WO2001010941A1 - Mousse de resine thermoplastique et procede de fabrication - Google Patents

Mousse de resine thermoplastique et procede de fabrication Download PDF

Info

Publication number
WO2001010941A1
WO2001010941A1 PCT/JP2000/005281 JP0005281W WO0110941A1 WO 2001010941 A1 WO2001010941 A1 WO 2001010941A1 JP 0005281 W JP0005281 W JP 0005281W WO 0110941 A1 WO0110941 A1 WO 0110941A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
layered silicate
chemical substance
weight
foam
Prior art date
Application number
PCT/JP2000/005281
Other languages
English (en)
French (fr)
Inventor
Koichiro Iwasa
Hiroki Erami
Naoki Ueda
Koichi Shibayama
Juichi Fukatani
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Priority to DE60024849T priority Critical patent/DE60024849T2/de
Priority to AT00951894T priority patent/ATE312871T1/de
Priority to EP00951894A priority patent/EP1219672B1/en
Priority to US10/048,457 priority patent/US6906119B1/en
Publication of WO2001010941A1 publication Critical patent/WO2001010941A1/ja
Priority to US10/918,552 priority patent/US7173068B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • C04B20/0024Hollow or porous granular materials expanded in situ, i.e. the material is expanded or made hollow after primary shaping of the mortar, concrete or artificial stone mixture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/045Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent

Definitions

  • the present invention relates to a thermoplastic resin foam containing a thermoplastic resin and a layered silicate and a method for producing the same, and more particularly, to a thermoplastic resin foam in which uniformly fine foam cells are uniformly dispersed, and a method for producing the same.
  • thermoplastic resin in order to improve properties such as mechanical properties, thermal characteristics, and gas barrier properties of the thermoplastic resin.
  • layered silicate that constitutes the clay mineral extremely fine flaky crystals are aggregated by ionic bonds.
  • the properties of the thermoplastic resin are improved by separating the aggregated structure by chemical or physical means and uniformly dispersing the flaky crystals in the thermoplastic resin.
  • Japanese Patent Publication No. Hei 8-2-29466 discloses that the distance between layers is increased in advance by intermixing aminocarboxylic acid with a layered silicate, and then the polyamide monomer It is disclosed that a structure in which lamellar silicate flakes are uniformly dispersed in a polyamide resin can be formed by inserting polyprotatatam between layers and simultaneously performing polycondensation.
  • Japanese Patent Application Laid-Open No. 9-189390 discloses that a layered silicate is polymerized by mixing an organic dispersion obtained by swelling and dispersing an organically modified layered silicate with a vinyl polymer compound in a dissolved state. Dispersion methods are disclosed therein. Japanese Patent Application Laid-Open No.
  • H10-182882 discloses that an organically modified layered silicate, a polyolefin oligomer containing a hydrogen bonding functional group, and a polyolefin polymer are melt-kneaded to form an interlayer of the layered silicate. It is disclosed that can prepare a polyolefin-based resin composite in which the polymer swells infinitely in a polymer.
  • resin is used as a foam to reduce the weight and cost of the resin or to impart design properties.
  • foam is used to improve the mechanical strength, heat insulation performance, shock absorption performance, etc. of the foam. It has been conventionally performed to include an inorganic filler therein.
  • Japanese Unexamined Patent Publication No. Hei 8-143697 discloses that physical properties such as strength of the foam are improved by adding a layered silicate to a polypropylene foam composition. I have.
  • the use of a solvent is indispensable, and the resulting composite material has a sufficient strength such as a flexural modulus, probably because the remaining solvent is not completely removed. I could not say that.
  • this prior art method is practically difficult to implement industrially because it involves complicated steps such as a polymer dissolving step, an organically modified layered silicate swelling step, and a solvent removing step. .
  • the hydroxyl groups of the layered silicate are not necessarily efficiently treated by the functional groups of the polyolefin oligomer. I got it. Therefore, a large amount of polyolefin oligomer was required in order to actually achieve uniform dispersion of the layered silicate. It is not preferable that a large amount of such an oligomer component is contained in the polymer in view of physical properties and cost.
  • Japanese Patent Application Laid-Open No. 8-1443697 discloses a polypropylene foam having a high expansion ratio and a high strength by including a layered silicate having a blowing agent adsorbed in a polypropylene foam composition. It is disclosed that it can be obtained. However, no consideration is given to disintegrating the agglomerated structure of the layered silicate and uniformly dispersing the flaky crystals in the resin, and the effect of blending the layered silicate has not been sufficiently obtained. In addition, a specific blowing agent must be adsorbed to the layered silicate in advance, and such multi-stage processing is required, and thus the productivity is reduced. In addition, it is essential to use a silane coupling agent, which is costly and easily binds to moisture in the air, making it unstable and difficult to handle.
  • the present invention has been made in view of the problems of the above-mentioned conventional thermoplastic foam composition comprising a thermoplastic resin and a layered silicate, and a method for producing the same, wherein foam cells and a layered silicate are uniformly and finely dispersed.
  • An object of the present invention is to provide a thermoplastic resin foam containing a thermoplastic resin and a layered silicate, and a method for producing the same. Disclosure of the invention
  • thermoplastic resin foam comprising, as main components, 100 parts by weight of a thermoplastic resin and 0.1 to 50 parts by weight of a layered silicate.
  • an average interlayer distance of the layered silicate detected by X-ray diffraction measurement is 6 OA or more.
  • XZ (Y-1) 1/3 is 30 m or less.
  • thermoplastic resin a polyolefin-based resin is used as the thermoplastic resin.
  • the polyolefin-based resin includes a group consisting of polyethylene, ethylene- ⁇ -olefin copolymer, ethylene-propylene copolymer, polypropylene, and propylene- ⁇ -olefin copolymer. At least one selected from the group consisting of:
  • the composite containing 100 parts by weight of the thermoplastic resin and 0.1 to 50 parts by weight of the layered silicate is formed of the composite material.
  • a method comprising: impregnating a silicate layer with a volume-expandable chemical substance; and forming a cell by expanding the volume of the chemical substance in the composite to obtain a thermoplastic resin foam. Is done.
  • the step of impregnating the chemical substance is performed by impregnating a gaseous chemical substance under high pressure at normal temperature and normal pressure, and expanding the volume of the chemical substance in the composite. At this time, the chemical substance is vaporized in a composite.
  • the gaseous chemical substance in impregnated in a supercritical state at normal temperature and normal pressure, is impregnated in a supercritical state at normal temperature and normal pressure.
  • the composite material containing 100 parts by weight of a thermoplastic resin and 0.1 to 50 parts by weight of a layered silicate, wherein the pyrogenic foaming agent is a layered silica Providing a composite containing a pyrolytic foaming agent between the layers of the salt, and a temperature higher than the temperature at which the pyrolytic foaming agent decomposes the composite.
  • thermoplastic resin According to still another broad aspect of the production method according to the present invention, a thermoplastic resin
  • the chemical substance which is a gas at normal temperature and normal pressure is impregnated in a supercritical state in an injection molding machine.
  • the layered silicate used is one in which the layers are made hydrophobic.
  • the most remarkable point in the present invention is that the chemical substance between the layers of the layered silicate is volume-expanded in the resin, whereby the flaky crystals of the layered silicate are uniformly dispersed in the organic polymer, and a fine foamed structure is formed. It can be easily formed.
  • the flaky crystals 2 and 3 of the layered silicate 1 are surrounded by ions such as silicon, for example, like montmorillonite shown in FIG. And OH groups, with six oxygen ions coordinated around ions such as aluminum, and OH groups.
  • Each flaky crystal 2, 3 has a crystal surface (B)
  • the cations, such as sodium calcium, are arranged on the (B) and are linked by ionic bonding force.
  • ions such as sodium and calcium on the crystal surface (B) Since it has an ion exchange property with a cationic substance, various substances having a cationic property can be inserted between layers. By utilizing this property, it is possible to ion-exchange the ion with a ionic surfactant, and by using a highly non-polar cation species as the cationic surfactant used for this, the layered silicate can be used.
  • the salt (B) is depolarized, and the phyllosilicate in the nonpolar polymer is easily dispersed.
  • a volume-expandable chemical substance is inserted between the layers of the thermoplastic resin and the layered silicate or thermally decomposed between the layers of the layered silicate. Including the type of substance. Subsequently, the volume expansion of the chemical substance or the decomposition of the pyrolytic foaming agent by heating provides sufficient energy to separate the flaky crystals. Further, as schematically shown in FIG. 3, according to the present invention, the gas as the chemical substance or the gas resulting from the decomposition of the pyrolytic blowing agent is contained in the composite of the thermoplastic resin and the layered silicate 5.
  • the flaky crystal 5A of the layered silicate acts as a partition, so that excessive diffusion of gas from between the thermoplastic resin molecular chains 4 is suppressed. Thereby, a foam in which the foam cells 6 are finely and uniformly dispersed is inevitably obtained. Further, since excessive diffusion of gas is suppressed, outgassing hardly occurs, so that a high expansion ratio can be obtained inevitably.
  • the expansion ratio Y of the thermoplastic resin foam according to the present invention is preferably 1.01 to 100, and in this range of the expansion ratio Y, the average cell diameter of the thermoplastic resin foam is X (Mm). Preferably satisfies the following equation (1). Average cell diameter XZ (expansion ratio Y—1) 1/3 ⁇ 30 ⁇ ⁇ ⁇ (1) If the value of the above formula (1) exceeds 30, the heat insulating performance, compressive strength, bending of the thermoplastic resin foam Physical properties such as creep decrease.
  • the above-mentioned layered silicate means a silicate mineral having a plurality of layers composed of a large number of fine flaky crystals and having exchangeable cations between the layers.
  • This flaky crystal usually has a thickness of about 1 nm and a ratio of its major axis to its thickness (hereinafter referred to as aspect ratio) is about 20 to 200.
  • aspect ratio a ratio of its major axis to its thickness
  • the type of layered silicate having exchangeable cations between the layers is not particularly limited.
  • swelling mica swelling my ability
  • a swellable smectite clay mineral or swellable mica is used.
  • two or more kinds of the above layered silicates may be used in combination.
  • the flaky silicate crystal of the layered silicate acts as a partition wall to suppress bubble growth and suppress outgassing, it has a high aspect ratio.
  • a layered silicate in which flaky crystals are aggregated a fine cell structure and a high expansion ratio can be realized.
  • a layered silicate having a flaky crystal with an aspect ratio of 100 or more is preferable, and particularly a montmorillonite having a flaky crystal with an aspect ratio of about 100 or more.
  • a swellable my force having a value of about 150 and an aspect ratio is more preferably used.
  • the above-mentioned layered silicate has a hydrophobic layer between layers.
  • a non-polar resin such as a polyolefin resin
  • a high affinity is obtained between the layered silicate and the thermoplastic resin.
  • Examples of the method for making the layers hydrophobic include the following methods (1) to (3).
  • the exchangeable cations existing between the layers of the layered silicate are ions such as sodium and calcium, and these ions are exchangeable cations of the cationic surfactant. And has ion exchangeability. Therefore, various cationic surfactants having exchangeable cations can be inserted between the layers.
  • the crystal surface of the layered silicate is made nonpolar or low-polarized.
  • the dispersibility of the layered silicate in the non-polar resin which is polarized can be enhanced.
  • the exchangeable cation is generally an alkali metal or alkaline earth metal ion such as sodium or calcium, and the exchangeable cation is more than the exchangeable cation. Mean or equivalent Are used.
  • the concentration of the exchangeable cation may be higher than the concentration of the exchangeable cation.
  • a hydroxyl group present on the crystal surface of the layered silicate is chemically bonded to the hydroxyl group or a functional group having chemical affinity, and Z or a reactive functional group.
  • the crystal surface of the layered silicate is an anionic surfactant and / or a reagent having anionic surface activity, and contains one or more reactive functional groups other than the anionic site in the molecule.
  • Hydrophobized layered silicates are preferably used because they are more easily dispersed in non-polar or low-polar resin such as polyolefin resin than non-hydrophobicized layered silicates.
  • the cationic surfactant is not particularly limited, and a commonly used cationic surfactant is used, and examples thereof include those having a quaternary ammonium salt, a quaternary phosphonium salt, or the like as a main component.
  • a quaternary ammonium salt having an alkyl chain having 8 or more carbon atoms is used. When an alkyl chain having 8 or more carbon atoms is not contained, the alkyl group ammonium ion has strong hydrophilicity, and it is difficult to sufficiently reduce the polarity between the layers of the layered silicate.
  • Examples of the quaternary ammonium salt include lauryltrimethylammonium salt, stearyltrimethylammonium salt, trioctylammonium salt, distearyldimethylammonium salt, di-hardened tallow dimethylammonium salt, distearyldibenzylammonium salt. And salt It is.
  • the cation exchange capacity of the above-mentioned layered silicate is not particularly limited, but if it is too small, the amount of the cationic surfactant activated by ion exchange between the crystal layers is small, so that sufficient interlayer exchange is possible. It may not be hydrophobized. If it is too large, the bonding strength between the layers of the layered silicate becomes strong, and it may be difficult to delaminate (delaminate) the crystal flakes. It is preferably 100 g.
  • the flaky crystal of the layered silicate acts as a partition wall for suppressing bubble growth during foaming. Therefore, if the added amount of the layered silicate is too small, a foam having a fine foamed cell structure cannot be obtained. If the added amount is too large, the bending strength decreases and the production cost increases. It is necessary to use 0.1 to 50 parts by weight, and preferably 2 to 10 parts by weight, per 100 parts by weight of the fat.
  • the average interlayer distance of the layered silicate when the layered silicate is dispersed in the thermoplastic resin (layered layer measured by X-ray diffraction)
  • the silicate has an average interlayer distance of the (001) plane of 6 OA or more.
  • thermoplastic resin is not particularly limited, but a polyolefin resin, an EVA resin, a polystyrene resin, a vinyl chloride resin, an ABS resin, a polyvinyl butyral resin, various rubbers, and the like can be preferably used. . Further, a crystalline resin such as a polyolefin-based resin is more preferably used.
  • the crystalline resin Since the crystalline resin has a high shape retention effect due to the presence of crystal parts in the non-molten state, it retains the shape of the foam when the following chemical substance is expanded in volume in the composite of thermoplastic resin and layered silicate It's easy to do.
  • the polyolefin resin used in the present invention is particularly limited.
  • homopolymer of ethylene, propylene or ⁇ -olefin copolymer of ethylene and propylene; copolymer of ethylene and ⁇ -olefin; copolymer of propylene and ⁇ -olefin; two or more ⁇ -olefins And copolymers of polyolefins.
  • ⁇ -olefin examples include 1-butene, 1-pentene, 1-hexene, 4-methylino 1-pentene,
  • polyolefin-based resins may be used alone,
  • Two or more kinds may be used as a mixture.
  • the molecular weight and molecular weight distribution of the polyolefin resin are not particularly limited, and the weight average molecular weight is preferably 5,000 to 5,000,000, more preferably 20,000 to 300,000.
  • the molecular weight distribution (weight average molecular weight MwZ number average molecular weight ⁇ ) is preferably
  • thermoplastic resin may be alloyed or blended with another type of polymer compound as appropriate.
  • a small amount of a polymer compound obtained by graphing a carboxylic acid such as maleic acid may be added to increase the affinity between the thermoplastic resin and the layered silicate in advance.
  • the thermoplastic resin used in the present invention may be, for example, an antioxidant, a light stabilizer, an ultraviolet absorber, a lubricant, a flame retardant, an antistatic agent, or the like.
  • An additive may be appropriately added. By adding a small amount of a crystal nucleating agent, it is possible to refine the crystal and improve the uniformity of physical properties.
  • thermoplastic resin when the thermoplastic resin is a crystalline resin, the chemical substance inserted between the layers of the layered silicate used is in the range of (melting point ⁇ 20) to (melting point + 20 ° C.) In the case of amorphous resin (Glass transition point-20 ° C)
  • gaseous organic gaseous organic or none Any gas of the nature can be used.
  • gases include, for example, carbon dioxide (carbon dioxide), nitrogen, oxygen, argon or water; or Freon, low molecular weight hydrocarbons, chlorinated aliphatic hydrocarbons, alcohols, benzene, Organic gases such as toluene, xylene and mesitylene are listed.
  • a gas that is a gas at normal temperature (23 ° C) and normal pressure (atmospheric pressure) is suitably used.
  • the low molecular weight hydrocarbons include pentane, butane, hexane, and the chlorinated aliphatic hydrocarbons include methyl chloride and methylene chloride. Various fluorinated aliphatic hydrocarbons can also be used.
  • carbon dioxide is preferably used because gas recovery is unnecessary and handling is safe.
  • Carbon dioxide can be made supercritical by relatively low temperature and low pressure, and acts more effectively on dispersion of phyllosilicates in supercritical fluids.
  • the supercritical state is a state in which the temperature and pressure are higher than the critical point of the chemical substance to be impregnated.
  • gas and liquid There is no distinction between gas and liquid, and it has intermediate properties between gas and liquid and has thermal conductivity. It has the properties of high viscosity, high diffusion rate, and low viscosity. Therefore, a supercritical fluid is suitable for dispersing the layered silicate.
  • the above-mentioned chemical substance may be liquid at normal temperature.
  • examples of such a chemical substance include saturated hydrocarbons such as pentane, neopentane, hexane and heptane, or methylene chloride, trichloroethylene and dichloroethane.
  • Chlorine compounds, fluorine compounds such as CFC-11, CFC-12, CFC-11, and CFC-1441b.
  • the method for impregnating the above chemical substance between the layers of the layered silicate of the composite containing the thermoplastic resin and the layered silicate is not particularly limited.For example, a method in which a gas as a chemical substance is sealed in a closed autoclave. And a method of applying pressure. This method uses pressure and temperature controls.
  • thermoplastic resin may be charged into a melt extruder, and a vent-type screw may be used as a screw, and the above-described gas may be injected into the vent portion from the middle of the cylinder.
  • a vent-type screw may be used as a screw
  • the above-described gas may be injected into the vent portion from the middle of the cylinder.
  • the pressure of the gas when the chemical substance is impregnated into a composite of a thermoplastic resin and a layered silicate is 9.8 X 10 is preferably 5 P a higher, 9. 8 X 1 0 or 6 P a is more preferred.
  • the temperature at which the above-described chemical substance is impregnated into the composite of the thermoplastic resin and the layered silicate is not particularly limited as long as the composite does not deteriorate. In any case, as the temperature is higher, the amount of the chemical substance dissolved in the composite containing the thermoplastic resin and the layered silicate increases, and a higher expansion ratio can be obtained. Therefore, it is preferable that the impregnation temperature is high.
  • the thermoplastic resin is a crystalline resin
  • the range of (melting point-20 ° C to melting point + 20 ° C) In the case of an amorphous resin, a temperature in the range of (glass transition point—20 ° C. to glass transition point + 20 ° C.) is more preferable.
  • thermoplastic resin If the temperature at which the above chemicals are impregnated is higher than ', (melting point + 20 ° C) or (glass transition point + 20 ° C), the molecular motion of the thermoplastic resin is activated and the composite The chemicals dissolved therein will easily escape from the composite. On the other hand, if the temperature at which the chemical is impregnated is lower than the melting point or glass transition point, the molecular motion of the thermoplastic resin may not be sufficient, and the chemical may not be sufficiently dissolved in the composite.
  • thermoplastic resin foam according to the present invention is carried out by impregnating the above-mentioned chemical substance into a composite and then expanding the chemical substance in a composite of the thermoplastic resin and the layered silicate.
  • the method of expanding the volume of the chemical substance is appropriately selected according to the type of the chemical substance, and the pressure is lowered after impregnating the composite gas with the above-mentioned gas at a relatively high pressure. Or by heating.
  • the temperature at which the above-mentioned chemical substance expands in volume in the composite is not particularly limited.
  • the temperature is preferably in the range of (melting point ⁇ 150 to melting point + 10 ° C.)
  • the glass transition point is preferably in the range of 50 ° C to 50 ° C + 50 ° C.
  • the volume expansion temperature is higher than (melting point +10) or (glass transition point +50)
  • the volume expansion temperature is lower than the melting point or the glass transition point of 150, the molecular motion of the thermoplastic resin is restricted, and a high foaming ratio cannot be obtained.
  • thermoplastic resin composition containing 100 parts by weight of a thermoplastic resin and 0.1 to 50 parts by weight of a layered silicate is charged with a gas at room temperature and normal pressure.
  • the chemical substance is impregnated under high pressure in an injection molding machine having a cavity, and then the thermoplastic resin composition impregnated with the chemical substance is injected into the cavity of the injection molding machine, and then the cavity is expanded.
  • the thermoplastic resin, the layered silicate, and the chemical substance which is a gas at normal temperature and normal pressure those described above are used. However, there is no need to collect gas and it can be handled safely. And carbon dioxide is preferred.
  • the method of impregnating the above-mentioned chemical substance under high pressure in an injection molding machine can also be performed by the method described above.
  • the cavity After injecting the thermoplastic resin composition impregnated with the chemical substance into the cavity of the injection molding machine as described above, the cavity is expanded.
  • the direction in which the cavities are expanded is preferably a direction perpendicular to the parting surface of the injection mold, since it is only necessary to retract the movable mold, but if necessary, a slide core or the like may be used. May be used to extend in the direction of the parting plane.
  • the size of the cavity when expanding the above-mentioned cavity may be appropriately adjusted according to the desired expansion ratio of the foam, but if it is too small, the properties of the foam (light weight, heat insulation, etc.) are exhibited. If it is too large, the thermoplastic resin composition may not be sufficiently distributed to the expanded cavity, and the desired expansion ratio and shape of the foam may not be obtained. 30 times is preferred.
  • the time required for expanding the cavities differs depending on the desired expansion ratio, shape, and extension viscosity of the thermoplastic resin composition, and further, there is a limit to means for expanding the cavities. It is preferable to use 0.5 to 5 seconds, since the shorter the foaming, the higher the elongational viscosity, and thus the more the foaming can be prevented.
  • the chemical substance is impregnated in the injection molding machine, the chemical substance is brought into a supercritical state, whereby the dispersibility of the flaky crystal of the layered silicate can be further enhanced.
  • the pressure applied in the cavity is rapidly released by expanding the cavity. Therefore, the electric power between the layered silicates Energy that overcomes the attractive force is applied, and the flaky crystals of the layered silicate can be exfoliated.
  • the chemical substance when a chemical substance is impregnated into a thermoplastic resin composition in a supercritical fluid state, the chemical substance can be rapidly gasified by expanding the cavity. In this case, the volume change from the supercritical state to the gas state is accompanied by rapid and large volume expansion. Therefore, sufficient energy can be applied to exfoliate the flaky crystal of the layered silicate, and the dispersibility of the flaky crystal can be further improved.
  • FIG. 4 One embodiment of the manufacturing method of the present invention for forming a foam structure by expanding cavities as described above will be described with reference to FIGS. 4 to 6.
  • FIG. 4 One embodiment of the manufacturing method of the present invention for forming a foam structure by expanding cavities as described above will be described with reference to FIGS. 4 to 6.
  • FIG. 4 One embodiment of the manufacturing method of the present invention for forming a foam structure by expanding cavities as described above will be described with reference to FIGS. 4 to 6.
  • FIG. 4 is a sectional view showing an example of an injection molding machine used in the present embodiment.
  • 11 is an injection molding machine
  • .12 is an injection mold
  • 16 is a vent.
  • the injection molding machine used in the present embodiment includes an injection molding machine main body 11 and an injection mold 12.
  • the injection molding machine body 11 has a cylinder 14 with a built-in screw 13, a hopper 15 for supplying a thermoplastic resin composition into the cylinder 14, and a gas injection device 6 1 to a cylinder 14.
  • a vent section 16 for injecting a chemical substance into the fuel cell is provided.
  • FIG. 5 is a cross-sectional view showing a closed state of the injection molding die used in the present embodiment, and FIG. 6 shows a state in which the cavity of the injection molding die is expanded. It is sectional drawing.
  • reference numeral 12 denotes a mold for injection molding
  • reference numeral 23 denotes a cavity
  • the injection mold used in the present embodiment has a fixed mold 21 and a movable mold 22.
  • a cavity 23 is formed between the fixed mold 21 and the movable mold 22.
  • thermoplastic resin composition is supplied to the hopper 15 of the injection molding machine main body 11 shown in FIG. 4, and the gas is injected from the gas injection device 61 at normal temperature and normal pressure. Chemicals are injected into cylinder 14 through vent 16.
  • the chemical substance is impregnated into the thermoplastic resin composition at a high pressure in the cylinder and at a temperature and pressure at which the chemical substance becomes a supercritical state.
  • the thermoplastic resin composition by performing pressure sealing with the thermoplastic resin composition in a molten state, it is possible to effectively impregnate the high-pressure or supercritical chemical substance with the thermoplastic resin composition.
  • thermoplastic resin composition 25 impregnated with a chemical substance is injected into the cavity 23 from the sprue 24 of the injection mold 12 shown in FIG.
  • the movable mold 22 of the injection mold 12 is retracted, and the cavity 23 is expanded.
  • FIG. 7 is a sectional view showing another example of the injection molding machine used in the present embodiment.
  • reference numeral 17 denotes an airtight container.
  • the injection molding machine main body 11 has a cylinder 14 with a built-in screw 13 and heat inside the cylinder 14.
  • a hopper 15 for supplying a plastic resin composition and an airtight container 17 for injecting a chemical substance into a cylinder 14 from a gas injection device 70 are provided.
  • thermoplastic resin composition was supplied, and a gaseous chemical substance was supplied from the gas injection device 70 at normal temperature and pressure to the hermetic container 17, and supplied into the hopper 15.
  • the thermoplastic resin composition is impregnated at a high pressure or at a temperature and pressure at which a chemical substance becomes a supercritical state, and poured into the cylinder 14.
  • thermoplastic resin foam can be obtained in the same manner as described with reference to FIGS. 4 to 6.
  • thermoplastic resin foam is obtained by preparing a composite containing a pyrolytic foaming agent between layers and heating the composite to a temperature higher than the decomposition temperature of the pyrolytic foaming agent.
  • thermoplastic resin and the layered silicate used here those described above can be similarly used.
  • the thermal decomposition type foaming agent is a substance which decomposes upon heating to generate gas, for example, azodicarbonamide, benzenesulfonium hydrazide, dinitrosopentamethylenetetramine, toluenesulfonyl hydrazide, 4 , 4-oxybis (benzenesulfonyl hydrazide) and the like.
  • the method for incorporating the above-mentioned pyrolytic foaming agent between the layers of the layered silicate is not particularly limited, but for example, the following method can be used.
  • Hydrochloric acid acts on the terminal amine of the foaming agent.
  • the foaming agent is converted into a quaternary amide, and ion exchange between water and a quaternary amine of a layered silicate containing a metal ion between layers in advance. By doing so, a foaming agent is contained between the layers.
  • general-purpose thermal decomposition type foaming agents have amine at the terminal The method is preferably used.
  • general-purpose pyrolytic blowing agents often contain sites that form a coordination bond with a metal, such as nitrogen or a carbon-carbon double bond, and this technique is preferably used. .
  • the temperature at which the pyrolytic blowing agent is contained between the layers of the layered silicate may be any temperature as long as the composite does not deteriorate and the pyrolytic blowing agent does not decompose.
  • the temperature at which the pyrolytic foaming agent is foamed in the thermoplastic resin is not particularly limited.
  • thermoplastic resin foam obtained according to the present invention has uniform and fine foam cells because the flaky crystals of the layered silicate act as partition walls during foaming. Therefore, as a foam having uniform and fine foam cells, the thermoplastic resin foam according to the present invention can be suitably used for various applications.
  • the thermoplastic resin foam according to the present invention may not be used as it is. That is, when the properties of the foam are not so required, and when the reinforcing effect due to the dispersion of the layered silicate is mainly used, the expansion ratio may be low, or the thermoplastic resin foam according to the present invention may be heated. Alternatively, the foam may be broken by a press or the like and used as a solid body. Further, the thermoplastic resin foam obtained by the present invention may be used as a master batch and provided to the next molding process. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic perspective view for explaining the structure of a layered silicate used to obtain a thermoplastic resin foam of the present invention.
  • FIG. 2 shows that the crystal planes of the layered silicate shown in FIG.
  • FIG. 4 is an enlarged schematic view showing a crystal structure of a portion where the light-emitting portion is formed.
  • FIG. 3 is a schematic diagram showing a gas diffusion suppression model during foam cell formation.
  • FIG. 4 is a sectional view showing an injection molding machine used in one embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a state in which an injection molding die used in one embodiment of the present invention is clamped.
  • FIG. 6 is a cross-sectional view showing a state where the cavity of the injection mold shown in FIG. 5 is expanded.
  • FIG. 7 is a sectional view showing an injection molding machine used in another embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram for explaining an extruder used in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the following minerals were used as the layered silicate.
  • Swelling strength Swelling strength (manufactured by Corp Chemical Co., Ltd.)
  • DS DM-modified montmorillonite Toyshun Mining Co., Ltd.
  • DS DM-modified montmorillonite (trade name: Nuesven D, organic substance obtained by ion exchange of all sodium ions between layers of montmorillonite by distearyl dimethyl ammonium chloride) Montmorillo mouth night)
  • the following acid-modified polyolefin resin was used to increase the affinity between the thermoplastic resin and the layered silicate, and for comparison with the conventional example.
  • Table 1 below shows the raw materials used in Examples 1 to 14 and Comparative Examples 1 to 6.
  • thermoplastic resin and the layered silicate were supplied at a weight ratio shown in Table 1 below into a Labo Plastomill manufactured by Toyo Seiki Co., Ltd., and were melt-kneaded at a set temperature of 170.
  • Table 1 the above-mentioned layered silicate or layered silicate containing a cationic surfactant was used.
  • 100 parts by weight of the above-mentioned acid-modified polyolefin resin was used. , Were added at the ratios shown in Table 1 below.
  • the obtained composite composition was preheated at 170 ° C. for 5 minutes by a melt press, and pressed at 9.8 MPa for 1 minute to form a 1 mm thick sheet.
  • the resulting sheet was cut into a 3 cm square, sealed in an autoclave, and the internal temperature of the autoclave was set to a temperature higher by 10 than the melting point or glass transition point of the thermoplastic resin.
  • carbon dioxide, nitrogen or steam Gas was injected into the autoclave at a high pressure, and the internal pressure in the autoclave was maintained at 1.67 MPa for 30 minutes.
  • the temperature inside the autoclave was set to a temperature 10 ° C lower than the melting point or the glass transition point of the thermoplastic resin, and the gas inside the autoclave was evacuated at once, and the internal pressure was returned to normal pressure.
  • a foam sample was obtained.
  • thermoplastic resin shown in Table 3 below and the layered silicate are supplied into a laboratory plastomill manufactured by Toyo Seiki Co., Ltd. in the weight ratio shown in Table 3 below, and are melt-kneaded at a set temperature of 17 did.
  • the layered silicate montmorillonite containing azodicarbonamide between layers or swellable myi force was used.
  • thermoplastic resin in Examples 19 to 23 and Comparative Examples 8 and 9, 100 parts by weight of the thermoplastic resin was added to Table 3 below. The indicated ratio of acid-modified polyolefin was added.
  • the resulting composite composition was preheated with a melt press at 170 at 5 minutes, and pressed at 9.8 MPa for 1 minute to form a 1 mm thick sheet. Completed the thing.
  • the obtained sheet was dipped in silicone oil heated at 200 ° C for 10 seconds to obtain a foam.
  • thermoplastic resin and a layered silicate that does not contain a pyrolytic blowing agent between layers are supplied at a weight ratio shown in Table 3 below in a Labo Plastomill manufactured by Toyo Seiki Co., Ltd. The mixture was melt-kneaded with C.
  • Comparative Example 8 5 parts by weight of the acid-modified polyolefin was added to 100 parts by weight of the thermoplastic resin to increase the affinity between the thermoplastic resin and the layered silicate.
  • Comparative Examples 7, 8, 10 and 11 the composite compositions having the compositions shown in Table 2 below were pelletized and the pyrolysis products shown in Table 2 below were obtained.
  • the mold foaming agent was melt-kneaded for 3 minutes using a Labo Plastomill.
  • the obtained composite was preheated at 180 ° C. for 2 minutes by a melt press, and pressed at a pressure of 9.8 MPa for 1 minute to form a sheet having a thickness of 1 mm.
  • the sheet was immersed in silicone oil heated to 20 for 10 seconds to obtain a foam.
  • the following composition was used as a composite of a solvent-swelled layered silicate and a thermoplastic resin.
  • 500 g of DS DM-modified montmorillonite (trade name: USB D) manufactured by Toyoshun Mining Co., Ltd. is put into 5 L of xylene (a reagent manufactured by Wako Pure Chemical Industries, Ltd.), and stirred at room temperature for 2 hours using a motor stirrer. A slurry was obtained.
  • xylene a reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • the slurry was injected, and the liquid addition nozzle was also xylene from a ventro provided at the tip of the extruder.
  • the composite extruded from the sheet die attached to the tip of the extruder was shaped into a 1 mm thick sheet and used as a sample for evaluation.
  • the total adsorption rate of the blowing agent and the silane coupling agent adsorbed on the layered silicate was 45.3%.
  • the expansion ratio of the foam was determined by the following equation (2).
  • the specific gravity of the foam was calculated from the buoyancy generated when the foam was submerged in water. Expansion ratio-Specific gravity before foaming Specific gravity of foam ⁇ ⁇ ⁇ ⁇ (2)
  • the foam was observed using a secondary electron reflection electron microscope (manufactured by JOEL, trade name: JSM-5800LV), and the average of 50 observed foam cells was defined as the foam cell diameter.
  • Tables 2 and 4 show the evaluation results of the layer spacing of the layered silicate in the foam, the expansion ratio of the foam, and the cell diameter of the foam performed in the examples and comparative examples.
  • a foam having a high expansion ratio and a uniform cell diameter was obtained by impregnating a composite containing a layered silicate with a chemical substance and expanding the volume in the composite.
  • each foam cell diameter was 10 to 75 / m, and a very small foam cell diameter was obtained as a foam having an expansion ratio of 5 times or more.
  • Comparative Example 12 Japanese Patent Application Laid-Open No. Hei 9-183939
  • Comparative Example 13 Japanese Patent Application Laid-Open No. Hei 10-182892
  • Example 10 6 OA ⁇ U: 14.2 53
  • Example 11 60 AJiiJLh 16.
  • Example 12 6 OA & i 6.5 49
  • the following minerals were used as the layered silicate.
  • the following materials were used as the layered silicate containing a cationic surfactant.
  • thermoplastic resin The following compositions were used as the thermoplastic resin.
  • compositions were used in order to increase the affinity between the thermoplastic resin and the layered silicate and to use it for comparison with the prior art.
  • the following reagents were used as the pyrolytic foaming agent.
  • thermoplastic resin In a Labo Plastomill manufactured by Toyo Seiki Co., Ltd., random polypropylene as a thermoplastic resin; SR256M and linear low-density polyethylene; 0238 CN added in a ratio of 8: 2; DSDM modified swelling force; MAE-100 was fed so as to be 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin, and was melt-kneaded at a set temperature of 170. In order to increase the affinity between the thermoplastic resin and the layered silicate, 5 parts by weight of maleic anhydride-modified polypropylene; EUMEX 1001 was added to 100 parts of the thermoplastic resin.
  • trimethylolpropane triatalylate is added in an amount of 3 parts by weight based on 100 parts by weight of the thermoplastic resin, and 12 parts by weight of azodicarbonamide; Uniform AZ-HM is added, followed by melt-kneading. did.
  • the obtained composite composition was molded by heating with a hand press at 18 for 3 minutes to form a sheet having a thickness of 1 mm. This was irradiated with an electron beam at an acceleration voltage of 750 kV and an electron dose of 1 OMrad to perform crosslinking. The obtained electron beam irradiation raw material was foamed in a gear oven at 260 ° C. to obtain a sample for evaluation. Comparative Example 15
  • talc which is generally used as an inorganic filler, is fed so that talc is 5 parts by weight based on 100 parts by weight of the thermoplastic resin, and maleic anhydride-modified polypropylene is used. Was not blended, and otherwise the same as in Example 1 to obtain a sample for evaluation.
  • a foam was made from the same raw materials as in Example 4 except that tin was used.
  • pentane was injected into the autoclave, and then the internal pressure in the autoclave was kept at 5.88 MPa for 30 minutes. Further, the temperature in the autoclave was set to a temperature one lower than the melting point of the thermoplastic resin (EA 9) used, and in this state, the gas in the autoclave was evacuated at once, and the inside of the autoclave was returned to normal pressure. .
  • EA 9 thermoplastic resin
  • thermoplastic resin composition was transferred from the pressure hopper 76 of the molding apparatus shown in FIG.
  • the diameter of the screw 72 was 40 mm and the length of the screw 72 was 30 mm.
  • pressurizing pump 73 is used for gas supply port 75 provided in liquid material transporting section 74 of extruder 71.
  • thermoplastic resin composition was about 9% by weight.
  • thermoplastic resin composition supplied to the extruder 71 is sufficiently melted therein under the conditions of an extrusion rate of 2 kg / hour, a screw rotation speed of 10 rpm, and a cylinder-set temperature of 20. Kneaded.
  • the thermoplastic resin composition was passed through the tip of the mold, and the mold 7 7 The resin was extruded into a rod shape to produce a foam.
  • the obtained foam was evaluated in the same manner as in Example 1. As a result, the interlayer distance of the layered silicate was 60 A or more, the expansion ratio was 13.2 times, and the expansion cell diameter was 95 / zm.
  • thermoplastic resin composition supplied into the hopper 15.
  • a, 6 (the case of C0 2, supercritical, when the N 2 pressure) atmosphere impregnated with, and supplied to the cylinder 14 which was at a temperature of 250, the melt-kneading and metering at a rotation number 50 r pm the disk Reuse 1 3
  • the material is injected into a 250 mm diameter, 3 mm wide disk-shaped cavity, and is held for 20 seconds.Then, as shown in Fig. 6, the cavity is exposed for 1 second. After expanding 23 to 45 mm in width, cool it for 30 seconds, A foam was obtained.
  • Example 2 The foam obtained in 8335 was evaluated in the same manner as in Example 1.
  • the thermal conductivity of the foam obtained in Example 28 35 was evaluated using the following capacities. The results are shown in Table 6 below. In Table 6,
  • the foams obtained in Examples 28 to 35 all had an average inter-layer distance exceeding 6 OA, which is the detection limit of the X-ray diffraction measurement apparatus, and a foam cell diameter of 12 to 7 2 / zm, which is uniform and fine, and has a thermal conductivity of 0.054 to 0.071 W / (m-K) and excellent heat insulation performance, while the foam obtained in Comparative Example 14
  • the body had a narrow average interlayer distance of 28 A, a very large cell diameter of 300 ⁇ , and a high thermal conductivity of 0.098 WZ (m ⁇ ⁇ ).
  • the thermoplastic resin foam according to the present invention contains 100 parts by weight of the thermoplastic resin and 0.1 to 50 parts by weight of the layered silicate, and contains the layered silicate detected by X-ray diffraction measurement. Since the average interlayer distance in the salt is 6 OA or more, the dispersibility of the flaky silicate crystal of the layered silicate in the foam is enhanced. Therefore, the lamellar silicate flake crystals are uniformly dispersed, and the physical properties, such as heat resistance, flame retardancy, and dimensional stability, of the addition of the lamellar silicate are enhanced.
  • the foam is a foam in which uniformly fine foamed cells are uniformly dispersed.
  • a foam having less variation in physical properties such as elasticity can be provided.
  • a polyolefin-based resin can be used as the thermoplastic resin.
  • a polyolefin-based resin foam having improved physical properties due to uniform dispersion of the layered silicate can be provided.
  • the layered silicate at least one of a swellable smectite clay mineral and a swellable mica is preferably used, in which case the dispersibility of these minerals is enhanced and acts as a nucleating agent during foaming. Therefore, the foam diameter can be further reduced. In addition, the mechanical strength can be increased.
  • thermoplastic resin foam In the method for producing a thermoplastic resin foam according to the present invention, there is provided a composite layered silicate containing 100 parts by weight of a thermoplastic resin and 0.1 to 50 parts by weight of a layered silicate.
  • the foam is formed by impregnation of the substance and volumetric expansion of the chemical within the composite.
  • the flaky crystals of the layered silicate act as partition walls when the chemical substance expands in volume, it is possible to suppress excessive escape of the chemical substance, that is, gas, and partially uneven expansion.
  • the silicate flaky crystals can be uniformly dispersed, and the fine foam cells can be uniformly dispersed. Therefore, a thermoplastic resin foam excellent in physical properties such as strength and heat resistance can be easily provided.
  • no solvent is required for the production, a complicated process for removing the residual solvent is not required.
  • thermoplastic resin composition containing 100 parts by weight of a thermoplastic resin and 0.1 to 50 parts by weight of a layered silicate is mixed with a gaseous chemical substance at normal temperature and pressure in an injection molding machine having a cavity.
  • the flaky silicate crystal of the layered silicate acts as a partition wall.
  • the layered silicate can be more effectively dispersed.
  • an increase in heat-resistant deformation temperature due to restraint of molecular chains can be expected, and a diffusion effect of combustion gas and a nucleating agent effect by inorganic crystals can be expected. It is also possible to greatly improve flame retardancy, dimensional stability and various physical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Description

明 細 書 熱可塑性樹脂発泡体及びその製造方法 技術分野
本発明は、 熱可塑性樹脂と層状珪酸塩とを含む熱可塑性樹脂発泡体及 びその製造方法に関し、 均一微細な発泡セルが均一に分散されている熱 可塑性樹脂発泡体及びその製造方法に関する。 背景技術
熱可塑性樹脂の機械的物性、 熱的特性またはガスバリヤ一性等の性質 を改善するために、 層状珪酸塩を熱可塑性樹脂中に分散させる方法が知 られている。 粘土鉱物を構成している層状珪酸塩では、 極めて微細な薄 片状結晶がイオン結合により凝集されている。 この凝集構造を化学的ま たは物理的な手段により離枠し、 熱可塑性樹脂中に薄片状結晶を均一に 分散させることにより、 上記熱可塑性樹脂の特性が改善される。
例えば特公平 8— 2 2 9 4 6号公報には、 アミノカルボン酸を層状珪 酸塩にインタ一力レ一卜することで層間の間隔を予め拡げておき、 次い でポリアミ ドモノマーである £—力プロラタタムを層間に挿入させると 同時に重縮合させることによって、 ポリアミ ド樹脂中に層状珪酸塩の薄 片を均一に分散させた構造を形成することができることが開示されてい る。
しかし、 ポリアミ ドのようにモノマ一を層状珪酸塩の層間に挿入でき るもの以外のポリマ一では、 層状珪酸塩をマトリックス中に均一分散さ せることは一般に極めて困難である。 この問題を解決するために、 種々 の試みがなされている。 例えば特開平 9一 1 8 3 9 1 0号公報には、 有機化層状珪酸塩を膨潤 分散させた有機分散液とビニル系高分子化合物とを溶解状態で混合する ことによって、 層状珪酸塩をポリマー中に分散する方法が開示されてい る。 特開平 1 0— 1 8 2 8 9 2号公報には、 有機化層状珪酸塩と、 水素 結合性官能基を含有するポリオレフインオリゴマーと、 ポリオレフイン ポリマーとを溶融混練することによって、 層状珪酸塩の層間がポリマー 中で無限膨潤しているポリオレフイン系樹脂複合材料を調製し得ること が開示されている。
他方、 樹脂の軽量化、 低コスト化または意匠性付与を果たすために、 樹脂を発泡体として用いること、 さらには、 発泡体の機械強度、 断熱性 能、 衝撃吸収性能等を高めるために発泡体中に無機フィラーを含有させ ることが従来より行われている。 例えば、 特開平 8— 1 4 3 6 9 7号公 報には、 ポリプロピレン発泡体組成物中に層状珪酸塩を含有させること により、 前記発泡体の強度等の物性が改善されると記載されている。 しかしながら、 特開平 9一 1 8 3 9 1 0号公報の記載の方法では溶媒 の使用が必須であり、 得られる複合材料では、 残存溶媒が抜け切らない ためか、 曲げ弾性率等の強度が十分なものとはいえなかった。 さらに、 ポリマーの溶解工程、 有機化層状珪酸塩の膨潤化工程、 及び溶媒除去ェ 程等の煩雑な工程を含むため、 この先行技術の方法は、 現実に工業的に 実施するのは困難である。
また、 特開平 1 0— 1 8 2 8 9 2号公報記載の、 層状珪酸塩の結晶薄 片をポリマー中に均一に分散させた材料を工業材料として使用すること は、 実際には極めて困難であった。
すなわち、 ポリオレフインオリゴマ一中の官能基と層状珪酸塩表面の 水酸基とを溶融混練中に反応させるため、 層状珪酸塩の水酸基が前記ポ リオレフインオリゴマーの官能基により必ずしも効率的に処理されなか つた。 そのため、 実際に層状珪酸塩の均一分散を達成するためには、 多 量のポリオレフインオリゴマーが必要であった。 このようなオリゴマー 成分がポリマー中に多量に含有されることは、 物性及びコス卜の点から 好ましくない。
一方、 上記特開平 8— 1 4 3 6 9 7号公報には、 ポリプロピレン発泡 体組成物中に発泡剤を吸着した層状珪酸塩を含有させることにより、 高 発泡倍率 ·高強度のポリプロピレン発泡体が得られることが開示されて いる。 しかしながら、 層状珪酸塩の凝集構造を解砕し、 薄片状結晶を榭 脂中に均一分散させることについては考慮されておらず、 層状珪酸塩を 配合した効果は十分に引き出されていない。 また、 予め特定の発泡剤を 層状珪酸塩に吸着させておかなければならず、 このような多段処理を要 するので、 生産性が低下する。 さらにシランカップリング剤を用いるこ とが必須であり、 コス ト的に高くなると共に、 空気中の水分と結合しや すく不安定で取扱いが難しい。
本発明は、 上記従来の熱可塑性樹脂と層状珪酸塩とからなる熱可塑性 発泡体組成物及びその製造方法の問題点に鑑み、 発泡セル及び層状珪酸 塩が、 均一かつ微細に分散されている、 熱可塑性樹脂と層状珪酸塩とを 含む熱可塑性樹脂発泡体及びその製造方法を提供することを目的とする。 発明の開示
本発明の広い局面によれば、 熱可塑性樹脂 1 0 0重量部及び層状珪酸 塩 0 . 1〜5 0重量部を主成分として含むことを特徴とする熱可塑性榭 脂発泡体が提供される。
本発明のある特定の局面では、 上記熱可塑性樹脂発泡体において、 X 線回折測定によって検出される上記層状珪酸塩の平均層間距離は 6 O A 以上である。 本発明の他の特定の局面では、 平均気泡径を X ( m) 、 発泡倍率を Yとしたときに、 X Z ( Y - 1 ) 1 / 3が 3 0 m) 以下である。
本発明の他の特定の局面では、 上記熱可塑性樹脂としてポリオレフィ ン系樹脂が用いられる。
本発明に係るさらに他の特定の局面では、 上記層状珪酸塩として、 ス メクタイ ト系粘土鉱物及び雲母のうち少なくとも 1種が用いられる。 本発明の別の特定の局面では、 上記ポリオレフイン系榭脂として、 ポ リエチレン、 エチレン一 α—ォレフィン共重合体、 エチレン一プロピレ ン共重合体、 ポリプロピレン及びプロピレン一 α—ォレフイン共重合体 からなる群から選択した少なくとも 1種が用いられる。
本発明に係る熱可塑性樹脂発泡体の製造方法のある広い局面によれば、 熱可塑性榭脂 1 0 0重量部及び層状珪酸塩 0 . 1〜5 0重量部を含む複 合物の、 前記層状珪酸塩の層間に体積膨張可能な化学物質を含浸させる 工程と、 前記化学物質を前記複合物内で体積膨張させることにより気泡 を形成し、 熱可塑性樹脂発泡体を得る工程とを備える方法が提供される。 上記製造方法のある特定の局面では、 前記化学物質を含浸させる工程 力 常温常圧でガス状の化学物質を高圧下で含浸することにより行われ、 かつ前記複合物内で化学物質を体積膨張させるに際し、 前記化学物質を 複合物内で気化させることにより行われる。
本発明に係る上記製造方法の別の特定の局面では、 前記化学物質を複 合物に含浸させるにあたり、 常温常圧でガス状の前記化学物質を超臨界 状態で含浸させる。
本発明の製造方法の他の広い局面によれば、 熱可塑性樹脂 1 0 0重量 部及び層状珪酸塩 0 . 1〜5 0重量部を含む複合物の、 前記熱分解型発 泡剤が層状珪酸塩の層間に熱分解型発泡剤が含有されている複合物を用 意する工程と、 前記複合物を熱分解型発泡剤の分解する温度よりも高い 温度に加熱して発泡構造を形成 1~る工程とを備えることを特徴とする熱 可塑性樹脂発泡体の製造方法が提供される。
本発明に係る製造方法のさらに他の広い局面によれば、 熱可塑性樹脂
1 0 0重量部及び層状珪酸塩 0 . 1〜5 0重量部を含む熱可塑性樹脂組 成物に、 体積膨張可能な化学物質を、 キヤビティを有する射出成形機内 で高圧下で含浸させる工程と、 次に、 前記化学物質を含浸させた熱可塑 性樹脂組成物を前記射出成形機のキヤビティ内に射出した後、 該キヤビ ティを拡張させる方法が提供される。
該製造方法の特定の局面では、 上記常温常圧で気体の化学物質は、 射 出成形機内において超臨界状態で含浸される。
また、 好ましくは、 上記製造方法において、 層状珪酸塩としては、 層 間が疎水化されたものが用いられる。
以下、 本発明の詳細を説明する。
本発明において最も注目すべきことは、 層状珪酸塩の層間の化学物質 を樹脂中で体積膨張させることにより、 有機ポリマー中に層状珪酸塩の 薄片状結晶が均一に分散され、 微細な発泡構造を容易に形成し得ること にある。
以下、 本発明におけるメカニズムについて詳述する。
第 1図及び第 2図に略図的に示すように、 一般に層状珪酸塩 1の薄片 状結晶 2, 3は、 例えば、 第 1図に示すモンモリ ロナイ トのように、 珪 素等のイオンの周りに 4つの酸素イオンが配位した 4面体、 アルミニゥ ム等のイオンの周りに 6つの酸素イオンが配位した 8面体、 及び O H基 から構成され、 各々の薄片状結晶 2, 3は、 結晶表面 (B ) 上にナトリ ゥムゃカルシウム等のカチオンが配列することによりイオン結合力によ り結びつけられている。
—般に、 結晶表面 (B ) 上のナトリウムやカルシウム等のイオンは、 カチオン性物質とのイオン交換性を有するため、カチオン性を有する種々 の物質を層間に挿入することができる。 この性質を利用し、 該イオンを 力チオン性界面活性剤とイオン交換することが可能であり、 これに使用 するカチオン性界面活性剤として非極性性の高いカチオン種を用いるこ とで、 層状珪酸塩 (B ) は非極性化され、 非極性ポリマー中における層 状珪酸塩は分散しやすくなる。
さらに、 このような、 層状珪酸塩の薄片を分散させるためには、 結晶 表面 (B ) 同士の電気的相互作用を相殺または低下させるエネルギーを 層間に与え、 薄片状結晶 2, 3間を遠ざける必要がある。
そのため、本発明では、熱可塑性樹脂と層状珪酸塩との複合物に対し、 体積膨張可能な化学物質を熱可塑性樹脂及び層状珪酸塩の層間に挿入す るかもしくは層状珪酸塩の層間に熱分解型の物質を含有せしめる。 引き 続いて、 化学物質の体積膨張または熱分解型発泡剤の加熱による分解に より、 薄片状結晶同士を分離するのに十分なエネルギ一が付与される。 さらに、 第 3図に模式的に示すように、 本発明によると、 上記化学物 質としての気体もしくは熱分解型発泡剤の分解によるガスが熱可塑性樹 脂と層状珪酸塩 5との複合物中で膨張する際に、 層状珪酸塩の薄片状結 晶 5 Aが隔壁として作用するために、 熱可塑性樹脂分子鎖 4の間からの 気体の過剰な拡散が抑制される。 これにより、 微細かつ均一に発泡セル 6が分散した発泡体が必然的に得られる。 また気体の過剰な拡散が抑制 されることからガス抜けが生じにくく、 必然的に高い発泡倍率を得るこ とも可能である。
従来、 発泡体の製造の際には、 発泡セルの巨大化による発泡体の強度 低下等を抑制するために、 種々の手段、 例えば、 発泡剤の粒径を微細化 する、 発泡核となる微小添加物を加えるといった方法が講じられていた 力 本発明では、 これらとは全く異なる手法により簡便に微細かつ均一 な発泡セルが得られる。
本発明に係る熱可塑性樹脂発泡体の発泡倍率 Yは、 1 . 0 1〜 1 0 0 が好ましく、 この発泡倍率 Yの範囲において、 上記熱可塑性樹脂発泡体 の平均気泡径を X ( M m) は、 下記の式 (1 ) を満足することが好まし レ、。 平均気泡径 X Z (発泡倍率 Y— 1 ) 1 / 3≤ 3 0 · · · ( 1 ) 上記式 ( 1 ) の値が 3 0を超えると、熱可塑性樹脂発泡体の断熱性能、 圧縮強度、 曲げクリープ等の物性が低下する。
本発明において、 上記層状珪酸塩とは、 多数の微細な薄片状結晶から なる複数の層を有し、 層間に被交換性陽イオンを有する珪酸塩鉱物を意 味する。 この薄片状結晶は、 通常、 厚さが約 l n mであり、 その長径と 厚みの比 (以下、 アスペク ト比とする) が約 2 0〜2 0 0程度である。 層状珪酸塩では、 これらの微細な薄片状結晶がイオン結合により凝集さ れている。
上記層間に被交換性陽イオンを有する層状珪酸塩の種類は特に限定さ れず、 例えば、 モンモリロナイ ト、 サボナイ ト、 ヘクトライト、 パイデ ライ ト、 スティブンサイ ト、 ノントロナイ ト等のスメクタイト系粘土鉱 物;バーミキユライ ト、 ハロイサイ ト等の天然雲母;または膨潤性雲母 (膨潤性マイ力) 等の合成雲母を挙げることができ、 天然物であっても よく合成されたものであってもよい。 好ましくは、 膨潤性スメクタイ ト 系粘土鉱物または膨潤性雲母が用いられる。
また、 上記層状珪酸塩は 2種以上併用されてもよい。
本発明では、層状珪酸塩の薄片状結晶が隔壁として気泡成長を抑制し、 気体の抜けを抑制するように作用するので、 高いァスぺク ト比を有する 薄片状結晶が凝集されている層状珪酸塩を用いることにより、 微細な発 泡セル構造や高い発泡倍率を実現することができる。 このため、 薄片状 結晶のァスぺク ト比が 1 0 0以上の層状珪酸塩が好ましく、 特に、 薄片 状結晶のァスぺク ト比が約 1 0 0以上の値を有するモンモリ口ナイト及 びァスぺク ト比が約 1 5 0程度の値を有する膨潤性マイ力が、 より好ま しく用いられる。
上記層状珪酸塩は、 層間が疎水化されたものであることが好ましい。 特に、 熱可塑性樹脂としてポリオレフイン系樹脂などの非極性樹脂を用 いる場合には、 層状珪酸塩と熱可塑性樹脂との間に高い親和性が得られ るので、 層間を疎水化しておくことが好ましい。
層間を疎水化する方法としては、 例えば、 以下の (1 ) 〜 (3 ) の方 法が挙げられる。
( 1 ) 層状珪酸塩の層間に存在する被交換性陽イオンをカチオン系界 面活性剤によりイオン交換する方法
一般に層状珪酸塩の層間 (すなわち薄片状結晶表面) に存在する被交 換性陽イオンは、 通常、 ナトリウムやカルシウムなどのイオンであり、 これらのイオンは、 カチオン系界面活性剤の交換性陽イオンとイオン交 換性を有する。 従って、 交換性陽イオンを有する種々のカチオン系界面 活性剤を層間に挿入することができる。
よって、 極性の低いカチオン系界面活性剤を用いて、 上記被交換性陽 イオンをカチオン系界面活性剤の交換性イオンとイオン交換することに より、 層状珪酸塩の結晶表面が非極性化または低極性化され、 非極性榭 脂中における層状珪酸塩の分散性を高めることができる。
上記被交換性陽イオンは、 上述したように、 通常、 ナトリウムやカル シゥムなどのアルカリ金属またはアルカリ土類金属のイオンであり、 上 記交換性陽イオンとしては、 上記被交換性陽イオンよりも卑または同等 のイオンが用いられる。
なお、 被交換性陽イオンと同等のイオンを用いる場合には、 交換性陽 イオンの濃度は、 被交換性陽イオンの濃度よりも高ければよい。
( 2 ) 層状珪酸塩の結晶表面に存在する水酸基を、 水酸基と化学結合 するかまたは化学親和性を有する官能基、 及び Zまたは反応性官能基を
1個以上分子末端に有する化合物により化学修飾する方法
( 3 ) 層状珪酸塩の結晶表面を、 ァニオン系界面活性剤及び または ァニオン性界面活性能を有する試剤であって、 分子中のァニオン部位以 外に反応性官能基を 1個または 2個以上含有する化合物により化学修飾 する方法
上記 (1 ) 〜 (3 ) の方法は、 1種のみを用いてもよく、 2種以上を 併用してもよレ、。
疎水化された層状珪酸塩は、 疎水化されていない層状珪酸塩よりもポ リオレフイン系樹脂などの非極性または低極性榭脂中に分散されやすい ので、 好適に用いられる。
上記カチオン系界面活性剤としては特に限定されず、 通常用いられる カチオン系界面活性剤が用いられ、 例えば、 4級アンモニゥム塩、 4級 ホスホニゥム塩等を主体成分とするものが挙げられ、 好ましくは、 炭素 数 8以上のアルキル鎖を有する 4級アンモニゥム塩が用いられる。 炭素 数が 8以上のアルキル鎖を含有しない場合には、 アルキル基アンモニゥ ムイオンの親水性が強く、 層状珪酸塩の層間を十分に非極性または低極 性化することが困難となる。
上記 4級アンモニゥム塩としては、 例えば、 ラウリルトリメチルアン モニゥム塩、 ステアリルトリメチルアンモニゥム塩、 トリオクチルアン モニゥム塩、 ジステアリルジメチルアンモニゥム塩、 ジ硬化牛脂ジメチ ルアンモニゥム塩、 ジステアリルジベンジルアンモニゥム塩等が挙げら れる。
上記層状珪酸塩の陽イオン交換容量は特に限定されないが、 少なすぎ ると結晶層間にイオン交換によりィンタ一力レ一トされるカチオン系界 面活性剤の量が少ないために、層間が十分に疎水化されない場合があり、 多すぎると層状珪酸塩の層間の結合力が強固となり、 結晶薄片をデラミ ネート (層間剥離) することが困難な場合があるので、 5 0〜2 0 0ミ リ当量 1 0 0 gであることが好ましい。
上記層状珪酸塩の薄片状結晶は、 発泡時に、 気泡成長を抑制する隔壁 として作用する。 従って、 層状珪酸塩の添加量が少なすぎると、 微細な 発泡セル構造を有する発泡体を得ることができず、 多すぎると、 曲げ強 度の低下や生産コストの上昇を招くため、 熱可塑性榭脂 1 0 0重量部に 対し、 0 . 1〜5 0重量部の範囲で用いることが必要であり、 好ましく は 2 ~ 1 0重量部の範囲で用いられる。
層状珪酸塩を用いて、 より均一な熱可塑性榭脂発泡体を得るには、 層 状珪酸塩が熱可塑性樹脂中に分散したときの層状珪酸塩の平均層間距離 ( X線回折により測定した層状珪酸塩の (0 0 1 ) 面の平均層間距離) が 6 O A以上であることが好ましい。
熱可塑性樹脂としては、 特に限定はされないが、 ポリオレフイン系樹 脂、 E V A系樹脂、 ポリスチレン系樹脂、 塩化ビニル系樹脂、 A B S系 樹脂、 ポリビニルプチラール系樹脂、 各種ゴムなどが好ましく用いるこ とができる。 さらに、 ポリオレフイン系樹脂等の結晶性樹脂がより好ま しく用いられる。
結晶性樹脂は非溶融状態において結晶部位の存在により形状保持効果 が高いため、 後述の化学物質を熱可塑性樹脂と層状珪酸塩との複合物中 で体積膨張させる際に、 発泡体の形状を保持しやすい。
本発明において用いられるポリオレフイン系樹脂については、 特に限
0 定されず、 エチレン、 プロピレンまたは α—ォレフィンの単独重合体; エチレンとプロピレンの共重合体、 エチレンと α—ォレフィンの共重合 体、 プロピレンと α—ォレフィンの共重合体、 2種以上の α—ォレフィ ンの共重合体等が挙げられる。 上記 α—ォレフィンとしては、 例えば、 1 —ブテン、 1 —ペンテン、 1 一へキセン、 4ーメチノレ一 1 —ペンテン、
1 —ヘプテン、 1ーォクテン等が挙げられる。
また、 これらのポリオレフイン系樹脂は単独で用いられてもよいし、
2種以上混合されて用いられてもよい。
また、 上記ポリオレフイン系樹脂の分子量及び分子量分布は特に限定 されるものではなく、 重量平均分子量は、 好ましくは、 5, 000〜5, 000, 000、 より好ましくは 20, 000〜 300, 000であり、 分子量分布 (重量平均分子量 MwZ数平均分子量 Μη) は、 好ましくは、
2- 80, より好ましくは 3〜40とされる。
' 上記熱可塑性樹脂には適宜、 他種の高分子化合物がァロイ化またはブ レンドされていても構わない。 例えば、 マレイン酸等のカルボン酸をグ ラフ トした高分子化合物を少量添加しておき、 予め熱可塑性樹脂と層状 珪酸塩との親和性を高めておいてもよい。
本発明に使用される熱可塑性樹脂には、 所望の物性を得るために、 必 要に応じて、 例えば、 酸化防止剤、 耐光剤、 紫外線吸収剤、 滑剤等、 難 燃剤、 帯電防止剤等の添加剤が適宜添加されていても構わない。 結晶核 剤となり得るものを少量添加して、 結晶を微細化して、 物性の均一化を 高めることも可能である。
本発明において、 用いられる層状珪酸塩の層間に挿入される化学物質 とは、 熱可塑性樹脂が結晶性樹脂の場合には、 (融点— 20 ) 〜 (融 点 + 20°C) の範囲で、 非晶性樹脂の場合には (ガラス転移点一 20°C)
〜 (ガラス転移点 + 20°C) の範囲で、 気体状態である有機もしくは無 機質の任意のガスを用いることができる。 このような気体としては、 例 えば、 二酸化炭素 (炭酸ガス) 、 窒素、 酸素、 アルゴンもしくは水;ま たは、 フロン、 低分子量の炭化水素、 塩素化脂肪族炭化水素、 アルコー ル類、 ベンゼン、 トルエン、 キシレン、 メシチレン等の有機ガス等が挙 げられる。 特に、 常温 (2 3 °C) 常圧 (大気圧) で気体であるガスが好 適に用いられる。
上記低分子量の炭化水素としては、 ペンタン、 ブタン、 へキサン、 塩 素化脂肪族炭化水素としては、塩化メチル、塩化メチレンが挙げられる。 また、 各種フッ化脂肪族炭化水素も用いることができる。
上記化学物質としては、 ガスの回収が不要であり、 取り扱いが安全で あるため、 二酸化炭素が好適に用いられる。 二酸化炭素は、 比較的低い 温度及び低い圧力により超臨界化することができ、 超臨界流体時に層状 珪酸塩の分散に対してより効果的に作用する。 超臨界状態とは、 含浸す べき化学物質の臨界点よりも温度及び圧力が高い状態を言い、 気体と液 体との区別がなく、 気体と液体との中間的な性質を持ち、 熱伝導性が高 く、 拡散速度が速く、 粘性が小さいという性質を有する。 従って、 超臨 界流体は、 層状珪酸塩を分散させる上で好適である。
なお、 上記化学物質は常温で液体であってもよく、 このような化学物 質の例としては、 ペンタン、 ネオペンタン、 へキサン、 ヘプタンなどの 飽和炭化水素、 あるいは塩化メチレン、 トリクロロエチレン、 ジクロル ェタンなどの塩素系化合物、 C F C— 1 1 、 C F C— 1 2、 C F C— 1 1 3 、 C F C— 1 4 1 bなどのフッ素系化合物が挙げられる。
上記化学物質を熱可塑性樹脂及び層状珪酸塩を含む複合物の層状珪酸 塩の層間に含浸させる方法については、 特に限定されないが、 例えば、 密閉したォ一トクレーブ中に化学物質としての気体を封入し、 圧力を加 える方法を挙げることができる。 この方法では、 圧力及び温度のコント
2 ロールが容易である。
熱可塑性樹脂を溶融押出機に投入し、 スクリユーとしてベントタイプ スクリユーを用い、 シリンダーの途中からベント部分に上記気体を注入 してもよい。 この場合、 溶融状態の樹脂に圧力シールを行うことにより、 熱可塑性樹脂及び層状珪酸塩を含む複合物に対して、 効果的に上記化学 物質を含浸させることができ、 連続的に熱可塑性樹脂発泡体を製造する ことができる。
好ましくは、 上記化学物質として常温常圧で気体であるガスを用いる 場合、 該化学物質を熱可塑性樹脂と層状珪酸塩との複合物に含浸させる 際のガスの圧力は、 9 . 8 X 1 0 5 P a以上であることが好ましく、 9 . 8 X 1 0 6 P a以上がさらに好ましい。
また、 上記化学物質としての常温常圧で気体のガスが超皞界流体とな る条件は、化学物質の種類により異なる。 前述したように二酸化炭素は、 比較的穏やかな条件で超臨界状態の性質を示し、 例えば、 6 0 及び 6 0気圧で超臨界流体となる。
上記化学物質を熱可塑性樹脂と層状珪酸塩との複合物に含浸させる温 度については、 複合物が劣化しない温度であれば特に限定されない。 も つとも、 温度が高い程、 熱可塑性樹脂と層状珪酸塩を含む複合物に対す る上記化学物質の溶解量が上昇し、 高い発泡倍率が得られる。.従って、 含浸温度は高い方が好ましく、 良好な発泡状態を得るには、 熱可塑性樹 脂が結晶性樹脂の場合には、 (融点一 2 0 °C〜融点 + 2 0 °C ) の範囲が より好ましく、 非晶性樹脂の場合には、 (ガラス転移点— 2 0 °C〜ガラ ス転移点 + 2 0 °C ) の範囲の温度がより好ましい。
上記化学物質を含浸する温度が'、 (融点 + 2 0 °C ) または (ガラス転 移点 + 2 0 °C ) よりも高い場合には、 熱可塑性樹脂の分子運動が活発化 し、複合物中に溶解した化学物質が複合物から抜け易くなることになる。 他方、 化学物質を含浸する温度が、 融点またはガラス転移点より低い場 合には、 熱可塑性樹脂の分子運動が十分でないため、 複合物に化学物質 を十分に溶解させることができないことがある。
本発明に係る熱可塑性榭脂発泡体の製造に際しては、 上記化学物質を 複合物に含浸させた後、 熱可塑性樹脂と層状珪酸塩との複合物中で化学 物質を膨張させることにより行われる。 化学物質の体積膨張を果たす方 法については、 化学物質の種類に応じて適宜選ばれ、 相対的に高い圧力 で、 上記化学物質としての気体を複合物に含浸させた後に、 圧力を低め ることにより、 あるいは加熱することにより行われる。
上記化学物質を複合物中で体積膨張させる温度については、 特に限定 されず、 熱可塑性樹脂が結晶性樹脂の場合には、 (融点一 5 0 〜融点 + 1 0 °C) の範囲が好ましく、 非晶性樹脂の場合には、 ガラス転移点一 5 0 °C〜ガラス転移点 + 5 0 °Cの範囲が好ましい。 すなわち、 体積膨張 温度が、 (融点 + 1 0 ) または (ガラス転移点 + 5 0 ) より高い場 合には、 溶解した気体が容易に抜けるため、 発泡体としての構造を維持 することが困難となり、 体積膨張温度が融点もしくはガラス転移点一 5 0でよりも低い場合には、 熱可塑性樹脂の分子運動が拘束され、 高い発 泡倍率を得ることができない。
また、 前述したように、 本発明のある広い局面では、 熱可塑性樹脂 1 0 0重量部及び層状珪酸塩 0 . 1〜5 0重量部を含む熱可塑性樹脂組成 物に、 常温常圧で気体の化学物質を、 キヤビティを有する射出成形機内 で高圧下で含浸させ、 次に、 上記化学物質が含浸された熱可塑性樹脂組 成物を射出成形機のキヤビティ內に射出した後、 該キヤビティを拡張す ることにより発泡構造が得られる。 ここで用いられる熱可塑性樹脂、 層 状珪酸塩及び常温常圧で気体の化学物質については、 前述したものが用 いられる。 もっとも、 ガスの回収が不要であり、 安全に取り扱い得るの で、 二酸化炭素が好ましい。
また、 上記化学物質を射出成形機内で高圧下で含浸させる方法につい ても、 前述した方法により行うことができる。
上記化学物質が含浸された熱可塑性樹脂組成物を、 上記のように射出 成形機のキヤビティに射出した後、 該キヤビティを拡張させる。
上記キヤビティを拡張する方向は、 上記射出成形用金型のパ一ティン グ面と直交する方向が、 可動側金型を後退させるだけでよいので好まし いが、 必要に応じて、 スライ ドコア等を用いて、 パーティング面方向に 拡張してもよい。
上記キヤビティを拡張するときのキヤビティの大きさは、 所望とする 発泡体の発泡倍率により適宜調整すればよいが、 小さすぎると発泡体と しての性質 (軽量で、 断熱性等) が発揮しにくく、 また、 大きすぎると 拡張されたキヤビティに十分に熱可塑性榭脂組成物が行き渡らず、 所望 とする発泡体の発泡倍率や形状が得られないことがあるので、 拡張前の キヤビティの 2〜 3 0倍が好ましい。
また、 キヤビティを拡張する際に要する時間は、 所望とする発泡体の 発泡倍率、 形状、 及び、 上記熱可塑性樹脂組成物の伸張粘度によって異 なり、 さらに、 キヤビティを拡張する手段に限界があるが、 短いほど伸 張粘度の高い状態で発泡を行うため、 破泡を防止でき、 微細なセル構造 を有する発泡体を得ることができるので、 0 . 5〜 5秒が好ましい。 好ましくは、 上記射出成形機内において、 上記化学物質を含浸きせる 際に、 上記化学物質が超臨界状態とされ、 それによつて層状珪酸塩の薄 片状結晶の分散性をより一層高めることができる。
上記のように、 化学物質が含浸された熱可塑性樹脂組成物を、 キヤビ ティ内に射出した後、 キヤビティを拡張することにより、 キヤビティ内 で印加された圧力が急激に解放される。 従って、 層状珪酸塩同士の電気 的引力に打ち勝つエネルギーが付与され、 層状珪酸塩の薄片状結晶を剥 離することができる。 また、 上記のように、 化学物質を超臨界流体状態 で熱可塑性樹脂組成物に含浸させた場合、 キヤビティの拡張により、 化 学物質を急激にガス化させることができる。 この場合、 超臨界状態から ガス状態への体積変化は、 急激かつ大きな体積膨張を伴う。 従って、 層 状珪酸塩の薄片状結晶を剥離するのに十分なエネルギーを付与すること ができ、 薄片状結晶の分散性をより一層高めることができる。
上記のように、 キヤビティの拡張により発泡構造を形成する本発明の 製造方法の一実施形態を、 第 4図〜第 6図を参照して説明する。
第 4図は、 本実施形態に使用される射出成形機の一例を示す断面図で ある。
第 4図において、 1 1は射出成形機、. 1 2は射出成形用金型、 1 6は ベント部である。
第 4図に示すように、 本実施形態に使用される射出成形機は、 射出成 形機本体 1 1と射出成形用金型 1 2とからなる。
射出成形機本体 1 1には、 スクリュー 1 3が内蔵されたシリンダ一 1 4と、 シリンダー 1 4内に熱可塑性樹脂組成物を供給するホッパー 1 5 と、 ガス圧入装置 6 1からシリンダー 1 4内に化学物質を注入するベン ト部 1 6とが備えられている。
第 5図は、 本実施形態に使用される射出成形用金型の型締めした状態 を示す断面図であり、 第 6図は、 上記射出成形用金型のキヤビティが拡 張された状態を示す断面図である。
第 5図、 第 6図において、 1 2は射出成形用金型、 2 3はキヤビティ である。
第 5図、 第 6図に示すように、 本実施形態に使用される射出成形用金 型は、 固定側金型 2 1と、 可動側金型 2 2とを有する。 型締めしたとき に、 固定側金型 2 1と可動側金型 2 2との間にキヤビティ 2 3が形成さ れる。
本実施形態においては、 第 4図に示した射出成形機本体 1 1のホッパ — 1 5に、 上述した熱可塑性樹脂組成物を供給すると共に、 ガス圧入装 置 6 1から常温常圧で気体の化学物質を、 ベント部 1 6を介してシリン ダー 1 4内に注入する。
この際、 シリンダー内を高圧にして、 また、 化学物質が超臨界状態に なる温度及び圧力で、 化学物質を熱可塑性樹脂組成物に含浸させる。 この場合、 溶融状態の熱可塑性樹脂組成物により圧力シールを行うこ とにより、 高圧または超臨界状態にある化学物質を熱可塑性樹脂組成物 により効果的に含浸することができる。
次に、 第 5図に示した射出成形用金型 1 2のスプル一 2 4からキヤビ ティ 2 3内に、 化学物質が含浸された熱可塑性樹脂組成物 2 5が射出さ れる。
次いで、 第 6図に示したように、 射出成形用金型 1 2の可動側金型 2 2を後退させ、 キヤビティ 2 3を拡張する。
このようにすることにより、 キヤビティ 2 3に射出された熱可塑性榭 脂組成物 2 5が発泡し、 熱可塑性榭脂発泡体を得ることができる。 第 7図は、 本実施形態に使用される射出成形機の別の例を示す断面図 である。
第 7図において、 1 7は気密容器であり、 第 7図に示すように、 射出 成形機本体 1 1には、 スクリュー 1 3が内蔵されたシリンダ一 1 4と、 シリンダ一 1 4内に熱可塑性樹脂組成物を供給するホッパー 1 5と、 ガ ス圧入装置 7 0からシリンダー 1 4内に化学物質を注入する気密容器 1 7とが備えられている。
本実施形態においては、 第 7図に示した射出成形機本体 1 1のホッパ —1 5に、 上述した熱可塑性樹脂組成物を供給すると共に、 ガス圧入装 置 7 0から常温常圧で気体の化学物質を気密容器 1 7に供給し、 ホッパ 一 1 5内に供給された熱可塑性樹脂組成物内に高圧で、 または、 化学物 質が超臨界状態になる温度及び圧力で含浸させ、 シリンダー 1 4内に注 入する。
以下、 第 4図〜第 6図を参照して説明した方法と同様にして、 熱可塑 性樹脂発泡体を得ることができる。
前述したように、 本発明のさらに別の広い局面によれば、 熱可塑性樹 脂 1 0 0重量部及び層状珪酸塩 0 . 1〜5 0重量部を含む組成物の、 上 記層状珪酸塩の層間に熱分解型発泡剤が含有されている複合物を用意し、 該複合物を熱分解型発泡剤の分解する温度よりも高い温度に加熱するこ とにより、 熱可塑性樹脂発泡体が得られる。 ここで用いられる熱可塑性 榭脂及び層状珪酸塩については、 前述したものを同様に用いることがで きる。
上記熱分解型発泡剤とは、 加熱により分解し、 ガスを発生する物質で あり、 例えば、 ァゾジカルボンアミ ド、 ベンゼンスルホ二ゥムヒ ドラジ ド、 ジニトロソペンタメチレンテトラミン、 トルエンスルホニルヒ ドラ ジド、 4, 4—ォキシビス (ベンゼンスルホニルヒ ドラジド) 等が挙げ られる。
上記熱分解型発泡剤を層状珪酸塩の層間に含有させる方法としては、 特に限定されるものではないが、 例えば以下に示す方法を用いることが できる。
①発泡剤の末端のァミンに塩酸を作用させることにより、 尧泡剤を 4 級ァミン化し、 予め金属イオンを層間に含有する層状珪酸塩の金属ィォ ンと 4級ァミンとを水中でイオン交換することにより、 発泡剤を層間に 含有させる。 一般に汎用の熱分解型発泡剤は末端にアミンを有するもの が多く、 該手法が好適に用いられる。
②層状珪酸塩の層間に存在する金属イオンに、 水中で熱分解型発泡剤 を溶媒和させる。 一般に、 汎用の熱分解型発泡剤は、 窒素や、 炭素一炭 素二重結合といった、 金属との間に配位結合を形成するサイトを含有す るものが多く、 該手法が好適に用いられる。
上記熱分解型発泡剤を層状珪酸塩の層間に含有せしめる温度について は、 該複合物が劣化しない温度及び該熱分解型発泡剤が分解しない温度 であれば、 いかなる温度でもよい。
上記熱分解型発泡剤を熱可塑性樹脂中で発泡させる温度については、 特に限定されない。
本発明により得られる熱可塑性樹脂発泡体では、 層状珪酸塩の薄片状 結晶が発泡時の隔壁として作用するため、 均一かつ微細な発泡セルを有 する。 従って、 均一かつ微細な発泡セルを有する発泡体として、 本発明 に係る熱可塑性樹脂発泡体は様々な用途に好適に用いることができる。 もっとも、 本発明に係る熱可塑性樹脂発泡体は、 そのまま用いられずと もよい。 すなわち、 発泡体としての特性がさほど要求されず、 層状珪酸 塩の分散による補強効果等を主として利用する場合には、 発泡倍率は低 くともよく、 あるいは本発明に係る熱可塑性樹脂発泡体を加熱あるいは プレス等により破泡し、 ソリッド体として用いてもよい。 また、 本発明 により得られた熱可塑性樹脂発泡体を、 マスターバッチとして用い、 次 の成形プロセスに提供してもよい。 図面の簡単な説明
第 1図は、 本発明の熱可塑性樹脂発泡体を得るのに用いられる層状珪 酸塩の構造を説明するための模式的斜視図である。
第 2図は、 第 1図に示した層状珪酸塩の結晶面同士が対向し合ってい
9 る部分の結晶構造を拡大して示す模式図である。
第 3図は、発泡セル形成時のガス拡散抑制モデルを示す模式図である。 第 4図は、 本発明の一実施形態で使用される射出成形機を示す断面図 である。
第 5図は、 本発明の一実施形態で使用される射出成形用金型を型締め した状態を示す断面図である。
第 6図は、 第 5図に示されている射出成形用金型のキヤビティが拡張 された状態を示す断面図である。
第 7図は、 本発明の他の実施形態で使用される射出成形機を示す断面 図である。
第 8図は、 本発明において用いられる押出機を説明するための概略構 成図である。 発明を実施するための最良の形態
以下、 本発明の実施例及び比較例を挙げることにより、 本発明をより 詳細に説明するが、 本発明は下記の実施例に限定されるものではない。
〔用いた原材料〕
( a ) 層状珪酸塩
層状珪酸塩として、 以下の鉱物を用いた。
①モンモリロナイ ト :豊順鉱業社製モンモリロナイ ト (商品名 :ベン ゲル A)
②膨潤性マイ力 : コープケミカル社製膨潤性マイ力 (商品名 : M E— 1 0 0 )
( b ) カチオン系界面活性剤含有層状珪酸塩
カチオン系界面活性剤を含有する層状珪酸塩として、 以下の市販品を 用いた。 ① D S DM変性モンモリ ロナイ ト :豊順鉱業社製 D S DM変性モンモ リ ロナイ ト (商品名 :ニュ一エスベン D、 ジステアリルジメチルアンモ ニゥムクロライド によりモンモリロナイ トの層間のナトリウムイオン を全量イオン交換してなる有機化モンモリ口ナイト)
② D S DM変性膨潤性マイ力 : コープケミカル社製 DS DM変性膨潤 性マイ力 (商品名 : MAE、 ジステアリルジメチルアンモニゥムクロラ ィ ドにより層間のナトリゥムイオンを全量イオン交換してなる有機化膨 潤性マイ力)
(c) 複合物に含浸される化学物質
上記化学物質としては、 以下のものを用いた。
①二酸化炭素 (炭酸ガス)
③ペンタン
④キシレン
⑤水
(d) 層状珪酸塩の層間に挿入される熱分解型発泡剤
熱分解型発泡剤として、 以下のものを用いた
①ァゾジカルボンアミ ド (永和化成社製)
②ベンゼンスルホニルヒ ドラジド (永和化成社製)
(e) 熱可塑性樹脂
①ポリプロピレン: (日本ポリケム社製、 商品名 : EA9、 密度 0. 9 1、 MFR (メノレトフローレート) =0. 5)
②ポリエチレン: (日本ポリケム社製、 商品名 : HB 530、 密度 0. 96、 MFR=0. 5)
③ポリエチレン: (日本ポリケム社製、 商品名 : UE 320、 密度 0. 2、 MF R= 0. 7)
2 ④ポリビニルブチラ一ル: (積水化学社製、 商品名 : BH— 5、 ガラ ス転移温度 6 5°C)
( f ) 酸変性ポリオレフイン樹脂
熱可塑性樹脂と層状珪酸塩との親和性を高めるために、 また、 従来例 との比較のために、 以下の酸変性ポリオレフイン樹脂を用いた。
①無水マレイン酸変性ポリプロピレンオリゴマー: (三洋化成社製、 商品名 :ュ一メックス 1 0 0 1、 官能基含有量 = 0. 2 3 mmo 1 / g )
②無水マレイン酸変性ポリエチレンオリ ゴマー : (三洋化成社製、 商 品名 :ュ一メックス 2 0 0 0、 官能基含有量 = 0. 9 2 mmo 1 /g) (実施例 1〜: 1 4及び比較例 1〜6)
下記の表 1に、 実施例 1〜1 4及び比較例 1〜6で用いた上記各原材 料を示した。
1 ) 発泡体サンプルの作製
東洋精機社製ラボプラストミル中に、 熱可塑性樹脂と層状珪酸塩とを 下記の表 1に示す重量比率で供給し、 1 7 0 の設定温度で溶融混練し た。 なお、 層状珪酸塩については、 下記の表 1に示すように、 上述した 層状珪酸塩あるいはカチオン系界面活性剤含有層状珪酸塩を用いた。 ま た、 熱可塑性榭脂と層状珪酸塩との親和性を高めるために、 実施例 5〜 1 0, 1 2及び比較例 2, 3では上記酸変性ポリオレフイン樹脂を熱可 塑性樹脂 1 00重量部に対し、 下記の表 1に示す割合で添加した。
得られた複合組成物を溶融プレスにて、 1 7 0°Cで 5分間予熱し、 1 分間 9. 8 MP aにて押圧することにより、 1 mmの厚みのシート状物 を成形した。
得られたシ一ト状物を 3 c m角に切り出し、 オートクレーブ中に密閉 し、 熱可塑性樹脂の融点またはガラス転移点よりも 1 0で高い温度にォ 一トクレーブの内部温度を設定した。 次に、 炭酸ガス、 窒素または水蒸 気をォートクレーブ内に高圧にて注入し、オートクレーブ内の内圧が 1 . 6 7 M P aの状態に 3 0分間保持した。 さらに、 ォ一トクレープ内の温 度を、 熱可塑性樹脂の融点またはガラス転移点よりも 1 0 °C低い温度に 設定し、 この状態に一気にオートクレープ内のガスを抜き、 内圧を常圧 まで戻した。 このようにして、 発泡体サンプルを得た。
(実施例 1 5〜 2 4及び比較例 9 )
①層間に熱分解型発泡剤が含有されている層間化合物の作製 蒸留水 1 Lに対し、 豊順鉱業社製、 モンモリロナイトまたはコープケ ミカル社製膨潤性マイ力を 2 0 g添加し、 攪拌モータにより常温で 1時 間攪拌し分散スラリーを得た。 得られた分散スラリーに、 熱分解型発泡 剤発泡剤としてァゾジカルボンアミ ドまたはベンゼンスルホニルヒ ドラ ジドを 4 0 g添加し、 攪拌モータにより常温で 3 0分間攪拌した。 さら に、 このスラリーに、 ジステアリルジメチルアンモニゥムクロライ ドを 8 8添カ1!し、 攪拌モータにより常温で 1時間攪拌した。 このようにして 得られたスラリーを遠心分離により固液分離し、 6 0 で 2 4時間真空 乾燥し、 熱分解型発泡剤が層間に含有された層間化合物を得た。
東洋精機社製ラボプラストミル中に、 下記の表 3に示す熱可塑性榭脂 と、 層状珪酸塩とを、 下記の表 3に示す重量比率となるように供給し、 設定温度 1 7 で溶融混練した。 なお、 層状珪酸塩としては、 実施例 1 5〜2 4では、 層間にァゾジカルボンアミ ドを含有させたモンモリロ ナイ トまたは膨潤性マイ力を用いた。
また、 熱可塑性樹脂と層状珪酸塩との親和性を高めるために、 実施例 1 9〜2 3及び比較例 8, 9では、 熱可塑性榭脂 1 0 0重量部に対し、 下記の表 3に示す割合の酸変性ポリオレフインとを添加した。
得られた複合組成物を溶融プレスにて 1 7 0でで 5分間予熱し、 1分 間、 9 . 8 M P aの圧力で押圧することにより、 厚さ 1 mmのシート状 物を成开 した。 得られたシート状物を 200°Cに熱したシリコーンオイ ル中に 1 0秒間浸漬し、 発泡体を得た。
(比較例 7, 8, 10及び 1 1)
. 東洋精機社製ラボプラストミル中に、 熱可塑性樹脂と、 熱分解型発泡 剤を層間に含有していない層状珪酸塩とを、 下記の表 3に示す重量比率 で供給し、 設定温度 200°Cで溶融混練した。 また、 比較例 8では、 熱 可塑性樹脂 1 00重量部に対し、 酸変性ポリオレフインを 5重量部添加 し、 熱可塑性樹脂と層状珪酸塩との親和性を高めた。
比較例 7, 8, 1 0及び 1 1では、 下記の表 2に示す組成物を有し、 上記のようにして得られた複合組成物をペレタイズしたものと、 下記の 表 2に示す熱分解型発泡剤とをラボプラストミルにより 3分間溶融混練 した。 得られた複合物を溶融プレスにて 1 80°Cで 2分間予熱し、 1分 間、 9. 8MP aの圧力で押圧し、 1 mmの厚みのシート状物を成形し た。 シート状物を 20 に熱したシリコーンオイル中に 1 0秒間浸漬 し、 発泡体を得た。
(比較例 1 2 )
特開平 9 _ 1 8391 0号公報に開示の組成物
(溶媒膨潤した層状珪酸塩と熱可塑性樹脂の複合物)
溶媒膨潤した層状珪酸塩と熱可塑性樹脂の複合物として以下の組成物 を使用した。 豊順鉱業社製 D S DM変性モンモリロナイ ト (商品名 :二 ユーエスベン D) 500 gを 5 Lのキシレン (和光純薬社製試薬) 中に 投入し、 モータ攪拌機を用いて、 常温で 2時間攪拌し、 スラリー状物を 得た。 ポリプロピレン (日本ポリケム社製、 商品名 : EA9、 密度 0. 9 1、 MFR=0. 5) を溶融押出機で、 押出温度 200°Cにて押出し ながら、 押出途中に設けた液添ノズルから上記スラリー状物を注入し、 さらに該液添ノズルょりも押出機先端側に設けたベントロよりキシレン を吸引した。 押出機先端に取り付けたシートダイより押し出された複合 物を 1 mm厚のシート状に賦形し、 評価用サンプルとした。
(比較例 1 3)
特開平 10— 1 82892号公報に開示の組成物
(層状珪酸塩と熱可塑性樹脂、 及び酸変性オリゴマーの複合物) 東洋精機社製ラボプラス トミル中に、 ポリプロピレン樹脂 (日本ポリ ケム社製、 商品名 : EA9、 密度 0. 91、 MFR= 1. 5) と、 豊順 鉱業社製 DS DM変性モンモリ ロナイ ト (商品名 :ニューエスベン D、 及び無水マレイン酸変性ポリプロピレンオリゴマー (三洋化成社製、 商 品名 :ユーメッタス 1001、 官能基含有量 = 0. 23 mmo 1 /g) を重量比で 80/5/1 5の割合でフィードし、 設定温度 200¾にて 溶融混練した。 得られた複合組成物を溶融プレスにて 200でで 5分間 予熱し、 1分間 9. 8MP aの圧力で押圧することにより厚さ 1 mmの シート状物を成形し、 評価用サンプルとした。
(比較例 14)
特開平 8— 143697号公報に開示の組成物
豊順鉱業社製モンモリ ロナイ ト (商品名 :ベンゲル A) 80 g、 5— ァミノ一 1 H—テトラゾ一ル (HAT) 80 g、 ビエルトリエトキシシ ラン (V s i ) 40 g、 メチルアルコール 2 L及ぴ水 0. 1しを3し丸 底フラスコに投入し、 モ一タ攪拌機を用いて、 60¾で 24時間攪拌し、 乾留した後、 ろ紙を用いて濾過物を取り出した。 この濾過物を真空乾燥 機を使用して 5 で 24時間真空乾燥した組成物を、 発泡剤吸着層状 珪酸塩として使用した。 層状珪酸塩に吸着した発泡剤とシラン力ップリ ング剤の吸着率は合わせて 45. 3%であった。 該組成物を東洋精機社 製ラボプラストミル中にて、 ポリプロピレン樹脂 (日本ポリケム社製、 商品名 : EA9、 密度 0. 9 1、 MF R= 0. 5) と、 1 6 にて溶 融混練し、 さらに得られた組成物を 1 8 0°Cのシリコーンオイル中に浸 漬することにより発泡体サンプルを得た。
(サンプル評価法)
1 ) 層状珪酸塩の層間距離
X線回折測定装置 (リガク社製、 商品名 : R I NT 1 1 00) により 複合物中の層状珪酸塩の積層面の回折より得られる回折ピークの 2 Θを 測定し、 ブラックの回折式 (1 ) を用いて該層状珪酸塩の薄片状結晶間 の面間隔を算出した。 λ = 2 d s i η θ · · · ( 1 )
(λ = 1. 5 4、 d ;層状珪酸塩の面間隔、 0 ;回折角) 式 (1 ) より得られた dを平均層間距離と称することとした。
2) 発泡倍率
次式 (2 ) により発泡体の発泡倍率を求めた。 なお、 発泡体の比重は、 発泡体を水に沈めた際の発生浮力により算出したものである。 発泡倍率-発泡前の比重 発泡体の比重 · · · (2)
3) 発泡セル径
発泡体を、 2次電子反射式電子顕微鏡 (J OE L社製、 商品名 : J S M— 5 8 0 0 LV) により観察し、 観測された発泡セル 5 0個の平均を 発泡セル径とした。
(結果)
表 2及び表 4に、 実施例及び比較例にて行った発泡体中の層状珪酸塩 の面間隔、 発泡体の発泡倍率及び発泡セル径の評価結果を示した。 実施例 1〜 2 4に示すように、 層状珪酸塩を含有する複合物に化学物 質を含浸し複合物中で体積膨張することにより高い発泡倍率及び均一な セル径を有する発泡体が得られた。 また、 いずれの発泡セル径も 1 0〜 7 5 / mであり、 5倍以上の発泡倍率を有する発泡体としては非常に小 さい発泡セル径が得られた。
これに対し、 比較例 1〜 2及び比較例 4 ~ 5では、 熱可塑性樹脂にガ ス状物質、 あるいは超臨界流体を含浸しても高い発泡倍率は得られなか つた。
また、 実施例 1〜2 4により得られた発泡体の X線回折測定では、 層 間距離に相当する回折は得られなかった。 測定に用いた X線装置は、 2 Θ = 1 . 5、 すなわち層間距離 6 O Aが検出限界であり、 6 0 A以上の 層間距離は検出することができない。 測定の性質上、 平均層間距離が 6 O Aであれば、 必ず回折が得られるはずであることから、 実施例 1〜2 4で得られた発泡体中の層状珪酸塩は、 いずれも 6 O A以上の平均層間 距離を有することがわかる。
比較例 3に示すように、 層状珪酸塩の量が多すぎる場合、 すなわち層 状珪酸塩の重量部数が熱可塑性榭脂 1 0 0重量部に対して 5 0重量部よ り多い場合には、 平均層間距離は拡大しない。 これは、 ガスの拡散が層 状珪酸塩の隔壁作用により過度に妨げられることに由来するものである と推察される。
さらに、 比較例 1 2 (特開平 9— 1 8 3 9 1 0号公報) に開示の方法 及び比較例 1 3 (特開平 1 0— 1 8 2 8 9 2号公報) に開示の方法を用 いても、 層状珪酸塩の平均層間距離を 6 O A以上とすることはできなか つたが、 実施例 1〜2 4によれば、 いずれも平均層間距離を 6 O A以上 とすることができる。
また、 比較例 1 4 (特開平 8— 1 4 3 6 9 7号公報) によれば、 高い 発泡倍率を得ることは可能であるが、 層状珪酸塩の平均層間距離は 2 8 Aであり、 発泡セル径も 4 0 2 mと非常に大きかった。 これは、 層状 珪酸塩が均一に分散されないために、 ガスの拡散の抑制が十分になされ ないことによると考えられる。
Figure imgf000031_0001
表 2 聯雜塩の。平均 発泡醉 発激ル径 層間距離 (A) (μιη)
H¾例 l 6 OA 6. 5 49 魏例 2 6 OA以上 11. 7 54
¾JS例 3 60AUU: 12. 3 39
H¾例 4 60 Am: 14. 1 59 錢例 5 60A¾Lh 16. 6 72 ¾S例 6 60Α¾ 20. 1 67 例 7 6 OA 25. 4 59 例 8 60AULh 28. 2 65
¾¾6例 9 6 OAJ&Lh 15. 9 50
¾6S例 10 6 OA^U: 14. 2 53 例 11 60 AJiiJLh 16. 3 12 例 12 6 OA& i 6. 5 49
USE例 13 16. 4 65
¾5S例 14 60 AW_h 6. 5 80
0. 8
1. 9 不
28A 10. 6 44 m 1. 8 不!^
3. 2 不
1. 9 不 表 3
Figure imgf000033_0001
3 表 4
Figure imgf000034_0001
(実施例 25及び比較例 1 5, 16)
〔用いた原材料〕
以下に、 本発明中で用いた原材料を示す。
*層状珪酸塩
層状珪酸塩として、 以下に示す鉱物を用いた。
.タノレク (トクャマ社製、 商品名 : T68MMR、 タルク粒径約 5 /X m、 タルク 70%含有ペレッ ト)
モンモリ ロナイ ト (豊順鉱業社製、 商品名 :ベンゲル A)
*力チオン系界面活性剤含有層状珪酸塩
カチオン系界面活性剤を含有する層状珪酸塩として、 以下に示す資材 を用いた。
• DS DM変性膨潤性マイ力 (コープケミカル社製、 商品名 : MAE - 1 00=ジステアリルジメチルアンモニゥムクロライ ドにてモンモリ 口ナイ ト層間のナトリゥムイオンを全量イオン交換した有機化膨潤性マ イカ)
*熱可塑性樹脂組成物
熱可塑性樹脂として、 以下の各組成物を用いた。
. ランダムポリプロピレン (ハイモント社製、 商品名 : S R 256M、 密度 0. 9 1、 MF R= 2. 0)
·直鎖状低密度ポリエチレン (出光石化社製、 商品名 :モアテック 0 238 CN、 密度 0. 9 1 6、 MFR=2. 0)
. ポリプロピレン (日本ポリケム社製、 商品名 : E A 9、 密度 0. 9 1、 MF R= 0. 5)
*酸変性ポリオレフイン樹脂
熱可塑性榭脂と層状珪酸塩の親和性を高めるため、 また従来技術との 比較に用いるために、 以下の組成物を用いた。 •無水マレイン酸変性ポリプロピレンオリゴマー (三洋化成社製、 商 品名 :ュ一メックス 100 1、 官能基含有量 = 0. 23mmo 1 /g) *架橋助剤
電離性放射線による架橋を促進させるため、 以下の試薬を用いた。 · トリメチロールプロパントリアタリレート (ALDR I CH社製) *熱分解性発泡剤
熱分解性発泡剤として、 以下の試薬を用いた。
•ァゾジカルボンアミ ド (大塚化学社製、 商品名 :ユニフォーム A Z -HM)
(実施例及び比較例評価用サンプル作成方法)
実施例 25
東洋精機社製ラボプラストミル中に、 熱可塑性樹脂としてランダムポ リプロピレン; SR256 Mと直鎖状低密度ポリエチレン; 0238 C Nを 8 : 2の割合で加え、 D S DM変性膨潤性マイ力 ; MAE— 100 を熱可塑性榭脂 1 00重量部に対して 5重量部となるようにフィードし、 設定温度 1 70 にて溶融混練した。 なお、 熱可塑性樹脂と層状珪酸塩 の親和性を高めるために、 熱可塑性樹脂 100に対して 5重量部の無水 マレイン酸変性ポリプロピレン;ユーメックス 1 001を添加した。 さらに架橋剤として、 トリメチロールプロパントリアタリレートを熱 可塑性榭脂 1 00重量部に対して 3重量部、 ァゾジカルボンアミ ド;ュ ニフォ一ム AZ— HMを 1 2重量部添加し、 溶融混練した。
得られた複合組成物をハンドプレスにて 18 で 3分間加熱成形し、 1 mm厚さのシート状物を成形した。 これを加速電圧 750 k V、 電子 線量 1 OMr a dにて電子線照射することで架橋を行った。 得られた電 子線照射原反を 260°Cのギヤオーブンにて発泡させ、 評価用サンプル を得た。 比較例 1 5
D S D M変性膨潤性マイ力、 及び無水マレイン酸変性ポリプロピレン を配合せず、 それ以外は実施例 1と同様にして、 評価用サンプルを得た。 比較例 1 6
D S D M変性膨潤性マイ力の代わりに、 一般に無機フイラ一として用 いられるタルクを、 タルクが熱可塑性樹脂 1 0 0重量部に対して 5重量 部となるようにフィードし、 また無水マレイン酸変性ポリプロピレンを 配合せず、 それ以外は実施例 1と同様にして、 評価用サンプルを得た。
(サンプル評価法)
上記のようにして得られた評価用サンプルについて、 実施例 1と同様 にして評価した。 結果を下記の表 5に示す。 表 5
Figure imgf000037_0001
(実施例 2 6 )
化学物質として二酸化炭素に代えて、 常温で液体の化学物質である · ンタンを用いたことを除いては、 実施例 4と同じ原料で発泡体を作製し た。 発泡体の作製に際しては、 オートクレープにペンタンを注入し、 そ の後オートクレーブ内の内圧が 5 . 8 8 M P aにある状態に 3 0分間保 持した。 さらに、 オートクレープ内の温度を、 使用した熱可塑性樹脂 (E A 9 ) の融点よりも 1 低い温度に設定し、 この状態で一気にオート クレーブ内のガスを抜き、 オートクレープ内を常圧まで戻した。 得られ た発泡体を、 実施例 1と同様にして評価したところ、 層状珪酸塩の平均 層間距離は 6 O A以上であり、 発泡倍率は 1 3 . 2倍、 発泡セル径は 9 5 μ mであった。
(実施例 2 7 )
実施例 5と同じ原料を用い、 但し第 8図に示す成形装置を用いて押出 成形により発泡体を製造した。 すなわち、 熱可塑性樹脂組成物を、 第 8 図に示す成形装置の耐圧ホッパー 7 6から単軸押出機 7 1 (スクリユー
7 2の径 4 0 mm, スクリユー 7 2の全長 スクリュー 7 2の直径 = 3 0 ) に供給した。 化学物質として二酸化炭素を用い、 押出機 7 1の液状 物輸送部 7 4に設けられたガス供給口 7 5に加圧ポンプ 7 3を用いて 7 .
8 4 M P aの圧力で圧入した。 この圧力で二酸化炭素が溶解された樹脂 において、 熱可塑性樹脂組成物に対する二酸化炭素の溶解量は、 約 9重 量%であった。
なお、 このとき、 スクリユー駆動軸の高圧軸シール機構、 耐圧ホッパ 一構造及び押出機近傍の溶融状態の熱可塑性樹脂組成物により、 押出機 内の二酸化炭素を.放圧状態に保持しておいた。 次に、 押出機 7 1に供給 された熱可塑性樹脂組成物を、 その内部において、押出量 2 k g /時間、 スクリュ一回転速度 1 0 r p m及びシリンダ一設定温度 2 0 の条件 下で十分に溶融混練した。 続いて、 金型 7 7の先端の温度を約 1 2 0 °C に保った状態で、 熱可塑性樹脂組成物を金型先端を通過させ、 金型 7 7 から榭脂をロッド状に押出し、 発泡体を作製した。 得られた発泡体を実 施例 1 と同様にして評価した。 その結果、 層状珪酸塩の層間距離は 60 A以上であり、 発泡倍率は 1 3. 2倍、 発泡セル径は 95 /z mであった。
(実施例 28〜 35 )
表 6に示した所定量のポリプロピレン (日本ポリケム社製、 品番 ΓΕ A 9」 、 密度 0. S l gZcm^ MFR-O. 5 g/10分) 、 ポリビ 二ルブチラール (積水化学社製、 品番 「BH— 5」 、 ガラス転移点温度 65 ) 、 ジステアリルジメチルアンモニゥムクロライ ドにより層間の ナトリウムイオンを全量イオン交換したモンモリ ロナイ ト (豊順鉱業社 製、 商品名 「ニューエスベン D」 、 表中、 DSDM変性モンモリ ロナイ トと記す) 、 ジステアリルジメチルアンモニゥムクロライドにより、 層 間のナトリゥムイオンを全量イオン交換した膨潤性マイ力 (コープケミ カル社製、 品番 「MAE」 、 表中、 DS DM変性マイ力と記す) 、 モン モリ ロナイ ト (豊順鉱業社製、 商品名 「ベンゲル Aj ) 、 膨潤性マイ力 (コープケミカル社製、 品番 ΓΜΕ— 1 00」 ) 、 無水マレイン酸変性 ポリプロピレンオリゴマー (三洋化成社製、 商品名 「ユーメックス 10 01」 、 官能基含有量 = 0. 23 mmo 1 /g) を第 7図に示した射出 成形機のホッパー 1 5に供給した。
一方で、 二酸化炭素ガス (CO 2) 、 または窒素ガス (N2) をガス圧 入装置 70から気密容器 1 7に供給し、 ホッパー 1 5内に供給された熱 可塑性樹脂組成物内に 1 OMP a、 6 雰囲気 (C02の場合、超臨界、 N2の場合高圧) で含浸させ、 温度 250でとしたシリンダー 14に供給 し、 スク リユー 1 3の回転数 50 r pmで溶融混練及び計量を行い、 射 出速度 1 0 Omm/秒で、 直径 250mm、 幅 3 mmの円盤形状のキヤ ビティ内に射出し、 20秒間保圧した後、 第 6図に示したようにして、 1秒間にキヤビティ 23を幅 45 mmに拡張した後 30秒間冷却し、 発 泡体を得た。
実施例 2 8 3 5で得られた発泡体を実施例 1と同様にして評価した。 また、 実施例 2 8 3 5で得られた発泡体については、 熱伝導率を以下 の容量で評価した。 結果を下記の表 6に示す。 なお、 表 6においては、
5 比較のために、 前述した比較例 1 4についての評価結果を併せて示す。
(熱伝導率)
得られた発泡体を、熱伝導率計 (英弘精機社製、型式「H C— 0 7 2 J ) により、 Hot Plateを 5 0 °C Cool Plateを 2 0 1に設定し、 熱伝導率 を測定した。
10
表 6
Figure imgf000040_0001
評価の結果、 実施例 2 8〜3 5で得られた発泡体は、 いずれも平均層 間距離が X線回折測定装置の検出限界である 6 O Aを超え、 発泡セル径 が 1 2 ~ 7 2 /z mと均一微細であり、 熱伝導率が 0. 0 54〜0. 0 7 1 W/ (m - K) と断熱性能に優れているのに対し、 比較例 1 4で得ら れた発泡体は、 平均層間距離が 2 8 Aと狭く、 発泡セル径が 3 0 0 μ ιη と非常に大きく、 熱伝導率が 0. 0 9 8WZ (m · Κ) と高いものであ つた。 発明の効果
以上のように、 本発明に係る熱可塑性樹脂発泡体では、 熱可塑性榭脂 1 0 0重量部及び層状珪酸塩 0. 1〜5 0重量部を含み、 X線回折測定 により検出される層状珪酸塩における平均層間距離が 6 O A以上である ため、 発泡体中において、 層状珪酸塩の薄片状結晶の分散性が高められ ている。 従って、 層状珪酸塩の薄片状結晶が均一に分散され、 層状珪酸 塩の添加による物性、 例えば耐熱性、 難燃性あるいは寸法安定性などが 高められる。
加えて、 上記層状珪酸塩の薄片状結晶が、 製造時に際しては発泡構造 を得るための気体の隔壁として作用するので、 均一微細な発泡セルが均 —に分散されている発泡体であるので、 弾性等の物性のばらつきの少な い発泡体を提供することができる。
平均気泡径を X (β τη) 、 発泡倍率を Υとしたときに、 ΧΖ (Υ— 1 ) 1/3が 3 0 /x mを超えると、 発泡体の断熱性能、 圧縮強度、 曲げクリー プ等の物性が低下する。
本発明においては、 上記熱可塑性樹脂としてポリオレフイン系樹脂を 用いることができ、 その場合には、 層状珪酸塩の均一分散により物性が 高められた、 ポリオレフイン系樹脂発泡体を提供することができる。 層状珪酸塩としては、 膨潤性スメクタイ ト系粘土鉱物及び膨潤性雲母 のうち少なくとも 1種が好適に用いられ、 その場合には、 これらの鉱物 の分散性が高められ、 発泡に際して核剤として作用するので、 発泡径を さらに微細にすることができる。 さらに、 機械的強度も高めることがで さる。
本発明に係る熱可塑性樹脂発泡体の製造方法では、 熱可塑性樹脂 1 0 0重量部及び層状珪酸塩 0 . 1〜5 0重量部を含む複合物の層状珪酸塩 の層間に体積膨張可能な化学物質が含浸され、 化学物質が複合物内で体 積膨張されることにより発泡構造が形成される。 この場合、 層状珪酸塩 の薄片状結晶が上記化学物質の体積膨張に際しての隔壁として作用する ので、 化学物質、 すなわち気体の過剰な抜けや部分的に不均一な膨張を 抑制することができ、 層状珪酸塩の薄片状結晶を均一に分散させること ができると共に、 微細な発泡セルを均一に分散させることができる。 従 つて、 強度や耐熱性等の物性に優れた熱可塑性樹脂発泡体を容易に提供 することができる。 しかも、 製造に際して、 溶剤を必要としないので、 残存溶媒を除去する煩雑な工程も必要としない。
熱可塑性樹脂 1 0 0重量部と、 層状珪酸塩 0 . 1〜 5 0重量部と、 熱 分解型発泡剤とを含む複合物であって、 熱分解型発泡剤が層状珪酸塩の 層間に含有されている複合物を用意し、 熱分解型発泡剤の分解する温度 よりも高い温度に加熱して発泡構造を形成する場合には、 熱分解型発泡 剤の熱分解により生じたガスに対して、 層状珪酸塩の薄片状結晶が隔壁 として作用するので、 同様に、 層状珪酸塩の薄片状結晶を均一に分散さ せることができ、かつ微細な発泡セルを均一に分散させることができる。 よって、 層状珪酸塩の分散により機械的強度等の物性を改善することが でき、 かつ物性のばらつきが少ない熱可塑性榭脂発泡体を提供すること ができる。 同様に、 熱可塑性樹脂 1 0 0重量部及び層状珪酸塩 0 . 1〜5 0重量 部を含む熱可塑性榭脂組成物に、 常温常圧で気体の化学物質をキヤビテ ィを有する射出成形機内で高圧下で含浸させ、 熱可塑性樹脂組成物をキ ャビティ内に射出した後、 キヤビティを拡張する方法においても、 層状 珪酸塩の薄片状結晶が隔壁として作用するので、 層状珪酸塩の薄片状結 晶を均一に分散させることができ、 かつ微細な発泡セルを均一に分散さ せることができる。 従って、 層状珪酸塩の分散により機械的強度等の物 性を改善することができ、 かつ物性のばらつきが少ない熱可塑性樹脂発 泡体を提供し得る。 特に、 上記化学物質を超臨界状態で含浸した場合に は、 層状珪酸塩をより効果的に分散させることができる。
また、 本発明においては、 分子鎖の拘束による耐熱変形温度の上昇が 期待でき、 また、 燃焼ガスの拡散の抑制効果や無機結晶による核剤効果 も期待できるので、 熱可塑性樹脂発泡体の耐熱性、 難燃性、 寸法安定性、 諸物性についても大幅に向上させることが可能である。

Claims

5冃 求 の 範 囲
1. 熱可塑性榭脂 1 0 0重量部及び層状珪酸塩 0. 1〜5 0重量部を 主成分として含むことを特徴とする熱可塑性樹脂発泡体。
2. X線回折測定によって検出される前記層状珪酸塩における平均層 間距離が 6 OA以上であることを特徴とする、 請求項 1に記載の熱可塑 性樹脂発泡体。
3. 平均気泡径を X、 発泡倍率を Yとしたときに、 XZ (Y- 1) 1/3が 3 0 (μ ιη) 以下であることを特徴とする請求項 1または 2に記 載の熱可塑性樹脂発泡体。
4. 前記熱可塑性榭脂がポリオレフイン系榭脂である、 請求項 1〜3 のいずれかに記載の熱可塑性樹脂発泡体。
5. 前記層状珪酸塩が、 スメクタイ ト系粘土鉱物及び雲母のうち少な くとも 1種からなる請求項 1〜4のいずれかに記載の熱可塑性樹脂発泡 体。
6. 前記ポリオレフイン系榭脂が、 ポリエチレン、 エチレン一 α—ォ レフイン共重合体、 エチレン一プロピレン共重合体、 ポリプロピレン及 びプロピレン一 α—ォレフイン共重合体からなる群から選択した少なく とも 1種である、 請求項 4に記載の熱可塑性樹脂発泡体。
7. 熱可塑性樹脂 1 00重量部及び層状珪酸塩 0. 1〜50重量部を 含む複合物の、 前記層状珪酸塩の層間に体積膨張可能な化学物質を含浸 させる工程と、
前記化学物質を前記複合物内で体積膨張させることにより気泡を形成 し、 熱可塑性樹脂発泡体を得る工程とを備えることを特徴とする、 熱可 塑性樹脂発泡体の製造方法。
8. 前記化学物質を含浸させる工程が、 常温常圧でガス状の化学物質 を高圧下で含浸することにより行われ、 かつ
前記複合物内で化学物質を体積膨張させるに際し、 前記化学物質を複 合物内で気化させることにより行われる、 請求項 7に記載の熱可塑性榭 脂発泡体の製造方法。
9 . 前記化学物質を複合物に含浸させるにあたり、 常温常圧でガス状 の前記化学物質を超臨界状態で含浸させる、 請求項 8に記載の熱可塑性 樹脂発泡体の製造方法。
1 0 . 熱可塑性樹脂 1 0 0重量部及び層状珪酸塩 0 . 1〜5 0重量部 を含む組成物の、 前記層状珪酸塩の層間に熱分解型発泡剤が含有されて いる複合物を用意する工程と、
前記複合物を熱分解型発泡剤の分解する温度よりも高い温度に加熱し て発泡構造を形成する工程とを備えることを特徴とする、 熱可塑性榭脂 発泡体の製造方法。
1 1 . 熱可塑性樹脂 1 0 0重量部及び層状珪酸塩 0 . 1〜5 0重量部 を含む熱可塑性榭脂組成物に、 体積膨張可能な化学物質を、 キヤビティ を有する射出成形機内で高圧下で含浸させるェ @と、
次に、 前記化学物質を含浸させた熱可塑性樹脂組成物を前記射出成形 機のキヤビティ内に射出した後、 該キヤビティを拡張することを特徴と する熱可塑性樹脂発泡体の製造方法。
1 2 . 前記射出成形機内で前記熱可塑性樹脂組成物に化学物質を含浸 させるに際し、 超臨界状態で含浸が行われる、 請求項 1 1に記載の熱可 塑性樹脂発泡体の製造方法。
1 3 . 前記層状珪酸塩の層間が疎水化されている、 請求項 1 1または 1 2に記載の熱可塑性樹脂発泡体の製造方法。
PCT/JP2000/005281 1999-08-09 2000-08-07 Mousse de resine thermoplastique et procede de fabrication WO2001010941A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE60024849T DE60024849T2 (de) 1999-08-09 2000-08-07 Thermoplastischer hartschaum und verfahren zu dessen herstellung
AT00951894T ATE312871T1 (de) 1999-08-09 2000-08-07 Thermoplastischer hartschaum und verfahren zu dessen herstellung
EP00951894A EP1219672B1 (en) 1999-08-09 2000-08-07 Thermoplastic resin foam and process for producing the same
US10/048,457 US6906119B1 (en) 1999-08-09 2000-08-07 Thermoplastic foam and method for production thereof
US10/918,552 US7173068B2 (en) 1999-08-09 2004-08-16 Thermoplastic foam and method for production thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP22541299 1999-08-09
JP11/225412 1999-08-09
JP30588199 1999-10-27
JP11/305881 1999-10-27
JP2000026663 2000-02-03
JP2000/26663 2000-02-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10048457 A-371-Of-International 2000-08-07
US10/918,552 Division US7173068B2 (en) 1999-08-09 2004-08-16 Thermoplastic foam and method for production thereof

Publications (1)

Publication Number Publication Date
WO2001010941A1 true WO2001010941A1 (fr) 2001-02-15

Family

ID=27331046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005281 WO2001010941A1 (fr) 1999-08-09 2000-08-07 Mousse de resine thermoplastique et procede de fabrication

Country Status (5)

Country Link
US (2) US6906119B1 (ja)
EP (1) EP1219672B1 (ja)
AT (1) ATE312871T1 (ja)
DE (1) DE60024849T2 (ja)
WO (1) WO2001010941A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408081A4 (en) * 2001-06-22 2005-01-05 Idemitsu Petrochemical Co COMPOSITE RESIN COMPOSITION, RESIN FOAM, AND PROCESS FOR PRODUCING THE SAME
JP4155749B2 (ja) * 2002-03-20 2008-09-24 日本碍子株式会社 ハニカム構造体の熱伝導率の測定方法
DE102005015983A1 (de) * 2005-04-07 2006-10-12 Basf Ag Nanokomposit-Schaumstoff
DE102005053697A1 (de) * 2005-11-10 2007-05-24 Wacker Chemie Ag Schäumbare Zusammensetzung zur Herstellung geschäumter Kunststoffe
US7384463B2 (en) * 2006-10-30 2008-06-10 Xerox Corporation Phase change ink containing amphiphilic molecule
WO2008112815A2 (en) 2007-03-12 2008-09-18 University Of Washington Methods for altering the impact strength of noncellular thermoplastic materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136630A (ja) * 1982-02-09 1983-08-13 Hitachi Chem Co Ltd ポリオレフインフオ−ムの製造方法
JPS6295330A (ja) * 1985-10-21 1987-05-01 Kuraray Co Ltd 熱可塑性樹脂発泡体
JPH10182141A (ja) * 1996-12-24 1998-07-07 Sumitomo Bakelite Co Ltd 熱膨張性材料及びそれを含む難燃性樹脂組成物
JP2000026646A (ja) * 1998-07-13 2000-01-25 Kanegafuchi Chem Ind Co Ltd ポリプロピレン系樹脂発泡体の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4739007A (en) * 1985-09-30 1988-04-19 Kabushiki Kaisha Toyota Chou Kenkyusho Composite material and process for manufacturing same
US5164440A (en) * 1988-07-20 1992-11-17 Ube Industries, Ltd. High rigidity and impact resistance resin composition
WO1993004118A1 (en) 1991-08-12 1993-03-04 Allied-Signal Inc. Melt process formation of polymer nanocomposite of exfoliated layered material
JPH08143697A (ja) * 1994-11-21 1996-06-04 Nissan Motor Co Ltd ポリプロピレン発泡体組成物
WO1997031057A1 (en) * 1996-02-23 1997-08-28 The Dow Chemical Company Polymer composite and a method for its preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136630A (ja) * 1982-02-09 1983-08-13 Hitachi Chem Co Ltd ポリオレフインフオ−ムの製造方法
JPS6295330A (ja) * 1985-10-21 1987-05-01 Kuraray Co Ltd 熱可塑性樹脂発泡体
JPH10182141A (ja) * 1996-12-24 1998-07-07 Sumitomo Bakelite Co Ltd 熱膨張性材料及びそれを含む難燃性樹脂組成物
JP2000026646A (ja) * 1998-07-13 2000-01-25 Kanegafuchi Chem Ind Co Ltd ポリプロピレン系樹脂発泡体の製造方法

Also Published As

Publication number Publication date
DE60024849D1 (de) 2006-01-19
US7173068B2 (en) 2007-02-06
ATE312871T1 (de) 2005-12-15
EP1219672A1 (en) 2002-07-03
US20050020704A1 (en) 2005-01-27
DE60024849T2 (de) 2006-08-24
US6906119B1 (en) 2005-06-14
EP1219672A4 (en) 2002-10-30
EP1219672B1 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
AU712100B2 (en) Dispersions of delaminated particles in polymer foams
Park et al. Preparation and properties of biodegradable thermoplastic starch/clay hybrids
Lee et al. Effects of clay dispersion on the foam morphology of LDPE/clay nanocomposites
Lee et al. Exfoliation and dispersion enhancement in polypropylene nanocomposites by in‐situ melt phase ultrasonication
JP7050136B2 (ja) 低減した熱伝導度を有する発泡性ビニル芳香族ポリマー顆粒状物の生産のためのプロセス
JP2008201825A (ja) 有機処理フィラーの製造方法
Chen et al. Novel thermoplastic starch–clay nanocomposite foams
JP2002356574A (ja) 発泡性熱可塑性樹脂組成物、熱可塑性樹脂発泡体及び積層複合体
JP5170865B2 (ja) 層間化合物フィラーを含有する発泡性ポリオレフィン系樹脂組成物およびポリオレフィン系難燃発泡体
JP4677684B2 (ja) 高分子−フィラー複合材料の製造方法
WO2001010941A1 (fr) Mousse de resine thermoplastique et procede de fabrication
JP5128143B2 (ja) ポリオレフィン系難燃発泡組成物およびオレフィン系難燃発泡体
JP3769454B2 (ja) 熱可塑性樹脂発泡体の製造方法
Lee Foaming of wood flour/polyolefin/layered silicate composites
WO2008140843A1 (en) High temperature resistant, structural polymer foam
JP2004018595A (ja) 熱可塑性樹脂架橋発泡体の製造方法
Lee et al. Extrusion foaming of nano-clay-filled wood fiber composites for automotive applications
JP2001123000A (ja) ポリオレフィン系樹脂発泡体
KR20120128524A (ko) 나노충진제의 완전 박리화 공정과 효율적인 분산 및 이를 함유하는 고분자 나노복합체 제조방법
US6835766B1 (en) Nanocomposites
KR20120128736A (ko) 친수성을 띄는 고분자 나노복합체 제조방법 및 그 복합체
Kim et al. Flammability in WPC Composites
JP2002146079A (ja) 熱可塑性樹脂発泡体及びその製造方法
WO2004007596A1 (ja) ポリスチレン樹脂発泡体及びその製造方法
Frache et al. Preparation of nanocomposites based on PP and PA6 by direct injection molding

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000951894

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10048457

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000951894

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000951894

Country of ref document: EP