WO2001018179A1 - Synthases de depsipeptides cycliques, genes correspondants et systeme de production de masse de ces depsipeptides cycliques - Google Patents

Synthases de depsipeptides cycliques, genes correspondants et systeme de production de masse de ces depsipeptides cycliques Download PDF

Info

Publication number
WO2001018179A1
WO2001018179A1 PCT/JP2000/006103 JP0006103W WO0118179A1 WO 2001018179 A1 WO2001018179 A1 WO 2001018179A1 JP 0006103 W JP0006103 W JP 0006103W WO 0118179 A1 WO0118179 A1 WO 0118179A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic
seq
synthase
cyclic depsipeptide
sequence
Prior art date
Application number
PCT/JP2000/006103
Other languages
English (en)
French (fr)
Inventor
Naoki Midoh
Kaoru Okakura
Koichi Miyamoto
Manabu Watanabe
Koji Yanai
Tetsuya Yasutake
Sato Aihara
Takafumi Futamura
Horst Kleinkauf
Takeshi Murakami
Original Assignee
Meiji Seika Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha, Ltd. filed Critical Meiji Seika Kaisha, Ltd.
Priority to AU68741/00A priority Critical patent/AU784466B2/en
Priority to US10/070,387 priority patent/US7285404B1/en
Priority to EP00957009A priority patent/EP1215281B1/en
Priority to JP2001522391A priority patent/JP3961289B2/ja
Priority to CA2384122A priority patent/CA2384122C/en
Priority to DE60028217T priority patent/DE60028217T2/de
Priority to NZ517588A priority patent/NZ517588A/en
Publication of WO2001018179A1 publication Critical patent/WO2001018179A1/ja
Priority to NO20021100A priority patent/NO330902B1/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • the present invention relates to a cyclic debpeptide synthase and a gene thereof, and a mass production system of the cyclic debpeptide, and more specifically, a synthase of a PF102 substance having anthelmintic activity, a gene thereof, and a PF102. It relates to a mass production system for two substances.
  • the PF 102 substance [cyclo (£ -lactyl-methylleucyl— £ —3-phenylphenylmethyl leucyl- £ -lactyl- ⁇ methylleucyl—3-phenyllactyl ⁇ -methylleucyl)] was added to Agonomycetales. It is a cyclic debpeptide produced by the PF 102 strain (Mycelia sterilia, FERM BP-2671), and has extremely high anthelmintic activity against animal-parasitic nematodes. No. 3-35796, Sasaki, T. et al. J. Antibiotics., 45, 692, (1992)). Therefore, this substance is useful as an anthelmintic for animals and also as a raw material for synthesizing derivatives of this substance that are more active.
  • the PF102 substance has a structure in which -i-methylleucine, -lactic acid, and phenyllactic acid are linked via an ester bond and an amide bond.
  • 4-molecular leucine and 2 molecules of lactate are used. It is thought that it is synthesized from two molecules of phenyl lactic acid by a certain kind of peptide synthase.
  • Peptide synthase is an enzyme that performs biosynthesis of secondary metabolites of microorganisms such as peptides, depsipeptides, lipopeptides, and peptide lactones using amino acids and hydroxy acids as substrates. (Marahiel, MA et al. Chem. Rev., 97, 2651, (1997)).
  • Peptide synthase has one domain for each substrate, and each substrate is activated by ATP in this domain and binds via phosphopantothenic acid in the domain, which catalyzes the region between each domain. It is thought that amide bonds and ester bonds are formed by the action.
  • An object of the present invention is to provide an enzyme for synthesizing a cyclic depsipeptide, in particular, a PF102 substance (hereinafter referred to as “cyclic depsipeptide synthase”).
  • Another object of the present invention is to provide a gene encoding a cyclic depsipeptide synthase (hereinafter referred to as “cyclic depsipeptide synthase gene”).
  • the present invention further relates to a recombinant vector and a transformant for expressing a cyclic depeptide synthase, a mass production system of a cyclic depeptide, and a method for producing the same. Its purpose is to provide a manufacturing method.
  • An object of the present invention is to provide a method for producing a cyclic depeptide synthase.
  • the cyclic debpeptide synthase according to the present invention is a protein comprising an amino acid sequence selected from the group consisting of:
  • the cyclic depeptide synthase gene according to the present invention comprises a nucleotide sequence encoding a cyclic depeptide synthase.
  • the cyclic debpeptide synthase gene according to the present invention also comprises a nucleotide sequence selected from the group consisting of:
  • the recombinant vector according to the present invention comprises the cyclic debpeptide synthase gene according to the present invention.
  • the transformant and the mass production system of the cyclic debutpeptide according to the present invention are hosts comprising the recombinant vector according to the present invention.
  • the method for producing a cyclic debpeptide according to the present invention comprises culturing the transformant according to the present invention, and collecting the cyclic debpeptide from the culture.
  • the method for producing a cyclic depeptide synthetase according to the present invention does not include culturing the transformant according to the present invention, and collecting the cyclic depeptide synthase from the culture. Things.
  • a cyclic debpeptide synthase can be overexpressed in a PF1022 substance producing microbe, and a PF1022 substance can be produced in large quantities.
  • FIG. 1 shows a method for preparing plasmid pABP / PFsyn.
  • FIG. 2 shows a restriction map of a 6 kb Hindlll fragment containing the Abpl gene.
  • FIG. 3 shows the structure and restriction map of pABPd.
  • Figure 4 shows the results of electrophoresis of proteins extracted from the parent strain and the transgenic strain into which pABP / PFsyn has been introduced.
  • FIG. 5 shows the results of electrophoresis of proteins extracted from the parent strain and the transgenic strain into which pABP / PFsynN has been introduced.
  • Example 1 The PF 1022 strain described in 1. was deposited on January 24, 1989 with the Institute of Biotechnology and Industrial Technology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry (1-3 1-3 Tsukuba East, Ibaraki, Japan) Was done.
  • the accession number is FERM BP-2671.
  • Example 2 Escherichia coli (DH5) transformed with the plasmid pPFsyn described in (1) was obtained on September 1, 1999 by the Ministry of International Trade and Industry, National Institute of Advanced Industrial Science and Technology, Institute of Biotechnology and Industrial Technology (Japan). Deposited at Tsukuba East 1-chome 1-3-3, Ibaraki Prefecture). The accession number is FERM BP-7253.
  • Example 2 The Escherichia coli (DH5) transformed with the plasmid pPFsynN described in (1) was obtained on September 1, 1999 by the Ministry of International Trade and Industry, National Institute of Industrial Science and Technology, Institute of Biotechnology and Industrial Technology (Japan). Deposited at Tsukuba East 1-chome 1-3-3, Ibaraki Prefecture). The accession number is FERM BP-7254.
  • a cyclic depsipeptide synthase preferably a PF1022 substance synthase, and a gene thereof are provided.
  • the enzyme according to the present invention comprises 4 molecules of L-leucine, 2 molecules of D-lactic acid, and 2 minutes By acting on the daughter D-phenyl lactic acid, PF 102 can be synthesized. Derivatives of PF1022 substances can be produced by pre-modifying D-lactic acid, L-bit isine, and D-phenyllactic acid.
  • Derivatives of the PF102 substance include, for example, those in which the para-position of two phenyl groups in the PF102 substance is substituted with an amino group.
  • D-p-aminophenyl lactic acid can be used instead of D-phenyl lactic acid.
  • the number of modifications can be, for example, one to several, more specifically one to six.
  • the number of modifications can be, for example, one to several tens.
  • the types of the introduced mutations may be the same or different.
  • sequence (d) the identity of SEQ ID NO: 1 to the DNA sequence may be preferably at least 80%, more preferably at least 90%, most preferably at least 95%.
  • stringent conditions means that the washing operation of the membrane after hybridization is performed in a low-salt concentration solution at a high temperature, for example, 0.2 X SSC concentration ( lx SSC: means washing conditions of 15 mM trisodium citrate, 150 mM sodium chloride) and 0.1% SDS at 60 ° for 15 minutes.
  • sequence (b) whether or not “having cyclic depsipeptide synthase activity” is determined, for example, by preparing a substrate for cyclic depsipeptide, allowing a test protein to act, and confirming the production of cyclic depsipeptide by, for example, chromatography. Can be evaluated.
  • sequences (d), (e) and (f) whether or not “encoding a protein having a cyclic depsipeptide synthase activity” is determined, for example, by subjecting a test nucleotide sequence to a host as described in Example 2.
  • the protein can be expressed, and the obtained protein can be allowed to act on a substrate of the cyclic peptide, and the production of the cyclic peptide can be evaluated by, for example, confirming by chromatography.
  • the nucleic acid encoding it The reotide sequence is easily determined, and various nucleotide sequences encoding the amino acid sequence described in SEQ ID NO: 2 can be selected. Therefore, the nucleotide sequence encoding the synthase according to the present invention includes, in addition to a part or all of the DNA sequence shown in SEQ ID NO: 1, a DNA sequence encoding the same amino acid and a degenerate codon. A sequence having a sequence is also meant, and an RNA sequence corresponding thereto is also included.
  • the gene according to the present invention can be obtained, for example, as follows.
  • Genomic DNA is extracted from the bacteria producing the PF102 substance, cut with an appropriate restriction enzyme, and a library comprising the genomic DNA of the bacteria producing the PF102 substance is prepared using a phage vector.
  • Appropriate primers are synthesized based on the conserved region of the amino acid sequence of peptide synthase or the partial amino acid sequence of cyclic peptide synthase purified from a PF102 substance producing bacterium.
  • an appropriate restriction enzyme cleavage site is introduced by a technique such as PCR upstream of the translation initiation codon and downstream of the translation termination codon, and contains only the cyclic peptide synthase gene. Gene fragments can be obtained.
  • a recombinant vector comprising a nucleotide sequence encoding a cyclic debpeptide synthase.
  • the procedures and methods for constructing the recombinant vector according to the present invention may be those commonly used in the field of genetic engineering.
  • Examples of the vector that can be used in the present invention include a vector that is integrated into the host chromosomal DNA and a vector in which a vector having an autonomously replicating sequence capable of self-replication exists in a plasmid state in a host cell.
  • plasmids such as pUC18 or pUC118), pBluescript (pBluescript I KS +, etc.), and pBR322.
  • the copy number of the gene present in the host cell may be one copy or plural.
  • the recombinant vector according to the present invention may be, for example, a promoter upstream of a nucleotide sequence encoding a cyclic depsipeptide synthase, and an upstream / downstream downstream of a nucleotide sequence operably linked thereto. And / or by operably linking other control sequences.
  • the ligation of the motor to the gene and the coupling of the protein to the gene according to the present invention, and the insertion of the expression unit into the vector can be carried out according to known methods.
  • control sequences for glycolytic enzymes such as 3-phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and enolase are used.
  • Control sequences of amino acid synthase genes such as orditin rubamoyl transferase, tributofansinase, etc.
  • control sequences of hydrolase genes such as amylase, protease, lipase, cellulase, acetoamidase, etc.
  • redox enzyme genes such as nitrite reductase, orotidin-5-phospho-dehydrogenase and alcohol dehydrogenase
  • PF102 substance producing bacteria such as Abpl And a regulatory sequence of a gene derived from a PF102 substance producing bacterium.
  • the gene according to the present invention may be linked to a foreign gene encoding a translation region of another protein and expressed as a fusion protein.
  • the gene marker is introduced, for example, by introducing an appropriate restriction enzyme cleavage site into the control sequence by PCR, inserting this into a plasmid vector, and then selecting a drug resistance gene and / or an auxotrophic complement gene. This can be done by linking marker genes.
  • the gene marker can be appropriately selected depending on the method for selecting a transformant.
  • a gene encoding drug resistance or a gene complementing auxotrophy can be used.
  • drug resistance genes include genes for drugs such as destomycin, benomyl, oligomycin, hygromycin, G418, bleomycin, bialaphos, plasticidin S, phleomycin, phosphinothricin, ampicillin, and kanamycin.
  • Genes that complement auxotrophy include genes such as 5, ErG, argB, trpC, niaD, TRPK LEU2, and URA3. Production of transformants and cyclic debpeptides
  • a host transformed by the vector.
  • the host that can be used in the present invention is not particularly limited as long as it is a microorganism that can be used as a host for genetic recombination.
  • hosts that can be used include any bacterial or fungal microorganism, preferably Escherichia coli, Bacillus bacteria, actinomycetes, yeast, filamentous fungi, and more preferably produce PF102 substances A filamentous fungus, most preferably a PF102 strain (Myceiia sterilia, FERM BP-2671).
  • Introduction of a recombinant vector for gene expression into a host can be performed according to a conventional method.
  • the introduction method include an electoporation method, a polyethylene glycol method, an agrobacterium method, a lithium method and a calcium chloride method, and an efficient method for a host cell is selected.
  • the polyethylene glycol method is preferred.
  • Culturing of the transformant can be performed by appropriately selecting a medium, culture conditions, and the like according to a conventional method.
  • a medium conventional components, for example, as a carbon source, glucose, sucrose, cellulose, starch syrup, dextrin, starch, glycerol, molasses, animal and vegetable oils can be used.
  • Nitrogen sources include soybean flour, wheat germ, pharmamedia, corn 'stip' liquor, cottonseed meal, bouillon, leptone, polypeptone, malt extract, yeast extract, ammonium sulfate, sodium nitrate, urea. Etc. can be used.
  • sodium, potassium, calcium, magnesium, cobalt, chlorine, phosphoric acid, sulfuric acid, and other inorganic salts capable of forming an ion such as potassium chloride, calcium carbonate, dipotassium hydrogen phosphate
  • magnesium sulfate, potassium phosphate, zinc sulfate, manganese sulfate, and copper sulfate is also effective to add magnesium sulfate, potassium phosphate, zinc sulfate, manganese sulfate, and copper sulfate.
  • trace nutrients such as various amino acids such as thiamine (such as thiamine hydrochloride), amino acids such as glutamic acid (such as sodium glutamate) and nucleotides such as nucleotides such as thiamine (such as thiamine hydrochloride).
  • Selective drugs such as antibiotics can also be added.
  • organic and inorganic substances that promote the growth of bacteria and promote the production of cyclic depeptides can be appropriately added.
  • a shaking culture method under an aerobic condition an aeration stirring culture method, or a deep aerobic culture method can be used, and the deep aerobic culture method is most suitable.
  • the pH of the medium is, for example, about pH 6 to pH 8. Suitable temperatures for cultivation are 15 ° C ( ⁇ 40 ° C, but often grow around 26 ° C-37 ° C.
  • cyclic depsipeptide synthase and cyclic depsipeptide depends on the culture medium and culture conditions, or Depending on the host used, the accumulation usually reaches its maximum in 2 to 25 days in any of the culture methods, and the amount of cyclic deb-peptide synthase or cyclic deb-peptide in the culture is the highest.
  • the culture is sometimes stopped, and the cyclic depsipeptide synthase or the cyclic depsipeptide is isolated and purified from the culture.
  • Cyclic depsipeptide synthase can be efficiently purified by, for example, hydrophobic chromatography using ptylagarose or the like.
  • the cyclic depsipeptide can be extracted from a culture, for example, with acetone, methanol, ethanol, ethyl acetate, butyl acetate and the like.
  • chromatography using an adsorbent such as silica gel or alumina, Sephadex LH-20 (Pharmacia), or Toyopearl HW-40 (Toso Ichisha) may be performed.
  • a pure cyclic depsipeptide can be obtained by the above methods or by appropriately combining them.
  • the mass production system of a cyclic depsipeptide is provided.
  • a host that can be used as a production system for a cyclic depsipeptide particularly a production system for a PF102 substance, a filamentous fungus producing a PF102 substance is preferable, and a PF102 strain (Mycelia strain) is most preferable.
  • a PF102 strain Mycelia strain
  • sterilia FERM BP-2671 As a recombinant vector used for transformation, a regulatory sequence (promo-, ichi-ichi-mine, etc.) that functions in a PF102 substance-producing bacterium was made operable with the cyclic depsipeptide synthase gene.
  • a linked expression vector is preferred, most preferably a PF102 strain (Myceliaster).
  • This is an expression vector in which a regulatory sequence that functions in i lia (FERM BP-2671) is operably linked to a cyclic depsipeptide synthase gene.
  • the cyclic depsipeptide, particularly the PF102 substance is preferably an expression vector in which a control sequence functioning in a PF102 substance-producing bacterium is operably linked to a cyclic depsipeptide synthase gene.
  • Example 1 Cloning of cyclic depeptide synthase gene from a PF102 substance producing bacterium
  • Genomic DNA was used to induce mutations in the PF102 strain (Mycelia sterilia, FERM BP-2671) by UV irradiation or NTG treatment to improve the productivity of PF102. It was extracted from 232-26 strain producing 22 substances. PF 10 2 2 substance-producing bacteria 432-26 strain was added to a 50 ml seed medium [1% yeast extract, 1% malt extract, 2% polypeptone, 2.5% glucose, 0.1% dipotassium hydrogen phosphate, 0.05% magnesium sulfate ( pH 7.0)] at 26 ° C for 2 days, and the cells were collected by centrifugation. The obtained cells were frozen in liquid nitrogen and then ground using a mortar and pestle.
  • PF102 strain Mycelia sterilia, FERM BP-2671
  • PF 10 2 2 substance-producing bacteria 432-26 strain was added to a 50 ml seed medium [1% yeast extract, 1% malt extract, 2% polypeptone, 2.5% glucose, 0.1% dipotassium hydrogen phosphate
  • Genomic DNA was isolated from the crushed cells by IS0P LANT (Futtsubon Gene) according to the attached protocol. After partially digesting the isolated genomic DNA with 3AI, a DNA fragment of 15 kb to 20 kb is recovered by agarose gel electrophoresis, treated with alkaline phosphatase, and dephosphorylated at the end of the DNA fragment. Oxidized. This DNA fragment was inserted into a phage vector Lajnb da DASH II (Stratagene). The recombinant phage vector obtained in this manner was used for Gigapackll Gold Packaging Extract (Strawfish In vitro packaging was performed according to the attached protocol. Thereafter, the recombinant phage was infected with Escherichia coli XU-Blue MRA (P2) strain and cultured on a plate to form plaque.
  • IS0P LANT Fettsubon Gene
  • WTSMYDG SEQ ID NO: 3
  • VVQYFPT SEQ ID NO: 4
  • 5 'single TGGACIWSNATGTAYGAYGG -3 7 SEQ ID NO: 5
  • 5' - GTIG GRAARTAYTGIACNAC -3 was synthesized primer one (SEQ ID NO: 6).
  • PCR was performed using the genomic DNA isolated from the PF102 substance producing bacteria as type III.
  • PCR was performed using 50 ng of genomic DNA in a 50 ⁇ 1 reaction mixture as ⁇ , using 1.25 units of ExTaq MA polymerase (Takara Shuzo), the attached buffer and dNTP Mixture, and 10 M primers.
  • the reaction was performed under the following conditions. 94 ° C for 3 minutes, [94 ° C for 1 minute, 65 ° C (0.5 ° C reduced per cycle) for 1 minute, 72 ° C for 1 minute] x 30 times, 72 ° C for 3 minutes.
  • a DNA fragment of about 350 bp was amplified, and this DNA fragment was introduced into pCR2.1 plasmid using the Original TA Cloning Kit (Invitrogen) according to the attached protocol.
  • the nucleotide sequence of the MA fragment thus cloned was determined using the DNA Sequencing Kit dRhodamine Terminator Cycle Sequencing Ready Reaction (Applied Biosystems) and the ABI PRISM 310 Genetic Analyzer (Applied Biosystems). This was performed according to the attached protocol. As a result, the nucleotide sequence of the isolated DNA fragment showed homology to the peptide synthase gene, and it was revealed that it was part of the target cyclic depeptide synthase gene.
  • Probes used for genomic library screening were prepared by incorporating fluorescein-labeled dUTP into DNA fragments by PCR.
  • PCR was performed using a PCR2.1 plasmid vector into which 100 ng of the cyclic depsipeptide synthase gene DNA fragment had been inserted in a 50 ⁇ 1 reaction solution, and 1.25 units of ExTaq MA polymerase (Takara Shuzo) and Attached buffer, 0.2 mM dATPs 0.2 mM dCTP, 0.2 mM dGTP, 0.02 mM dTTP, 0.18 mM fluorescein-labeled dUTP (FluoroGreen, Amersham The reaction was carried out under the following conditions using Almatia Biotech) and 10 M primers (SEQ ID NO: 5 and SEQ ID NO: 6).
  • Hybond-N + membrane (Amersham-Pharmacia Biotech) was placed on the plate on which the plaque was formed in Example 1-1, and the plaque was attached.
  • the membrane was treated with an alkali, and the recombinant phage DNA on the membrane was denatured into a single strand and adsorbed to the membrane.
  • the membrane to which the phage DNA had been adsorbed was placed in a buffer prepared using Hybridization Buffer Tablets (Amersham Pharmacia Biotech) and incubated at 60 ° C for 1 hour.
  • the above-mentioned probe labeled with fluorescein was heat-denatured and added thereto, followed by hybridization at 60 ° C.
  • the membrane is then washed in lx SSC (SSC: 15 mM trisodium citrate, 150 mM sodium chloride) —0.1% SDS solution at 60 ° C for 15 minutes, and then in 0.2 ⁇ SSC—0.1% SDS solution. At 60 ° C for 15 minutes.
  • SSC 15 mM trisodium citrate, 150 mM sodium chloride
  • Fluorescein-bound plaques were visualized by DIG wash block buffer set (Boehringer's Mannheim), alkaline phosphatase-labeled anti-fluorescein antibody (Anti-fluorescein-AP, Fab fragment ⁇ Behringer ⁇ ) Mannheim), and Nitroblue tetrazolium chloride (Boehringer-Mannheim) and X-phosphate (Boehringer's Mannheim) as chromogenic substrates were used according to the attached protocol. Thus, a positive clone containing the upstream region and the 3 ′ downstream region of the region homologous to the probe was selected.
  • the DNA fragment in the positive clone isolated in this manner was primered with the phage vector sequences 5′-GCGGAATTAACCCTCACTAAAGGGAACGAA-3 ′ (SEQ ID NO: 7) and 5′-GCGTAATACGACTCACTATAGGGCGAAGAA-3 ′ (SEQ ID NO: 8). And amplified by PCR. PCR was performed using 100 ng of the positive clone DNA in type I reaction solution of 501, 2.5 units of LA Taq DNA Polymerase (Takara Shuzo), the attached buffer and dNTP Mixture, 2.5 mM magnesium chloride, and 0.2 M The reaction was carried out using the following primers under the following conditions. 94 ° C for 1 minute, (98 ° C for 10 seconds, 68 ° C for 15 minutes) X 25 times, 72 ° C for 15 minutes. After purifying the resulting PCR product, treat it with a nebulizer and randomly
  • PCR was performed under the following conditions using 1.25 units of ExTaq DNA polymerase (Takara Shuzo), attached buffer and dNTP Mixture. And 0.5 / M primers in a 50 ⁇ 1 reaction solution. . 94 ° C for 4 minutes, (94 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 2 minutes) x 30 times, 72 ° C for 3 minutes.
  • the sequence was performed using the DNA Sequencing Kit dRhodamine Terminator Cycle Sequencing Ready Reaction (Applied Biosystems) and ABI PRISM 310 Genetic Analyzer (Applied Biosystems) according to the attached protocol.
  • primers were newly designed based on the analyzed base sequence, amplified from PCI, purified, and purified using the primers used for PCR. Did a sequence. Thus, the nucleotide sequence of the DNA fragment 15606 bp in the positive clone was determined.
  • Example 2 Improvement of PF102 productivity by overexpression of cyclic debpeptide synthase gene
  • the inserted DNA fragment was cut with Notl.
  • the plasmid was inserted into the site of pBluescriptl KS + (Stratagene) to prepare plasmid PPF7.
  • pBluescriptl KS + (Stratagene)
  • agarose gel electrophoresis was performed, and a DNA fragment of about 8250 bp was recovered from the agarose gel. This fragment was inserted into pBluescriptl KS + to prepare a plasmid pPF7-1.
  • 5 '-AGCATCGGATCCTAACAATGGGCGTTGAGCAGCAAGC CCTA -3' (SEQ ID NO: 9, designed to start translation from the 10th Met from N-terminal of RF) or 5 '-AGCATCGGATCCTAACAATGTCAAACATGGCACCACTCCCTA -3' (N-terminal of SEQ ID NO: 11, 0RF Designed to start translation from the first Met), and-TTTGCTT CGTACTCGGGTCCT -3 '(SEQ ID NO: 10), and 5' as a primer for amplifying about 920 bp from the 1 site to the C-terminus PCR was performed using GCATCGCGATACTAGAGAAG-3 ′ (SEQ ID NO: 12) and 5′-AGCATCGAATTCGGATCCCTAAACCAACGCCAAAGCCCGAAT-3 ′ (SEQ ID NO: 13).
  • primers were designed such that one site was introduced into the cyclic depsipeptide synthase gene of the present invention on the side and on the 3 ′ side.
  • 150 ng of plasmid DNA was type III, 1.5 units of KOD DNA polymerase (Toyobo), the attached buffer and dNTP Mixture, 1 mM magnesium chloride, The reaction was carried out under the following conditions using a 0.5-primer primer. 98 ° C for 30 seconds, (98 ° C for 15 seconds, 65 ° C for 2 seconds, 74 ° C for 30 seconds) x 10 times, 74 ° C for 1 minute.
  • the PCR reaction solution obtained using each primer was precipitated with ethanol, and the PCR product was recovered.
  • the N-terminal region was cleaved with iHI and ⁇ , and the C-terminal region was cleaved with l and I, followed by agarose gel electrophoresis, and the DNA fragment was recovered from the agarose gel.
  • the above-mentioned C-terminal region PCR fragment was inserted into the ⁇ 1, iHI site of pPF7-1 to prepare a plasmid pPF7-1.
  • agarose gel electrophoresis was performed, and a DNA fragment of about 9170 bp was recovered from the agarose gel.
  • SEQ ID NO: 9 and SEQ ID NO: 10 By simultaneously inserting the DM fragment and the N-terminal region prepared using SEQ ID NO: 9 and SEQ ID NO: 10 into the ⁇ HI site of pBluescript II KS +, the cyclic depsipeptide synthetase gene of the present invention was reconstructed.
  • the DNA fragment of about 9170 bp excised from PPF7-2 and the N-terminal region prepared using SEQ ID NO: 9 and SEQ ID NO: 11 were simultaneously inserted into the ⁇ HI site of pHSG299 (Takara Shuzo Co., Ltd.).
  • the cyclic deb-peptide synthetase gene of the present invention was reconstructed to prepare a plasmid pPFsynN (translation initiation from the N-terminal first Met of 0RF). In this way, a cyclic deb-peptide synthase gene having HI sites at both ends was prepared. After cleavage of pPFsyn or pPFsynN with ⁇ , the cyclic deb-peptide synthase gene region was recovered from the gel.
  • Isolation of the genomic DNA of the PF102 substance producing bacterium is performed by the method described in (H. Horiuchi et. Al., J. Bacteriol., 170, 272-278, (1988)).
  • PF102 strain (FERM BP-2671) was transformed into a seed medium (soluble starch 2.0%, glucose 1.0%, polypeptone 0.5%, wheat germ 0.6%, yeast). 0.3% extract, 0.2% soybean meal and 0.2% calcium carbonate; pH 7.0 before sterilization; see W097 / 00944 Example 1) for 2 days, centrifugation (350 Orpm, 10 minutes).
  • the obtained cells were freeze-dried, suspended in TE, treated in a 3% SDS solution at 60 ° C. for 30 minutes, and extracted with TE-saturated phenol to remove cell residues.
  • the extract was precipitated with ethanol, treated with ribonuclease A (manufactured by Sigma) and proteinase K (manufactured by Wako Pure Chemical Industries), and further precipitated with 12% polyethylene glycol 6000. This was subjected to TE-saturated phenol extraction and ethanol precipitation, and the precipitate was dissolved in TE and used as genomic DNA.
  • Genomic DNA from the PF1022 substance producing bacterium prepared as described above was partially digested with Sau3AI. This was ligated to the BamHI arm of a phage vector, ⁇ EMBL3 Cloning Kit (Stratagene) using T4 ligase (Ligation Kit Ver.2, Takara Shuzo). This was dissolved in TE after ethanol precipitation. The whole amount of the ligation mixture was used to infect Escherichia coli strain LE392 using Gigapack III Plus Packaging Kit (Stratagene) to form phage plaques. This was cloned Abpl gene have use of 1 ⁇ 3 ⁇ 10 4 or obtained by the method phage library one (2.6xl0 4 PFU / mI).
  • the probe was used by amplifying the translation region of the Abpl gene by PCR.
  • genomic DNA prepared from the PF102 substance-producing microorganism as described above, and using the synthetic primers 8-731) and 8-73R, a Regggo PCR kit (manufactured by Sadie Technology Inc.) PCR was performed according to the procedure.
  • amplification was performed by repeating a step of 94 ° C for 30 seconds, 50 ° C for 30 seconds, and 72 ° C for 90 seconds 25 times. The following shows the DNA sequences of 8-73U and 8-73R.
  • the PCR product thus obtained was labeled using an ECL direct system (Amersham Pharmacia Biotech).
  • the phage plaque prepared as described above was transferred to a Hybond N + nylon transfer membrane (manufactured by Amersham Pharmacia Biotech), and after denaturation with alkali, 5-fold concentration SSC (SSC: 15 mM trisodium citrate, 150 mM sodium chloride) Then, the DNA was fixed by drying.
  • SSC 15 mM trisodium citrate, 150 mM sodium chloride
  • the DNA was fixed by drying.
  • the method described in the kit after 1 hour of prehybridization (42 ° C), the previously labeled probe was added, and hybridization was performed for 16 hours (42 ° C). . Washing of the probe followed the method described in the kit.
  • the promoter region and the evening / mine / overnight region of the gene were amplified by PCR.
  • Amplification of the promoter overnight was performed using ABP-Neco and ABP-Nbam
  • amplification of the evening mine was performed using primers ABP-Cbam and ABP-Cxba
  • PCR Supermix High Fidelity (Life Tech Oriental) PCR) went.
  • amplification was performed by repeating a step of 94 ° C for 30 seconds, 50 ° C for 30 seconds, and 72 ° C for 90 seconds 25 times. The following shows the DNA sequences of ABP-Neco, ABP-Nbam, ABP-Cbam and ABP-Cxba.
  • ABP-Neco GGGGAATTCGTGGGTGGTGATATCATGGC (SEQ ID NO: 16)
  • ABP-Nbam GGGGGATCCTTGATGGGTTTTGGG (SEQ ID NO: 17)
  • ABP-Cbam GGGGGATCCTAAACTCCCATCTATAGC (SEQ ID NO: 18)
  • ABP-Cxba GGGTCTAGACGACTCATTGCAGTGAGTGG (SEQ ID NO: 19)
  • PCR product is purified using a Microspin S-400 column (Amersham Pharmacia Biotech), and after ethanol precipitation, the promoter is! ⁇ RI and ⁇ , YuichiMineYuichi were digested with BajnHI and Xbal and ligated sequentially to pBluescriptI KS + digested with similar enzymes. This was digested with ⁇ I, and a destomycin-resistant cassette derived from pMKDOl (W098 / 03667) was inserted to construct pABPd (Fig. 3). pABPd has a promoter and terminator for the Abpl gene.
  • the expression vector pABP / PFsyn which is used to express the cyclic depsipeptide synthase gene by inserting the fibrous depsipeptide synthase gene region recovered from the gel as described above into the ⁇ HI site of pABPd,
  • the translation was started from the 10th Met from the N-terminus of 0RF) and pABP / PF synN (translation was started from the 1st Met from the N-terminus of 0RF).
  • Transgenic strain and parent strain (Mycelia sterilia, FERM BP- After culturing separately at 26 ° C for 2 days, 1 ml of each culture was added to 50 ml of separate production medium [6% syrup, 2.6% starch, 2% wheat germ, 1% Pharmamedia , 0.2% magnesium sulfate heptahydrate, 0.2% calcium carbonate, 0.3% sodium chloride (pH 7.5)] and cultured at 26 ° C. for 4 days. The culture was harvested by centrifugation at 4500 rpm for 5 minutes, and the obtained cells were washed with 0.3 M potassium chloride. Each cell was frozen with liquid nitrogen and lyophilized.
  • the microtube was set in Mini-Bead-Beater-8 (Bio-Spec) and extraction was performed by operating at the maximum speed for 3 minutes. After centrifugation at 15000 rpm for 5 minutes, 100 ⁇ 1 of the supernatant was put into 100 ⁇ 1 of 10% acetic acid solution in triclomouth and mixed. After standing for 15 minutes, centrifuge at 15000 rpm for 10 minutes.
  • FIG. 4 shows the results of electrophoresis of proteins extracted from the parent strain and the transgenic strain into which pABP / PFsyn was introduced.
  • FIG. 5 shows the results of electrophoresis of proteins extracted from the parent strain and the transgenic strain into which pABP / PFsynN was introduced.
  • the column used was LiChrospher 100 RP-18 (e) (Kanto Chemical Co., Ltd.), the column temperature was 40 ° C, the mobile phase was 80% acetonitrile, and the flow rate was 1.0 ml / min. 0 2 2 substances were detected. The retention time of the PF102 substance under these conditions was 5 minutes to 6 minutes.
  • the experiment was performed in duplicate, and the average value of the quantification results of the PF102 substances extracted from the parent strain and the transgenic strain into which pABP / PFsyn had been introduced is shown in Table 1.
  • Transgenic strain 222 The transgenic strain showed about 2.5 times the productivity of the PF102 substance compared to the parent strain. It has been clarified that by overexpressing the cyclic debpeptide synthase of the present invention, the productivity of the PF102 substance is increased.
  • Table 2 shows the average value of the quantitative results of the PF102 substances extracted from the parent strain and the transgenic strain into which pABP / PFsynN was introduced.
  • Transgenic strain 3 1 7 2 The transgenic strain showed 4.3 to 6.0 times the productivity of the PF102 substance compared to the parent strain. It has been clarified that overproduction of the cyclic depsipeptide synthase of the present invention increases the productivity of the PF1022 substance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

明 細 書 環状デブシぺプチド合成酵素およびその遺伝子 並びに環状デプシベプチドの大量生産系 発明の背景
発明の分野
本発明は、 環状デブシぺプチド合成酵素およびその遺伝子並びに環状デブシぺ プチドの大量生産系に関し、 更に詳細には、 駆虫活性を有する P F 1 0 2 2物質 の合成酵素およびその遺伝子並びに P F 1 0 2 2物質の大量生産系に関する。
関連技術の説明
P F 1 0 2 2物質 [シクロ (£ -ラクチル- メチルロイシル— £—3—フエニルラ クチル メチルロイシル- £ -ラクチル - ίτ メチルロイシル— 3-フエ二ルラク チル ϋ-メチルロイシル) ] は、 ァゴノマイセ夕レス (Agonomycetales) に属す る糸状菌、 P F 1 0 2 2菌株 (Mycelia sterilia, FERM BP-2671) により生産さ れる環状デブシぺプチドであり、 動物寄生性の線虫類に対して極めて高い駆虫活 性を示す (特閧平 3-35796号、 Sasaki, T. et al . J. Antibiotics. , 45, 692, ( 1992) ) 。 そのため、 本物質は動物用の駆虫薬として有用であると共に、 さらに 高活性な本物質の誘導体を合成するための原料として有用である。
一般に、 天然から分離された微生物の生産する二次代謝産物の量は、 微量であ る。 そのため、 これを産業的に利用するためには、 二次代謝産物の生産量を向上 させる必要がある。 生産量を向上させるためには、 培養方法の検討、 培地成分の 検討、 および前駆体の添加といった発酵条件の改良、 並びに紫外線照射または突 然変異誘発剤による突然変異を利用した菌株の改良が行われる。 最近では、 これ らの方法に加えて遺伝子組換えの手法を利用した生産性の向上も行われるように なってきた。
その方法としては、 生合成経路の酵素遺伝子の発現増強、 生合成の制御遺伝子 の発現増強、 不必要な生合成経路の遮断、 等が行われている (Khetan, A. and Hu, W. -S. Manual of Industrial Microbiology and Biotechnology 2nd editio n, p. 717, ( 1999) ) 。 また、 特殊な例としては、 酸素利用能の向上を目的とし て、 細菌のヘモグロビン遺伝子を発現させ、 生産性を向上させる方法も知られて いる (Minas, W. et al . Biotechnol . Prog. , 14, 561 , ( 1998)) 。
遺伝子組換えの手法を用いて生産性の向上を図る際に、 最も一般的な手法は、 生合成経路の酵素遺伝子の発現増強である。 この手法を適応するためには、 対象 とする微生物において形質転換の方法が確立していること、 発現増強のために利 用可能なプロモーターおよび夕一ミネ一夕一が存在すること、 また生合成経路が 明らかとなっており、 それらの遺伝子が単離されていることが必要である。 P F
1 0 2 2物質生産菌においては、 形質転換により外来遺伝子を導入することに成 功している (W097/00944号) が、 生合成経路の遺伝子は単離されていない。
P F 1 0 2 2物質は、 -i -メチルロイシン、 -乳酸、 および フエニル乳酸が エステル結合およびアミ ド結合を介して結合した構造からなり、 生産菌中では 4分 子の ロイシン、 2分子の 乳酸、 2分子の フエニル乳酸から、 ある種のぺプチ ド合成酵素により合成されると考えられる。 ペプチド合成酵素とは、 アミノ酸や ヒドロキシ酸を基質として、 ペプチド、 デプシペプチド、 リポペプチド、 ぺプチ ドラクトン等の微生物の二次代謝産物の生合成を行う酵素であり、 既に幾つかの ペプチド合成酵素の配列が明らかとなっている (Marahiel, M.A. et al . Chem. Rev. , 97, 2651, ( 1997) ) 。 この酵素による反応は、 mRNAを錶型としたリポソ一 ムによるタンパク質の合成系とは全く異なっている。 ペプチド合成酵素は、 各基 質に対して 1つのドメインを持ち、 各基質はこのドメインで ATPにより活性化され、 ドメイン中のホスホパントテン酸を介して結合し、 これらが各ドメイン間の領域 の触媒作用によりアミ ド結合やエステル結合を形成すると考えられている。
発明の概要
本発明は環状デプシペプチド、 特に P F 1 0 2 2物質、 を合成する酵素 (以下 「環状デブシペプチド合成酵素」 とする) を提供することをその目的とする。 本発明はまた、 環状デプシペプチド合成酵素をコードする遺伝子 (以下 「環状 デプシペプチド合成酵素遺伝子」 とする) を提供することをその目的とする。 本発明は更にまた、 環状デブシぺプチド合成酵素を発現させるための組換えべ クタ一および形質転換体、 並びに環状デブシぺプチドの大量生産系およびその製 造法の提供をその目的とする。
本発明は、 環状デブシぺプチド合成酵素の製造法の提供をその目的とする。 本発明による環状デブシぺプチド合成酵素は、 下記からなる群から選択される アミノ酸配列を含んでなるタンパク質である :
( a ) 配列番号 2のアミノ酸配列、 および
( b ) 置換、 欠失、 付加、 および挿入から選択される 1以上の改変を有し、 かつ 環状デプシぺプチド合成酵素活性を有する配列番号 2のアミノ酸配列の改変アミ ノ酸配列。
本発明による環状デブシぺプチド合成酵素遺伝子は、 環状デブシぺプチド合成 酵素をコードするヌクレオチド配列からなるものである。
本発明による環状デブシぺプチド合成酵素遺伝子はまた、 下記からなる群から 選択されるヌクレオチド配列からなる :
( c ) 配列番号 1の D N A配列、
( d ) 配列番号 1の D N A配列と少なくとも 7 0 %の同一性を有し、 かつ環状デ プシぺプチド合成酵素活性を有するタンパク質をコ一ドするヌクレオチド配列、
( e ) 置換、 欠失、 付加、 および挿入から選択される 1以上の改変を有し、 かつ 環状デブシぺプチド合成酵素活性を有するタンパク質をコードする配列番号 1の 0 配列の改変0 八配列、 および
( f ) ストリンジェントな条件下で配列番号 1の D N A配列とハイブリダイズし、 かつ環状デブシべプチド合成酵素活性を有するタンパク質をコードするヌクレオ チド配列。
本発明による組換えべクタ一は、 本発明による環状デブシぺプチド合成酵素遺 伝子を含んでなるものである。
本発明による形質転換体および環状デブシぺプチドの大量生産系は、 本発明に よる組換えべクタ一を含んでなる宿主である。
本発明による環状デブシぺプチドの製造法は、 本発明による形質転換体を培養 し、 培養物から環状デブシぺプチドを採取することを含んでなるものである。 本発明による環状デブシぺプチド合成酵素の製造法は、 本発明による形質転換 体を培養し、 培養物から環状デブシぺプチド合成酵素を採取することを含んでな るものである。
本発明によれば、 環状デブシぺプチド合成酵素を PF 1022物質生産菌にお いて過剰発現させることができ、 また PF 1022物質を大量に生産させること ができる。
図面の簡単な説明
図 1はプラスミ ド pABP/PFsynの作製方法を示す。
図 2は Abpl遺伝子を含む 6kbの Hindlll断片の制限酵素地図を示す。
図 3は pABPdの構成および制限酵素地図を示す。
図 4は親株および pABP/PFsynを導入した遺伝子導入株から抽出したタンパク質 の電気泳動の結果を示す。
図 5は親株および pABP/PFsynNを導入した遺伝子導入株から抽出したタンパク質 の電気泳動の結果を示す。
発明の具体的説明
微生物の寄託
実施例 1 1. に記載される P F 1022菌株は、 1989年 1月 24日付で 通商産業省工業技術院生命工学工業技術研究所 (日本国茨城県つくば巿東 1丁目 1番 3号) に寄託された。 受託番号は、 FERM BP— 2671である。
実施例 2 1. ( 1 ) に記載されるプラスミ ド pPFsynで形質転換された大腸菌 (DH5ひ) は、 1999年 9月 1日付で通商産業省工業技術院生命工学工業技 術研究所 (日本国茨城県つくば巿東 1丁目 1番 3号) に寄託された。 受託番号は、 FERM BP— 7253である。
実施例 2 1. (1) に記載されるプラスミ ド pPFsynNで形質転換された大腸菌 (DH5ひ) は、 1999年 9月 1日付で通商産業省工業技術院生命工学工業技 術研究所 (日本国茨城県つくば巿東 1丁目 1番 3号) に寄託された。 受託番号は、 FERM BP— 7254である。
遺伝子およびタンパク質
本発明によれば環状デプシペプチド合成酵素、 好ましくは PF 1022物質合 成酵素、 およびその遺伝子が提供される。
本発明による酵素は、 4分子の L—ロイシン、 2分子の D—乳酸、 および 2分 子の D—フヱニル乳酸に作用して、 P F 1 0 2 2物質を合成できる。 D—乳酸、 L一口イシン、 および D—フエニル乳酸をあらかじめ修飾しておくことにより P F 1 0 2 2物質の誘導体を製造できる。
P F 1 0 2 2物質の誘導体としては、 例えば、 P F 1 0 2 2物質中の二つのフ ェニル基のパラ位がアミノ基により置換されたものが挙げられる。 この場合、 P F 1 0 2 2物質の誘導体の合成基質としては、 例えば、 D—フエニル乳酸の代わ りに D— p—ァミノフエ二ル乳酸を使用できる。
配列 (b ) において、 改変の数は、 例えば 1〜数個、 より具体的には 1〜 6個 であることができる。
配列 (e ) において、 改変の数は、 例えば 1〜数十個であることができる。 配列 (b ) および配列 (e ) において変異が複数個存在する場合、 導入された 変異の種類は同一でも異なっていてもよい。
配列 (d ) において、 配列番号 1の D N A配列との同一性は、 好ましくは少く とも 8 0 %、 より好ましくは少くとも 9 0 %、 最も好ましくは少くとも 9 5 %で あることができる。
配列 (f ) において、 「ストリンジェン卜な条件」 とは、 ハイブリダィゼ一シ ョン後のメンブレンの洗浄操作を、 高温下低塩濃度溶液中で行うことを意味し、 例えば、 0.2 X SSC濃度 (l x SSC: 15 mMクェン酸 3ナトリウム、 150 mM塩化ナトリ ゥム) 、 0.1% SDS溶液中で 60° 15分間の洗浄条件を意味する。
配列 (b ) に関して、 「環状デプシペプチド合成酵素活性を有する」 か否かは、 例えば、 環状デプシペプチドの基質を準備し、 被験タンパク質を作用させ、 環状 デブシぺプチドの生成を例えばクロマトグラフィーによって確認することにより 評価することができる。
配列 (d ) 、 (e ) 、 および (f ) に関して、 「環状デプシペプチド合成酵素 活性を有するタンパク質をコードする」 か否かは、 例えば、 実施例 2に記載のよ うに被験ヌクレオチド配列を宿主にて発現させ、 得られたタンパク質を環状デブ シぺプチドの基質と作用させ、 環状デブシぺプチドの生成を例えばクロマトグラ フィ一によつて確認することにより評価することができる。
本発明による合成酵素のァミノ酸配列が与えられれば、 それをコードするヌク レオチド配列は容易に定まり、 配列番号 2に記載されるァミノ酸配列をコードす る種々のヌクレオチド配列を選択することができる。 従って、 本発明による合成 酵素をコードするヌクレオチド配列とは、 配列番号 1に記載の D N A配列の一部 または全部に加え、 同一のアミノ酸をコードする D N A配列であって縮重関係に あるコドンを D N A配列として有する配列をも意味するものとし、 更にこれらに 対応する R N A配列も含まれる。
本発明による遺伝子は例えば下記のようにして得ることができる。
P F 1 0 2 2物質生産菌からゲノム DNAを抽出し、 適当な制限酵素にて切断後、 ファージベクターを用いて、 P F 1 0 2 2物質生産菌のゲノム DNAからなるライブ ラリーを作製する。 ペプチド合成酵素のアミノ酸配列の保存領域、 あるいは P F 1 0 2 2物質生産菌から精製した環状べプチド合成酵素の部分アミノ酸配列を元 に、 適当なプライマーを合成し、 それを用いて P F 1 0 2 2物質生産菌由来のゲ ノム DNAを錶型とした P C R法を実施し、 環状べプチド合成酵素遺伝子の DNA断片 を増幅する。 この DNA断片をプローブとして用い、 ゲノムライブラリ一のスクリー ニングを行う。 このようにして、 環状ペプチド合成酵素遺伝子の全域を単離する ことができる。 この DNA断片の塩基配列を決定した後、 翻訳開始コドンの上流およ び翻訳終始コドンの下流に、 PCR等の手法により適当な制限酵素切断部位を導入し、 環状べプチド合成酵素遺伝子のみを含む遺伝子断片を得ることができる。
組換えベクター
本発明によれば環状デブシぺプチド合成酵素をコードするヌクレオチド配列を 含んでなる組換えベクターが提供される。
本発明による組換えベクターの構築の手順および方法は、 遺伝子工学の分野で 慣用されているものを用いることができる。
本発明において使用できるベクターとしては、 宿主染色体 DNAに組込まれるもの や、 自己複製可能な自律的複製配列を有するベクターを宿主細胞内でプラスミ ド 状態で存在させるものが挙げられ、 例えば、 PUC系 (pUC18または pUC118等) 、 pBluescript系 (pBluescriptl l KS+等) 、 および pBR322等のプラスミ ドが挙げら れる。 宿主細胞内に存在する遺伝子のコピー数は、 1コピーでも複数であっても 良い。 本発明による組換えベクターは、 例えば、 環状デプシペプチド合成酵素をコ一 ドするヌクレオチド配列の上流にプロモーターを、 また下流に夕一ミネ一夕一を それそれ作動可能に連結し、 場合によっては遺伝子マーカーおよび/または他の 制御配列を作動可能に連結することにより作製できる。
本発明による遺伝子へのプ口モーターおよび夕一ミネ一夕一の連結、 および発 現ュニッ 卜のベクターへの挿入は、 公知の方法に従って行うことができる。
本発明に用いるプロモーターおよび夕一ミネ一夕一は特に限定されず、 例えば 3-ホスホグリセレートキナーゼ、 グリセルアルデヒド- 3-ホスフェートデヒドロゲ ナ一ゼ、 エノラーゼ等の解糖系酵素遺伝子の制御配列、 オル二チン力ルバモイル トランスフェラーゼ、 トリブトフアンシン夕ーゼ等のアミノ酸合成系酵素遺伝子 の制御配列、 アミラーゼ、 プロテア一ゼ、 リパーゼ、 セルラ一ゼ、 ァセトアミダ —ゼ等の加水分解酵素遺伝子の制御配列、 ナイ トレートレダク夕ーゼ、 ォロチジ ン -5,-ホスフエ一トデヒドロゲナーゼ、 アルコールデヒドロゲナ一ゼ等の酸化還 元酵素遺伝子の制御配列、 および Abpl等の P F 1 0 2 2物質生産菌中で高発現す る P F 1 0 2 2物質生産菌由来の遺伝子の制御配列が挙げられる。
本発明による遺伝子を他のタンパク質の翻訳領域をコードする外来遺伝子と連 結させて融合タンパク質として発現させてもよい。
遺伝子マ一カーの導入は、 例えば、 制御配列に P C R法により適当な制限酵素 切断部位を導入し、 これをプラスミ ドベクターに挿入した後、 薬剤耐性遺伝子お よび または栄養要求性相補遺伝子等の選択マーカー遺伝子を連結する事により 行うことができる。
遺伝子マーカーは形質転換体の選択手法に応じて適宜選択できるが、 例えば、 薬剤耐性をコードする遺伝子や栄養要求性を相補する遺伝子を使用することがで きる。 薬剤耐性遺伝子としては、 デストマイシン、 べノミル、 オリゴマイシン、 ハイグロマイシン、 G418、 ブレオマイシン、 ビアラホス、 プラストサイジン S、 フレオマイシン、 フォスフィノスリシン、 アンピシリン、 カナマイシン等の薬剤 に対する遺伝子が挙げられる。 栄養要求性を相補する遺伝子としては、 5、 E rG、 argB, trpC, niaD、 TRPK LEU2、 URA3等の遺伝子が挙げられる。 形質転換体および環状デブシぺプチドの製造
本発明によれば前記べク夕一により形質転換された宿主が提供される。
本発明において使用できる宿主としては、 遺伝子組換えの宿主として使用可能 な微生物であれば特に限定されるものではない。 使用できる宿主の例としては、 任意の細菌類または真菌類の微生物が挙げられ、 好ましくは大腸菌、 バチルス属 細菌、 放線菌、 酵母、 糸状菌、 より好ましくは、 P F 1 0 2 2物質を生産する糸 状菌、 最も好ましくは P F 1 0 2 2菌株 (Myceiia sterilia, FERM BP-2671) で ある。
宿主への遺伝子発現用の組換えべクタ一の導入は、 常法に従って行うことがで きる。 導入法としては、 例えば、 エレクト口ポレーシヨン法、 ポリエチレングリ コール法、 ァグロパクテリゥム法、 リチウム法または塩化カルシウム法等が挙げ られ、 宿主細胞にとって効率の良い手法が選択される。 P F 1 0 2 2物質生産菌 を宿主として用いる場合、 好ましくはポリエチレングリコール法である。
形質転換体の培養は常法に従って、 培地、 培養条件等を適宜選択することによ り行うことができる。 培地としては、 慣用の成分、 例えば炭素源としては、 グル コース、 シュ一クロース、 セルロース、 水飴、 デキストリン、 澱粉、 グリセ口一 ル、 糖蜜、 動,植物油等が使用できる。 また、 窒素源としては、 大豆粉、 小麦胚 芽、 ファーマメディア、 コーン 'スティ一プ ' リカー、 綿実粕、 ブイヨン、 ぺプ トン、 ポリペプトン、 マルトエキス、 イーストエキス、 硫酸アンモニゥム、 硝酸 ナトリウム、 尿素等が使用できる。 その他必要に応じ、 ナトリウム、 カリウム、 カルシウム、 マグネシウム、 コバルト、 塩素、 リン酸、 硫酸およびその他のィォ ンを生成することのできる無機塩類、 例えば塩化カリウム、 炭酸カルシウム、 リ ン酸水素 2カリウム、 硫酸マグネシウム、 リン酸 1カリウム、 硫酸亜鉛、 硫酸マ ンガン、 硫酸銅を添加することも有効である。 また、 必要に応じてチアミン (チ ァミン塩酸塩等) 等の各種ビ夕ミン、 グル夕ミン酸 (グル夕ミン酸ナトリゥム 等) 、 ァスパラギン (DL-ァスパラギン等) 等のアミノ酸、 ヌクレオチド等の微量 栄養素、 抗生物質等の選抜薬剤を添加することもできる。 さらに、 菌の発育を助 け、 環状デブシぺプチドの生産を促進するような有機物および無機物を適当に添 加することができる。 培養法としては、 好気的条件での振とう培養法、 通気撹拌培養法または深部好 気培養法により行うことができるが、 特に深部好気培養法が最も適している。 培 地の pHは、 例えば pH6~pH8程度である。 培養に適当な温度は、 15° ( 〜 40°Cである が、 多くの場合 26°C~37°C付近で生育する。 環状デプシペプチド合成酵素および 環状デブシペプチドの生産は、 培地および培養条件、 または使用した宿主により 異なるが、 いずれの培養法においても通常 2日〜 25日間でその蓄積が最高に達する, 培養中の環状デブシぺプチド合成酵素、 あるいは環状デブシぺプチドの量が最 高になった時に培養を停止し、 培養物から環状デブシぺプチド合成酵素あるいは 環状デプシペプチドを単離、 精製する。
培養物から環状デブシぺプチド合成酵素あるいは環状デブシぺプチドを採取す るためには、 その性状を利用した通常の分離手段、 例えば溶剤抽出法、 イオン交 換樹脂法、 吸着または分配カラムクロマトグラフィー法、 ゲル濾過法、 透析法、 沈殿法、 結晶化法等を単独で、 または適宜組み合わせて抽出精製することができ る。
環状デプシペプチド合成酵素は、 例えば、 プチルァガロース等を使用した疎水 性クロマトグラフィーにより効率よく精製できる。
環状デプシペプチドは、 例えば、 培養物中からはアセトン、 メタノール、 ブ夕 ノール、 酢酸ェチル、 酢酸ブチル等で抽出できる。 環状デブシペプチドをさらに 精製するには、 シリカゲル、 アルミナ等の吸着剤、 セフアデックス LH-20 (ファ ルマシア社) またはトヨパール HW- 40 (東ソ一社) 等を用いるクロマトグラフィー を行うと良い。 以上のような方法により、 またはこれらを適宜組み合わせること により、 純粋な環状デブシペプチドが得られる。
本発明によれば、 環状デプシペプチドの大量生産系が提供される。 環状デプシ ぺプチドの生産系、 特に P F 1 0 2 2物質の生産系として使用できる宿主として は、 P F 1 0 2 2物質を生産する糸状菌が好ましく、 最も好ましくは P F 1 0 2 2菌株 (Mycelia sterilia FERM BP-2671) である。 形質転換に用いられる組換 えべクタ一としては、 P F 1 0 2 2物質生産菌で機能する制御配列 (プロモー夕 ―、 夕一ミネ一夕一等) を環状デブシペプチド合成酵素遺伝子に作動可能に連結 した発現べクタ一が好ましく、 最も好ましくは P F 1 0 2 2菌株 (Mycelia ster i liaヽ FERM BP-2671 ) において機能する制御配列を環状デプシペプチド合成酵素 遺伝子に作動可能に連結した発現べクタ一である。 環状デプシペプチド、 特に P F 1 0 2 2物質は、 好ましくは、 P F 1 0 2 2物質生産菌で機能する制御配列が 環状デブシぺプチド合成酵素遺伝子に作動可能に連結された発現べクタ一によつ て形質転換された P F 1 0 2 2物質生産菌を培養し、 培養物から環状デブシぺプ チドを単離することにより製造できる。
P F 1 0 2 2物質の基質である ロイシン、 -乳酸、 または £-フエニル乳酸を 合成しない宿主においては、 不足する基質または基質の誘導体を添加して培養す ることにより、 P F 1 0 2 2物質または P F 1 0 2 2物質の誘導体を生産させる ことが可能である。
実 施 例
以下に実施例により本発明を詳述するが、 本発明はこれらに限定されるもので はない。
実施例 1 : P F 1 0 2 2物質生産菌からの環状デブシぺプチド合成酵素遺伝子の クロ一ニング
1. ゲノム DNAの単離とゲノムライブラリーの作製
ゲノム DNAは、 P F 1 0 2 2菌株 (Mycelia steri lia, FERM BP-2671) に対して UV照射または NTG処理により突然変異を誘発し、 P F 1 0 2 2の生産性を向上させ た P F 1 0 2 2物質生産菌 432-26株から抽出した。 P F 1 0 2 2物質生産菌 432- 26株を 50 mlの種培地 [1%イーストエキス、 1%マルトエキス、 2%ポリペプトン、 2.5%グルコース、 0.1 %リン酸水素 2カリウム、 0.05%硫酸マグネシウム (pH 7.0) ] で 26°Cにて 2日間培養し、 遠心分離により菌体を回収した。 得られた菌体 を液体窒素で凍結後、 乳鉢と乳棒を用いて磨砕した。 この磨砕した菌体から IS0P LANT (二ツボンジーン社) により、 添付のプロトコールに従いゲノム DNAを単離し た。 単離したゲノム DNAを 3A Iにより部分分解した後、 ァガロースゲル電気泳 動により 15 kb〜20 kbの DNA断片を回収し、 これをアルカリフォスファタ一ゼで処 理し、 DNA断片の末端を脱リン酸化した。 この DNA断片をファージベクターの Lajnb da DASH I I (ストラタジーン社) に挿入した。 このようにして得られた組換えフ ァ一ジベクターについて、 Gigapackl l l Gold Packaging Extract (ストラ夕ジー ン社) により、 添付のプロトコールに従って in vitroパッケージングを行った。 その後、 この組換えファージを大腸菌 XU- Blue MRA ( P2 )株に感染させ、 プレート にて培養しプラークを形成させた。
2 . 環状デブシぺプチド合成酵素遺伝子の部分 DNA断片の単離
既知のペプチド合成酵素のマルチプルァライメントを行い、 良好に保存された 領域として、 WTSMYDG (配列番号 3) と VVQYFPT (配列番号 4) を見出した。 これら の配列を元に、 5' 一 TGGACIWSNATGTAYGAYGG -37 (配列番号 5) および 5' ― GTIG GRAARTAYTGIACNAC -3' (配列番号 6) のプライマ一を合成した。 これらのブライ マ一を用い、 P F 1 0 2 2物質生産菌から単離したゲノム DNAを錶型として PCRを 行った。 PCRは、 50〃1の反応液中、 ゲノム DNA50 ngを鍊型とし、 1.25 unitの ExT aq MAポリメラ一ゼ (宝酒造社) 、 添付のバッファーおよび dNTP Mixture, およ び 10 Mのプライマーを用い、 以下の条件で反応を行った。 94°C 3分間、 [94°C 1分間、 65°C ( 1サイクル毎に 0.5°C下げる) 1分間、 72°C 1分間] x 30回、 72°C 3分間。 この反応により約 350 bpの DNA断片が増幅し、 この DNA断片を Original TA Cloning Kit (インビトロジェン社) を用い、 添付のプロトコールに従って pCR2. 1プラスミ ドぺク夕一に揷入した。
このようにしてクロ一エングした MA断片の塩基配列の決定は、 DNA Sequencin g Kit dRhodamine Terminator Cycle Sequencing Ready Reaction (アプライ ドノ ィォシステムズ社) と ABI PRISM 310 Genetic Analyzer (アプライ ドバイオシス テムズ社) を用いて、 添付のプロ トコールに従い行った。 その結果、 単離した DN A断片の塩基配列は、 ペプチド合成酵素遺伝子と相同性を示し、 目的とする環状デ プシぺプチド合成酵素遺伝子の一部であることが明らかとなった。
3 . 環状デブシぺプチド合成酵素遺伝子全域のクローニング
ゲノムライプラリーのスクリーニングに使用したプローブは、 PCRにより、 フル ォレセイン標識 dUTPを DNA断片に取り込ませることにより調製した。 PCRは、 50〃 1の反応液中、 100 ngの環状デプシペプチド合成酵素遺伝子 DNA断片が挿入された PCR2.1プラスミ ドベクターを錄型とし、 1.25 unitの ExTaq MAポリメラ一ゼ (宝 酒造社) および添付のバッファー、 0.2 mM dATPs 0.2 mM dCTP、 0.2 mM dGTP、 0.02 mM dTTP、 0.18 mM フルォレセイン標識 dUTP (FluoroGreen, アマシャム フ アルマシア バイオテク社) および 10 Mのプライマー (配列番号 5および配列番 号 6 ) を用い、 以下の条件で反応を行った。 94°C 2分間、 (94°C 30秒間、 55°C 1分間、 72°C 1分間) X 25回、 72°C 3分間。 この反応により、 約 350 bpのフルォレ セィン標識プローブが作製された。
実施例 1の 1において作製したプラークの形成されたプレート上に、 Hybond - N +メンプレン (アマシャム フアルマシア バイオテク社) を載せ、 プラークを付 着させた。 このメンブレンをアルカリ処理し、 メンブレン上の組換えファージ DN Aを 1本鎖に変性しメンブレンに吸着させた。 ファージ DNAが吸着したメンブレンを、 Hybridization Buffer Tablets (アマシャム フアルマシア バイオテク社) を 用いて調製したバッファーに入れた後、 60°Cで 1時間インキュベートした。 これに、 上記のフルォレセィンでラベルされたプローブを熱変性して添加し、 60°Cでー晚 ハイブリダィゼーシヨンを行った。 その後、 メンブレンを l x SSC (SSC: 15 mMク ェン酸 3ナトリウム、 150 mM塩化ナトリウム) —0.1 % SDS溶液中で 60°C、 15分間 洗浄し、 さらに、 0.2 X SSC— 0.1 % SDS溶液中で 60°C、 15分間洗浄した。 フルォレ セインが結合したプラークの可視化は、 DIG洗浄ブロックバッファーセット (ベー リンガー 'マンハイム社) 、 アルカリフォスファタ一ゼでラベルされた抗フルォ レセィン抗体 (Anti-fluorescein-AP, Fab fragmentヽ ベ一リンガー■マンハイム 社) 、 発色基質としてニトロブル一テトラゾリゥムクロライ ド (ベーリンガー - マンハイム社) および X-フォスフェート (ベーリンガー 'マンハイム社) を用い、 添付のプロトコ一ルに従って行った。 このようにしてプローブに相同な領域の 上流域および 3' 下流域を含む陽性クローンを選抜した。
4 . 塩基配列の決定
このようにして単離された陽性クローン中の DNA断片を、 ファージベクターの配 列である 5' - GCGGAATTAACCCTCACTAAAGGGAACGAA -3' (配列番号 7 ) および 5' - GCGTAATACGACTCACTATAGGGCGAAGAA -3' (配列番号 8 ) をプライマーとして用い、 PCRにより増幅した。 PCRは、 50 1の反応液中、 陽性クローン DNA100 ngを錶型と し、 2.5 unitの LA Taq DNAポリメラ一ゼ (宝酒造社) 、 添付のバッファ一および dNTP Mixture, 2.5 mM塩化マグネシウム、 および 0.2 Mのプライマーを用い、 以 下の条件で反応を行った。 94°C 1分間、 (98°C 10秒間、 68°C 15分間) X 25回、 72°C 15分間。 得られた PCR産物を精製した後、 ネブライザ一処理し、 ランダムに
0.5 kb〜2.0 kbに分解した。 この断片の末端を T4 DNAポリメラ一ゼで平滑化し、 T4ポリヌクレオチドキナーゼによりリン酸化した後、 pT7Blue (ノバジェン社) の EcoRV部位に挿入し、 大腸菌 JM109株に導入した。 このようにして得られた 168個の コロニーを M13 Primer M4 (宝酒造社) および M13 Primer RV (宝酒造社) を用い て直接 PCRし、 これを精製した後、 M13 Primer M4 (宝酒造社) をプライマーとし てシークェンスを行った。 PCRは、 50〃1の反応液中、 1.25 unitの ExTaq DNAポリ メラ一ゼ (宝酒造社) 、 添付のバッファ一および dNTP Mixture. および 0.5 /Mの プライマーを用い、 以下の条件で反応を行った。 94°C 4分間、 (94°C 30秒間、 55°C 30秒間、 72°C 2分間) x 30回、 72°C 3分間。 また、 シークェンスは、 DNA Sequencing Kit dRhodamine Terminator Cycle Sequencing Ready Reaction (ァ プライ ドバイオシステムズ社) と ABI PRISM 310 Genetic Analyzer (アプライ ド バイオシステムズ社) を用いて、 添付のプロトコールに従い行った。
得られた結果から、 解析が不十分な領域については、 プライマ一を解析済みの 塩基配列を元に新たに設計して PCI こより増幅し、 これを精製した後、 PCRに用い たプライマ一を用いてシークェンスを行った。 これにより、 陽性クロ一ン中の DN A断片 15606 bpの塩基配列を決定した。
この配列を解析したところ 9633 bpからなるオープンリーディングフレーム ( 0RF) が存在し、 この配列から予測されるタンパク質は、 3210アミノ酸残基、 354 kDaであり、 ペプチド合成酵素と相同性を示すことが明らかとなった。 また、 最 も高い相同性を示したタンパク質はェニァチン合成酵素 (S39842) であり、 その 相同性は 56%であった。 このように単離した本発明の環状デブシぺプチド合成酵 素遺伝子の 0RFの塩基配列を配列表の配列番号 1に、 またそのアミノ酸配列を配列 番号 2に示した。
実施例 2 :環状デブシぺプチド合成酵素遺伝子の過剰発現による P F 1 0 2 2生 産性の向上
1 . 遺伝子発現用の組換えベクターの構築 (図 1 )
( 1 ) 環状デブシぺプチド合成酵素遺伝子領域のクローニング
実施例 1の 3で得られた陽性クローンから、 挿入された DNA断片を Notlにより切 り出し、 pBluescriptl l KS+ (ストラタジーン社) の l部位に挿入し、 プラスミ ド PPF7を作製した。 pPF7を^ ηΙΙ Ιおよび lにより切断した後、 ァガ口一スゲル 電気泳動し、 約 8250 bpの DNA断片をァガロースゲルから回収した。 この断片を pB luescriptl l KS+に挿入し、 プラスミ ド pPF7- 1を作製した。
PPF7を錡型とし、 N末端付近から 部位までの約 440 bp (配列番号 9および 配列番号 10を使用) または約 470 bp (配列番号 11および配列番号 10を使用) を増 幅するためのプライマ一として、 5' - AGCATCGGATCCTAACAATGGGCGTTGAGCAGCAAGC CCTA -3' (配列番号 9、 0RFの N末端から 10番目の Metから翻訳開始するように設 計) または 5' - AGCATCGGATCCTAACAATGTCAAACATGGCACCACTCCCTA -3' (配列番号 11、 0RFの N末端 1番目の Metから翻訳開始するように設計) 、 および - TTTGCTT CGTACTCGGGTCCT -3' (配列番号 10) を用い、 また、 ¾1部位から C末端までの約 920 bpを増幅するためのプライマーとして、 5' - GCATCGCGATACTAGAGAAG -3' (配列番号 1 2 ) および 5' - AGCATCGAATTCGGATCCCTAAACCAACGCCAAAGCCCGAAT -3 ' (配列番号 1 3 ) を用いて PCRを行った。 この際、 本発明の環状デプシペプチド 合成酵素遺伝子の 側および 3' 側に、 1部位を導入するようにプライマーの 設計を行った。 PCIま、 50/ 1の反応液中、 150 ngのプラスミ ド DNAを錡型とし、 1. 5 unitの KOD DNAポリメラーゼ (東洋紡績社) 、 添付のバッファ一および dNTP Mi xture、 1 mM塩化マグネシウム、 および 0· 5〃Μのプライマ一を用い、 以下の条件で 反応を行った。 98°C 30秒間、 (98°C 15秒間、 65°C 2秒間、 74°C 30秒間) x lO回、 74°C 1分間。 各プライマーを用いて得られた PCR反応液をエタノール沈殿し、 PCR 産物を回収した。 N末端領域に関しては、 iHIおよび Π Ιにより、 また、 C末端 領域に関しては、 lおよび Iにより切断した後、 ァガロースゲル電気泳動し、 DNA断片をァガロースゲルから回収した。
pPF7- 1の ^1、 iHI部位に、 上記の C末端領域 PCR断片を挿入し、 プラスミ ド p PF7- 2を作製した。 このプラスミ ドを Banl l lおよび BamHIで切断した後、 ァガ口一 スゲル電気泳動し、 約 9170 bpの DNA断片をァガロースゲルから回収した。 この DM断片並びに配列番号 9および配列番号 10を用いて作製した N末端領域を、 同時 に、 pBluescript I I KS+の^ HI部位に挿入することにより、 本発明の環状デプシ ペプチド合成酵素遺伝子を再構築し、 プラスミ ド pPFsyn(0RFの N末端から 10番目の Metから翻訳開始)を作製した。
一方、 PPF7-2から切り出した約 9170 bpの DNA断片並びに配列番号 9および配列 番号 11を用いて作製した N末端領域を、 同時に、 pHSG299 (宝酒造社) の^ HI部位 に挿入することにより、 本発明の環状デブシぺプチド合成酵素遺伝子を再構築し、 プラスミ ド pPFsynN(0RFの N末端 1番目の Metから翻訳開始)を作製した。 このように して両末端に HI部位を持つ環状デブシぺプチド合成酵素遺伝子を作製した。 pPFsynまたは pPFsynNを ιΗΙで切断した後、 環状デブシぺプチド合成酵素遺伝 子領域をそれそれゲルから回収した。
( 2 ) Abpl遺伝子の発現制御領域を用いた発現ベクターの構築
P F 1 0 2 2物質生産菌のゲノム DNAの単離
P F 1 0 2 2物質生産菌 (FERM BP-2671) のゲノム DNAの単離は (H. Horiuchi et. al ., J. Bacteriol . , 170, 272-278, ( 1988)) に記載の方法に従った。 具体 的には、 まず P F 1 0 2 2菌株 (FERM BP-2671) を種培地 (可溶性澱粉 2 . 0 %、 グルコース 1 . 0 %、 ポリペプトン 0 . 5 %、 小麦胚芽 0 . 6 %、 酵 母エキス 0 . 3 %、 大豆粕 0 . 2 %および炭酸カルシウム 0 . 2 % ;殺菌 前が p H 7 . 0 ; W097/00944号 実施例 1参照) で 2日間培養し、 遠心分離 (350 Orpm、 10分) によって菌体を回収した。 次いで、 得られた菌体を凍結乾燥後、 TE に懸濁し、 3%SDS溶液中、 60°C、 30分間処理後、 TE飽和フヱノール抽出により、 菌 体残渣を除去した。 抽出液はエタノール沈澱化後、 リボヌクレア一ゼ A (シグマ社 製) およびプロティナーゼ K (和光純薬社製) 処理し、 さらに 12%ポリエチレング リコール 6000により核酸を沈殿化させた。 これを TE飽和フエノール抽出、 ェ夕ノ —ル沈殿化を行い、 同沈殿を TEに溶解し、 これをゲノム DNAとした。
P F 1 0 2 2物質生産菌のゲノムライブラリーの作製
上記のように調製した PF1022物質生産菌由来ゲノム DNAを Sau3AIにより部 分消化した。 これをファージベクター、 λ EMBL3クロ一ニングキット (ストラ 夕ジーン社製) の BamHIアームに T4リガーゼ (宝酒造社製ライゲーシヨンキヅ ト Ver.2) を用いて連結させた。 これをエタノール沈澱後、 TEに溶解した。 連結 混合物の全量をギガパック IIIプラスパッケージングキット (ストラ夕ジーン社 製) を用いて、 大腸菌 LE392株に感染させ、 ファージプラークを形成させた。 こ の方法により得られた 1·3χ104個 (2.6xl04PFU/mI) のファージライブラリ一を用 いて Abpl遺伝子のクローニングを行った。
P F 1 0 2 2物質生産菌由来のゲノム DNAからの Abpl遺伝子クローニング
プローブは Abpl遺伝子の翻訳領域を PCR法により増幅し、 用いた。 前記のように P F 1 0 2 2物質生産菌から調製したゲノム DNAを錶型に、 8-731)および 8- 73Rなる 合成プライマ一を用いて、レッッゴ一 PCRキヅト (サヮディ一テクノロジ一社製) に従い PCRを行った。 PCRの反応条件は、 94°C30秒間、 50°C30秒間、 72°C90秒間のス テップを 25回繰り返すことにより増幅を行った。 以下に 8-73Uおよび 8- 73Rの DNA配 列を示す。
8-73U: CTCAAACCAGGAACTCTTTC (配列番号 1 4 )
8-73R: GACATGTGGAAACCACATTTTG (配列番号 1 5 )
このようにして得られた PCR産物は ECLダイレク トシステム (アマシャムフアル マシアバイオテク社製) を用いて、 標識化した。 前記のように作成したファージ プラークを、 ハイボンド N+ナイロントランスファ一メンブラン (アマシャムファ ルマシアバイオテク社製) に転写し、 アルカリ変成後、 5倍濃度 SSC (SSC : 15mM クェン酸 3ナトリウム、 150mM塩化ナトリウム) で洗浄し、 乾燥させ DNAを固定し た。 キットに記載の方法に従って、 1時間のプレハイブリダィゼーシヨン (42°C) の後、 先の標識化したプローブを添加し、 16時間 (42°C) ハイブリダィゼーショ ンを行った。 プローブの洗浄は前述キットに記載の方法に従った。 プローブの洗 浄を行ったナイロン膜は、 検出溶液に 1分間浸したあと、 メディカル X線フィルム (富士写真フィルム社製) に感光させ、 1個の陽性クローンを得た。 本クローンは サザン解析の結果、 少なくとも 6kbの iiiidl l l断片がゲノム DNAの制限酵素断片長と 一致していた。 この iiiidlll断片の制限酵素地図を図 2に示す。 aindlll断片は pU C119にサブクローニングし (pRQHin/119) 、 以降の実験に供した。
発現ベクターの構築
pRQHin/119を錡型に 遺伝子のプロモーター領域および夕一ミネ一夕一領域 を PCR法を用いて増幅した。 プロモ一夕一の増幅は ABP-Necoおよび ABP- Nbam、 一方、 夕一ミネ一夕一の増幅は ABP- Cbamおよび ABP- Cxbaなるプライマ一を用い、 PCRス一 パーミックスハイフィデリティ (ライフテヅクオリエンタル社製) により PCR法を 行った。 反応条件は、 94°C30秒間、 50°C30秒間、 72°C90秒間のステップを 25回繰 り返すことにより増幅を行った。 以下に ABP-Neco、 ABP- Nbam、 ABP- Cbamおよび ABP- Cxbaの DNA配列を示す。
ABP-Neco : GGGGAATTCGTGGGTGGTGATATCATGGC (配列番号 1 6 )
ABP-Nbam: GGGGGATCCTTGATGGGTTTTGGG (配列番号 1 7 )
ABP-Cbam: GGGGGATCCTAAACTCCCATCTATAGC (配列番号 1 8 )
ABP-Cxba: GGGTCTAGACGACTCATTGCAGTGAGTGG (配列番号 1 9 )
各 PCR産物はマイクロスピン S-400カラム (アマシャムフアルマシアバイオテク 社製) で精製し、 エタノール沈殿化の後、 プロモーターは!^ RIおよび ϊΗΙ、 夕 一ミネ一夕一は BajnHIおよび Xbalで消化し、 同様の酵素で消化した pBluescriptl l KS+に順次連結した。 これを^ Iで消化し、 pMKDOl (W098/03667号) 由来デスト マイシン耐性カセッ トを挿入し pABPdを構築した (図 3 ) 。 pABPdは Abpl遺伝子の プロモーターおよびターミネ一夕一を有する。
前記のようにゲルから回収した璟状デプシぺプチド合成酵素遺伝子領域を pABPdの^ HI部位に挿入し、 環状デプシぺプチド合成酵素遺伝子を発現させるた めの発現べクタ一である pABP/PFsyn(0RFの N末端から 10番目の Metから翻訳開始)お よび pABP/PF synN ( 0RFの N末端 1番目の Metから翻訳開始)を作製した。
2 . P F 1 0 2 2物質生産菌への環状デプシペプチド合成酵素遺伝子の導入と発 現
P F 1 0 2 2菌株 (Mycel ia steril iaヽ FERM BP- 2671) への発現ベクターの導 入は、 W097/00944号に記載された実施例 1の方法に従って行い、 ハイグロマイシ ン Bに対する耐性度の高い株を選抜した。 これらの株における目的遺伝子の導入の 確認は、 Abplプロモーターの配列から作製したプライマー、 5' - TGATATGCTGGAG CTTCCCT -3' (配列番号 2 0 ) および環状デブシぺプチド合成酵素遺伝子の配列 から作製したプライマー、 5' ― GCACAACCTCTTTCCAGGCT -Y (配列番号 2 1 ) を 用いた PCRにより行った。 このようにしてハイグロマイシン Bに対する耐性度が高 く本発明の環状デブシぺプチド合成酵素遺伝子が導入された遺伝子導入株を選抜 した。
50 mlの種培地にて遺伝子導入株および親株 (Mycel ia steri l ia, FERM BP- 2671 ) をそれそれ別々に 26°Cで 2日間培養した後、 それそれの培養液 1 mlを 50 ml の別々の生産培地 [6%水飴、 2.6%澱粉、 2%小麦胚芽、 1%ファーマメディア、 0.2%硫酸マグネシウム 7水和物、 0.2%炭酸カルシウム、 0.3%塩化ナトリウム (pH 7.5) ] に接種し、 26°Cで 4日間培養した。 培養液を 4500rpmで 5分間遠心する ことにより集菌し、 得られたそれそれの菌体を 0.3 M塩化カリウムで洗浄した。 それそれの菌体を液体窒素により凍結した後、 凍結乾燥を行った。
以下に示す抽出操作は、 氷上、 または 4°Cの低温室にて実施した。 凍結乾燥した 菌体 10 mgおよび 1.0 mlのガラスビーズ (径 0.5画) を入れた 2 mlのマイクロチュ ーブに、 1.0 mlの抽出バッファ一 [50 mMトリス-塩酸 (pH8.0) 、 0.3 M塩化カリ ゥム、 60%グリセロール、 10 mMエチレンジァミン 4酢酸 2ナトリウム、 5 mMジチォ スレイ トール、 10 Mロイぺプチン、 1 mMフエニルメタンスルホン酸、 60〃g/mlキ モス夕チン] を添加した。 このマイクロチューブを Mini- Bead-Beater-8 (バイオ スペック社) にセットし、 最高速度で 3分間運転することにより抽出を行った。 こ れを 15000 rpmで 5分間遠心した後、 100〃1の上清を 100〃1の 10%トリクロ口酢酸 溶液中に入れ、 混合した。 15分間放置した後、 15000 rpmで 10分間遠心し、 得られ た沈殿を、 15 / 1のアルカリ溶液 (2%炭酸ナトリウム、 0.4%水酸化ナトリウム) に溶解し、 60〃1のサンプルバッファ一 [125 mMトリス-塩酸 (ρΗ6· 8) 、 20%グリ セロール、 4%ドデシル硫酸ナトリウム、 10% 2-メルカプトエタノール、 50 mg/1 ブロムフエノールブルー] を添加した。 これを沸騰水中で 5分間加熱した後、 電気泳動システム (テフコ社) により、 4%〜20%のポリアクリルアミ ドゲルを使 用して電気泳動 [Sodium Dodecyl sulfate - polyacrylamide gel electrophore sis (SDS-PAGE) ] を行った。 電気泳動後のポリアクリルアミ ドゲルは、 クイック -CBB (和光純薬社) を用い、 添付のプロ トコ一ルに従い染色した。 親株および pABP/PFsynを導入した遺伝子導入株から抽出したタンパク質の電気泳動の結果を 図 4に示した。 また、 親株および pABP/PFsynNを導入した遺伝子導入株から抽出し たタンパク質の電気泳動の結果を図 5に示した。
このように、 遺伝子導入株の環状デプシペプチド合成酵素の発現量は、 親株に 比べ顕著に高かった。 3 . P F 1 0 2 2物質の抽出と定量
50 mlの種培地にて遺伝子導入株および親株をそれぞれ別々に 26°Cで 2日間培養 した後、 それそれの培養液 1 mlを 50 mlの別々の生産培地に接種し、 26°Cで 6日間 培養した。 それそれの培養液から 10 ml分を採取し 3000 rpmで 10分間遠心し、 別々 に集菌した。 それそれの菌体に 10 mlのメタノールを加えて激しく振とうし、 30分 間静置した。 その後、 再度振とうし、 3000 rpmで 10分間遠心した後、 上清中のそ れそれの菌体から抽出した P F 1 0 2 2物質を液体クロマトグラフィーにより各 々定量した。 カラムとしては、 LiChrospher 100 RP-18 (e) (関東化学社) を用 い、 カラム温度は 40°C、 移動相は 80%ァセトニトリル、 流速は 1.0 ml/minとして、 210 nmの吸収により P F 1 0 2 2物質を検出した。 この条件における P F 1 0 2 2物質の保持時間は 5分間〜 6分間であった。 実験は 2反復で行い、 親株および pABP/PFsynを導入した遺伝子導入株から抽出した P F 1 0 2 2物質の定量結果の 平均値を表 1に示した。
表 1
P F 1 0 2 2物質 ( g/m l )
¾ ¾ 8 8
遺伝子導入株 2 2 2 遺伝子導入株は親株の約 2.5倍の P F 1 0 2 2物質の生産性を示した。 本発明の 環状デブシぺプチド合成酵素を過剰発現させることにより、 P F 1 0 2 2物質の 生産性が高まることが明らかとなった。
また、 親株および pABP/PFsynNを導入した遺伝子導入株から抽出した P F 1 0 2 2物質の定量結果の平均値を表 2に示した。
表 2
P F 1 0 2 2物質 (〃g/m l )
親株 2 9
遺伝子導入株 1 1 2 3
遺伝子導入株 2 1 3 6
遺伝子導入株 3 1 7 2 遺伝子導入株は親株の 4.3〜6.0倍の P F 1 0 2 2物質の生産性を示した。 本発 明の環状デプシペプチド合成酵素を過剰発現させることにより、 P F 1 0 2 2物 質の生産性が高まることが明らかとなつた。

Claims

請求の範囲
1. 下記からなる群から選択されるアミノ酸配列を含んでなる、 タンパク質
( a )配列番号 2のァミノ酸配列、 および
(b) 置換、 欠失、 付加、 および挿入から選択される 1以上の改変を有し、 かつ 環状デブシぺプチド合成酵素活性を有する配列番号 2のァミノ酸配列の改変ァミ ノ酸配列。
2. 請求項 1に記載のタンパク質をコードするポリヌクレオチド。
3. 配列番号 1の DN A配列からなる、 請求項 2に記載のポリヌクレオチド c
4. 下記からなる群から選択されるポリヌクレオチド :
( c ) 配列番号 1の D N A配列、
(d)配列番号 1の DN A配列と少なくとも 70%の同一性を有し、 かつ環状デ プシぺプチド合成酵素活性を有するタンパク質をコードするヌクレオチド配列、
(e) 置換、 欠失、 付加、 および挿入から選択される 1以上の改変を有し、 かつ 環状デプシぺプチド合成酵素活性を有するタンパク質をコードする配列番号 1の DNA配列の改変DNA配列、 および
(f ) ストリンジェン卜な条件下で配列番号 1の D N A配列とハイプリダイズし、 かつ環状デブシぺプチド合成酵素活性を有するタンパク質をコードするヌクレオ チド配列。
5. (d) が配列番号 1の DN A配列と少なくとも 80%の同一性を有する ヌクレオチド配列である、 請求項 4に記載のポリヌクレオチド。
6. (d) が配列番号 1の DN A配列と少なくとも 90%の同一性を有する ヌクレオチド配列である、 請求項 4に記載のポリヌクレオチド。
7. 請求項 2〜 6のいずれか一項に記載のポリヌクレオチドを含んでなる、 組換えベクター。
8. 請求項 7に記載の組換えベクターを含んでなる宿主。
9. 環状デプシペプチド合成酵素を発現している、 請求項 8に記載の宿主。
10. PF 1022物質生産菌である、 請求項 8または 9に記載の宿主。
11. 請求項 8〜10のいずれか一項に記載の宿主を培養し、 培養物から環 状デブシぺプチドを採取することを含んでなる、 環状デブシぺプチドの製造法。
12. 環状デプシペプチドが PF 1022物質およびその誘導体である、 請 求項 11に記載の製造法。
13. 請求項 8〜 10のいずれか一項に記載の宿主を培養し、 培養物から環 状デプシぺブチド合成酵素を採取することを含んでなる、 環状デブシぺプチド合 成酵素の製造法。
14. 環状デプシペプチドが PF 1022物質およびその誘導体である、 請 求項 13に記載の製造法。
PCT/JP2000/006103 1999-09-07 2000-09-07 Synthases de depsipeptides cycliques, genes correspondants et systeme de production de masse de ces depsipeptides cycliques WO2001018179A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU68741/00A AU784466B2 (en) 1999-09-07 2000-09-07 Cyclic depsipeptide synthases, genes thereof and mass production system of cyclic depsipeptide
US10/070,387 US7285404B1 (en) 1999-09-07 2000-09-07 Cyclic depsipeptide synthetase and method for recombinant production
EP00957009A EP1215281B1 (en) 1999-09-07 2000-09-07 Cyclic depsipeptide synthases, genes thereof and mass production system of cyclic depsipeptide
JP2001522391A JP3961289B2 (ja) 1999-09-07 2000-09-07 環状デプシペプチド合成酵素およびその遺伝子並びに環状デプシペプチドの大量生産系
CA2384122A CA2384122C (en) 1999-09-07 2000-09-07 Cyclic depsipeptide synthetase and gene thereof, and mass production system for cyclic depsipeptide
DE60028217T DE60028217T2 (de) 1999-09-07 2000-09-07 Zyklische depsipeptid-synthasen, deren gene und system zur massenproduktion von zyklischen depsipeptiden
NZ517588A NZ517588A (en) 1999-09-07 2000-09-07 Cyclic depsipeptide synthases, genes thereof and mass production system of cyclic depsipeptide
NO20021100A NO330902B1 (no) 1999-09-07 2002-03-06 Protein, polynukleotid, rekombinant vektor, vert og fremgangsmater for a produsere syklisk depsipeptid og syklisk depsipeptidsynthase

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP25304099 1999-09-07
JP11/253040 1999-09-07
JP2000/104291 2000-04-06
JP2000104291 2000-04-06

Publications (1)

Publication Number Publication Date
WO2001018179A1 true WO2001018179A1 (fr) 2001-03-15

Family

ID=26541010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006103 WO2001018179A1 (fr) 1999-09-07 2000-09-07 Synthases de depsipeptides cycliques, genes correspondants et systeme de production de masse de ces depsipeptides cycliques

Country Status (12)

Country Link
US (1) US7285404B1 (ja)
EP (1) EP1215281B1 (ja)
JP (1) JP3961289B2 (ja)
KR (1) KR100702728B1 (ja)
CN (1) CN1183248C (ja)
AT (1) ATE327321T1 (ja)
AU (1) AU784466B2 (ja)
CA (1) CA2384122C (ja)
DE (1) DE60028217T2 (ja)
NO (1) NO330902B1 (ja)
NZ (1) NZ517588A (ja)
WO (1) WO2001018179A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081563A1 (fr) * 2000-04-26 2001-11-01 Meiji Seika Kaisha, Ltd. Nouvelle (r)-2-hydroxy-3-phenylpropionate (d-phenyl-lactate) deshydrogenase et gene codant pour celle-ci
WO2007025181A3 (en) * 2005-08-26 2009-05-07 Aureogen Biosciences Aureobasidin a synthetase
US8298791B2 (en) 2005-03-10 2012-10-30 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing purine-derived substance
WO2014010714A1 (en) 2012-07-09 2014-01-16 Meiji Seika Pharma Co., Ltd. Uk-2 biosynthetic genes and method for improving uk-2 productivity using the same
JP2017508481A (ja) * 2014-03-20 2017-03-30 テヒーニィシエ ウニヴェルジテート ベルリン 糸状真菌における微生物二次代謝産物の少なくとも1つのシンテターゼの異種発現により、前記二次代謝産物またはその誘導体を得るための方法
CN113046332A (zh) * 2021-03-29 2021-06-29 华东理工大学 一类二倍半萜骨架化合物及其合成基因及制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093186A1 (ja) 2010-01-26 2011-08-04 明治製菓株式会社 ピリピロペン生合成遺伝子群およびマーカー遺伝子を含む核酸構築物
CN106749569B (zh) * 2017-03-03 2021-10-15 重庆乾泰生物医药有限公司 一种pf1022a的分离纯化方法
WO2018166899A1 (en) * 2017-03-14 2018-09-20 Acidophil Ltd Methods for production of pf1022a derivatives

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382173A2 (en) * 1989-02-07 1990-08-16 Meiji Seika Kaisha Ltd. PF 1022 substance, method of producing same and anthelmintic composition containing same
EP0780468A1 (en) * 1995-06-22 1997-06-25 Meiji Seika Kaisha Ltd. Transformant producing substance pf1022 and method for transforming microorganism belonging to the class hyphomycetes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578616A3 (en) * 1992-07-09 1994-06-01 Sandoz Ltd Cylosporin synthetase
US6057491A (en) * 1997-05-29 2000-05-02 Borad Of Regents For University Of Oklahoma Protein having insecticidal activities and method of use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382173A2 (en) * 1989-02-07 1990-08-16 Meiji Seika Kaisha Ltd. PF 1022 substance, method of producing same and anthelmintic composition containing same
EP0780468A1 (en) * 1995-06-22 1997-06-25 Meiji Seika Kaisha Ltd. Transformant producing substance pf1022 and method for transforming microorganism belonging to the class hyphomycetes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAESE ANGELA ET AL.: "Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi", MOLECULAR MICROBIOLOGY, vol. 7, no. 6, March 1993 (1993-03-01), pages 905 - 914, XP002934785 *
SASAKI TORU ET AL.: "A new anthelmintic cyclodepsipeptide, PF1022A", THE JOURNAL OF ANTIBIOTICS, vol. 45, no. 5, 25 May 1992 (1992-05-25), pages 692 - 697, XP002934786 *
WECKWERTH WOLFRAM ET AL.: "Biosynthesis of PF1022A and related cyclooctadepsipeptides", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, no. 23, 9 June 2000 (2000-06-09), pages 17909 - 17915, XP002934784 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081563A1 (fr) * 2000-04-26 2001-11-01 Meiji Seika Kaisha, Ltd. Nouvelle (r)-2-hydroxy-3-phenylpropionate (d-phenyl-lactate) deshydrogenase et gene codant pour celle-ci
US6916641B2 (en) 2000-04-26 2005-07-12 Meiji Seika Kaisha, Ltd. (R)-2-hydroxy-3-phenylpropionate (d-phenyllactate) dehydrogenase and gene encoding the same
KR100808307B1 (ko) * 2000-04-26 2008-02-27 메이지 세이카 가부시키가이샤 신규한(알)-2-히드록시-3-페닐프로피온산(디-페닐유산)탈수소효소 및 이 것을 코드하는 유전자
JP4679785B2 (ja) * 2000-04-26 2011-04-27 明治製菓株式会社 新規な(r)−2−ヒドロキシ−3−フェニルプロピオン酸(d−フェニル乳酸)脱水素酵素およびそれをコードする遺伝子
US8298791B2 (en) 2005-03-10 2012-10-30 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing purine-derived substance
WO2007025181A3 (en) * 2005-08-26 2009-05-07 Aureogen Biosciences Aureobasidin a synthetase
WO2014010714A1 (en) 2012-07-09 2014-01-16 Meiji Seika Pharma Co., Ltd. Uk-2 biosynthetic genes and method for improving uk-2 productivity using the same
KR20150035751A (ko) 2012-07-09 2015-04-07 메이지 세이카 파루마 가부시키가이샤 Uk-2 생합성 유전자 및 그것을 사용한 uk-2 생산성을 향상시키기 위한 방법
US9365879B2 (en) 2012-07-09 2016-06-14 Meiji Seika Pharma Co., Ltd. UK-2 biosynthetic gene and method for improving UK-2 productivity using the same
US9771606B2 (en) 2012-07-09 2017-09-26 Meiji Seika Pharma Co., Ltd. UK-2 biosynthetic gene and method for improving UK-2 productivity using the same
JP2017508481A (ja) * 2014-03-20 2017-03-30 テヒーニィシエ ウニヴェルジテート ベルリン 糸状真菌における微生物二次代謝産物の少なくとも1つのシンテターゼの異種発現により、前記二次代謝産物またはその誘導体を得るための方法
CN113046332A (zh) * 2021-03-29 2021-06-29 华东理工大学 一类二倍半萜骨架化合物及其合成基因及制备方法
CN113046332B (zh) * 2021-03-29 2023-08-01 华东理工大学 一类二倍半萜骨架化合物及其合成基因及制备方法

Also Published As

Publication number Publication date
DE60028217T2 (de) 2007-04-26
EP1215281A4 (en) 2003-07-02
EP1215281B1 (en) 2006-05-24
EP1215281A1 (en) 2002-06-19
ATE327321T1 (de) 2006-06-15
NZ517588A (en) 2005-01-28
NO20021100D0 (no) 2002-03-06
CN1387566A (zh) 2002-12-25
KR100702728B1 (ko) 2007-04-03
CA2384122C (en) 2010-05-04
JP3961289B2 (ja) 2007-08-22
AU6874100A (en) 2001-04-10
KR20020029767A (ko) 2002-04-19
DE60028217D1 (de) 2006-06-29
CN1183248C (zh) 2005-01-05
NO330902B1 (no) 2011-08-15
AU784466B2 (en) 2006-04-06
CA2384122A1 (en) 2001-03-15
NO20021100L (no) 2002-05-07
US7285404B1 (en) 2007-10-23

Similar Documents

Publication Publication Date Title
CN110117601B (zh) 灰树花葡聚糖合成酶、其编码基因及应用
CN105026548A (zh) D-葡萄糖二酸生产菌及d-葡萄糖二酸的制造方法
JP3961289B2 (ja) 環状デプシペプチド合成酵素およびその遺伝子並びに環状デプシペプチドの大量生産系
JP3910634B2 (ja) Pf1022物質を産生する形質転換体、及び糸状菌綱に属する菌の形質転換方法
CN104928272A (zh) 融合多肽、编码它的核酸分子以及使用它产生衣康酸的方法
CN110129305B (zh) 一种用于制备7-aca的头孢菌素c酰化酶突变体
US7109018B1 (en) Transformant producing secondary metabolite modified with functional group and novel biosynthesis genes
RU2576001C2 (ru) Конструкции нуклеиновой кислоты, содержащие кластер генов биосинтеза пирипиропена и маркерный ген
US6916641B2 (en) (R)-2-hydroxy-3-phenylpropionate (d-phenyllactate) dehydrogenase and gene encoding the same
AU2002306218B2 (en) Saponin-digesting enzymes, genes thereof and soyasapogenol B mass production system
CN110551739A (zh) 吡唑霉素生物合成基因簇、重组菌及其应用
EP1380649B1 (en) Transformant producing pf1022 substance derivatives, process for producing the same and novel biosynthesis gene
CN114540397B (zh) 增强调控蛋白表达以提高谷氨酰胺转氨酶发酵水平的方法
JP4672222B2 (ja) 糸状菌において機能する制御配列および発現系
CN118530960A (zh) 一种α-1,3-岩藻糖基转移酶突变体及其应用
CN117586892A (zh) 一种生产纽莫康定b0的基因工程菌及其制备方法和应用
CN118638841A (zh) 高产棘白菌素b工程菌株及其构建方法与应用
JP2004222609A (ja) 麹菌npgO遺伝子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020027002704

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 68741/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 517588

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2384122

Country of ref document: CA

Ref document number: 10070387

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000957009

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027002704

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 008153019

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000957009

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 517588

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 517588

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 2000957009

Country of ref document: EP