金属化合物を作製できる。 また、 何れの金属元素も、 重合体 を橋掛け構造に変えることによつて耐熱性及び耐放射化特性を向上 させる作用があり、 セラ ミ ッ クス複合材料製造用有機金属橋掛け重 合体に適している。
しかし、 金属元素の量が多すぎると、 橋掛け構造が多く なつて重 合体の粘度を上昇させ、 含浸時の作業性が低下や機械的特性の低下 等の原因となる。 逆に金属元素の量が少なすぎると、 耐熱性が低下 し、 緻密化が進まず、 機械的特性が低下する。
この点、 —Si— CH2—結合単位及び一 Si— Si—結合単位の全数と _ M _ Si—結合単位及び一 M—0— Si—結合単位の全数との個数比 を 2: 1から 500: 1の範囲に維持するとき、 緻密化を促進させ、 良好 な作業性を確保しながら高い放射化特性を発現するセラミ ックス複 合材料の製造に適した有機金属橋掛け重合体が得られる。 実施例 1 : 製造例 1 :
無水キシレン 2.5リ ッ トル及び金属ナ ト リ ゥム 400gを窒素気流中 でキシ レンの沸点まで加熱し、 ジメチルジクロロシラン 1 リ ツ トル を滴下し、 その状態で 1 ◦時間加熱環流して沈殿物を生成させた。 沈殿物を濾過し、 メタノールで洗浄した後、 更に水で洗浄し、 ポリ ジメチルシラン白色粉末 400gを得た。
ポリジメチルシランを窒素気流中で 420°Cに加熱処理し、無色透明 で若干粘性のある液体を留出受け器で回収した。 この液体は、 VPO 法による測定で 980の数平均分子量をもち、 主として一 Si— CH2—, -Si-Si-, —Si— CH3_, — Si— H—の結合単位からなる三次元ラ ンダム構造をもつ有機ケィ素ポリマーであった。
有機ケィ素ポリマー 30g及びク口ム(III)ァセチルァセ ト ネー 卜 5g を秤量し混合した。 次いで、 混合物にキシレン 300mlを加え、 均一 相の混合溶液を調製した。 窒素雰囲気中で混合溶液を 130°Cに 1時間 加熱攪拌しながら環流反応させた。 環流反応終了後、 溶媒のキシレ ンを留出し、 更に 300°Cで 4時間重合反応させることによつて Si及び Crを含む有機金属橋掛け重合体を得た。
合成された有機金属橋掛け重合体は数平均分子量が約 600で、赤外 分光法, 質量分析, 1H— NMR及び29 Si— NMRスペク トルの測定結 果から、 一 Si— CH2—結合単位, 一 Si— Si_結合単位, — Si— Cr— 結合単位及び一 Cr一 0— Si—結合単位をもち、 各結合単位の個数比 が約 20 : 2 : 1 : 1, 重合体中の CZSi個数比が約 0.7であつた。
製造例 2 :
無水テ トラヒ ドロフラン 800ml及び金属力 リ ゥム 105gを窒素気流 中で 70Cまで加熱し、 ClSi(CH3)CH2Cl: 10g, (C6H5)HSiCl2 : 7 5g及び(CH3)2SiCl2 : 90gの混合物を滴下し、 その状態で 8時間加熱 環流して沈殿物を生成させた。 沈殿物を濾過し、 濾液から無水テ ト ラヒ ドロフランを除去して、 白色スラ リ一状物質 32gを得た。 この白 色スラリ一状物質は、数平均分子量が約 600の有機ケィ素ポリマーで あった。
有機ケィ素ポリマー 30g及びガリゥム(III)ァセチルァセ トネート 1 4gを秤量し混合した。 次いで、 混合物にキシレン 500mlを加え、 均 一相の混合溶液を調製した。 窒素雰囲気中で混合溶液を 13CTCに 1時 間加熱攪拌しながら環流反応させた。 環流反応終了後、 溶媒のキシ レンを留出し、 更に 300°Cで 4時間重合反応させることによつて Si及 び Gaを含む有機金属橋掛け重合体を得た。
合成された有機金属橋掛け重合体は数平均分子量が約 2800で、 一 Si— CH2 , - Si- Si- , 一 Ga— Si—及び— Ga— O— Si—の結合単位 をもち、 各結合単位の個数比が約 50: 4: 3: 2, CZSi個数比が約 1. 1であつた。
SiC繊維 ZSiC複合材料の製造 :
製造例 1, 2で得られた有機金属橋掛け重合体の 50重量%キシ レン 溶液を炭素被覆された Si— Zr— C一 0系繊維 (チラノ繊維製 : ZMI— S5) の三次元織物 (繊維比率 X方向 : Y方向 : Z方向 = 1: 1: 0.2, 寸 法 : 120mm幅 X 240mm長さ X 5mm厚さ) に含浸させた。 含浸後、 真空乾燥し、 焼成した。 焼成条件としては、 Ar気流中 100°C Z時で 1 300°Cまで昇温, 1300°Cに 1時間保持、 室温まで炉冷を採用した。 得られたセラ ミ ッ クス複合材料は、 大気雰囲気中で 550MPa, 140 0°Cで 540MPaの引張強さをもち、 優れた耐熱性を示した。 実施例 2:
製造例 1:
無水キシ レン 2.5リ ッ 卜ル及び金属ナ 卜 リ ゥム 400gを窒素気流中 でキシ レンの沸点まで加熱し、 ジメチルジクロロシラン 1 リ ツ トル を滴下し、 その状態で 10時間加熱環流して沈殿物を生成させた。 沈 殿物を濾過し、 メ タ ノールで洗浄した後、 更に水で洗浄し、 ポリジ メチルシランの白色粉末 400gを得た。
ポリジメチルシランを窒素気流中で 420°Cに加熱処理し、無色透明 で若干粘性のある液体を留出受け器で回収した。 この液体は、 VPO 法による測定で 980の数平均分子量をもち、 主として一 Si—CH2—, -Si-Si-, 一 Si— CH3— , — Si— H—の結合単位からなる三次元ラ ンダム構造をもつ有機ケィ素ポリマーであった。
有機ケィ素ポリマー 30g及びジスプロシゥム(III)ァセチルァセ ト ネー ト 9gを秤量し混合した。 次いで、 混合物にキシレン 300mlを加 え、 均一相の混合溶液を調製した。 窒素雰囲気中で混合溶液を 130°C に 1時間加熱攪拌しながら乾留反応させた。 環流反応終了後、 溶媒の キシレンを留出し、 更に 300°Cで 4時間重合反応させることによって Si及び Dyを含む有機金属橋掛け重合体を得た。
合成された有機金属橋掛け重合体は数平均分子量が約 1400で, 赤 外分光法, 質量分析, 1H— NMR及び29 Si— NMRスペク トルの測定 結果から、 _Si— CH2—結合単位, _Si— Si—結合単位, — Si_Dy 一結合単位及び一 Dy— 0— Si—結合単位をもち、 各結合単位の個数 比が約 20 : 2 : 1 : 1, 重合体中の C/Si個数比が約 0.6であつた。 製造例 2 :
無水テ トラヒ ドロフラン 800ml及び金属力 リ ゥム 105gを窒素気流 中で 70°Cまで加熱し、 ClSi(CH3)CH2Cl: lOg, (C6H5)HSiCl2 : 7 5g及び(CH3)2SiCl2: 90gの混合物を滴下し、 その状態で 8時間加熱 環流して沈殿物を生成させた。 沈殿物を濾過し、 濾液から無水テ ト ラヒ ドロフランを除去して、 白色スラ リ一状物質 32gを得た。 この白 色スラリ一状物質は、数平均分子量が約 600の有機ケィ素ポリマーで あった。
有機ケィ素ポリマ一 30g及びガドリ ニゥ厶 (III)ァセチルァセ トネ ―ト 24gを秤量し混合した。次いで、混合物にキシ レン 500mlを加え、 均一相の混合溶液を調製した。 窒素雰囲気中で混合溶液を 130°Cに 1 時間加熱攪拌しながら環流反応させた。 環流反応終了後、 溶媒のキ シレンを留出し、 更に 300°Cで 4時間重合反応させることによって Si 及び Gdを含む有機金属橋掛け重合体を得た。
合成された有機金属橋掛け重合体は数平均分子量が約 2800で、 一 Si_ CH2 , - Si- Si- , 一 Gd— Si—及び— Gd— O— Si—の結合単位 をもち、 各結合単位の個数比が約 50: 4: 3: 2, C/Si個数比が約 1. 2であつた。
SiC繊維/ SiC複合材料の製造 :
製造例 1, 2で得られた有機金属橋掛け重合体の 50重量%キシレン 溶液を炭素被覆された Si— Zr—C— 0系繊維 (チラノ繊維製 : ZMI— S5) の三次元織物 (繊維比率 X方向 : Y方向 : Z方向 = 1: 1: 0.2, 寸 法 : 120mm幅 X 240mm長さ X 5mm厚さ) に含浸させた。 含浸後、 真空乾燥し、 焼成した。 焼成条件としては、 Ar気流中 100°C Z時で 1 300°Cまで昇温、 1300°Cに 1時間保持, 室温まで炉冷を採用した。 含 浸及び焼成を 10回繰り返すことにより、 セラミ ックス複合材料を製 造した。
得られたセラミ ックス複合材料の閉気孔率をアルキメデス法で測 定したところ、 8体積%と低い閉気孔率を示し、 十分に緻密化された 材料であることが判った。 また、 大気雰囲気中で 550MPa, 1400°C で 540MPaの引張強さをもち、 優れた耐熱性を示した。 比較例 1 :
無水キシレン 2.5リ ッ トル及び金属ナ ト リ ゥム 400gを窒素気流中 でキシ レンの沸点まで加熱し、 ジメチルジクロロシラン 1 リ ッ トル を滴下し、 その状態で 10時間加熱還流して沈殿物を生成させた。 沈 殿を濾過し、 メ タ ノールで洗浄した後、 更に水で洗浄し、 ポリジメ チル白色粉末 400gを得た。
ポリジメチルシランを窒素気流中で 420°Cに加熱処理し、無色透明 で若干粘性のある液体を留出受け器で回収した。 この液体は、 VPS 法による測定で 980の数平均分子量をもち、 主として—Si— CH2— , -Si-Si-, — Si— CH3— . — Si— H—の結合単位からなる三次元 ランダム構造をもつ有機ケィ素ポリマ一であり、 一 Si— CH2—と— Si— Si—の各結合単位の個数比が約 40 : 1、 重合体中の C/Si個数比 が約 1.4であつた。 比較例 2 :
比較例 1で使用した同じ有機ケィ素ポリマー 30g及びチタン ァセチルァセ トネー ト 5gを秤量し混合した。 次いで、 混合物にキシ レン 300mlを加え、 均一相の混合溶液を調製した。 窒素雰囲気中で 混合溶液を 130°Cに 1時間加熱攪拌しながら還流反応させた。 還流反 応終了後、 溶媒のキシレンを留出し、 更に 300°Cで 4時間重合反応さ せることによつて Si及び Tiを含む有機金属橋掛け重合体を得た。 実施例 3 :
比較例で使用した同じ有機ケィ素ポリ マー 30g及びバナジゥム (W) ァセチルァセ トネート 5gを秤量し混合した。 次いで、 混合物 にキシ レン 300mlを加え、 均一相の混合溶液を調製した。 窒素雰囲 気中で混合溶液を 130°Cに 1時間加熱攪拌しながら還流反応させた。 還流反応終了後、 溶媒のキシレンを留出し、 更に 300°Cで 4時間重合 反応させることによつて Si及び Vを含む有機金属橋掛け重合体を得 た。
合成された有機金属橋掛け重合体は数平均分子量が約 600で、 ICP 法による元素分析結果から、重合体中の VZSi個数比は約 0.03であつ た。 実施例 4 : 比較例で使用した同じ有機ケィ素ポリマー 30g及びト リ スシクロ ペンタジェニルネオジゥム (m ) 6gを秤量し混合した。 次いで、 混 合物にキシ レン 300mlを加え、 均一相の混合溶液を調製した。 窒素 雰囲気中で混合溶液を 130°Cに 1時間加熱攪拌しながら還流反応させ た。 還流反応終了後、 溶媒のキシレンを留出し、 更に 300°Cで 4時間 重合反応させるこ とによつて Si及び Ndを含む有機金属橋掛け重合 体を得た。
合成された有機金属橋掛け重合体は数平均分子量が約 600で、 ICP 法による元素分析結果から、 重合体中の Nd/Si個数比は約 0.03であ つた。
SiC繊維 ZSiC複合材料の製造 :
比較例 1 , 2及び実施例 3 , 4で得られた有機金属橋掛け重合体 の 50重量%キシレン溶液を炭素被覆された Si— Zr— C— 0系繊維(チ ラノ繊維製 ZMI— S5) の三次元織物 (繊維比率, X方向 : Y方向 : Z方向 = 1 : 1 : 0.2, 寸法 : 120mm幅 x240mm長さ x6mm厚さ) に含 浸させた。 含浸後、 真空乾燥し、 焼成した。 焼成条件としては、 Ar 気流中 100°C Z時で 1300°Cまで昇温、 1300°Cに 1時間保持、 室温まで 炉冷を採用した。
得られたセラミ ックス複合材料の密度、 大気中 140CTCでの引張強 度及び lxlO 2 5 n · m— 2 (E > 0.1MeV) 相当の中性子線を照射した 後、 1週間目における 線量を表 1 に示す。
表 1 : S i C繊維 Z S i C複合材料の特性比較
Figure imgf000013_0001
発明の効果
以上に説明したように、 本発明においては、 V, Be, Ge, Se, Fe, Mo, Tb, Nd, Er等の金属を用いて有機ケィ素ポリマーを橋掛け重 合することにより有機金属橋掛け重合体を得ている。 この有機金属 橋掛け重合体は、 特定された分子構造のため余剰炭素として焼成後 に残存することが少なく、 そのため高温における強度も飛躍的に向 上する。 しかも、 中性子線照射による放射化の影響も低減できる。 したがって、 得られたセラ ミ ッ クス複合材料は、 緻密度が高く、 優 れた機械的特性及び耐熱性を呈し、 宇宙 · 航空用途から原子力用途 までの広範な分野にわたって使用される。

Claims

請求の範囲
1. 主と して一 Si— CH 2—結合単位及び一 Si— Si—結合単位から なり、 水素原子, 低級アルキル基, ァリール基, フヱニル基又は シリル基がケィ素の側鎖に結合しており、 — Si— CH 2—結合単位 の全数と一 Si— Si—結合単位の全数との個数比が 20: 1カゝら 1: 2 0の範囲にあり、 ケィ素と炭素との個数比が 2: 1から 1: 2の範囲 にある有機ケィ素ポリマー部分と、
該有機ケィ素ポリマー部分のケィ素原子の少なく とも一部が Mo, Dy, Gd, Tb , Nd, Er, V, Be, Cr, Ga, Ge, Se , Feか ら選ばれた少なく とも 1種の金属 (M) 又は金属 (M) 及び酸素を 介して結合している部分とからなり、
前記有機ケィ素ポリマ一部分の— Si— CH 2—結合単位及び一 S i一 Si—結合単位の全数と— M— Si—結合単位及び一 M _ 0— Si— 結合単位の全数との個数比が 2: 1から 500: 1の範囲にあり、 数平 均分子量が 500〜100,000であることを特徴とするセラミ ッ ク ス 複合材料製造用有機金属橋掛け重合体。
2. 主として— Si— CH 2—結合単位及び一 Si— Si—結合単位から なり、 水素原子, 低級アルキル基, ァリール基, フヱニル基又は シリル基がケィ素の側鎖に結合しており、 — Si— CH 2—結合単位 の全数と一 Si— Si _結合単位の全数との個数比が 20: 1カゝら 1: 2 0の範囲にあり、 ケィ素と炭素との個数比が 2: 1から 1: 2の範囲 にある有機ケィ素ポリマー部分と、
該有機ケィ素ポリマー部分のケィ素原子の少なく とも一部が V, Be, Cr, Ga, Ge, Se, Feから選ばれた少なく とも 1種の金属 (M) 又は金属 (M) 及び酸素を介して結合している部分とからなり、 前記有機ケィ素ポリマ一部分の— Si— CH 2 _結合単位及び一 S i _ Si—結合単位の全数と一 M— Si—結合単位及び— M— 0— Si— 結合単位の全数との個数比が 2 1から 500 1の範囲にあり、 数平 均分子量が 500 100, 000であることを特徴とするセラミ ッ クス 複合材料製造用有機金属橋掛け重合体。 主と して— Si— CH 2—結合単位及び一 Si— Si—結合単位から なり、 水素原子, 低級アルキル基, ァリール基, フ ニル基又は シリル基がケィ素の側鎖に結合しており、 — Si— CH 2—結合単位 の全数と一 Si— Si—結合単位の全数との個数比が 20 1から 1 2 0、 ケィ素と炭素との個数比が 2 1から 1 2、 数平均分子量が 50 0〜: 100,000の範囲にある有機ケィ素ポリマーに、
該有機ケィ素ポリマーの— Si— CH 2—結合単位及び— Si— Si 一結合単位の全数と M— X結合単位又は M— R 2結合単位の全数と の個数比が 10 1から 200 1なる量比で、 式 (1 ) で表わされる 有機金属化合物を混合し、
得られた混合物を不活性雰囲気中で加熱反応させることによ り、 前記有機ケィ素ポリマーのケィ素原子の少なく とも一部を前 記有機金属化合物の金属原子と結合させることを特徴とするセ ラミ ツクス複合材料製造用有機金属橋掛け重合体の製造方法。
MX, 又は MR 1„R : ( 1 ) ただし、 Μ V, Be, Cr, Ga, Ge, Se, Feから選ばれた少なく とも 1種の金属又は Mo, Dy, Gd, Tb, Nd, Erから選 ばれた少なく とも 1種
X: ァセチルァセ トキシ基
R 1 : カルボニル基, シクロペンタジェン基又はァセチル ァセ トキシ基
R 2 : ハロゲン原子
n :! 3の自然数
PCT/JP2000/006145 1999-09-13 2000-09-08 Polymere organometallique ponte utilisable dans la preparation de materiau ceramique composite et procede de production WO2001019753A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE60018589T DE60018589T2 (de) 1999-09-13 2000-09-08 Organometallisch verbrückte polymere zur verwendung bei der herstellung von keramischen kompositmaterialien und verfahren zur herstellung derselben
EP00957047A EP1221433B1 (en) 1999-09-13 2000-09-08 Organometallic bridged polymer for use in preparing ceramic composite material and method for preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11258688A JP3043761B1 (ja) 1999-09-13 1999-09-13 セラミックス複合材料製造用有機金属橋掛け重合体及びその製造方法
JP25868999A JP3406866B2 (ja) 1999-09-13 1999-09-13 セラミックス複合材料製造用有機金属橋掛け重合体及びその製造方法
JP11/258688 1999-09-13
JP11/258689 1999-09-13

Publications (1)

Publication Number Publication Date
WO2001019753A1 true WO2001019753A1 (fr) 2001-03-22

Family

ID=26543784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006145 WO2001019753A1 (fr) 1999-09-13 2000-09-08 Polymere organometallique ponte utilisable dans la preparation de materiau ceramique composite et procede de production

Country Status (3)

Country Link
EP (1) EP1221433B1 (ja)
DE (1) DE60018589T2 (ja)
WO (1) WO2001019753A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151732A (en) * 1980-04-28 1981-11-24 Satoshi Yajima Polycarbosilane containing metalloxane bond partly and its preparation
JPS5722186A (en) * 1980-07-12 1982-02-05 Seishi Yajima Heat-resistant oxidation-resistant ceramics
US4358576A (en) * 1980-04-17 1982-11-09 Kurosaki Refractories, Co., Ltd. Organometallic polymer and process for production thereof
JPS58213026A (ja) * 1982-06-04 1983-12-10 Ube Ind Ltd シリコンとチタン又はジルコニウムとを含有する有機金属架橋重合体及びその製造方法
JPS63128027A (ja) * 1986-11-18 1988-05-31 Ube Ind Ltd シリコンとチタン又はジルコニウムとを含有する遷移金属はしかけ重合体及びその製造方法
JPH01215759A (ja) * 1988-02-23 1989-08-29 Teijin Ltd 炭化珪素−炭素複合材シートの製造法
US5277973A (en) * 1988-08-12 1994-01-11 Ube Industries, Ltd. Carbon fibers having high strength and high modulus of elasticity and polymer composition for their production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112700A (en) * 1976-02-28 1977-09-21 Tohoku Daigaku Kinzoku Zairyo Amorphous organopolysilicone composite for preparing silicone carbide
US4334051A (en) * 1979-12-05 1982-06-08 Seishi Yajima Heat resistant polyvanadiosiloxanes and a process for their production
US4906710A (en) * 1988-10-31 1990-03-06 Dow Corning Corporation Preceramic metallopolysilanes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358576A (en) * 1980-04-17 1982-11-09 Kurosaki Refractories, Co., Ltd. Organometallic polymer and process for production thereof
JPS56151732A (en) * 1980-04-28 1981-11-24 Satoshi Yajima Polycarbosilane containing metalloxane bond partly and its preparation
JPS5722186A (en) * 1980-07-12 1982-02-05 Seishi Yajima Heat-resistant oxidation-resistant ceramics
JPS58213026A (ja) * 1982-06-04 1983-12-10 Ube Ind Ltd シリコンとチタン又はジルコニウムとを含有する有機金属架橋重合体及びその製造方法
JPS63128027A (ja) * 1986-11-18 1988-05-31 Ube Ind Ltd シリコンとチタン又はジルコニウムとを含有する遷移金属はしかけ重合体及びその製造方法
JPH01215759A (ja) * 1988-02-23 1989-08-29 Teijin Ltd 炭化珪素−炭素複合材シートの製造法
US5277973A (en) * 1988-08-12 1994-01-11 Ube Industries, Ltd. Carbon fibers having high strength and high modulus of elasticity and polymer composition for their production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1221433A4 *

Also Published As

Publication number Publication date
DE60018589T2 (de) 2006-04-06
EP1221433B1 (en) 2005-03-09
EP1221433A1 (en) 2002-07-10
EP1221433A4 (en) 2004-06-09
DE60018589D1 (de) 2005-04-14

Similar Documents

Publication Publication Date Title
US4720532A (en) Organopolysilazane precursors to silicon nitride-rich mixed SiC/Si3 N4
Okamura Ceramic fibres from polymer precursors
Kroke et al. Silazane derived ceramics and related materials
US4689252A (en) Polysilazane composition which can crosslink in the presence of a metal compound catalyzing a hydrosilylation reaction
US7220813B2 (en) Application of photocurable pre-ceramic polymers
GB1579982A (en) Organosilicon high molecular weight compounds
US5386006A (en) Shape sintered articles derived from boro-containing polysilazanes
JPS6353293B2 (ja)
JPH01131249A (ja) プレセラミック有機シラザン重合体の製造方法
EP0030105B1 (en) Polymetallocarbosilane, process for its production and shaped articles of inorganic carbide derived therefrom
US5204380A (en) Preparation of silicon carbide ceramics from the modification of an Si-H containing polysilane
EP0424082A2 (en) Preceramic organosilicon-boron polymers
US6133396A (en) Highly processable hyperbranched polymer precursors to controlled chemical and phase purity fully dense SiC
JPH0363576B2 (ja)
US5508238A (en) Monolithic ceramic bodies using modified hydrogen silsesquioxane resin
EP0435494A2 (en) Multicomponent binders for SiC powders
US5164344A (en) Borosilazanes as binders for the preparation of sintered silicon carbide monoliths
WO2001019753A1 (fr) Polymere organometallique ponte utilisable dans la preparation de materiau ceramique composite et procede de production
JPS6158086B2 (ja)
US20220306811A1 (en) Modified preceramic polymers, method of making and ceramic matrix composite formed therefrom
JPS6260414B2 (ja)
JP3406866B2 (ja) セラミックス複合材料製造用有機金属橋掛け重合体及びその製造方法
JPH0233734B2 (ja) Shinkinahorichitanokaruboshiran
JP3043761B1 (ja) セラミックス複合材料製造用有機金属橋掛け重合体及びその製造方法
JPS6123932B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000957047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10048511

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000957047

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000957047

Country of ref document: EP