WO2001004373A1 - Materiau composite cuivre-aluminium projete et procede de fabrication associe - Google Patents

Materiau composite cuivre-aluminium projete et procede de fabrication associe Download PDF

Info

Publication number
WO2001004373A1
WO2001004373A1 PCT/JP2000/004533 JP0004533W WO0104373A1 WO 2001004373 A1 WO2001004373 A1 WO 2001004373A1 JP 0004533 W JP0004533 W JP 0004533W WO 0104373 A1 WO0104373 A1 WO 0104373A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
less
copper
alloy
aluminum
Prior art date
Application number
PCT/JP2000/004533
Other languages
English (en)
French (fr)
Inventor
Takashi Tomikawa
Toyokazu Yamada
Original Assignee
Taiho Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP19649199A external-priority patent/JP3556863B2/ja
Priority claimed from JP11196072A external-priority patent/JP3135893B2/ja
Application filed by Taiho Kogyo Co., Ltd. filed Critical Taiho Kogyo Co., Ltd.
Priority to EP00944322A priority Critical patent/EP1122328A4/en
Priority to BR0006918-3A priority patent/BR0006918A/pt
Publication of WO2001004373A1 publication Critical patent/WO2001004373A1/ja
Priority to US11/282,721 priority patent/US20060134447A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component

Definitions

  • the present invention relates to a sprayed copper-aluminum composite material and a method for producing the same.
  • the technical fields to which the present invention relates include composite materials, thermal spraying technology, aluminum alloy sliding materials, and copper alloy sliding materials. Background art
  • a metal-based composite material is Ri it is primarily research composite material of metal and the back-La Mi jitter vinegar, and its method of manufacture after press forming a mixed-powder such as copper powder and A 1 2 O 3 powder There is a method of sintering (Patent No. 2854969) and a method of impregnating a ceramic carbon with a molten A1 alloy (Patent No. 2846635).
  • a sliding bearing in which a soft layer having a hardness similar to that of a white metal is dispersed in an aluminum alloy base material.
  • the manufacturing method of this composite material is A first step of providing a flat plate made of an aluminum alloy material of the type described above, and a soft material of Sn, Pb or white metal with a thickness of 50 to 100 ⁇ on the front surface of the flat plate.
  • the following are known aluminum alloy-based sliding materials that require properties such as wear resistance and seizure resistance.
  • A1-Si-based ingot alloy (Arzil alloy) that utilizes the wear resistance of eutectic Si or primary crystal Si. This alloy generally has a Si content of 3 to 18%, and is processed into a material shape by forging or the like.
  • Powder metallurgical alloys using rapidly solidified powder for example, Patent Publication No. 25357579.
  • abrasion resistance is obtained by hot-pressing a powder obtained by rapidly solidifying a molten aluminum alloy containing 15 to 30% by weight of Si and then hot-extruding.
  • Material with excellent properties such as heat resistance, mechanical strength, light weight, and low coefficient of thermal expansion Manufacturing.
  • the alloy of the above (2) can contain a large amount of Si, but it is necessary to adopt a molding method such as hot pressing or hot extrusion. It is practically impossible to apply it to a half-metal for metal use (commonly called “metal”).
  • a Cu—Pb system which has added Pb to improve adhesion and seizure resistance
  • the wear resistance is not good
  • the Applicant's US Patent No. 5, 3 2 6, 3 8 suggested in No. 4 is rigid, such as Ni F e 2 P Let 's Ru It is known that sintering is performed by adding a hard material, but it is unavoidable that the addition of a hard material deteriorates the conformability.
  • metal-ceramic composite materials have been manufactured by thermal spraying technology.
  • metal-metal composite materials such as Cu-Pb alloy and A1-Si alloy composite Manufacturing materials is done Not in. If these two alloys are completely fused by thermal spraying, a very fragile Cu—Si alloy is also produced, and a practical material cannot be obtained. By devising it, we succeeded in obtaining a copper aluminum composite material. Disclosure of the invention
  • an object of the present invention is to provide a copper-aluminum composite material having excellent wear resistance and seizure resistance and a method for producing the same.
  • the first aspect of the present invention includes copper or a first copper alloy having at least an undissolved phase, and aluminum or a first aluminum alloy having at least a dissolved phase.
  • a sprayed copper-aluminum composite material consisting of: To make a composite material of copper or copper alloy (collectively referred to as “copper alloy” in this paragraph) and aluminum or aluminum alloy (referred to collectively as “aluminum alloy” in this paragraph), It is necessary that part of the alloy melts to act as a binder. From another point of view, for example, Pb in the Cu—Pb alloy, Ai—Si in the Si alloy inhibits the properties of the matrix of the other alloy and does not become a useful composite material.
  • a binder effect for forming a composite material is realized if at least the aluminum alloy is dissolved. That is, copper and aluminum are inherently compatible substances and are suitable for bonding.
  • a second aspect of the present invention is characterized in that a copper or copper alloy powder and an aluminum or aluminum alloy powder are sprayed such that a part of the powder is melted and the other part is not melted.
  • This composite material can be obtained by thermal spraying.
  • General tendency of thermal spraying (a) When the average particle size of copper alloy powder and aluminum alloy powder is the same, aluminum alloy powder dissolves, and (mouth) the average particle size of aluminum alloy powder If the diameter is much larger than the copper alloy powder, the latter dissolves in addition to the former. By utilizing such a tendency, at least a part of the aluminum alloy powder is dissolved, and the remaining powder is used to produce a copper-aluminum composite material in which substantially the solid property is maintained. And can be.
  • Aluminum alloys have higher wear resistance than copper alloys, and aluminum alloys have a large number of alloys with excellent wear resistance in the forged state.
  • the wear resistance of the entire composite material can be improved as compared with a copper alloy.
  • the weight ratio of the copper alloy to the aluminum alloy is 75 to 30% for the former and the balance is the latter.
  • the “dissolved phase” is a structure dissolved during thermal spraying of the copper-aluminum composite material. In other words, the metal material has been melted through most manufacturing processes, but is in a state of being melted and solidified especially during thermal spraying.
  • copper alloys and aluminum alloys include all alloys that can be sprayed. However, it is preferable to consider the following. When the tempered state of metal is roughly classified into a forged state and a processed state such as rolling and drawing, thermal sprayed alloys belong to the former forged state, and thus copper alloys such as bronze, lead bronze, and phosphorus bronze are used in the present invention. Become a good target. On the other hand, copper brass used in electronic equipment Since the product is a processed alloy, it can be sprayed, but cannot exhibit its original performance. Similarly, the aluminum alloy for wrought is excluded from the present invention, and a structural aluminum alloy such as an A1-Si based structural alloy having excellent wear resistance is a preferable object of the present invention.
  • the first copper alloy and the first aluminum alloy are partially mixed with each other by thermal spraying, and the fused second copper alloy and second aluminum alloy, respectively.
  • um alloys that is, the composite material of the present invention excludes a state in which the copper alloy and the aluminum alloy are completely fused, but may partially or preferably be fused to 90 area% or less. Therefore, the composite material of such an embodiment comprises a thermally sprayed copper alloy, a thermally sprayed aluminum alloy, and a copper-aluminum alloy generated by thermal spraying.
  • copper alloy and aluminum alloy are alloys that do not include the second copper alloy and the second aluminum alloy, respectively.
  • the copper alloy is expressed as a percentage by weight. . /. below! 3 ! ⁇ ,
  • the content can be preferably 1% or more and 50% or less.
  • Lead is the most preferred element for improving the sliding characteristics under dry conditions. However, if the lead content exceeds 40%, the strength of the copper alloy decreases, so it is necessary to set the upper limit to 40%.
  • the preferred lead content is less than 30%, more preferably between 1 and 15%.
  • Additional elements other than lead mainly dissolve in copper to form a It improves seizure.
  • Ag significantly improves the sliding characteristics under the condition that the lubricating oil is small.
  • Sn precipitates at 10% or more and Mn at 1% or more, and the precipitates enhance wear resistance.
  • S n force S exceeds 30%
  • P force exceeds S 0.5%
  • Ag force S exceeds 15%
  • Mn exceeds 5%
  • Cr force S exceeds 5%
  • Ni force If S exceeds 20% and Zn exceeds 30%, the thermal conductivity inherent in copper, good sliding properties with iron or aluminum-based mating materials, especially wear resistance, Seizure resistance is lost. Therefore, it is necessary that these elements do not exceed the above upper limits.
  • the preferred content is S n: 0.
  • the total amount of the added elements should be in the range of 0.5 to 50%.
  • the first copper alloy containing these additional elements is a force composed of Cu crystals (that is, a Cu solid solution) containing these elements, or a Cu crystal (Cu crystal). (Including solid solutions) and other phases.
  • the other phases are a crystallization phase, a precipitation phase, a decomposition phase, and the like. These phases are metals, intermetallic compounds, and other compounds such as Cu 3 P.
  • the first copper alloy excluding the second copper alloy
  • the second copper alloy may be composed of only a compound or the like.
  • the aluminum alloy is 12 to 6 by weight percentage. Those containing 0% of 3i can be used. If the Si content is less than 12%, the effect of improving the wear resistance and seizure resistance is small, and if it exceeds 60%, the strength is significantly reduced and the wear resistance is reduced. Preferably, the Si content is between 15 and 50%. If the size of the Si particles exceeds 5 ⁇ , the Si particles tend to fall off. Preferred dimensions are 1 to 40 ⁇ m.
  • A1Si-Sn alloys are used as metal and bush-based wear and seizure-resistant parts that used A1-Sn alloys. It is a material with properties. Sn is a component that imparts lubricity and conformability, and is uniformly dispersed in the aluminum matrix. Also, Sn adheres preferentially to the mating shaft, and prevents A 1 adhered to the mating shaft and A 1 of the bearing from sliding with the same material, thereby improving seizure resistance. If the Sn content is less than 0.1%, the effect of improving lubricity is small, and if it exceeds 30%, the strength of the alloy decreases. The preferred Sn content is between 5 and 25%. It is thought that it exists in the immediate vicinity of the Sn particles and prevents the Sn particles from coarsening, thereby improving the fatigue resistance.
  • Aluminum alloys can contain the following optional elements.
  • Cu is supersaturated in the aluminum matrix to form a supersaturated solid solution to increase its strength, thereby reducing the adhesive wear of aluminum and the wear caused by falling off of Si particles. .
  • Cu forms a part of Sn and an Sn-Cu intermetallic compound to enhance wear resistance.
  • the Cu content exceeds 7.0%, the alloy is excessively hardened and becomes unsuitable as a sliding member.
  • the preferred Cu content is 0.5-5%.
  • Mg Mg combines with a part of S i to form M g — S i intermetallic compound to enhance wear resistance.
  • Mn Mn has the same effect as Cu by supersaturating solid solution in aluminum matrix and increasing its strength.
  • the preferred Mn content is 0.:! To 1%.
  • F e has the same effect as Cu by supersaturating solid solution in aluminum matrix and increasing its strength. However, if the content of Fe exceeds 1.5%, the alloy is excessively hardened and becomes unsuitable as a sliding member.
  • the preferred Fe content is less than 1%.
  • Cr has the effect of preventing coarsening of soft phases such as Sn. However, if the Cr content exceeds 5%, the alloy becomes too hard and becomes unsuitable as a sliding member.
  • the preferred Cr content is between 0.1 and 3%.
  • Ni has the same effect as Cu by supersaturating a solid solution in an anodized matrix and increasing its strength. However, if the Ni content exceeds 8%, the alloy hardens too much and becomes unsuitable as a sliding member. The preferred Ni content is less than 5%.
  • the aluminum alloy of No. 2 shall consist of a force consisting of A1 crystals (that is, A1 solid solution) in which these elements are dissolved, or consisting of A1 crystals (including A1 solid solutions) and other phases. .
  • the other phases are a crystallization phase, a precipitation phase, a decomposition phase, and the like, and these phases are metals, intermetallic compounds, other compounds, and the like. That is, if the first aluminum alloy (excluding the second aluminum alloy) is made of only these compounds, etc., the binder effect of the aluminum alloy is not exerted, and therefore, as described above, Cu Need crystals It is preferable to make it a component of the program.
  • the second aluminum alloy may be composed only of a compound or the like.
  • a preferred combination of composite components in the present invention is a copper alloy containing a Pb-containing alloy having excellent seizure resistance, and an aluminum alloy containing a Si-containing alloy having excellent wear resistance. More specifically, it is a combination of a copper alloy containing 40% or less by weight of Pb and a 12 to 60% Si-A1 alloy.
  • the overall composition of such a composite material is as follows: Cu: 8 to 82%, A1: 5 to 50%, Pb: 32% or less, and Si: 5 to 50% by weight. And are preferred (claim 15).
  • the overall composition of such a composite material is, by weight percentage, Cu: 8 to 82%, A1: 5 to 50%, Pb: 32% or less, Si: 5 to 50%, Sn : 21% is preferred (claim 17).
  • the aluminum alloy contains the X component (Cu, Mg, Mn, Fe, Cr and Z or Ni).
  • the overall composition of this copper-aluminum composite material is, by weight percentage, Cu: 8 to 50%, A1: 15 to 50%, Pb: 32% or less, Si: 5 to 50%. 50%, Mn: 1.2% or less, Cr: 5% or less, Ni: 4% or less, Mg: 4.0% or less, and Fe: 1.2% or less. Is preferred.
  • Sn is contained in addition to the X component, the content thereof is preferably 24% or less (claim 19).
  • the copper alloy contains the X component (Sn, P, A1, Ag, Mn, Cr, Ni and / or Zn). Combining these The composition of the entire composite material is expressed in terms of weight percentage: Cu: 8 to 82%, A1: 5 to 50%, Pb: 32% or less, Si: 5 to 50%, Sn: 24% or less, P: 0.4% or less, Ag: 8% or less, Mn: 4% or less, Cr: 4% or less, Ni: 16% or less, Zn: 24% or less It is preferred that there be (claim 16).
  • composition of the entire composite material obtained by combining these is, in terms of weight percentage, Cu: 8 to 50%, A1: 15 to 50. %, Pb: 32% or less, Si: 5 to 50%, Sn: 30% or less, P: 4. 4% or less, Ag: 8% or less, Mn: 4% or less, C r: preferably 4% or less, Ni: 16% or less, and Zn: 24% or less (claim 20).
  • composition of the entire composite material obtained by combining these is, in terms of weight percentage, Cu: 8 to 50%, A1: 15 to 50 %, Pb: 32% or less, Si: 5 to 50%, Sn: 24% or less, P: 0.4% or less, Ag: 8% or less, Mn: 5% or less, C r: 8% or less, Ni: 20% or less, Zn: 24% or less, Mg: 4.0% or less, and Fe: 1% or less (claim 21) ).
  • Sn is contained in addition to the X component, the content is preferably 30% or less (claim 22).
  • the molten droplet collides with the base material and solidifies, but when the sprayed layer is thinned and the cooling is accelerated, one or several droplets are fused with many other droplets. Instead of coalescing, it solidifies as independent particles. Such relatively small droplets are crushed, and a large number of fine layered pieces are stacked as a whole to form a sprayed layer.
  • the droplets coalesce into a large layer and solidify.
  • the copper alloy powder is not melted during the thermal spraying and is contained in the sprayed layer, and a mixed structure of a dissolved phase of the aluminum alloy and an undissolved phase of the copper alloy powder is formed.
  • the undissolved phase of the copper alloy powder constituting this structure is the structure of the copper alloy powder remaining in the sprayed layer without disappearing even during the spraying flame. Therefore, the melt phase is a normal spray-dissolved structure having the morphology described in (f) above, that is, a structure dissolved during spraying, and an undissolved phase is a structure that does not dissolve during spraying. .
  • the undissolved phase lacks some of the morphologies described in (v) above, as exemplified below. Alternatively, the undissolved phase can be distinguished from the dissolved phase by an optical microscope in the following points.
  • the A1 alloy phase of the sprayed layer is composed of particles of the same morphology, it is compared with known powder morphologies such as atomized powder, pulverized powder, and electrolytic powder. It can be determined that there is.
  • the structure is the molten phase of the second copper alloy.
  • the incorporated aluminum remains in a solid solution state, it is also a dissolved phase of the second copper alloy.
  • Undissolved structures may exist in copper alloys, in which case it is easy to distinguish the dissolved structure of the copper alloy from the undissolved structure.
  • the weight ratio of the copper alloy and the aluminum alloy is preferably 75 to 30% in the former, and the balance is preferably the latter.
  • the main structures of the copper-aluminum composite material of the present invention include (a) a copper alloy dissolved structure, (mouth) a copper alloy undissolved structure, (c) an aluminum alloy dissolved structure, and (ii) an aluminum alloy undissolved structure. It consists of two or more combinations of organizations (excluding combinations of (a) and (c) only and combinations of (mouth) and (ii) only).
  • a part of the powder does not dissolve during the thermal spraying and remains in the sprayed layer to form a mixed structure of a dissolved structure and an undissolved structure of the powder.
  • the undissolved structure of the lead bronze powder that constitutes this structure is such that the rapidly cooled structure of the lead bronze powder remains in the sprayed layer without disappearing even during the spraying flame.
  • the phase containing lead as a main component is dispersed in fine particles or is distributed in a layered manner at the copper grain boundaries.
  • This structure is one type of structure, but (a) the main cooling direction is from the periphery of the particle to the inside, and (b) the structure is smaller than the usual ingot structure or continuous structure. Is characterized by being a quenched structure.
  • the copper alloy and the aluminum alloy are completely fused, for example, when Si in the A1 alloy forms a melt with Cu and solidifies, a coarse intermetallic compound is generated, and practicality is reduced. No Cu-A1-Pb-Si alloys are excluded, so combinations consisting only of (a) and (c) in the above structure are excluded. In other words, under the condition that the copper alloy dissolution structure (a) and the aluminum alloy dissolution structure (c) are generated, the molten copper alloy and the molten aluminum alloy are almost completely fused unless the undissolved powder coexists. It is necessary to avoid thermal spraying methods in which only) and (c) are present.
  • the combination of the structures of the copper-aluminum composite material in the present invention is as follows.
  • the fine Pb phase in the atomized powder remains in the sprayed layer and contributes to the improvement of the sliding characteristics.
  • Dissolved Cu — Pb alloy powder (A, B, E, F, G) has a large Pb phase when Cu and Pb are melted and solidified, and the molten Cu and A1 — Si
  • the composite material having the A 1 — Si alloy structure is bonded by the reaction between the alloy powders. At this time, the surface of this powder is often melted (F, G).
  • Composite materials (C, D, E, F, G) with a melted A1 alloy structure can be found in the sprayed layer as primary Si of conventional smelted alloys or Si particles of rolled alloys. Rather than a particle shape that has a clearly long direction in one direction, such as a spherical, massive, polygonal, or other irregular shape that has almost the same dimensions in any direction. Is dispersed. Furthermore, the distinction between the primary crystal Si and the eutectic Si, which is obvious in the conventional smelted alloy, is difficult to distinguish in the present invention. In addition, the reaction between the molten Al-Si alloy powder and the Cu-Pb alloy powder causes the latter powder to be combined.
  • the fine Pb phase in the copper alloy powder such as the atom remains in the sprayed layer and contributes to the improvement of the sliding characteristics.
  • Sa the components of the aluminum alloy (dissolved or not dissolved), that is, A1, Si, etc., are dissolved in the copper alloy, the properties of copper that are difficult to adhere to may be weakened. Can prevent this.
  • Dissolved A1 alloy has a distinctly longer directionality in the sprayed layer in one direction, as seen in the primary crystal Si of conventional smelted alloy and the Si particles of rolled alloy. Rather than having such a particle shape, spherical Si, agglomerate, polygonal, and other irregularly shaped granular Si having almost the same size in all directions are dispersed. Furthermore, the distinction between primary crystal Si and eutectic Si, which is evident in conventional smelted alloys, is inconsequential in the present invention. The wear resistance is greatly improved due to such Si structure. Also, the reaction between the molten A 1 —Si alloy powder and the solid Cu — Pb alloy powder causes the latter powder to be combined.
  • the hardness of a composite material of a hard material and a soft material is somewhere in between, but in the composite material of the present invention, a reaction phase of a copper alloy and an aluminum alloy may be formed. Also, the average value of hardness increases.
  • the pressure is as high as 6 MPa), the speed of the gas jet is very high, and the particle velocity is comparable to explosive spraying.
  • Various thermal spraying methods have been developed that belong to the HVOF series, including diamond jets, top guns, and continuous explosive systems. Therefore, it is thought that the characteristic Si and Sn particle morphology can be obtained. Sprayed A 1 is hardened by rapid solidification, and therefore has a high retention of Si particles, which reduces wear due to Si particles falling off.
  • thermal spray powder atomized powder such as Cu—Pb alloy, A1—Si alloy, and A1—SiSn alloy can be used.
  • oxygen pressure 0.45 to: 1.10 OMPa, fuel pressure 0.45 to 0.76 MPa, and spraying distance 50 to 250 mm are preferable.
  • the thickness of the sprayed layer is preferably 10 to 500 / zm.
  • Table 1 shows an example of mixing an aluminum alloy powder similar to a copper alloy powder having a particle size that shows a normal distribution around one average value.In addition, one or both of the copper alloy and the aluminum alloy are normal.
  • Table 2 shows an example of mixing coarse and fine particles with a distribution particle size.
  • Various metal substrates such as iron, copper, and aluminum can be used as the substrate on which the thermal spray layer is formed.
  • the shape of the substrate is arbitrary, such as a plate, a disk, and a tube. If the surface of the substrate is roughened to a surface roughness of preferably Rz 10 to 60 m by a shot blast or the like, the adhesion strength of the film increases.
  • the hardness of the sprayed layer can be adjusted by heat treatment. In this case, some tissues may be dissolved.
  • the copper-aluminum composite material described above, in weight percentage, is 30% or less, preferably 10% or less, more preferably:! ⁇ 10%
  • the above compounds can be added as wear resistance improving components. If the added amount of these components exceeds 30%, lubricity and conformability become poor, and as a result, seizure is liable to occur.
  • the entire composite material can contain 30% or less by weight of graphite.
  • Graphite is an additive that improves lubricity and prevents cracking of the sliding layer. Graphite content If it exceeds 30%, the strength of the sprayed layer is undesirably reduced. The preferred graphite content is 1.5 to 15%.
  • bronze containing 3% by weight or less of graphite by weight can be sprayed.
  • Graphite is an additive that improves lubricity and prevents cracking of the swash plate sliding layer. If the graphite content exceeds 3%, the strength of bronze decreases, which is not preferable.
  • the preferred graphite content is 0.15 to 1.5%.
  • intermediate layers made of one or more materials selected from the group consisting of copper alloys, copper tin alloys, nickel self-fluxing alloys, and cobalt self-fluxing alloys. It is preferably formed by a method such as spraying or thermal spraying. All of these materials require their surfaces to be rough, but since they are easily alloyed with bronze, they are strongly bonded to the (un) dissolved layer during thermal spraying to form a bond between the sprayed layer and the backing metal. Increase bonding strength.
  • the preferred thickness of the intermediate layer is 5 to 1 ⁇ ⁇ .
  • Cu-S ⁇ — ⁇ -based alloy can be used as the copper-tin alloy. Since this alloy has a good melt flow and is hardly oxidized, excellent performance can be obtained when the intermediate layer is formed by thermal spraying.
  • the soft metal layer is, for example, a plating layer mainly composed of Pb and Sn forces.
  • Et al is, the rather the thermal sprayed surface layer as described above also M o S 2 graphite certain les, comprises a mixture of M o S 2 and graphite, they can also this coated with a resin by Nda bound coating You.
  • the thickness of these coating layers is 1 to It is preferably 50 / m.
  • FIG. 1 is a photomicrograph of the surface structure of the thermal sprayed composite material of Example 3 of the present invention, which was observed without etching.
  • FIG. 2 is a micrograph obtained by etching and observing the surface structure of the thermal sprayed composite material in Example 3 of the present invention.
  • FIG. 3 is a photomicrograph of the cross-sectional structure of the thermal sprayed composite material of Example 3 of the present invention observed without etching.
  • FIG. 4 is a micrograph of the cross-sectional structure of the thermal sprayed composite material according to Example 3 of the present invention, which was observed by etching.
  • FIG. 5 is a graph showing the results of a friction test of Example 7 of the present invention.
  • the hardness of this sprayed layer was Hv260-300.
  • the total composition was 36% Cu, 31% A1, 3% Pb, 22% Si, 4% Sn and the balance of impurities by weight percentage.
  • Example 1 The sprayed alloys of Example 1 and Comparative Example 1 were subjected to a wear resistance test by the following method.
  • a steel ball (SUJ2) having a diameter of 8 mm was pressed against the sprayed layer of the test piece with a load of 1 kgf and slid under a dry condition at a speed of 0.5 mm / sec.
  • Example 3 shows the results of the same abrasion resistance test as in Example 1. The hardness of this sprayed layer was Hv 220 to 280. The total composition was 36% Cu, 32% A1, 7% Pb, 23% Si, and 2% Sn by weight.
  • the surface was etched with a dallard solution (ferric chloride 5 g, hydrochloric acid 100 cc, water 100 cc) for 5 seconds.
  • a dallard solution (ferric chloride 5 g, hydrochloric acid 100 cc, water 100 cc) for 5 seconds.
  • the structure is shown in Fig. 2, the microscopic structure observed without etching the cross-section is shown in Fig. 3, and the cross-sectional structure etched with the Dallard solution is shown in Fig. 4. That is, the copper alloy powder has a lump portion that remains in the form of an atomized powder as judged from the form, and a portion that disappears and crystallizes together with the aluminum alloy melted during thermal spraying. On the other hand, aluminum alloys hardly remain in powder form.
  • the aluminum alloy phase serves as a matrix for crystallizing the copper alloy phase into a network or flakes, the aluminum alloy is almost completely melted, and partly reacts with the dissolved copper to form C u — Judged to be crystallized as an A1 compound (ie, a second copper alloy).
  • the hardness of this sprayed layer was Hv200-260.
  • the total composition was 45% Cu, 27% A1, 6% Pb, 16% Si, and 6% Sn by weight.
  • Example 3 Same as Example 3 except that Cu—24 wt% Pb—4 wt% Sn alloy atomized powder (average particle size: 60 ⁇ m) was used instead of the copper powder of Example 3. Thermal spraying was performed under the conditions. Table 3 shows the results of the same abrasion resistance test as in Example 1. The average hardness of this sprayed layer was Hv 90-260. The overall composition was 42% Cu, 26% A1, 13% Pb, 17% Si, and 2% Sn by weight.
  • Example 3 instead of the copper alloy atomized powder having an average particle size of 60 ⁇ m in Example 3, a copper alloy atomized powder having an average particle size of 30 ⁇ , and an aluminium alloy having an average particle size of 200 ⁇ m were used. 2 0 weight 0 / o S i alloy of ⁇ Tomai's with the addition of Thermal spraying was performed under the same conditions as in Example 3 except that powder was used. Table 3 shows the results of the same abrasion resistance test as in Example 1. The average hardness of this sprayed layer was Hv 220 to 260. The total composition was 57% Cu, 26% A1, 5% Pb, 5% Si, and 6% Sn by weight.
  • Example 5 Copper powder of Example 5 (i.e., C u - 1 0 wt% P b - 1 0 by weight 0 / o S n alloys ⁇ Tomai's powder) in place of the C u one 2 4 wt 0 / o P b one 1 Thermal spraying was performed under the same conditions as in Example 3 except that a 0% Sn alloy atomized powder (average particle size: 30 ⁇ m) was used. Table 3 shows the results of the same abrasion resistance test as in Example 1. The hardness of this sprayed layer was Hvl90-240. The total composition was 50% Cu, 32% A1, 9% Pb, 7% Si, and 2% Sn in weight percentage.
  • Example 1 Only the copper alloy powder of Example 1 was sprayed in the same manner as in Example 1. Table 3 shows the results of the same abrasion resistance test as in Example 1. The hardness of the sprayed layer was Hv180 to 210.
  • Example 1 Only the aluminum alloy of Example 1 was sprayed in the same manner as in Example 1. Table 3 shows the same abrasion resistance test effects as in Example 1. The hardness of this sprayed layer was Hv 210 to 230.
  • the present invention provides a method for producing a copper-aluminum composite material by thermal spraying, and thus a desired process can be achieved by a single process of applying a mixed powder to a substrate. Materials can be obtained. Also, in this composite material, the copper alloy and the aluminum alloy are not intrinsically fused but are finely mixed, so that the properties of these alloys are expected to be utilized. Such a composite material can be formed into a film as a sliding layer of a sliding member of a compressor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Sliding-Contact Bearings (AREA)

Description

明細書 溶射銅一アルミ ニウム複合材料及びその製造方法 技術分野
本発明は、 溶射銅一 アル ミ ニ ゥム複合材料及びその製造方法 に関する ものである。 本発明が関連する技術分野は、 複合材料、 溶射技術、 アル ミ ニ ウ ム合金摺動材料及び銅合金摺動材料な ど である。 背景技術
金属系複合材料と しては主に金属 とセ ラ ミ ッ タ ス の複合材料 が研究されてお り 、 その製造方法は銅粉と A 1 2 O 3 粉などの混 合粉をプレス成形後焼結する方法 (特許第 2 8 5 4 9 1 6号)、 セラ ミ ッ ク カーボンに A 1 合金溶湯を含浸する方法 (特許第 2 8 4 6 6 3 5 号) などがある。
金属 と金属の複合組織を有する摺動層 と してはク ラ ッ ド材が ある。
溶射技術に関 しては、 日本金属学会報 「まて り あ」 V o l .
3 3 ( 1 9 9 4 ) N o . 3 、 P 2 6 8 〜 2 7 5 「溶射技術の最 近における進歩」 と題する解説があ り 、 金属一セラ ミ ッ ク系複 合材料の製造方法が説明 されている。 同 じ く 、 ト ライ ボ口 ジス ト V o l . 4 1 ( 1 9 9 6 )、 No. 1 1 、 第 1 9 〜 2 4 頁にも 溶射技術の解説がある。
本発明で意味する銅一 アル ミ ニ ウ ム複合材料に属する も の と しては、 アルミ ニウム合金基材中にホワイ ト メ タル並みの硬度 を有する軟質層を分散させたすべ り 軸受を開示する特開平 9 一 1 2 2 9 5 5 号がある。 こ の複合材料の製造方法は、 裏金付き のアルミ ニウム合金材からなる平板を提供する第 1 工程と 、 平 板の前面に S n , P b も し く はホ ワイ ト メ タルの軟質材料を厚 さ 5 0〜 1 0 0 μ πι で密着する第 2 工程と 、 軟質材料を密着 し た上記平板に局所的に レーザー光を照射する こ と によ り 軟質材 料をアルミ ニゥム合金の内部に溶け込ませて軟質合金層を形成 する第 3 工程と 、 同平板をそれぞれ半円筒に湾曲する第 4 工程 と 、 上記レーザー溶射面をそれぞれ機械加工仕上げしたのち軟 質材料を研削 してその内部にアルミ ニ ウム合金と軟質合金層 と の複合層を露出させる第 5 工程からなる。
耐摩耗性や耐焼付性な どの性質が要求されるアルミ ニウム合 金系摺動材料と しては従来以下のものが知られている。
(ィ) 共晶 S i も し く は初晶 S i によ る耐摩耗性を利用 した A 1 — S i 系溶製合金 (アルジル合金)。 こ の合金では S i 含有量は一般に 3 〜 1 8 %であ り 、 鍛造ゃ铸造などによ り 素材 形状に加工される。
(口) アルミ ニ ウム合金圧延板を加工 しかつ熱処理する 過程において S i 粒子、 F e 粒子などの硬質粒子を塊状化した アルミ ニウム合金 (本出願人の ドイ ツ特許第 3 2 4 9 1 3 3号)。 この合金では塊状 S i な どが相手軸をな じませる こ と によ り 優 れた耐焼付性などを達成している。
(ハ) A 1 一 S n 系合金に少量の C r を添加する こ と に よ り 、 S n相の粗大化を防止 し耐疲労性を高めたアル ミ ニ ウ ム 合金 (本出願人の米国特許 4 1 5 3 7 5 6号)。
(二) 急冷凝固粉末を使用 した粉末冶金合金 (例えば特許 掲載公報第 2 5 3 5 7 8 9号)。 こ の公報では 1 5 〜 3 0重量% の S i を含有するアル ミ ニ ウ ム合金溶湯を急冷凝固 させた粉末 をホ ッ トプ レス し、 次に熱間押出する こ と によ り 耐摩耗性、 機 械的強度、 軽量性、 低熱膨張率などの特性が優れた摺動材料を 製造している。
前掲 (ィ) 〜 (ハ) の合金は S i 含有量が 2 0 %を超える と 铸造が困難にな り 、 鍛造な どの加工はさ ら に困難になる。 した がって、 これらの合金の耐摩耗性は S i 量によ り 制約されてい る。
前掲 (二) の合金は多量の S i を含有する こ と ができ るが、 ホ ッ トプ レスや熱間押出などの成形方法を採用する必要が生じ るので、 例えば、 内燃機関のメイ ンベア リ ング用半割メ タル (通 称 「メ タル」) などへの適用は事実上不可能である。
銅合金の う ち特に摺動合金と しては P b を添加 して耐凝着性 と耐焼付性を良好に した C u — P b 系が多用 されている。 銅合 金は耐摩耗性が優れていないために、 例えば本出願人の米国特 許第 5, 3 2 6 , 3 8 4号で提案されてレ、る よ う に F e 2 Pなど の硬質物を添加して焼結を行 う こ と が知 られているが、 硬質物 の添加によ り なじみ性などは劣化する こ と は避けられない。
銅合金の摺動材料を溶射する技術は本出願人な どの国際公開 公報 W 0 9 5 / 2 5 2 2 4 で公知であ り 、 こ の公報でも銅一硬 質物系複合材料が開示されている。 この公報において、 溶射技 術によ り C u — P b合金の一部の組織、 特に P b組織を溶融さ せないこ と によ り P b相を粗大化させず、 もって摺動特性を向 上する こ と が提案されたこ と は言 う ものの、 銅溶射合金を硬化 させ耐摩耗性を向上させる こ と は困難である。 すなわち、 銅合 金の硬化は主と して圧延、 引抜などの加工合金については析出 硬化を利用 して広く 行われているが、 基本的には铸造合金であ る溶射合金を組成の工夫によ り硬化させる こ と は限界がある。 従来、 溶射技術によ り 金属一セラ ミ ッ ク系複合材料を製造す る こ と は行われていたが金属—金属系複合材料、 例えば C u 一 P b合金と A 1 一 S i 合金複合材料を製造する こ と は行われて いない。 こ の二種類の合金が溶射によ り 完全に融合する と 、 非 常にも ろい C u — S i 合金も生成し、 実用可能な材料が得られ ないが、 本発明者らは溶射条件を工夫する こ と によ り銅 アル ミ ニゥム複合材料を得る こ と に成功した。 発明の開示
したがって、 本発明は耐摩耗性及び耐焼付性に優れた銅ーァ ルミ ニゥム複合材料及びその製造方法する こ と を 目的とする。
すなわち、 本発明の第一は、 少なく と も未溶解相を有する銅 も しく は第 1 の銅合金、 及び少なく と も溶解相を有するアル ミ ニゥム も し く は第 1 のアルミ ニウム合金を含んでなる溶射銅一 アル ミ ニ ウ ム複合材料を提供する。 銅又は銅合金 ( こ の段落で は 「銅合金」 と総称する) と アルミ ニウム又はアルミ ニウム合 金 (この段落では 「アルミ ニウム合金」 と総称する) の複合材 料とするためには、 これら合金の一部が溶解してバイ ンダーの 役割をする こ と が必要である。 別の観点からは、 例えば、 C u — P b合金中の P b, A 1 — S i 合金中の S i は他方の合金の 基質の特性を阻害して、 有用な複合材料にはならないので、 銅 合金と アルミ ニウム合金の完全溶解を避ける必要がある。 本発 明においては、 少なく と もアルミ ニウム合金が溶解していれば、 複合材料を形成するためのバイ ンダー効果は実現される。 すな わち、 銅と アル ミ ニ ウ ムは本来相性がよい物質であ り 結合に適 するからである。
本発明の第二は、 銅又は銅合金粉末と アルミ ニ ウム又はアル ミ ニゥム合金粉末を、 これら粉末の一部が溶解し、 残部が溶解 しないよ う に溶射する こ と を特徴とする。 発明の実施形態
(ィ) 溶射複合材料
本発明に係る複合材料を銅合金と アルミ ニウム合金を複合す る実施形態について説明する。 こ の複合材料は溶射法よ り 得る こ と ができ る。 溶射の一般的傾向 と して (ィ) 銅合金粉末と ァ ルミ ニゥム合金粉末の平均粒径が等 しい場合はアルミ 二ゥム合 金粉末が溶解し、 (口) アルミ ニウム合金粉末の平均粒径が銅合 金粉末よ り 非常に大きい場合は前者に加え後者も溶解する。 こ のよ う な傾向を利用する こ と によって、 アルミ ニゥム合金粉末 の少な く と も一部が溶解し、 残部粉末が固体の性質を実質的に 維持した銅一アルミ ニウム複合材料を製造する こ と ができ る。 アル ミ ニ ウ ム合金は耐摩耗性が銅合金よ り 優れてお り 、 さ らに アル ミ ニ ウ ム合金は铸造状態で耐摩耗性が優れた合金が多数あ るから、 これを銅合金と全面的には合金化はさせずに複合化す る こ と によ り 、 複合材料全体の耐摩耗性を銅合金よ り 向上する こ と ができ る。 これらを考慮する と 、 銅合金と アルミ ニウム合 金の割合は、 重量割合で前者が 7 5 〜 3 0 %、 残部後者である こ と が好ま しい。 本発明において 「溶解相」 と は当該銅一アル ミ ニゥム複合材料の溶射中に溶解した組織である。 すなわち、 ほとんどの製造プロセスを迪る と金属材料は溶解を経ているが、 特に溶射中に溶解 · 凝固した状態である こ とである。
(口) 銅合金及びアルミ ニウム合金の一般説明
本発明において、 銅合金及びアルミ ニ ゥム合金と は溶射 する こ と ができ るすべての合金を包含する。 但し、 次の事項を 考慮する こ と が好ま しい。 金属の調質状態を铸造状態と圧延、 引抜な どの加工状態に大別する と 、 溶射合金は前者の铸造状態 に属するので、 青銅、 鉛青銅、 リ ン青銅な どの铸造銅合金が本 発明の好ま しい対象になる。 一方、 電子機器に使用 される伸銅 品は加工状態の合金であるので、 溶射は可能であるが本来の性 能を発揮する こ と はできない。 同様に展伸用アルミ ニウム合金 は本発明から除かれ、 耐摩耗性が優れた A 1 一 S i 系铸造合金 などの铸造アルミ ニウム合金が本発明の好ま しい对象と なる。
又、 本第 1 の銅合金及び第 1 のアルミ ニ ウム合金は、 それ ぞれ、 溶射によ り 部分的に他方の成分を混入し、 融合した第 2 の銅合金及び第 2 のアル ミ ニ ウ ム合金も包含する。 すなわち、 本発明の複合材料は銅合金及びアルミ ニ ウム合金が全面的に融 合した状態は除外しているが、 部分的に、 好ま しく は 9 0面積% 以下融合しても よレ、。 したがって、 係る実施態様の複合材料は 溶射された銅合金,溶射されたアル ミ ニゥム合金及び溶射によ り 生成した銅一アルミ ニゥム合金からなる。 以下の説明では,特に 断らない限り 、 銅合金及びアルミ ニ ウム合金と は、 それぞれ、 第 2 の銅合金及び第 2 のアルミ ニウム合金を含まない合金であ る。
(ハ) 銅合金
本発明において、 銅合金は重量百分率で、 。。/。以下の!3 !^ 、
3 0 %以下の S n 、 0 . 5 。/。以下の P 、 1 5 %以下の 1 、 1
0 %以下の A g 、 5 。/。以下の M n 、 5 %以下の C r 、 2 0 %以 下の N i 及び 3 0 %以下の Z n カゝらなる群から選択された 1 種 又は 2種以上を総量で 0 . 5 %以上、 好ま しく は 1 %以上でか つ 5 0 %以下含有する こ とができ る。
鉛は ドライ条件における摺動特性を向上する上で最も好ま し い元素である。 しかし鉛の含有量が 4 0 %を超える と銅合金の 強度が低下するので、 上限を 4 0 % とする こ とが必要である。 好ま しい鉛含有量は 3 0 %以下、 よ り 好ま し く は 1 〜 1 5 %で ある。
鉛以外の添加元素は主と して銅に固溶してその耐摩耗性と耐 焼付性を高める ものである。 このなかで A g は潤滑油が少ない 条件で顕著に摺動特性を高める。 添加量に関 しては、 S n は 1 0 %以上、 M n は 1 %以上で析出 して析出物が耐摩耗性を高め る。 S n 力 S 3 0 %を超え、 P力 S 0 . 5 %を超え、 A g 力 S 1 5 % を超え、 M n が 5 %を超え、 C r 力 S 5 %を超え、 N i 力 S 2 0 % を超え、 Z n が 3 0 %を超える と 、 銅本来の熱伝導性、 鉄も し く はアル ミ ニ ウ ム系相手材料と の良好な摺動特性、 特に耐摩耗 性、 耐焼付性が失われる。 したがって これらの元素は上記上限 量を超えないよ う にする必要がある。 好ま しい含有量は S n : 0 . :! 〜 2 0 %、 P : 0 . 2 〜 0 . 5 %以下、 A g : 0 . 1 〜 8 %、 M n : 0 . 5 〜 4 %、 C r : 0 . 5 〜 3 %、 N i : 0 . 5 〜 1 5 %、 Z n : 5 〜 2 5 %であ り 、 さ らに好ま しく は S n : 0 . ;! 〜 1 5 %、 A g : 0 . 2 〜 5 %、 M n : 0 . 5 〜 3 %、 C r : 1 〜 2 %、 N i : 1 〜 : 1 0 %、 Z n : 1 0 〜 2 0 %であ る。 又上記の理由 よ り 添加元素の総量は 0 . 5 〜 5 0 %の範囲 とするべきである。
これらの添加元素を含む第 1 の銅合金 (但し、 第 2 の銅合金 は除く ) はこれらの元素を固溶した C u結晶 (すなわち C u 固 溶体) からなる力 あるいは C u結晶 ( C u 固溶体を含む) と その他の相 と からなる もの とする。 その他の相 と は晶出相、 析 出相、 分解相な どであ り 、 これらの相は金属、 金属間化合物、 C u 3 Pなどのその他の化合物などである。 すなわち、 第 1 の銅 合金 (但し、 第 2 の銅合金を除く ) がこれらの化合物な どから のみなる と 、 銅本来の摺動特性が発揮されないから、 上述のよ う に C u結晶を必須の構成分とする こ と が好ま しい。 但し,第 2 の銅合金は化合物などのみから構成されてもよレ、。
(二) アルミ ニ ウム合金
本発明 においてアル ミ ニ ゥ ム合金は重量百分率で 1 2 〜 6 0 %の 3 i を含有する ものを使用する こ と ができ る。 S i 含有 量が 1 2 %未満では耐摩耗性と耐焼付性向上の効果が少なく 、 6 0 %を超える と 強度低下が著しく 、 耐摩耗性の低下を招 く 。 好ま しレ、 S i 含有量は 1 5 〜 5 0 %である。 S i 粒子の寸法が 5 Ο μ πιを超える と S i 粒子の脱落が起こ り 易 く なる。 好ま し い寸法は 1 〜 4 0 μ mである。
次に、 A 1 S i — S n 系合金は従来 A 1 — S n合金が使用 されていたメ タル、 ブッ シュな どの耐摩耗 · 耐焼付部品 と して の優れた耐摩耗性と耐焼付性をもつ材料である。 S n は潤滑性 やな じみ性を付与する成分であ り 、 均一にアルミ ニ ウムマ ト リ ッ ク ス中に分散してレ、る。 又、 S n は相手軸に優先的に付着 し て、 相手軸に凝着した A 1 と軸受の A 1 と が同種材料ど う しで 摺動するのを妨げて、 耐焼付性を高める。 S n含有量が 0 . 1 % 未満では潤滑性などの向上の効果が少なく 、 3 0 %を超える と 合金の強度が低下する。 好ま しい S n含有量は 5 〜 2 5 %であ る。 S n粒子の極近傍に存在して、 S n粒子の粗大化を妨げる こ と によ り 耐疲労性を向上している と考えられる。
アルミ ニウム合金は次の任意元素を含有する こ とができ る。
C u : C u がアルミ ニウムマ ト リ ッ ク スに過飽和に固溶して その強度を高める こ と によって、 アルミ ニウムの凝着摩耗や、 S i 粒子が脱落する こ と によ る摩耗を抑える。 さ らに C u は S n の一部と S n — C u金属間化合物を生成して耐摩耗性を高め る。 しカゝしなが ら、 C u の含有量が 7 . 0 %を超える と合金が 硬化し過ぎるために摺動部材と して不適当になる。 好ま しい C u含有量は 0 . 5 〜 5 %である。
M g : M g は S i の一部と化合して M g — S i 金属間化合物 を生成して耐摩耗性を高める。 しかしながら M g の含有量が 5 . 0 %を超える と、 粗大な M g相が生成して摺動特性が劣化する。 M n : M n はアルミ ニウムマ ト リ ッ タ スに過飽和に固溶して その強度を高める こ と によって C u と 同様の効果を もた らす。 しかしなが ら、 M n の含有量が 1 . 5 %を超える と 合金が硬化 し過ぎるために摺動部材と して不適当になる。 好ま しい M n含 有量は 0 . :! 〜 1 %である。
F e : F e はアルミ ニウムマ ト リ ッ タ スに過飽和に固溶して その強度を高める こ と によって C u と 同様の効果を もた らす。 しかしなが ら、 F e の含有量が 1 . 5 %を超える と合金が硬化 し過ぎるために摺動部材と して不適当になる。 好ま しい F e 含 有量は 1 %以下である。
C r : C r は S n な どの軟質相の粗大化を防止する効果を も た らす。 しかしなが ら、 C r の含有量が 5 %を超える と合金が 硬化し過ぎるために摺動部材と して不適当になる。 好ま しい C r含有量は 0 . 1 〜 3 %である。
N i : N i はァノレミ ニ ゥムマ ト リ ッ ク スに過飽和に固溶して その強度を高める こ と によって C u と 同様の効果を もた らす。 しかしなが ら、 N i の含有量が 8 %を超える と合金が硬化し過 ぎるために摺動部材と して不適当になる。 好ま しい N i 含有量 は 5 %以下である。
これらの添加元素を含む第 1 のアルミ ニウム合金 (但し、 第
2 のアルミ ニウム合金は除く ) はこれらの元素を固溶した A 1 結晶 (すなわち A 1 固溶体) からなる力 、 あるいは A 1 結晶 ( A 1 固溶体を含む) と その他の相 と からなる もの とする。 その他 の相 と は晶出相、 析出相、 分解相などであ り 、 これらの相は金 属、 金属間化合物、 その他の化合物などである。 すなわち、 第 1 のアルミ ニゥム合金 (但し第 2 のアルミ ニゥム合金は除く ) がこれらの化合物な どからのみなる と 、 アルミ ニウム合金のバ イ ンダー作用が発揮されないから、 上述のよ う に C u結晶を必 須の構成分とする こ と が好ま しい。 但し,第 2 のアルミ ニ ウム合 金は化合物などのみから構成されても よレ、。
(ホ) 複合材料全体の組成
Cu-Pb系合金と Aレ Si系合金の組合わせ
本発明における好ま しい複合成分の組合せは、 銅合金が耐焼 付性に優れた P b含有合金であ り 、 かつアルミ ニウム合金は耐 摩耗性に優れた S i 含有合金である。 よ り 具体的には、 重量百 分率で 4 0 %以下の P b を含有する銅合金と 、 1 2 〜 6 0 % S i 一 A 1 合金の組合せである。 かかる複合材料の全体の組成は、 重量百分率で、 C u : 8 〜 8 2 %、 A 1 : 5 〜 5 0 %、 P b : 3 2 %以下、 S i : 5 〜 5 0 %である こ と が好ま しレヽ (請求項 1 5 )。
Cu-Pb系合金と Aレ Si-Sn系合金の組合わせ
かかる複合材料の全体の組成は、 重量百分率で、 C u : 8 〜 8 2 %、 A 1 : 5 〜 5 0 %、 P b : 3 2 %以下、 S i : 5 〜 5 0 %、 S n : 2 1 %である こ とが好ま しい (請求項 1 7 )。
Cu-Pb系合金と Aレ Si-X系合金の組合わせ
こ の組合わせではアルミ ニウム合金は X成分 ( C u , M g , M n, F e , C r 及び Z又は N i ) を含有する。 この銅一アル ミ ニゥム複合材料の全体の組成は、 重量百分率で、 C u : 8 〜 5 0 %, A 1 : 1 5 〜 5 0 %, P b : 3 2 %以下、 S i : 5 〜 5 0 %, M n : 1 . 2 %以下, C r : 5 %以下, N i : 4 %以 下、 M g : 4 . 0 %以下及び F e : 1 . 2 %以下, である こ と が好ま しい。 なお、 X成分の他に S n が含有される場合は、 そ の含有量は 2 4 %以下である こ とが好ま しい (請求項 1 9 )。
Cu-Pb-X系合金と Aレ Si系合金の組合わせ
こ の組合わせでは銅合金は X成分 ( S n , P, A 1 , A g , M n , C r , N i 及び/又は Z n ) を含有する。 これらを複合し た複合材料全体の組成は、 重量百分率で、 C u : 8 〜 8 2 %, A 1 : 5 〜 5 0 %, P b : 3 2 %以下、 S i : 5 〜 5 0 %, S n : 2 4 %以下, P : 0 . 4 %以下、 A g : 8 %以下, M n : 4 %以下, C r : 4 %以下, N i : 1 6 %以下, Z n : 2 4 % 以下である こ と が好ま しい (請求項 1 6 )。
Cu-Pb -X系合金と Aレ Si- Sn系合金の組合わせ これらを複合した複合材料全体の組成は、 重量百分率で、 C u : 8 〜 5 0 % , A 1 : 1 5 〜 5 0 %, P b : 3 2 %以下、 S i : 5〜 5 0 %, S n : 3 0 %以下, P : ◦ . 4 %以下、 A g : 8 % 以下, M n : 4 %以下, C r : 4 %以下, N i : 1 6 %以下, Z n : 2 4 %以下である こ と が好ま しい (請求項 2 0 )。
Cu-Pb -X系合金と Aレ Si-X系合金の組合わせ これらを複合した複合材料全体の組成は、 重量百分率で、 C u : 8 〜 5 0 %, A 1 : 1 5 〜 5 0 %, P b : 3 2 %以下、 S i : 5〜 5 0 %, S n : 2 4 %以下、 P : 0 . 4 %以下、 A g : 8 % 以下, M n : 5 %以下, C r : 8 %以下, N i : 2 0 %以下, Z n : 2 4 %以下、 M g : 4 . 0 %以下、 F e : 1 %以下であ る こ と が好ま しい (請求項 2 1 )。 なお、 X成分の他に S nが含 有される場合は、 その含有量は 3 0 %以下である こ と が好ま し い (請求項 2 2 )。
(へ) 溶射金属組織
本発明の銅一アルミ ニウム複合材料の組織の特徴を説明する 前に、 溶射層金属組織の一般的特徴点を述べるが、 これはァ ト マイ ズなどの粉末が溶融、 凝固 した組織である。 一つの形態で は、 溶射フ レーム中で溶融し生 じた液滴が、 基板表面に衝突 し て変形され、 層断面で見る と 、 層状、 片状も しく は平板状部分 が、 層平面で見る と小円盤、 鱗状片などが積み重なつている。 さ らに別の形態では、 ァ トマイ ズな どの粉末はガスによ り フ レ ーム内へ圧送される と きは、 1 個 1 個がばらまかれた孤立粒子 の形態を保ってお り 、 一部は合体するが、 そのままの形態で溶 融する と 考えられる。 溶融液滴は基材に衝突して凝固するが、 溶射層の厚みを薄く して冷却を速く する と 1 個又は数個の液滴 が、 他の多数の液滴と融合な どによ り 合体せずに、 独立粒子 と して凝固する。 このよ う に比較的小さい液滴が押 しつぶされ、 全体と して多数の微細層状片が積み重なって、 溶射層が作られ る。
又、 他の形態では液滴が合体し大きな層になって凝固する。
( ト) 溶射複合組織
本発明においては、 銅合金粉末が少な く と も溶射中に溶解 し ないで溶射層に含まれてお り 、 アルミ ニゥム合金の溶解相 と銅 合金粉末の未溶解相の混合組織が形成されている。 この組織を 構成する銅合金粉末の未溶解相は、 銅合金粉の組織が溶射炎中 でも消失せずに溶射層に残っている ものである。 したがって溶 解相 と は前項 (へ) で説明 したよ う な形態をもつ通常の溶射溶 解組織、 すなわち溶射中に溶解した組織であ り 、 未溶解相 と は 溶射中に溶解しない組織である。 未溶解相は前項 (へ) で述べ たよ う な形態の一部を、 以下例示する よ う に、 欠如 している。 あるいは未溶解相は溶解相 と は以下例示する よ う な点で光学顕 微鏡で区別する こ とができ る。
① 溶解相は合体し溶融し、 未溶解相は合体しない。
② 溶解相は衝突による変形が大き く 、 未溶解相は衝突 による変形が小さい。
③ C u — P b などの合金の場合は、 二次相を構成する
P に着目する と溶解相と未溶解相を区別する こ と ができ る こ とがある。
④ 溶射層の A 1 合金相が同 じ よ う な形態のパターン から構成されるために、 上記①〜③による判別が困難なこ と も ある。 この場合、 結晶粒界の判別が不可能であ り 、 一見して連 続相状に見え、 かつ二次相も一様な形態をもつ場合は、 溶解組 織である と判定でき る。
⑤ 溶射層の A 1 合金相が、 同じ形態の粒子からなる場 合はア トマイ ズ粉、 粉砕粉、 電解粉などの公知の粉末形態と対 比し、これらに該当する場合は未溶解組織である と判断でき る。
⑥ 銅合金粉末と アルミ ニ ウム合金粉末の一部が融合 し、 その後アルミ ニウム基地から C u系二次相が分散する。 こ れは本発明で言う第 2 のアルミ ニウム合金の溶解相である。 な お、 この二次相は他の組織から簡単に識別される。
⑦ 一部の銅合金粉末が溶融し,アルミ ニウム合金を取 り込み、 その後銅基地から A 1 系二次相が析出分散する場合は, 係る組織は第 2 の銅合金の溶解相である。 又、 取り 込まれたァ ルミ 二ゥムが固溶状態に留まっている場合も、 第 2 の銅合金の 溶解相である。銅合金には未溶解組織が存在する こ と があるが、 その場合、 銅合金の溶解組織を未溶解組織から区別する こ と は 容易である。
本発明においては、 銅合金と アルミ ニウム合金の割合は、 重 量割合で前者が 7 5〜 3 0 %、 残部後者である こ とが好ま しい。 本発明の銅一アルミ ニウム複合材料の主要組織は、 (ィ) 銅合 金溶解組織、 (口) 銅合金未溶解組織、 (ハ) アルミ ニ ウム合金 溶解組織及び (二) アルミ ニウム合金未溶解組織の 2 種以上の 組合せ (但し (ィ)、 (ハ) のみの組合せ及び (口)、 (二) のみ の組合せは除く ) からなる。
本発明においては、 粉末の一部が溶射中に溶解しないで溶射 層に残存し、 溶解組織と粉末の未溶解組織の混合組織が形成さ れている。 この特長をまず、 C u — P b 系合金につき説明 し、 A 1 - S i 合金については後述する。
この組織を構成する鉛青銅粉の未溶解組織は、 鉛青銅粉の急 冷組織が溶射炎中でも消失せずに溶射層に残っている ものであ る。 この組織は、 鉛を主成分と する相が微粒状に分散するかあ るいは銅の粒界に層状に分布 している ものである。 この組織は 1 種の铸造組織であるが、 ( a ) 主たる冷却方向が粒子の周囲か ら内側に向かう方向である こ と 、 ( b ) 通常のイ ンゴッ ト錶造ぁ るいは連続铸造よ り は急冷組織である こ と に特長がある。
本発明において、 銅合金と アルミ ニウム合金が完全に融合す る と 、 例えば A 1 合金中の S i が C u と融体を作り 凝固する際 に粗大な金属間化合物を生成し、 実用性がない C u — A 1 一 P b — S i 合金が作られるために、 上記組織の (ィ) 及び (ハ) のみからなる組合せは除外する。 すなわち、 銅合金溶解組織 (ィ) と アルミ ニウム合金溶解組織 (ハ) が生成する条件において、 未溶解粉末が共存しないと溶融銅合金と溶融アルミ ニゥム合金 がほぼ完全に融合するから、 組織 (ィ) 及び (ハ) のみが存在 する よ う な溶射方法を避ける必要がある。 組織 (ィ) 及び (ハ) に (口) 及び Z又は (二) が存在する と 、 銅/アルミ ニウム合 金の融合は妨げられる。 さ らに組織 (ィ ) の銅合金未溶解組織 と (二) のアルミ ニウム合金未溶解組織の界面や、 アルミ ユ ウ ム合金溶解組織 (ハ) と未溶解の銅合金組織 (口) の界面では 両合金が低融点物質を生成して融合が起こ るが、 その程度は軽 微である。 したがって、 本発明においては、 このよ う な界面組 織は主要組織に含めず、 溶融粉末の組織状態で主要組織を (ィ)、 (口)、 (ハ) 及び (二) に分別する。
上述の と こ ろから、 本発明における銅一アルミ ニウム複合材 料の組織の組合せは、
A . (ィ) + (二) B . (ィ) + (口) + (二)
C . (口) + (ハ)
D . (口) + (ハ) + (二)
E . (ィ) + (口) + (ハ)
F . (ィ) + (口) + (ハ) + (二)
G . (ィ) + (ハ) + (二) である。
未溶解 C u合金組織をもつ複合材料 ( B, C, D , E, F ) はァ トマイ ズ粉末中の微細 P b 相が、 溶射層中に残存して摺動 特性向上に寄与する。 溶解 C u — P b 合金粉末 (A, B, E, F, G ) は、 C u と P b が溶融 ' 凝固する際に P b 相が粗大化 し、 溶融 C u と A 1 — S i 合金粉末の間で起こ る反応によ り A 1 — S i 合金組織をもつ複合材料が結合される。 この際にこの 粉末の表面が溶融される こ と が多い ( F, G )。 溶解 A 1 合金組 織をもつ複合材料 ( C, D, E, F, G ) は、 溶射層中におい て、 従来の溶製合金の初晶 S i や圧延合金の S i 粒子で見られ る よ う な、 一方向の明 らかに長い方向性がある よ う な粒子形状 ではなく 、 どの方向でもほ と んど同 じ寸法の球状、 塊状、 多角 形、 その他これらに分類されない不定形形状である粒状 S i が 分散している。 さ らに、 従来の溶製合金では判然と している初 晶 S i と共晶 S i の区別は本発明の場合はっけ難い。 又、 溶融 A 1 一 S i 合金粉末と C u — P b 合金粉末と の間で起こ る反応 によ り 、 後者の粉末が結合される。
(チ) 複合材料の特性
これらの組織をもつ銅一アルミ ニウム複合材料の構成各合金 相の特性を C u — P b 合金及び A 1 一 S i 合金の例について説 明する。
( a ) 未溶解銅合金は、 ア トマイ ズな どの銅合金粉末中の微 細 P b 相が、 溶射層中に残存して摺動特性向上に寄与する。 さ らに (溶解しあるいは溶解しない) アルミ ニウム合金の成分、 すなわち A 1 , S i な どが銅合金に溶解する と銅本来の凝着 し 難い性質を弱める こ と もあるが、 未溶解銅合金はこれを阻止す る こ とができ る。
( b ) 溶解 C u — P b 合金は、 C u と P b が溶融 ' 凝固する 際に P b相が粗大化し、 溶融 C u 、 P b と A 1 — S i 合金粉末 の間で起こ る反応によ り A 1 一 S i 合金粉末が結合される。 こ の際にこの粉末の表面が溶融される こ とが多い。
( c ) 溶解 A 1 合金は、 溶射層中において、 従来の溶製合金 の初晶 S i や圧延合金の S i 粒子で見られる よ う な、 一方向の 明 らかに長い方向性がある よ う な粒子形状ではなく 、 どの方向 でもほと んど同 じ寸法の球状、 塊状、 多角形、 その他これらに 分類されない不定形形状である粒状 S i が分散している。 さ ら に、 従来の溶製合金では判然と している初晶 S i と 共晶 S i の 区別は本発明の場合はっけに く い。 このよ う な S i 組織のため に耐摩耗性の向上が大きい。 又、 溶融 A 1 — S i 合金粉末と 固 体 C u — P b 合金粉末と の間で起こ る反応によ り 、 後者の粉末 が結合される。
一般に硬質材料と軟質材料を複合した材料の硬さ はこれらの 中間になるが、 本発明の複合材料では、 銅合金と アルミ ニウム 合金の反応相が生成する こ と があるために、 両者よ り も硬さ の 平均値が高く なる。
(リ ) 溶射法
続いて、 溶射による複合摺動層の形成法を具体的に説明する。 本発明においては、 前掲 ト ライ ボロ ジス ト の第 2 0 頁、 図 2 に 掲載されている各種溶射法を採用する こ と ができ るが、 中でも 高速ガス火炎溶射法 (HVO F, High velocity oxyfuel) を好ま し く 採用する こ と ができ る。 こ の方法は同第 2 0頁右側欄第 4 〜 1 3 行に記載された .. 高速ガス火焰溶射法 (HVOF, High Velocity Oxyfuel) で、 この方法は燃焼がガン内部 (燃焼室) で 行われ、 酸素 ( 0 . 4〜 0 . 6 M P a )、 燃料ガス ( 0 . 4〜 0 .
6 M P a ) と も高圧になってお り 、 ガスジェ ッ ト の速度が非常 に速く 、 その粒子速度も爆発溶射に匹敵する。 この H V O F の 系列に入る各種溶射法が開発され、 ダイ アモン ドジエ ツ ト、 ト ップガン、 連続爆発システムなどがある。」 と の特長を有してい るので、 特徴がある S i 及び S n粒子形態が得られる と 考え ら れる。 溶射された A 1 は急冷凝固によ り 硬化 しているために、 S i 粒子の保持力が高い特長を有し、 このために S i 粒'脱落に よる摩耗を抑える こ と ができ る
溶射粉末と しては C u — P b 合金、 A 1 — S i 合金、 A 1 — S i S n合金などのァ トマイ ズ粉末を使用する こ ^ができ る。 溶射条件と しては、 酸素圧力 0 . 4 5 〜 : 1 . l O M P a 、 燃 料圧力 0 . 4 5 〜 0 . 7 6 M P a 、 溶射距離 5 0 〜 2 5 0 m m が好ま しい。 溶射層の厚さは 1 0〜 5 0 0 /z mが好ま しレ、。
続いて前掲 A〜 Gの各種複合材料を作るための方法と して平 均粉末粒径調整法を示す。 一つの平均値の周 り に正規分布を示 す粒度をもつ銅合金粉末と 同様のアルミ ニウム合金粉末を混合 する例を表 1 に示し、 さ らに銅合金及びアルミ ニウム合金一方 又は両者が正規分布粒度をもつ粗粒及び微粒の混合例を表 2 に 示す。 表 1
C u — P b合金粉末 A 1 一 S i 合金粉末
複合材料
( m ) ( μ )
A 3 0 1 5 0
C 5 0 1 0 0
D 7 5 5 0 表 2
Figure imgf000019_0001
表 2 における微粉 C u — P b と粗粉 A 1 一 S i の組合わせを 選択する と銅合金の溶解量を多く する こ と ができ る。
(リ ) その他の発明の実施形態
溶射層を形成する基板と しては、 鉄、 銅、 アルミ ニ ウムな ど の各種金属基板を使用する こ と ができ る。 基板の形状は、 板状、 円盤状、 管状など任意である。 基板の表面はショ ッ トブラス ト などによ り 、 好ま しく は R z 1 0 〜 6 0 mの表面粗さ に粗面 化しておく と 、 膜の密着強度が高く なる。
溶射層には熱処理を施して硬さ を調整する こ と ができ る。 な お、 この際一部の組織が溶解してもよレ、。
上記した銅一アルミ ニウム複合材料、 重量百分率で、 3 0 % 以下、 好ま し く は 1 0 %以下、 よ り 好ま し く は :! 〜 1 0 %の A
1 9 o S i 〇 S i C 、 Z O s N B N、 A 1 N、
T i N、 T i C、 B 4 C、 ならびに鉄— リ ン化合物、 鉄一 リ ン化 合物、 鉄一ホ ウ素化合物、 鉄一窒素化合物からなる群から選択 された 1 種又は 2 種以上の化合物を耐摩耗性向上成分と して添 加する こ と ができ る。 これらの成分の添加量が 3 0 %を超える と 、 潤滑性、 な じみ性が不良と な り 、 その結果焼付が起こ り 易 く なる。
さ らに又、 本発明においては、 複合材料全体が重量百分率で 3 0 %以下の黒鉛を含有する こ と ができ る。 黒鉛は潤滑性を向 上させ、 摺動層の割れを防止する添加剤である。 黒鉛の含有量 が 3 0 %を超える と 、 溶射層の強度が低下 し好ま し く ない。 な お好ま しい黒鉛の含有量は 1 . 5 〜 1 5 %である。
さ らに又、 本発明においては、 重量百分率で 3 %以下の黒鉛 を含有する青銅を溶射する こ と ができ る。 黒鉛は潤滑性を向上 させ、 斜板摺動層の割れを防止する添加剤である。 黒鉛の含有 量が 3 %を超える と 、 青銅の強度が低下 し好ま しく ない。 なお 好ま しい黒鉛の含有量は 0. 1 5 〜 1 . 5 %である。
本発明においては、 溶射層の密着性を高めるために、 溶射層 と基材の間に、 銅、 ニ ッケル、 アルミ ニ ウム、 銅ニ ッケル系合 金、 ニ ッ ケルアル ミ 系合金、 銅アル ミ 系合金、 銅ス ズ系合金、 ニ ッケル自溶合金及びコバル ト 自溶合金からなる群よ り 選択さ れた 1 種又は 2種以上の材料からなる中間層をめつ き、 スパ ッ タ リ ング、 溶射等の方法によ り 形成する こ と が好ま しい。 これ らの材料はいずれも、 それらの表面が粗なこ とが必要であるが、 青銅と合金化し易いために、 溶射の際に (未) 溶解層 と 強固に 結合して溶射層と裏金と の接合強度を高める。 なお好ま しい中 間層の厚みは 5 〜 1 Ο Ο μ πιである。 銅ー ス ズ合金と しては C u - S η — Ρ系合金を使用する こ と ができ る。 こ の合金は湯流 れが良く かつ酸化され難いので、 溶射によ り 中間層 とする と優 れた性能が得られる。
上記した溶射表面層を、 P b 、 P b合金、 S n 又は S n合金 めっき などの軟質金属層で被覆する と 、 これらは急速に摩耗し て良好なな じみ面を作るために、 その後の摩耗が起こ り 難し く なる。 軟質金属層は、 例えば主と して P b と S n 力、らなる めつ き層である。
さ らに、 上記した溶射表面層を M o S 2も し く は黒鉛あるレ、は M o S 2 と黒鉛の混合物を含み、 これらを樹脂バイ ンダー結合し た皮膜で被覆する こ と もでき る。 これらの被覆層の厚さ は 1 〜 5 0 / mである こ とが好ま しレ、。
以上の (ィ) 〜 ( リ ) の説明 但し、 S i , P b な どの添加 元素は除く 一は合金でない純銅一純アルミ ニ ゥム複合材料にも 適用される。 図面の簡単な説明
第 1 図は本発明実施例 3 における溶射複合材料の表面組織を ェツチングしないで観察した顕微鏡写真である。
第 2 図は本発明実施例 3 における溶射複合材料の表面組織を エッチングして観察した顕微鏡写真である。
第 3 図は本発明実施例 3 における溶射複合材料の断面組織を エッチングしないで観察した顕微鏡写真である。
第 4 図は本発明実施例 3 における溶射複合材料の断面組織を エッチングして観察した顕微鏡写真である。
第 5 図は本発明実施例 7 の摩擦試験の結果を示すグラフであ る。
以下、 実施例によ り本発明の方法をよ り 詳しく 説明する。 発明を実施するための最良の形態
実施例 1
6 0重量%の じ 11 1 0重量% ? b — 1 0重量% ≤ n合金ァ トマイ ズ粉末 (平均粒径 3 0 μ m) と 4 0重量0 /。のアルミ ニゥ ム合金ア トマイ ズ粉末 (但し、 A 2 0 2 4 アルミ ニ ウム合金に 4 0重量% S i を添加 した合金のア トマイ ズ粉、 平均粒径 1 0 0 μ m) を混合し、 市販の純アルミ ニ ウム圧延板にスチールグ リ ツ ド(寸法 0 . 7 m m )によるシ ョ ッ トブラス トを施し、 表面を 粗さ Rz 4 5 μ mに粗面化した基材に厚さ 2 5 0 / mに溶射した。 溶射には、 H V O F型溶射機 (スルザ一メテコ社製 DJ) を使用 し、 下記条件で溶射を行った
酸素圧力 1 . 0 3 M P a 1 5 0 ρ s
燃料圧力 0 . 6 9 M P a l O O p s
溶射距離 1 8 0 m m
溶射厚さ 2 5 0 μ m
こ の溶射層の硬さ は H v 2 6 0〜 3 0 0 であった。 又、 全体の 組成は、 重量百分率で 3 6 % C u, 3 1 % A 1 , 3 % P b, 2 2 % S i , 4 % S n, 残部不純物であった。
実施例 1 及び比較例 1 の溶射合金を次の方法で耐摩耗性試験 に供した。
耐摩耗性試験方法
直径が 8 m mの鋼球 ( S U J 2 ) を 1 k g f の荷重で試験片 の溶射層に押付け、 0 . 5 mm/秒の速度でかつ ドライ条件で摺 動させた。
試験の結果は表 3 に示す。
実施例 2
実施例 1 の銅合金ァ トマイ ズ粉に代えて、 C u — 2 4重量% P b — 4重量% S n合金ァ トマイ ズ粉末を使用 した他は実施例 1 と 同様に溶射を行った。 なお、 実施例 1 と 同様の耐摩耗性試 験の結果を表 3 に示す。 この溶射層の硬さ は H v 2 2 0〜 2 8 0 であった。 又、 全体の組成は、 重量百分率で 3 6 % C u, 3 2 % A 1 , 7 % P b , 2 3 % S i , 2 % S nであった。
実施例 3
7 5 重量°/。の じ 1: ー 1 0重量% ? b — 4重量% ≤ n合金ァ ト マイ ズ粉末 (平均粒径 6 0 μ m) と 2 5重量0 /0のアル ミ ニ ウ ム 合金ア トマイ ズ粉末 (但し、 A 2 0 2 4 アルミ ニウム合金に 4 0重量。/。 S i を添加した合金のァ トマイ ズ粉、 平均粒径 1 0 0 β m) を混合し、 市販の純アル ミ ニ ウ ムを実施例 1 と 同様な条 件で溶射した。 溶射層の表面をエ ッチング しないで観察 した顕 微鏡組織を第 1 図に、 ダラー ド液 (塩化第二鉄 5 g 、 塩酸 1 0 0 c c 、 水 1 0 0 c c ) で 5秒間エッチング した表面組織は第 2 図に示し、 又断面をエッチング しないで観察した顕微鏡組織 を第 3 図に、 ダラー ド液でエ ッチングした断面組織は第 4 図に 示す。 すなわち、 銅合金粉末は形態から判断してア トマイ ズ粉 末の形態を残している塊状部分と 、 これが消失して溶射時に溶 解したアルミ ニウム合金と一緒に晶出 した部分がある。 一方ァ ルミ ニゥム合金は粉末形態をほと んど残 していない。 アルミ 二 ゥム合金相は銅合金相を網状も し く は片状に晶出させる基地と なっているので、 アルミ ニウム合金はほぼ完全に溶融し、 一部 は溶解した銅と反応し、 C u — A 1 化合物 (すなわち第 2 の銅 合金) と して晶出 したもの と判断される。 こ の溶射層の硬さ は H v 2 0 0〜 2 6 0 であった。 又、 全体の組成は、 重量百分率 で 4 5 % C u, 2 7 % A 1 , 6 % P b , 1 6 % S i , 6 % S n であった。
実施例 4
実施例 3 の銅粉に代えて C u — 2 4重量% P b — 4重量% S n合金ア トマイ ズ粉末 (平均粒径 6 0 μ m ) を使用 した他は実 施例 3 と 同 じ条件で溶射を行った。 なお、 実施例 1 と 同様の耐 摩耗性試験の結果を表 3 に示す。 こ の溶射層の平均硬さ は H v 9 0〜 2 6 0 であった。 又、 全体の組成は、 重量百分率で 4 2 % C u , 2 6 % A 1 , 1 3 % P b , 1 7 % S i , 2 % S n であつ た。
実施例 5
実施例 3 の平均粒径 6 0 μ m の銅合金ァ ト マイ ズ粉末に代え て平均粒径 3 0 μ ιη の銅合金ア トマイ ズ粉、 及び Α 2 0 2 4 ァ ノレミ ニ ゥム合金に 2 0重量0 /o S i を添加 した合金のァ トマイ ズ 粉を使用 した他は実施例 3 と 同 じ条件で溶射を行った。 なお、 実施例 1 と 同様の耐摩耗性試験の結果を表 3 に示す。 この溶射 層の平均硬さ は H v 2 2 0 〜 2 6 0 であった。 又、 全体の組成 は、 重量百分率で 5 7 % C u , 2 6 % A 1 , 5 % P b , 5 % S i , 6 % S n であった。
実施例 6
実施例 5 の銅粉(すなわち、 C u — 1 0 重量% P b — 1 0 重 量0 /o S n合金ァ トマイ ズ粉末)に代えて C u 一 2 4重量0 /o P b 一 1 0 % S n合金ア トマイ ズ粉末 (平均粒径 3 0 μ m ) を使用 し た他は実施例 3 と 同 じ条件で溶射を行った。 なお、 実施例 1 と 同様の耐摩耗性試験の結果を表 3 に示す。 この溶射層の硬さ は H v l 9 0 〜 2 4 0 であった。 又、 全体の組成は、 重量百分率 で 5 0 % C u , 3 2 % A 1 , 9 % P b , 7 % S i , 2 % S n で あった。
比較例 1
実施例 1 の銅合金粉末のみを実施例 1 と 同様な方法で溶射し た。 なお、 実施例 1 と 同様の耐摩耗性試験の結果を表 3 に示す。 この溶射層の硬さは H v 1 8 0〜 2 1 0であった。
比較例 2
実施例 1 のアルミ ニウム合金のみを実施例 1 と 同様な方法で 溶射した。 なお実施例 1 と 同様の耐摩耗性試験効果を表 3 に示 す。 この溶射層の硬さは H v 2 1 0〜 2 3 0であった。
実施例 7
実施例 1 の溶射層の上に厚さ が 5 μ mの 9 0 % P b - 1 0 % S n めっき層を形成した。 この溶射層及び実施例 1 の溶射層を 次の方法によ り 摩耗試験に供した。 試験の結果を第 5 図に示す。 これらの実施例の結果を比較する こ と によ り 、 p b 一 S n めつ き層は摩耗量の増加速度を低減する こ とが分かる。 表 3
Figure imgf000025_0001
産業上の利用可能性
以上説明 したよ う に、 本発明は溶射によ り 銅一アル ミ ニウム 複合材料を製造する方法を提供する ものであるから、 基板に混 合粉末を適用する と言 う 単一プロセスで所望の材料を得る こ と ができ る。 又、 この複合材料は銅合金と アルミ ニウム合金は本 質的に融合してお らず、 微細に混合しているから、 これら合金 の特性を活用する こ と が期待される。 又, 係る複合材料はコ ン プレッサーの摺動部材の摺動層な どと して成膜する こ と ができ る。

Claims

請求の範囲
1 . 少な く と も未溶解相を含んでなる銅も し く は第 1 の銅 合金及び少なく と も溶解相を含んでなるアルミ ニウム も しく は 第 1 のアルミ ニウム合金を含んでなる こ と を特徴とする溶射銅 一アルミ ニ ウム複合材料。
2 . 前記第 1 の銅合金が、 前記アル ミ ニ ウ ムも しく は第 1 のアルミ ニウム合金の成分が、 溶射によ り 混入 して生成した第 2 の銅合金を含む請求の範囲第 1 項記載の溶射銅一アル ミ ニゥ ム複合材料。
3 . 前記第 1 のアル ミ ニ ウ ム合金が、 前記銅も し く は第 1 の銅合金の成分が、 溶射によ り 混入して生成 した第 2 のアル ミ ニゥム合金を含む請求の範囲第 1 項又は 2 項記載の溶射銅ーァ ルミ ニゥム複合材料。
4 . 主要組織が、 銅も し く は第 1 の銅合金未溶解相及びァ ルミ ニゥムも しく は第 2 のアルミ ニウム合金溶解相からなる こ と を特徴とする請求の範囲第 1 から 3 項までの何れか 1 項記载 の溶射銅一アルミ ニ ウム複合材料。
5 . さ らに前記溶射表面層が銅も し く は第 1 の銅合金溶解 相及びアルミ ニウムも しく は第 1 のアルミ ニ ウム合金未溶解相 の少な く と も一方を含む請求の範囲第 4項記載の溶射銅一アル ミ ニゥム複合材料。
6 . 前記第 1 の銅合金が P b を含有し、 かつ前記第 1 のァ ルミ ニゥム合金が S i を含有する請求の範囲第 1 から 5 項まで の何れか 1 項記載の溶射銅一アル ミ ニ ウ ム複合材料。
7 . 前記第 1 の銅合金が P b を 4 0重量%以下含有 し、 さ らに前記第 1 のアル ミ ニ ウ ム合金が S i を 1 2 〜 6 0重量%含 有する こ と を特徴とする請求の範囲第 6 項記載の溶射銅一アル ミ ニゥム複合材料。
8 . 前記第 1 の銅合金が 3 0 %重量以下の S n 、 0 . 5 重 量%以下の P、 1 5重量%以下の 1 、 1 0重量%以下の A g 、 5重量。/。以下の M n 、 5 重量%以下の C r , 2 0重量%以下の N i 及び 3 0重量%以下の Z n からなる群から選択された 1 種 又は 2種以上を、 0 . 5 〜 5 0重量。 /0の範囲でさ ら に含有する こ と を特徴とする請求の範囲第 7 項記載の溶射銅一アルミ ニ ゥ ム複合材料。
9 . 前記第 1 のアルミ ニウム合金が、 3 0重量%以下の ≤ n を さ らに含有する こ と を特徴とする請求の範囲第 7 項記載の 溶射銅一アルミ ニ ウム複合材料。
1 0 . 前記第 1 のアル ミ ニ ウ ム合金が、 7 . 0 重量%以下 の C u 、 5 . 0重量%以下の M g 、 1 . 5 重量%以下の^1 11 、 1 . 5重量%以下の F e 、 8重量%以下の C r 、 及び 8 . 0 重 量0 /0以下の N i からなる群の少なく と も 1 種の元素を さ らに含 有する こ と を特徴とする請求の範囲第 7 項記載の溶射銅一アル ミ 二ゥム複合材料。
1 1 . 前記第 1 のアルミ ニウム合金が、 3 0重量%以下の S n を さ らに含有する こ と を特徴とする請求の範囲第 1 0項記 載の溶射銅一アルミ ニウム複合材料。
1 2 . 前記第 1 のアルミ ニウム合金が、 3 0重量。/。以下の
S n を さ らに含有する こ と を特徴とする請求の範囲第 8 項記載 の溶射銅一アルミ ニ ウム複合材料。
1 3 . 前記第 1 のアル ミ ニ ウ ム合金が、 7 . 0重量。/。以下 の C u 、 5 . 0重量。/。以下の M g 、 1 . 5 重量%以下のM n 、 1 . 5重量%以下の 6 、 8重量%以下のじ 1~ 、 及び 8 . 0重 量。 /。以下の N i からなる群の少なく と も 1 種の元素を さ らに含 有する こ と を特徴とする請求の範囲第 8項記載の溶射銅一アル ミ 二ゥム複合材料。
1 4 . 前記第 1 のアルミ ニ ウム合金が、 3 0重量%以下の S n を さ らに含有する こ と を特徴とする請求の範囲第 1 3項記 載の溶射銅一アルミ ニウム複合材料。
1 5 . 全体の組成が、 C u : 8 〜 8 2 重量0/。、 A 1 : 5 〜 5 0重量。/。, P b : 3 2重量。/。以下、 S i : 5 〜 5 0重量%で ある こ と を特徴とする請求の範囲第 7 項の溶射銅一アルミ ニ ゥ ム複合材料。
1 6 . 全体の組成が、 C u : 8 〜 8 2 重量。/。、 A 1 : 5 〜 5 0重量%, P b : 3 2重量%以下、 S i : 5 〜 5 0重量%, S n : 2 4重量%以下, P : 0 . 4重量。/。以下、 A g : 8重量% 以下, M n : 4重量。/。以下, C r : 4重量。/。以下, N i : 1 6 重量%以下、 及び Z n : 2 4重量%以下である こ と を特徴とす る請求の範囲第 8項記載の溶射銅一アルミ ニウム複合材料。
1 7 . 全体の組成が、 C u : 8 〜 8 2 重量0/。, A 1 : 5 〜 5 0重量%, P b : 3 2重量%以下、 S i : 5 〜 5 0重量%,
S n : 2 1 重量%以下である こ と を特徴とする請求の範囲第 9 項記載の溶射銅一アルミ ニウム複合材料。
1 8 . 全体の組成が、 A 1 : 1 5 〜 5 0重量%, C u : 8 〜 5 0重量%, ? 13 : 3 2重量%以下、 S i : 5 〜 5 0重量%, M n : 1 . 2重量%以下, C r : 5重量%以下, N i : 4重量% 以下、 M g : 4 . 0重量%以下及び F e : l . 2重量%である こ と を特徴とする請求の範囲第 1 0項記載の溶射銅一アルミ 二 ゥム複合材料。
1 9 . 全体の組成が、 A 1 : 1 5 〜 5 0重量%, C u : 8 〜 5 0重量。/。, P b : 3 2重量%以下、 S i : 5 〜 5 0重量%,
S n : 2 4重量。/。以下、 M n : 1 . 2重量%以下, C r : 5 重 量%以下, N i : 4重量%以下、 M g : 4 . 0重量%以下及び F e : 1 . 2 重量%以下である こ と を特徴とする請求の範囲第 1 1 項記載の溶射銅一アル ミ ニ ウム複合材料。
2 0 . 全体の組成が、 A 1 : 1 5 〜 5 0 重量0/。, C u : 8 〜 5 0重量%, P b : 3 2重量。/。以下、 S i : 5 〜 5 0重量%, S n : 3 0 %重量以下、 P : 0 . 4 %重量以下、 A g : 8重量% 以下、 M n : 4重量%以下、 C r : 4重量%以下, N i : 1 6 重量%以下, 及び Z n : 2 4重量%以下である こ と を特徴と す る請求の範囲第 1 2項記載の溶射銅一アルミ ニ ウム複合材料。
2 1 . 全体の組成が、 A 1 : 1 5 〜 5 0重量0/。, C u : 8 〜 5 0重量%, ? : 3 2重量%以下、 S i : 5 〜 5 0重量%, S n : 2 4 %重量以下、 P : 0 . 4。/。重量以下、 A g : 8重量% 以下, M n : 5 重量%以下、 C r : 8重量%以下、 N i : 2 0 重量%以下、 Z n : 2 4重量%以下、 M g : 4 . 0重量%以下、 及び F e : 1 重量%以下である こ と を特徴とする請求の範囲第 1 3項記載の溶射銅一アルミ ニ ウム複合材料。
2 2 . 全体の組成が、 A 1 : 1 5 〜 5 0重量%, C u : 8
〜 5 0重量%, P b : 3 2重量%以下、 S i : 5 〜 5 0重量%, S n : 3 0 %重量以下、 P : 0 . 4 %重量以下、 A g : 8重量% 以下, M n : 5重量%以下、 C r : 8重量%以下、 N i : 2 0 重量%以下、 Z n : 2 4重量%以下、 M g : 4 . 0重量%以下、 及び F e : 1 重量%以下である こ と を特徴とする請求の範囲第 1 4項記載の溶射銅一アルミ ニ ウム複合材料。
2 3 . 前記第 1 の銅合金 (但し第 2 の銅合金を除く ) の少 なく と も一部が C u結晶からな り 、 かつ前記第 1 のアル ミ ニ ゥ ム合金 (但し第 2 のアル ミ ニ ウ ム合金は除く ) の少なく と も一 部が A 1 結晶からなる請求の範囲第 1 から 2 2項までの何れか 1 項記載の溶射銅一アル ミ ニ ウ ム複合材料。
2 4 . さ らに 3 0重量%以下の黒鉛粒子を含むこ と を特徴 とする請求の範囲第 6 項から 2 3 項までの何れか 1 項記載の溶 射銅一アル ミ ニ ウ ム複合材料。
2 5 . さ らに 3 0重量0 /0以下の A 1 203、 S i 02、 S i C 、 Z r 〇2、 S i 3N 4、 B N、 A 1 N、 T i N 、 T i C 、 B 4C、 な らびに鉄一 リ ン、 鉄一ホウ素、 鉄一窒素の鉄系化合物からなる 群から選択された 1 種又は 2種以上を含むこ と を特徴とする請 求の範囲第 1 項から 2 4項までの何れか 1 項記載の溶射銅ーァ ルミ 二ゥム複合材料。
2 6 . 基板上に積層 された請求の範囲第 1 から 2 5 項まで の何れか 1 項記載の溶射銅一アルミ ニウム複合材料を軟質金属 層で被覆したこ と を特徴とする溶射銅一アルミ ニ ウム複合材料。
2 7 . 前記軟質金属層が P b 、 P b合金、 3 11又は 3 11合金 めっ きである請求の範囲第 2 6 項記載の溶射銅一アルミ ニゥム 複合材料。
2 8 . 前記軟質金属層が主と して P b と S n からなるめつ き層である請求の範囲第 2 6項記載の溶射銅一アルミ ニウム複 合材料。
2 9 . 前記溶射表面層を M o S 2 も し く は黒鉛あるレ、は M o S 2 と黒鉛の混合物を含む皮膜で被覆したこ と を特徴とする請 求の範囲第 1 項から 2 5項までの何れか 1 項記載の溶射銅ーァ ノレ ミ ニゥム複合材料。
3 0 . 銅又は銅合金粉末と アルミ ニウム又はアル ミ ニ ウ ム 合金粉末を、 これら粉末の一部が溶解し、 残部が溶解しないよ う に、 溶射する こ と を特徴とする銅一 アル ミ ニ ウ ム複合材料の 製造方法。
3 1 . 銅一アルミ ニウム複合材料の主要組織が (ィ) 銅又 は銅合金溶解組織、 (口) 銅又は銅合金未溶解組織、 (ハ) ァル ミ ニゥム又はアルミ ニウム合金溶解組織及び (二) アル ミ ニ ゥ ム又はアルミ ニウム合金未溶解組織の 1 種以上の組合せ (但し )、 (ハ) のみの組合せ及び (口)、 (二) のみの組合せは除 く ) からなる こ と を特徴とする請求の範囲第 3 0項記載の銅一 アルミ ニウム複合材料の製造方法。
3 2 . 前記銅合金が C u — P b 系合金であ り かつ前記アル ミ ニゥム合金が A 1 — S i 系合金である請求の範囲第 3 0 又は 3 1 項記載の銅一アルミ ニウム複合材料の製造方法。
3 3 . さ らに 3 0重量%以下の黒鉛粉末を溶射する こ と を 特徴とする請求の範囲第 3 0 項から 3 2 項までの何れか 1 項記 載の銅一アルミ ニ ウム複合材料の製造方法。
3 4. さ らに 3 0重量0 /0以下の A 1 203、 S i 02、 S i C、 Z r 〇 2、 S i 3N4、 B N、 A 1 N、 T i N、 T i C、 B 4C、 な らびに鉄一 リ ン、 鉄一ホ ウ素、 鉄一窒素の鉄系化合物からなる 群から選択された 1 種又は 2種以上を溶射する こ と を特徴とす る請求の範囲第 3 0項から 3 3項までの何れか 1 項記載の銅一 アルミ ニウム複合材料の製造方法。
3 5 . 粗面化した金属基板上に溶射を行 う 請求の範囲第 3 0から 3 4項までの何れか 1 項記載の銅一アルミ ニウム複合材 料の製造方法。
3 6 . 溶射後溶射層の熱処理を行 う請求の範囲第 3 0 から 3 4項までのいずれか 1 項記載の銅一アルミ ニ ウム複合材料の 製造方法。
PCT/JP2000/004533 1999-07-09 2000-07-07 Materiau composite cuivre-aluminium projete et procede de fabrication associe WO2001004373A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00944322A EP1122328A4 (en) 1999-07-09 2000-07-07 PROJECTED COPPER-ALUMINUM COMPOSITE MATERIAL AND METHOD OF MANUFACTURING THE SAME
BR0006918-3A BR0006918A (pt) 1999-07-09 2000-07-07 Materiais compostos de cobre-alumìnio pulverizados com chama e seu método de produção
US11/282,721 US20060134447A1 (en) 1999-07-09 2005-11-21 Flame-sprayed copper-aluminum composite material and its production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/196491 1999-07-09
JP11/196072 1999-07-09
JP19649199A JP3556863B2 (ja) 1999-07-09 1999-07-09 銅−アルミニウム複合材料の製造方法
JP11196072A JP3135893B2 (ja) 1999-07-09 1999-07-09 銅−アルミニウム複合溶射層

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/282,721 Continuation US20060134447A1 (en) 1999-07-09 2005-11-21 Flame-sprayed copper-aluminum composite material and its production method

Publications (1)

Publication Number Publication Date
WO2001004373A1 true WO2001004373A1 (fr) 2001-01-18

Family

ID=26509521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004533 WO2001004373A1 (fr) 1999-07-09 2000-07-07 Materiau composite cuivre-aluminium projete et procede de fabrication associe

Country Status (6)

Country Link
US (1) US20060134447A1 (ja)
EP (1) EP1122328A4 (ja)
KR (1) KR100408313B1 (ja)
CN (2) CN100422379C (ja)
BR (1) BR0006918A (ja)
WO (1) WO2001004373A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186252A1 (fr) 2016-04-24 2017-11-02 Debili Mohamed Yacine Composite cu/al obtenu par séparation après fusion électromagnétique haute fréquence
CN112359309A (zh) * 2020-11-23 2021-02-12 中国航发沈阳黎明航空发动机有限责任公司 一种用于航空发动机驱动连杆的防粘连涂层的制备方法
CN114042926A (zh) * 2021-11-03 2022-02-15 陕西斯瑞新材料股份有限公司 一种提高铜合金等离子旋转气雾化制粉效率的方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619592B1 (ko) * 2004-10-19 2006-09-13 재단법인 포항산업과학연구원 가변식 압축기 사판의 제조를 위한 용사코팅용 합금재 및 이를 이용한 가변식 압축기 사판의 제조방법
CN100494710C (zh) * 2006-05-25 2009-06-03 上海电器气压缩机泵业有限公司 压缩机轴瓦
CA2692959A1 (en) * 2007-07-18 2009-01-22 Alcan Technology & Management Ag Duplex-aluminium material based on aluminium with a first phase and a second phase and method for producing the duplex-aluminium material
CN102937143B (zh) * 2011-08-15 2015-06-17 上海核威实业有限公司 一种铜铝合金粉末烧结的滑动轴套及其制备方法
CN102991025A (zh) * 2012-12-28 2013-03-27 江阴东大新材料研究院 表面熔覆蜂窝陶瓷夹层的铝合金复合板的制备方法
CN106282649B (zh) * 2016-08-31 2018-11-06 宁波新睦新材料有限公司 一种高强度导电铜基复合材料及其制备方法
CN108018419A (zh) * 2016-11-02 2018-05-11 洛阳铜金属材料发展有限公司 一种铜铝复合材料的分离方法
CN110157943A (zh) * 2018-01-29 2019-08-23 安徽华晶微电子材料科技有限公司 一种高硬度耐摩擦铜基材料
US20210293274A1 (en) * 2018-08-02 2021-09-23 Nissan Motor Co., Ltd. Sliding member and member for internal combustion engine
CN109182833B (zh) * 2018-08-28 2020-11-06 合肥工业大学 一种以球形铬粉为强化相的铜基粉末冶金受电弓滑板材料及其制备方法
CN110184633B (zh) * 2019-05-21 2021-09-28 上海锦町新材料科技有限公司 一种铜铝复合材料表面金属膜的制备方法
CN111235530A (zh) * 2020-01-15 2020-06-05 董翠萍 一种用于铝型材加工的真空喷镀处理工艺
CN112981396B (zh) * 2021-02-23 2022-02-01 山东省科学院新材料研究所 一种改善铝镁异质金属铆接头性能的激光熔覆粉料
CN113333741B (zh) * 2021-06-30 2023-05-02 广东省科学院新材料研究所 一种铜铝氮化硼复合粉末及其制备方法和应用
CN116689767B (zh) * 2023-05-03 2024-02-09 山东雪地铝业科技有限公司 一种航空航天用铝合金材料的制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269897A (ja) * 1993-03-23 1994-09-27 Mitsubishi Heavy Ind Ltd 鋳造用模型の製作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5022455A (en) * 1989-07-31 1991-06-11 Sumitomo Electric Industries, Ltd. Method of producing aluminum base alloy containing silicon
JPH0626989A (ja) * 1992-07-10 1994-02-04 Shimadzu Corp 空間分解能測定装置
ATE163383T1 (de) * 1992-10-30 1998-03-15 Showa Aluminum Corp Hartlotbares aluminiummaterial und verfahren zu deren herstellung
EP0713972B2 (en) * 1994-03-16 2007-12-12 Taiho Kogyo Co., Ltd. Swash plate for a swash plate type compressor
JPH1060617A (ja) * 1996-08-22 1998-03-03 Suruzaa Meteko Japan Kk 高速フレーム溶射方法
JP3251562B2 (ja) * 1999-07-09 2002-01-28 大豊工業株式会社 斜板式コンプレッサーの斜板

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269897A (ja) * 1993-03-23 1994-09-27 Mitsubishi Heavy Ind Ltd 鋳造用模型の製作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186252A1 (fr) 2016-04-24 2017-11-02 Debili Mohamed Yacine Composite cu/al obtenu par séparation après fusion électromagnétique haute fréquence
CN112359309A (zh) * 2020-11-23 2021-02-12 中国航发沈阳黎明航空发动机有限责任公司 一种用于航空发动机驱动连杆的防粘连涂层的制备方法
CN114042926A (zh) * 2021-11-03 2022-02-15 陕西斯瑞新材料股份有限公司 一种提高铜合金等离子旋转气雾化制粉效率的方法
CN114042926B (zh) * 2021-11-03 2024-02-20 陕西斯瑞新材料股份有限公司 一种提高铜合金等离子旋转气雾化制粉效率的方法

Also Published As

Publication number Publication date
US20060134447A1 (en) 2006-06-22
CN1321202A (zh) 2001-11-07
KR20010075003A (ko) 2001-08-09
CN1316054C (zh) 2007-05-16
EP1122328A1 (en) 2001-08-08
CN1683585A (zh) 2005-10-19
CN100422379C (zh) 2008-10-01
KR100408313B1 (ko) 2003-12-01
BR0006918A (pt) 2001-07-31
EP1122328A4 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
US20060134447A1 (en) Flame-sprayed copper-aluminum composite material and its production method
WO1995025224A1 (fr) Plateau oscillant de compresseur du type a plateau oscillant
JP3251562B2 (ja) 斜板式コンプレッサーの斜板
KR100347125B1 (ko) 사판식컴프레서의 사판
KR100347825B1 (ko) 사판식컴프레서의 사판
KR100316558B1 (ko) 알루미늄합금계 미끄럼재료
JP3556863B2 (ja) 銅−アルミニウム複合材料の製造方法
JP3135893B2 (ja) 銅−アルミニウム複合溶射層
JP3753981B2 (ja) 摺動特性に優れたアルミニウム合金溶射層及び摺動材料
JP3048143B1 (ja) 摺動特性に優れた溶射層
JP3294209B2 (ja) 摺動特性に優れたアルミニウム合金溶射層及び摺動材料
JP2002031045A (ja) 斜板式コンプレッサー
JP2965192B2 (ja) 青銅系軸受材料及びその製造方法
JP2002256371A (ja) 摺動部品用銅合金
JP2002249844A (ja) 摺動部品用銅合金
CN117512406A (zh) 一种耐磨高强韧铝基复合材料及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00801924.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000944322

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017002996

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09786759

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000944322

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017002996

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020017002996

Country of ref document: KR