WO2001002584A1 - Adn codant une enzyme ii de pts de sucrose - Google Patents

Adn codant une enzyme ii de pts de sucrose Download PDF

Info

Publication number
WO2001002584A1
WO2001002584A1 PCT/JP2000/004348 JP0004348W WO0102584A1 WO 2001002584 A1 WO2001002584 A1 WO 2001002584A1 JP 0004348 W JP0004348 W JP 0004348W WO 0102584 A1 WO0102584 A1 WO 0102584A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
protein
sucrose
seq
amino acid
Prior art date
Application number
PCT/JP2000/004348
Other languages
English (en)
French (fr)
Inventor
Masako Izui
Masakazu Sugimoto
Tsuyoshi Nakamatsu
Osamu Kurahashi
Original Assignee
Ajinomoto Co.,Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16242522&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001002584(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ajinomoto Co.,Inc. filed Critical Ajinomoto Co.,Inc.
Priority to JP2001508356A priority Critical patent/JP4254103B2/ja
Priority to DE60027161T priority patent/DE60027161D1/de
Priority to BR0012020-0A priority patent/BR0012020A/pt
Priority to US10/019,284 priority patent/US6893852B1/en
Priority to AU55713/00A priority patent/AU781091B2/en
Priority to EP00940903A priority patent/EP1197555B1/en
Publication of WO2001002584A1 publication Critical patent/WO2001002584A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01069Protein-Npi-phosphohistidine-sugar phosphotransferase (2.7.1.69), i.e. sucrose phosphotransferase system II

Definitions

  • the present invention relates to a DNA encoding sucrose PTS enzyme, which is a protein involved in the uptake of sucrose by coryneform bacteria into cells.
  • sucrose PTS enzyme a protein involved in the uptake of sucrose by coryneform bacteria into cells.
  • Bacteria can assimilate many carbon sources, but there are various specific permeation systems for their cell membrane permeation. Also, most bacteria can respond to environmental changes in order to grow under limited nutrients. Cells are equipped with detectors to monitor the environment and select among various carbon sources.
  • PTS phosphoenolpyruvate: carbohydrate phosphotransferase system ⁇ or phosphoenolpyruvate-sugar transport system
  • PTS is involved in permeation and phosphorylation of various sugars (PTS sugars), movement towards these carbon sources, and regulation of many metabolic pathways. PTS catalyzes the following reaction. In addition, PEP represents phosphoenol pyruvate.
  • PTS catalyzes the reaction of transferring phosphate groups to intracellular phosphoenorubyric acid (hereinafter, also referred to as “PEP”) to extracellular sugars to produce phosphorylated sugars and pyruvate.
  • PEP intracellular phosphoenorubyric acid
  • Sugar phosphorylation is linked to sugar permeation through the cell membrane, and the energy required for these processes is supplied by the glycolytic intermediate PEP.
  • the proteins that make up PTS catalyze the following reactions.
  • EI enzyme I
  • Hpr histidine protein
  • EII enzyme II
  • EII enzyme II
  • mannitol a membrane-bound protein consisting of three domains, A, B, and C.
  • glucose-glucose EII is a membrane-bound protein, IIB and IIC, and a soluble protein. Consists of IIA.
  • the transfer of the phosphate group from PEP to the sugar takes place via EI, ⁇ , ⁇ and ⁇ .
  • the EIIC domain the intramembrane part of ⁇ , forms a translocation channel and is probably a specific binding site for substrates.
  • the third type, ⁇ is found in mannose PTS, where both ⁇ and ⁇ ⁇ ⁇ ⁇ domains are fused in a single soluble polypeptide, and two membrane proteins (IIC and IID) bind to mannose. Is involved in the transmission of
  • An object of the present invention is to provide a gene encoding a protein constituting sucrose PTS of a coryneform bacterium.
  • the present applicant isolated a DNA fragment containing a gene encoding sclerase (invertase) of coryneform bacterium, determined the structure thereof, and further isolated a coryneform bacterium having an amplified schlase gene.
  • a method for producing the used amino acid or nucleic acid has been developed (Japanese Patent Application Laid-Open Nos. 5-244958 and 8-196280).
  • four open reading frames ORF-F1, ORF-F2, ORF-F3 and ORF-F3
  • ORF-F4 four open reading frames
  • the amino acid sequence that can be encoded by ORF-F2 was relatively short with 424 amino acid residues. Therefore, the sequence downstream of 0RF-F2 was recloned and its nucleotide sequence was determined.
  • the DNA fragment containing the sucrose gene was a ligated fragment of two independent cloned fragments, and a sucrose PTS enzyme II was newly added downstream of the sucrose gene.
  • the present inventors have found that there is a gene to be deleted, leading to the present invention. That is, the present invention is a protein shown in the following (A) or (B).
  • the present invention also provides a DNA encoding the protein shown in the following (A) or (B).
  • Examples of the DNA include the DNA shown in the following (a) or (b).
  • a DNA comprising a nucleotide sequence consisting of nucleotide numbers 3779 to 5761 in the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing.
  • FIG. 1 is a diagram showing a process for constructing a plasmid for disrupting sucrose PTS Enzym II gene.
  • FIG. 2 is a diagram showing the construction process of pBCT4. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention will be described in detail.
  • the DNA of the present invention is constructed such that the downstream region of the schlase gene of the chromosome DNA of Brevipacterium lactofamentum is PCR (polymer). — It is obtained by amplifying by “ze chain”.
  • the cassette For a region adjacent to a known region on chromosomal DNA, the cassette should be ligated to the DNA fragment containing that region, and amplified by PCR using primers corresponding to the known region and primers corresponding to the cassette. Can be. If the 5 'end of the cassette is dephosphorylated, a nick is generated at the junction between the chromosomal DNA fragment and the 5' end of the cassette. Therefore, the DNA synthesis starting from the cassette primer stops at this connection site, and only the DNA synthesized from the synthetic primer becomes the type II of the synthesis from the cassette primer, forming a complementary strand.
  • Kits using this method are commercially available (TAKARA LA PCRTM in vitro Cloning Kit, manufactured by Takara Shuzo Co., Ltd.) and can be used to obtain DNA of the present invention.
  • coryneform bacterial chromosomal DNA was designated as type ⁇ ⁇ by using an oligonucleotide synthesized based on the nucleotide sequence as a primer.
  • the amplification can be performed directly by the PCR.
  • primers include oligonucleotides having the base sequences shown in SEQ ID NO: 10 and SEQ ID NO: 21.
  • the DNA of the present invention can also be isolated from a chromosomal DNA library by hybridization using a oligonucleotide synthesized based on the nucleotide sequence as a probe.
  • the chromosome DNA of coryneform bacteria can be obtained, for example, by the method of Saito et al. (Described in Biochim. Biophys. Acta, 72, 619-629 (1963)) or the method of KS Kirby (Biochem. J., 64,405, (1956)) And the like.
  • the plasmid used for cloning the DNA of the present invention and for preparing the chromosomal DNA library and the like may be any as long as it can be replicated in microorganisms such as bacteria belonging to the genus Escherichia. , PTWV228, pMW119, pUC19 and the like.
  • nucleotide sequence of the DNA fragment containing DNA of the present invention obtained as described above is shown in SEQ ID NO: 1 in the sequence listing.
  • the region consisting of nucleotide numbers 3779 to 5761 encodes the sucrose PTS enzyme, which is the protein of the present invention.
  • nucleotides 342 to 1505 and nucleotides 233 to 365 are DNAs containing the schlase gene described in JP-A-8-196280. The fragments correspond to 0RF-F1 and 0RF-F2, respectively.
  • the region of nucleotide numbers 1 to 3687 in the nucleotide sequence shown in SEQ ID NO: 1 is It was identical to the nucleotide sequence described in 196280. This proved that the DNA fragment containing the sucrose gene was composed of two independent cloned fragments.
  • the DNA of the present invention may be a substitution, deletion, or insertion of one or more amino acids at one or more positions, as long as the activity of the encoded sucrose PTS enzyme II binding to sucrose is not impaired. It may encode sucrose PTS Enzym II, which may include, add, or invert.
  • the term “plurality” differs depending on the position and type of the amino acid residue in the three-dimensional structure of the protein. This is because some amino acids, such as isoleucine and palin, have highly related amino acids, and such amino acid differences do not significantly affect the three-dimensional structure of proteins. Therefore, it has 70 to 80% or more, preferably 90 to 95% or more homology to the entire amino acid sequence constituting sucrose PTS enzyme II, and has sucrose binding activity. You may. Specifically, the “plurality” is 2 to 180, preferably 2 to 60, and more preferably 2 to 5.
  • DNA encoding a protein substantially identical to sucrose PTS enzyme II as described above can be used, for example, by site-directed mutagenesis to obtain amino acids at specific sites. It can be obtained by modifying the base sequence so that the acid residue contains substitution, deletion, insertion, addition, or inversion. Further, the modified DNA as described above can also be obtained by a conventionally known mutation treatment.
  • the mutation treatment include a method in which DNA encoding sucrose PTS enzyme II is treated in vitro with hydroxylamine or the like, and a microorganism holding DNA encoding sucrose PTS enzyme II, such as a bacterium belonging to the genus Escherichia. Examples of the method include treatment with a mutagen used in the usual mutagenesis treatment, such as N-methyl-N'-nitro-N-nitrosoguanidine (NTG) or nitrite.
  • NTG N-methyl-N'-nitro-N-nitrosoguanidine
  • a DNA encoding the mutated sucrose PTS enzyme II or a cell carrying the same for example, having the nucleotide sequence of base numbers 3779 to 5761 from the nucleotide sequence of SEQ ID NO: 1 in the sequence listing
  • stringent conditions refers to conditions under which a so-called specific hybrid is formed and a non-specific hybrid is not formed.
  • DNAs with high homology for example, DNAs with 50% or more homology, hybridize with each other and DNA with lower homology 60 ° C, lx SSC, 0.1% SDS, preferably 0.1 lx SSC, 0.1% SDS, which is the condition under which the two do not hybridize with each other, or the condition for washing the normal Southern hybridization.
  • Conditions for hybridization at a corresponding salt concentration can be mentioned.
  • the homology is a value calculated by the method of Lipman-Pearson (Science 227, 1435-1441 (1985)) or the method of Takashi & Gotoh (J. Biochem. 92, 1173-1177 (1984)). .
  • Probe design can be performed according to methods known to those skilled in the art. Some genes that hybridize under these conditions include those with a stop codon in the middle, but these can be easily removed by connecting to a commercially available expression vector and checking the size of the expression product. Can be.
  • the protein of the present invention is a protein encoded by the DNA of the present invention, and has an amino acid sequence shown in SEQ ID NO: 2.
  • the protein of the present invention may have one or more amino acid substitutions, deletions, insertions, additions, or inversions in the amino acid sequence of SEQ ID NO: 2 as long as it has an activity of binding to sucrose. It may have an amino acid sequence containing the same.
  • the DNA of the present invention can be used for improving the ability of coryneform bacteria to take up sucrose.
  • PTS consumes PEP for incorporation of sugar into cells, and is considered to be disadvantageous for the synthesis of amino acids and the like in which PEP is located upstream of the biosynthetic system. Therefore, if sucrose could be taken up by an uptake system that does not require PEP by destroying sucrose PTS, it would be advantageous from the viewpoint of productivity of sucrose uptake, such as amino acid.
  • non-PTS of sucrose is not known, but glucose and fructose can be taken up as non-PTS by, for example, allowing sucrose to act extracellularly.
  • the DNA of the present invention is modified so that the DNA encoding sucrose PTS enzyme II having enhanced or reduced functions or the DNA of the present invention linked to an expression control sequence such as a promoter derived from another gene or the like can be used.
  • a coryneform bacterium with enhanced or reduced sucrose uptake ability can be created.
  • DNA encoding sucrose PTS enzyme II with enhanced function is maintained on a vector capable of autonomous replication in coryneform bacterium cells or on a chromosomal DNA.
  • DNA encoding sucrose PTS enzyme II with reduced function is retained on chromosomal DNA by gene replacement using homologous recombination.
  • gene replacement using a plasmid containing a temperature-sensitive replication control region can create coryneform bacteria in which sucrose PTS functions at low temperatures and does not function at high temperatures. it can. W 0
  • Coryneform bacteria to which the present invention can be applied include bacteria which have been conventionally classified into the genus Brevipacterium but are now integrated into the genus Corynepacterium (Int. J. Syst. Bacteriol., 41, 255 (1981)), and also includes bacteria of the genus Brevibacterium, which is closely related to the genus Corynebacterium. Examples of such coryneform bacteria include the following.
  • Brevibacterium dibaricatum (Corynebacterium glutamicum) Brevibacterium flavum (Corynebacterium glutamicum) Brevibacterium inmariophyllum
  • PAM330 (see Japanese Patent Application Laid-Open No. 58-67699), pHM1519 (see Japanese Patent Application Laid-Open No. 58-77895) and the like are examples of vectors that can replicate autonomously in the cells of coryneform bacteria.
  • a DNA fragment capable of autonomously replicating plasmid in coryneform bacteria is extracted from one of these vectors, and inserted into a vector for Escherichia coli, which results in both Escherichia coli and coryneform bacteria. It can be used as a so-called shuttle vector that can be replicated autonomously.
  • shuttle vector that can be replicated autonomously.
  • the following are examples of such shuttle vectors.
  • the accession numbers of the microorganisms holding the respective vectors and the international depository organizations are shown in parentheses. Of these, PHSC4 contains a temperature-sensitive replication control region.
  • PAJ440 C Chills Puff ', Chillis AJ11901 (FERM BP-140)
  • the recombinant vector containing the DNA of the present invention into a coryneform bacterium, it may be carried out according to a transformation method reported so far.
  • a transformation method for increasing the permeability of DNA by treating recipient cells with calcium chloride as reported for Escherichia coli K-12 (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (1970)) and a method for preparing DNA from transgenic cells and introducing DNA as described in Bacillus subtilis (Duncan, CH, Wilson). , GA and Young, FE, Gene, 1, 153 (1977)).
  • the recombinant DNA may be transformed into protoplasts or spheroplasts, as is known for Bacillus subtilis, actinomycetes, and yeast, by transforming the cells of the DNA-receiving bacteria into protoplasts or spheroplasts that readily incorporate the recombinant DNA.
  • Chang, S. and Choen, SN, Molec. Gen. Genet., 168, 111 (1979); Bibb, MJ, Ward, JMand Hopwood, 0. A., Nature, 274, 398 (1978) ), -Hinnen, A., Hicks, JBand Fink, GR, Proc. Natl. Acad. Sci. USA, 75 1929 (1978)) No. 077971 can also be applied. Examples Hereinafter, the present invention will be described in detail.
  • Example 1 Isolation of a gene encoding sucrose PTS enzyme II
  • Brevipacterium lactofermentum AJ12036 was added to M-CM2S medium (Sucrose 5 g / L, polypeptone 10 g / L, yeast extract 10 g / L, NaCl 5 g / L, DL-methionine O. lg / L )
  • M-CM2S medium Sacrose 5 g / L, polypeptone 10 g / L, yeast extract 10 g / L, NaCl 5 g / L, DL-methionine O. lg / L
  • Chromosomal DNA was extracted from the obtained cells using a Bacterial Geneomic DNA Purification kit (manufactured by Advanced Genetic Technologies Corp.). The chromosomal DNA was eluted with 501 of TE buffer (composition: 10 mM Tris-HCl (pH 7.5), lmM EDTA-2Na).
  • chromosomal DNA extracted as described above was subjected to Southern hybridization according to the method described in the Molecular Cloning A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989). Chromosomal DNA was separately digested with BamHI and Smal, which do not cut the C-terminal side of 0RF-F2 and the N-terminal side of 0RF-F3, and subjected to agarose electrophoresis. Approximately 3 kb cut out with BamHI that covers the C-terminal side of 0RF-F2 and the N-terminal side of 0RF-F3 out of the 6.9 kb cloned on PSSM30 (Japanese Patent Laid-Open No. 8-196280) as a probe (JP-A 8-196280, fragments of SEQ ID NOs: 1649 to 4675 in the sequence listing).
  • the downstream region was first amplified by PCR. PCR was performed by Takara Shuzo Co., Ltd. TAKARA LA PCR TM in vitro C This was performed using the loning Kit. Specifically, the procedure was performed as follows.
  • Chromosomal DNA is converted into 10 restriction enzymes (SpeK EcoT I, NheK Pstl, EcoT22K BglII, BamHI, XhoI, Sail, Aval) that generate the same cleaved ends as the cassettes attached to the kit (SEQ ID NOS: 3 to 8).
  • SEQ ID NOS: 3 to 8 was digested completely.
  • PCR was performed using synthetic primer 1 shown in Table 1 and cassette primer 11 (SEQ ID NO: 19). Since no phosphate group has been added to the 5 'end of the cassette, a nick occurs at the junction between the chromosomal DNA fragment and the 5' end of the cassette. Therefore, DNA synthesis starting from the cassette primer stops at this connection site, and only DNA synthesized from the synthetic primer becomes a type II of synthesis from the cassette primer, forming a complementary strand.
  • PCR was carried out using the amplification product obtained above as a type I and using synthetic primer 2 and cassette primer 1-2 (SEQ ID NO: 20).
  • synthetic primer 2 and cassette primer 1-2 SEQ ID NO: 20.
  • chromosome DNA was cut with EcoT14I, PstK BglII, BamHI ⁇ XhoI, and Aval as DNA, fragment could be amplified.
  • the nucleotide sequence was determined for the approximately 1.8 kb fragment amplified using the BamHI-digested DNA fragment as type III.
  • Synthetic primers 3 and 4 were synthesized based on the determined sequence.
  • the fragments were sequentially amplified by PCR using a combination of the synthetic primer 3 and the cassette primer 1, and a combination of the synthetic primer 14 and the cassette primer 12.
  • a fragment could be amplified.
  • the nucleotide sequence of the fragment amplified based on the Pstl-digested DNA fragment was determined.
  • synthetic primers 5 and 6 were synthesized.
  • PCR was performed sequentially with the combination of synthetic primer 5 and cassette primer 1 and the combination of synthetic primer 6 and cassette primer 2
  • amplification was observed when EcoT digested chromosomal DNA and Pstl digested chromosomal DNA were used as type III. The fragment was confirmed. The former was sequenced.
  • the synthesized primers 1 and 8 were synthesized, and the same operation as above was performed.
  • oT14 digested chromosomal DNA was used for type I, an amplified fragment was confirmed. The nucleotide sequence of this amplified fragment was determined.
  • Primers 19 and 10 were synthesized based on the above sequence, and the same operation as above was performed. When Spel digested chromosomal DNA was used for type I, an amplified fragment was confirmed. The nucleotide sequence of this amplified fragment was determined.
  • the nucleotide sequence was determined using a sequence kit manufactured by ABI according to the protocol, and then the nucleotide sequence of the amplified fragment was determined by a fluorescent labeling method.
  • B. subtil is treP trehalose-specif i c enzyme I IBC 43.4
  • Example 2 Preparation of Sucrose PTS Enzym 11 Gene-Disrupted Strain Brevibacterium and lactofermen were prepared in which the ptsl lsuc gene was disrupted. First, a plasmid for gene disruption was constructed (Fig. 1). First, the chromosome of Brevibacterium lactofermentum AJ12036 was transformed into a
  • the ptsl l suc gene fragment amplified by PCR using (SEQ ID NO: 10) and primer 11 (SEQ ID NO: 21) having the nucleotide sequence shown below was synthesized using a TA cloning kit (Invitrogen). The resulting plasmid was designated as pCRS2.
  • the fragment cut out from PCRS2 by digestion with Xbal and Spel was connected to the Xbal site of pHSG399 to construct P399S2.
  • This plasmid was digested with Hpal and BamHI, and the resulting fragment (corresponding to nucleotide numbers 4385 to 4798 in SEQ ID NO: 1) was ligated to pHSG299 that had been digested with Smal and BamHI to construct plasmid pdSB.
  • pdSB is digested with BamHI
  • plasmid PBCT4 is digested with BamHI and a temperature-sensitive replication origin that can replicate in coryneform bacteria cut out.
  • pdSBT contains the ptsll suc gene with the 5 'and 3' ends deleted.
  • pdSBT can replicate autonomously in coryneform bacteria at about 10-32 ° C, but not at about 34 ° C or higher.
  • pBCT4 was constructed as follows.
  • the temperature-sensitive vector pHSC4 described in JP-B-7-108228 was cut with restriction enzymes BamHI and KpnI to obtain a DNA fragment of about 3 kb containing the obtained temperature-sensitive replication origin. Both ends of the obtained DNA fragment were blunt-ended with T4 DNA polymerase.
  • This DNA fragment was ligated with a BamHI linker, cut with BamHI again, and ligated with PHSG399 also cut with BamHI to obtain pBCT4 (FIG. 2).
  • Brevibacterium lactofermentum AJ12036 was transformed with pdSBT, and transformants were selected using a CM2S plate containing 25 g / ml kanamycin.
  • the shape change was performed by the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207779).
  • the obtained transformant was named AJ12036 / pTSBT.
  • the AJ12036 / pTSBT strain was diluted and applied to an M-CM2S plate containing 25 g / ml of kanamycin so as to have a density of about 103 to 105 cfu per plate. After culturing this plate at 34 ° C. overnight, a strain showing drug resistance was obtained as a strain in which chromosome had incorporated brasmid. About the obtained strain, PCR confirmed that the vector plasmid had been integrated into the pTSI Isuc gene of the host chromosome by recombination. This integrated strain was named YdSl.
  • glucose or sucrose As the sugar source (glucose or sucrose 20 g / L, ammonium sulfate 5 g / L, urea 2 g / L, KH 2 P04 lg / L ⁇ MgS04-7H 2 0.5 g / L, FeS04 0.002g / d MnS04 0.002g / dl, Piotin 100 ⁇ g / L, Vitamin Bl 2000 ⁇ g / L, DL-methionine 10mg / dl, Agar 15g / L, pH6.6) 34 ° C. Table 3 shows the results.
  • YdS vermilion can grow on a minimal medium containing only glucose as a carbon source, but could not grow on a minimal medium containing only sucrose as a carbon source.
  • the ptsl lsuc gene is a sucrose-specific protein for sucrose uptake. It was confirmed to be a gene encoding Enzym 11. Table 3 Strain grown on minimal medium Carbon source Sucrose Glucose
  • the present invention provides a gene encoding sucrose PTS enzyme II of a coryneform bacterium and a strain of a coryneform bacterium in which sucrose PTSS does not function. These genes and strains can be used for breeding of strains with improved sugar uptake rate and productivity of amino acids and nucleic acids.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明細 シュ一クロース P T Sェンザィム I Iをコードする DNA 技術分野 本発明は、 コリネ型細菌のシユークロースの細胞内への取り込みに関与する夕 ンパク質であるシュ一クロース P T Sェンザィム I Iをコードする D N Aに関す る。 背景技術 細菌は、 多くの炭素源を資化することができるが、 それらの細胞膜透過には種 々の特異的な透過系が存在している。 また、 大抵の細菌は、 限られた栄養下で生 育するために環境の変化に応答することができる。 環境をモニターして種々の炭 素源の中から選択するために、 細胞は検出器を備えている。 このような、 糖の透 過系及び検出器として、 PTS (phosphoenolpyruvate: carbohydrate phosphotr ansferase system^ 又は phosphoenolpyruvate - sugar transport system) がある (以下、 PTSについては、 Escherichia coli and Salmonella Cullular and M olecular Biology, second edition, ASM (American Society for Microbiolog y) press 参照) 。
PTSは、 種々の糖 (PTS糖) の透過とリン酸化、 これらの炭素源に向かう 運動、 及び多くの代謝経路の調節に関与している。 P T Sは、 次の反応を触媒す る。 尚、 PEPは、 ホスホェノールピルビン酸を表す。
PEP (細胞内) + 糖 (細胞外) →
ピルビン酸(細胞内) + リン酸化糖(細胞内)
PTSは、 細胞内のホスホエノ一ルビルビン酸 (以下、 「PEP」 ともい う。 ) にリン酸基を細胞外の糖に転移してリン酸化糖とピルビン酸を生成する反 応を触媒する。 糖のリン酸化は、 糖の細胞膜透過とリンクしており、 これらのプ 口セスに必要なエネルギーは、 解糖系の中間体である PEPにより供給される。 ェシェリヒア . コリ (Escherichia coli) 及びサルモネラ ·チフィムリウム (Salmonella typhi murium) では、 P T Sを構成するタンパク質は、 以下の反応 を触媒する。
( 1 ) P E P +E I P—E I +ピルビン酸
( 2 ) P-E I +Hp r→P-Hp r + E I
( 3 ) P-Hp r + EIIA→P-EIIA + H r
(4 ) P -EIIA + EIIB→P -EIIB +EIIA
(5) P— EIIB+糖 (細胞外) +EIIB+糖— P (細胞内)
上記反応にあずかるタンパク質のうち、 E I (ェンザィム I ) 及び Hp r (ヒ スチジンタンパク質) は、 すべての P T S糖のリン酸化に関与する可溶性の細胞 質タンパク質であり、 普遍的 PT Sタンパク質 (gereral PTS protein) と呼ばれ ている。
一方、 EII (ェンザィム II) は P T S糖に特異的であり、 糖によっていくつか のドメイン又はタンパク質からなっている。 例えば、 マンニトールでは EIIは A、 B及び Cの 3つのドメインからなる膜結合タンパク質であり、 グルコースゃシュ 一クロースでは EIIは膜結合夕ンパク質である II B及び II Cと、 可溶性夕ンパク質 である IIAからなる。 いずれの場合でも、 P E Pから糖へのリン酸基の転移は、 E I、 ΗΡ Γ、 ΕΠΑ及び ΕΙΙΒを介して行われる。 ΕΙΙの膜内部分である EIIC ドメインは、 転移チャネルを形成しており、 おそらく基質の特異的結合部位であ ると考えられている。
ΕΠの第三のタイプは、 マンノース P T Sにみられるものであり、 Α、 Βの両 ドメインは単一の可溶性ポリぺプチド中で融合しており、 二つの膜内タンパク質 (IIC及び IID) がマンノースの透過に関与している。
ェシエリヒア · コリ及びサルモネラ ,チフィムリウムでは、 Ε Ιをコードする 遺伝子 (ptsl) はクローニング、 配列決定がなされている (Saffen, E.W. et a 1·, J. Biol. Chem. , 262, 16241-16253 (1987)、 De Reuse, H. and Danchin, A., J. Bacterid., 170, 3827-3837 (1988)) 。 また、 EIIについても、 いくつ かの糖ではクローニングされている (Saffen, E.W. et al., J. Biol. Chem. , 2 62, 16241-16253 (1987)、 Erni, B. and Zanolari, B., J. Biol. Chem., 261, 16398-16403 (1986) 、 Nelson, S.O. et al., EMBO J., 3, 1587-1593 (1984) ) 尚、 糖の種類によっては、 その細胞内への取込み系として、 PEPを必要とし ない非 P T S (non-PTS) が存在するものも知られている。 発明の開示 上記のように、 糖の細胞内への取り込みに関する研究が進んでいるが、 産業上 有用なコリネ型細菌では P T Sに関する研究は進んでいない。 本発明は、 コリネ 型細菌のシユークロース P T Sを構成するタンパク質をコードする遺伝子を提供 することを課題とする。 本出願人は、 コリネ型細菌のシュクラ一ゼ (インベルターゼ) をコードする遺 伝子を含む DNA断片を単離してその構造を決定し、 さらに、 増幅したシュクラ ーゼ遺伝子を保持するコリネ型細菌を用いたアミノ酸又は核酸の製造法を開発し ている (特開平 5- 244958号、 特開平 8-196280号) 。 前記 DN A断片のうち、 約 6k bの Smal断片及びそれに含まれるシュクラ一ゼ遺伝子の上流約 lkbの領域には、 4 つのオープン · リーディング . フレーム (ORF- Fl、 0RF-F2, ORF- F3及び ORF- F4) が存在している。 そのうち、 0RF-F2がシュクラ一ゼをコードしていると推定され ている。
しかし、 本発明者らは、 他のシュクラーゼ遺伝子との比較から、 前記 0RF-F2は シュクラーゼ遺伝子全長を含んでいないのではないかと考えた。 すなわち、 既知 のシュクラーゼ遺伝子から推定されるシュクラーゼのアミノ酸残基数は 46 6〜 5 1 1である (Gunaseakren, P., J. Bacteriol. 172(12) 6727-35(1990)) のに 対し、 ORF- F2がコードし得るアミノ酸配列は 4 24ァミノ酸残基と比較的短かつ た。 そこで、 0RF-F2の下流の配列を再クローニングし、 その塩基配列を決定した。 そして、 前記のシュクラ一ゼ遺伝子を含む DNA断片は、 2つの独立したクロー ン化断片が連結されたものであったことが明らかとなり、 新たにシュクラーゼ遺 伝子の下流にシユークロース P T Sェンザィム IIをコ一ドする遺伝子が存在する ことを見出し、 本発明に至った。 すなわち本発明は、 下記 (A) 又は (B) に示すタンパク質である。
(A) 配列表の配列番号 2に記載のアミノ酸配列を有するタンパク質。
(B) 配列表の配列番号 2に記載のアミノ酸配列において、 1若しくは複数個 のアミノ酸の置換、 欠失、 挿入、 付加、 又は逆位を含むアミノ酸配列からなり、 かつ、 シュ一クロースに結合する活性を有するタンパク質。
本発明はまた、 下記 (A) 又は (B) に示すタンパク質をコードする DNAを 提供する。
(A) 配列表の配列番号 2に記載のアミノ酸配列を有するタンパク質。
(B) 配列表の配列番号 2に記載のアミノ酸配列において、 1若しくは複数個 のアミノ酸の置換、 欠失、 挿入、 付加、 又は逆位を含むアミノ酸配列からなり、 かつ、 シュ一クロースに結合する活性を有するタンパク質。
前記 DNAとしては、 下記 (a) 又は (b) に示す DNAが挙げられる。
(a) 配列表の配列番号 1に示す塩基配列のうち、 塩基番号 3779〜576 1からなる塩基配列を含む DNA。
(b) 配列表の配列番号 1に示す塩基配列のうち、 塩基番号 3779〜576 1からなる塩基配列とストリンジヱントな条件下でハイブリダィズし、 かつ、 シ ュ一クロースに結合する活性を有するタンパク質をコードする DNA。 図面の簡単な説明 図 1は、 シユークロース P T Sェンザィム II遺伝子破壊用プラスミ ドの構築過 程を示す図。
図 2は、 pBCT 4の構築過程を示す図。 発明を実施するための最良の形態 以下、 本発明を詳細に説明する。
本発明の DN Aは、 後記実施例においては、 ブレビパクテリゥム · ラクトファ ーメンタムの染色体 DN Aのシュクラ一ゼ遺伝子の下流領域を P CR (ポリメラ —ゼ .チェイン - リアクション) によって増幅することによって取得されたもの である。
染色体 D N A上の既知の領域に隣接する領域は、 その領域を含む D N Aフラグ メントにカセットを連結し、 既知の領域に対応するプライマーと、 カセットに対 応するプライマーを用いた P CRによって増幅することができる。 その際、 カセ ットの 5, 末端を脱リン酸化しておくと、 染色体 DN Aフラグメントとカセット の 5 ' 末端との接続部位にはニックが生じる。 そのため、 カセッ トプライマーか ら始まる DN A合成はこの接続部位で停止し、 合成プライマーから合成された D NAのみがカセットプライマーからの合成の銪型となり、 相補鎖が形成される。 その結果、 特異的な増幅が可能となる (Cassette-ligation mediated PCR法 (Mo lecular and Cellular Probes, 6, 467-475) ) 。 この方法を利用したキットが巿 販されており (宝酒造(株)製 TAKARA LA PCRTM in vitro Cloning Kit) 、 本発 明の D N Aの取得に利用することができる。
本発明の D N Aは、 本発明の D N A及びその隣接領域の塩基配列が明らかとな つたので、 同塩基配列に基づいて合成したォリゴヌクレオチドをプライマーに用 いて、 コリネ型細菌染色体 DNAを錶型とする P CRによって、 直接増幅するこ とができる。 そのようなプライマーとしては、 配列番号 10及び配列番号 2 1に 示す塩基配列を有するオリゴヌクレオチドが挙げられる。 また、 本発明の DNA は、 その塩基配列に基づいて合成したオリゴヌクレオチドをプローブに用いるハ ィプリダイゼ一シヨンにより、 染色体 DN Aライブラリーから単離することもで きる。 コリネ型細菌の染色体 DN Aは、 例えば Saitoらの方法 (Biochim. Biophy s. Acta, 72, 619-629 (1963)に記載) あるいは K. S. Kirbyの方法 (Biochem. J. , 64,405,(1956)) 等の方法により取得することができる。
その他、 染色体 DN Αの調製、 染色体 DN Aライブラリーの作製、 ハイブリダ ィゼーシヨン、 PCR、 プラスミ ド DNAの調製、 DNAの切断及び連結、 形質 転換、 プライマーとして用いるオリゴヌクレオチドの設定等の方法は、 当業者に よく知られている通常の方法を採用することができる。 これらの方法は、 Sambro ok, J., Fritsch, E. F., and Maniatis, T. , "Molecular Cloning A Laborator y Manual , Second Edition", Cold Spring Harbor Laboratory Press (1989)等に 記載されている。
本発明の DN Aのクローニングゃ染色体 DN Aライブラリーの作製等に使用さ れるプラスミ ドとしては、 ェシエリア属細菌等の微生物において複製可能なもの であればよく、 具体的には、 pBR 3 2 2、 p TWV 2 28、 pMW 1 1 9、 p U C 1 9等が挙げられる。
上記のようにして取得される本発明の DN Aを含む D N A断片の塩基配列の一 例を、 配列表の配列番号 1に示す。 同塩基配列中、 塩基番号 3 7 7 9〜57 6 1 からなる領域が、 本発明のタンパク質であるシュ一クロース P T Sェンザィム Π をコードしている。 尚、 配列番号 1に示す塩基配列中、 塩基番号 342〜 1 5 0 5、 及び塩基番号 2 3 3 8〜 3 6 0 9が、 特開平 8- 196280号に記載のシュクラ一 ゼ遺伝子を含む D N A断片中の 0RF-F1、 0RF-F2に各々相当する。 また、 配列番号 1に示す塩基配列と、 特開平 8-196280号に記載の塩基配列とを比較すると、 配列 番号 1に示す塩基配列において塩基番号 1〜 3 6 87の領域が、 特開平 8- 196280 号に記載の塩基配列と一致した。 このことから、 前記シュクラーゼ遺伝子を含む D N A断片は、 2つの独立したクローン化断片からなることが明らかとなった。 本発明の DN Aは、 コードされるシユークロース P T Sェンザィム IIのシユー クロースに結合する活性が損なわれない限り、 1若しくは複数の位置での 1若し くは複数個のアミノ酸の置換、 欠失、 挿入、 付加、 又は逆位を含むシユークロー ス P T Sェンザィム IIをコードするものであってもよい。 ここで、 「複数」 とは、 アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なる。 そ れは、 イソロイシンとパリンのように、 アミノ酸によっては、 類縁性の高いアミ ノ酸が存在し、 そのようなアミノ酸の違いが、 蛋白質の立体構造に大きな影響を 与えないことに由来する。 従って、 シュ一クロース P T Sェンザィム IIを構成す るアミノ酸配列全体に対し、 70〜80 %以上、 好ましくは 9 0〜 9 5 %以上の 相同性を有し、 シユークロースに結合する活性を有するものであってもよい。 具 体的には、 前記 「複数」 は、 2〜 1 80個、 好ましくは、 2〜 6 0個、 より好ま しくは 2〜 5個である。
上記のようなシユークロース P T Sェンザィム IIと実質的に同一のタンパク質 をコードする DN Aは、 例えば部位特異的変異法によって、 特定の部位のァミノ 酸残基が置換、 欠失、 挿入、 付加、 又は逆位を含むように塩基配列を改変するこ とによって得られる。 また、 上記のような改変された DNAは、 従来知られてい る変異処理によっても取得され得る。 変異処理としては、 シユークロース PT S ェンザィム IIをコードする D N Aをヒドロキシルァミン等でインビト口処理する 方法、 及びシユークロース P T Sェンザィム IIをコードする D N Aを保持する微 生物、 例えばェシエリヒア属細菌を、 紫外線照射または N—メチルー N'—ニトロ一 N—ニトロソグァ二ジン (NTG) もしくは亜硝酸等の通常変異処理に用いられてい る変異剤によって処理する方法が挙げられる。
また、 上記のような塩基の置換、 欠失、 挿入、 付加、 又は逆位等には、 シユー クロース P T Sェンザィム IIを保持する微生物の個体差、 種ゃ属の違いに基づく 場合などの天然に生じる変異 (mutant又は variant) も含まれる。
変異を有するシュ一クロース P T Sェンザィム IIをコードする DNAまたはこ れを保持する細胞から、 例えば配列表の配列番号 1に記載の塩基配列のうち、 塩 基番号 3779〜576 1からなる塩基配列を有する D N A又は同塩基配列を有 する DNAから P CR法等により調製されるプローブとストリンジェン卜な条件 下でハイブリダィズし、 かつ、 シュ一クロースに結合する活性を有するシユーク ロース PTSェンザィム IIを有するタンパク質をコードする DN Aを単離するこ とによって、 シユークロース PT Sェンザィム IIと実質的に同一のタンパク質を コードする DN Aが得られる。 ここでいう 「ストリンジェン卜な条件」 とは、 い わゆる特異的なハイプリッドが形成され、 非特異的なハイプリッドが形成されな い条件をいう。 この条件を明確に数値化することは困難であるが、 一例を示せば、 相同性が高い DNA同士、 例えば 50 %以上の相同性を有する DNA同士がハイ ブリダィズし、 それより相同性が低い D N A同士がハイブリダィズしない条件、 あるいは通常のサザンハイプリダイゼ一シヨンの洗いの条件である 60°C、 l x S S C, 0. 1 %SD S、 好ましくは、 0. l x S S C、 0. 1 %SD Sに相当 する塩濃度でハイブリダィズする条件が挙げられる。 ここで相同性は、 Lipman-P earsonの方法(Science 227, 1435-1441 (1985))又は Takashi & Gotohの方法(J. Biochem. 92, 1173-1177 (1984))により算出される値である。 プローブの設計は、 当業者に公知の方法に従って行うことができる。 このような条件でハィブリダイズする遺伝子の中には途中にストップコドンが 発生したものも含まれるが、 それらについては、 市販の発現ベクターにつなぎ発 現産物の大きさを調べることによって、 容易に取り除くことができる。
本発明のタンパク質は、 上記本発明の DN Aによってコードされるタンパク質 であり、 配列番号 2に示すアミノ酸配列を有する。 本発明のタンパク質は、 シュ —クロースに結合する活性を有する限り、 配列表の配列番号 2に記載のアミノ酸 配列において、 1若しくは複数個のアミノ酸の置換、 欠失、 挿入、 付加、 又は逆 位を含むァミノ酸配列を有するものであってよい。
本発明の DN Aは、 コリネ型細菌のシュ一クロース取り込み能の改善等に利用 することができる。 また、 PTSは、 糖の細胞内への取り込みに PEPを消費す るため、 生合成系の上流に PEPが位置するアミノ酸等の合成にとっては不利で あると考えられる。 そこで、 シュ一クロース P T Sを破壊し、 PEPを必要とし ない取り込み系によりシユークロースを取り込むことができれば、 シユークロー スの取り込み速度ゃァミノ酸等の生産性の点からは有利であると考えられる。 尚、 コリネ型細菌では、 シユークロースの非 PT Sは知られていないが、 例えばシュ クラーゼを細胞外に作用させれば、 グルコース及びフルクトースを非 P T Sで取 り込むことができる。
また、 本発明の DNAを改変し、 機能が強化又は低減されたシユークロース P TSェンザィム IIをコードする DNA、 又は他の遺伝子由来のプロモー夕一等の 発現制御配列に連結した本発明の DN Aを、 コリネ型細菌に導入することによつ て、 シュ一クロース取り込み能が強化又は低減されたコリネ型細菌を創製するこ とができる。 具体的には、 機能が強化されたシユークロース PT Sェンザィム II をコードする DNAは、 コリネ型細菌の細胞内において自律複製可能なベクター 上又は染色体 DN A上に保持される。 また、 機能が低減されたシユークロース P T Sェンザィム IIをコードする DN Aは、 相同組換えを利用した遺伝子置換によ つて染色体 DN A上に保持される。 あるいは、 温度感受性複製制御領域を含むプ ラスミ ドを用いた遺伝子置換 (特公平 7- 108228号参照) によって、 低温ではシュ 一クロース P T Sが機能し、 高温では機能しないコリネ型細菌を創製することも できる。 W 0
9 本発明を応用可能なコリネ型細菌は、 従来ブレビパクテリゥム属に分類されて いたが現在コリネパクテリゥム属に統合された細菌を含み (Int . J . Syst . Bact eriol . , 41, 255 ( 1981 ) ) 、 またコリネパクテリゥム属と非常に近縁なブレビバ クテリゥム属細菌を含む。 このようなコリネ型細菌の例として以下のものが挙げ られる。
コリリネネババククテテリゥム · ァセトァシドフィラム
コリリネネババククテテリゥム · ァセトグルタミカム
コリネバクテテリゥム · アルカノリティカム
コリネバクテ丁リゥム · カルナェ
πリネバクテテリゥム · グルタミカム
リネバクテ丁リウム · リリウム (コリネバクテリゥム · グル夕ミカム) コリリネネババククテテリゥム · メラセコーラ
リリネネババククテテリゥム ·サーモアミノゲネス
コリリネネババククテテリゥム · ハーキュリス
ブレビバクテリウム .ディバリカタム (コリネバクテリゥム · グルタミカム) ブレビバクテリウム . フラバム (コリネバクテリゥム · グルタミカム) ブレビバクテリウム · インマリオフィラム
ブレビバクテリウム · ラク トファ一メンタム (コリネバクテリゥム · グル夕ミ カム)
ブレビバクテリウム ロゼゥム
ブレビバクテリウム サヅカロリティカム
ブレビバクテ ')ゥム チォゲ二夕リス
ブレビバクテリゥム アンモニアゲネス (コリネバクテリゥム · アンモニアゲ ネス)
ブレビバクテリウム · アルバム
ブレビバクテリウム ·セリヌム
ァリウム · アンモニアフィラム
コリネ型細菌の細胞内において自律複製可能なベクタ一としては、 PAM330 (特 開昭 58- 67699号公報参照) 、 pHM1519 (特開昭 58- 77895号公報参照) 等が挙げられ る。 また、 これらのベクタ一からコリネ型細菌中でプラスミ ドを自律複製可能に する能力を持つ D N A断片を取り出し、 ェシエリヒア ' コリ用のベクタ一に揷入 すると、 ェシエリヒア · コリ及びコリネ型細菌の両方で自律複製可能ないわゆる シャトルべクタ一として使用することができる。 このようなシャ トルベクターと しては、 以下のものが挙げられる。 尚、 それそれのベクターを保持する微生物及 び国際寄託機関の受託番号をかっこ内に示した。 これらの内、 PHSC4は温度感受性 複製制御領域を含む。
PAJ655 Iシ リヒア 'コリ AJ11882(FERM BP- 136)
コリネハ、、クテリウム'ク、、ルタミクム SR8201(ATCC39135)
PAJ1844 ;シエリヒア'コリ AJ11883(FERM BP- 137)
コリネハ、、クテリゥム ·ク、、ルタミクム SR8202( ATCC39136 )
PAJ611 Iシエリヒア 'コリ AJ11884(FERM BP- 138)
PAJ3148 コリネハ、、クテリゥム'ク、、ルタミクム SR8203(ATCC39137)
PAJ440 ハ、、チルス ·Γフ'、チリス AJ11901(FERM BP- 140)
pHC4 Iシエリヒア 'コリ AJ12617(FERM BP- 3532)
PHSC4 Iシエリヒア.コリ AJ12571(FERM BP- 3524)
本発明の DNAを含む組換えベクターをコリネ型細菌に導入するには、 これま でに報告されている形質転換法に従って行えばよい。 例えば、 ェシヱリヒア ' コ リ K一 1 2について報告されているような、 受容菌細胞を塩化カルシウムで処 理して DNAの透過性を増す方法 (Mandel,M.and Higa,A.,J. Mol. Biol., 53, 159 (1970)) があり、 バチルス .ズブチリスについて報告されているような、 増 殖段階の細胞からコンビテントセルを調製して DN Aを導入する方法 ( Duncan, C.H. , Wilson, G. A. and Young, F.E., Gene, 1, 153 (1977)) がある。 あるいは、 バ チルス 'ズプチリス、 放線菌類及び酵母について知られているような、 DNA受 容菌の細胞を、 組換え DNAを容易に取り込むプロ トプラストまたはスフエロプ ラストの状態にして組換え DNAを DNA受容菌に導入する方法 (Chang, S.and Choen,S.N.,Molec. Gen. Genet., 168, 111 (1979);Bibb, M. J. , Ward, J.M.and Ho pwood,0. A., Nature, 274, 398 ( 1978), -Hinnen, A. , Hicks, J.B.and Fink, G.R. , Pro c. Natl. Acad. Sci. USA, 75 1929 (1978)) 、 及び電気パルス法 (特開平 2— 2 0 7 7 9 1号公報参照) も応用できる。 実施例 以下、 本発明を詳細に説明する。 実施例 1 シユークロース P T Sェンザィム I Iをコ一ドする遺伝子の単離
< 1 >ブレビパクテリゥム . ラクトフアーメンタム AJ12036 (FERM BP- 734) の染 色体 DNAのサザンハイブリダィゼ一シヨンによる解析
ブレビパクテリゥム · ラクトフアーメンタム AJ12036を、 M- CM2S培地 (シユーク ロース 5g/L、 ポリペプトン 10g/L、 酵母エキス(Yeast Extract )10g/L、 NaCl 5g/L、 DL-メチォニン O. lg/L) 4ml中でー晚培養し、 菌体を回収した。 得られた菌体より Bacterial Geneomic DNA Purificationキヅ 卜 (Advanced Genetic Technologies Corp.社製) を用いて染色体 DNAを抽出した。 染色体 DNAは、 T E緩衝液 (組成: 10mM トリス- HC1 (pH7.5) 、 lmM EDTA-2Na) 50 1で溶出した。
上記のように抽出した染色体 DNAについて、 Molecular Cloning A Laboratory Manual , Second Edi tion, Cold Spring Harbor Laboratory Press ( 1989)に言己載 の方法に従い、 サザンハイブリダィゼーシヨンを行った。 染色体 DNAは、 0RF- F2の C末端側と 0RF- F3の N末端側の領域を切断しない BamH I、 Smalで別々に消化し、 ァガ ロース電気泳動に供した。 プローブとして、 PSSM30 (特開平 8- 196280号) 上にク ローニングした 6.9kbのうち 0RF-F2の C末端側と 0RF- F3の N末端側の領域をカバーす るような BamHIで切り出される約 3kbの断片 (特開平 8-196280、 配列表の配列番号 1649〜4675のフラグメント) を用いた。
ハイブリダィゼーシヨンの結果、 バンドが 2本検出され、 0RF- F2と 0RF- F3は染 色体上では隣接しないことが明らかとなった。 そこで、 シュクラーゼ遺伝子の下 流の配列を再確認することとした。
< 2 >シュクラーゼ遺伝子の下流領域の配列の決定
シュクラーゼ遺伝子の下流の領域の塩基配列の決定については、 まず、 下流領 域を PCR法により増幅した。 PCRは、 宝酒造(株)製 TAKARA LA PCR T M in vi tro C loning Kitを用いて行った。 具体的には以下のようにして行った。
染色体 DNAを、 前記キッ ト付属のカセッ ト (配列表配列番号 3〜8) と同じ切断 末端を生じる制限酵素 1 0種類 (SpeK EcoT I、 NheK Pstl、 EcoT22K BglII、 BamHI、 XhoI、 Sail, Aval) を用いて完全消化した。 これらのフラグメントを鍩型 として、 表 1に示す合成プライマー 1と、 カセットプライマ一 1 (配列番号 1 9) を用いて PCRを行った。 カセットの 5 ' 末端にはリン酸基が付加されていない ので、 染色体 DN Aフラグメントとカセットの 5 ' 末端との接続部位にはニック が生じる。 そのため、 カセッ トプライマーから始まる DNA合成はこの接続部位 で停止し、 合成ブライマーから合成された DN Aのみがカセヅ トプライマーから の合成の錶型となり、 相補鎖が形成される。
次に上記で得られた増幅産物を铸型として、 合成プライマー 2とカセッ トブラ イマ一 2 (配列番号 20) を用いて PCRを行った。 その結果、 铸型として染色体 D NAを EcoT14I、 PstK BglII、 BamHIヽ XhoI、 Avalで切断した DNAを用いた場合に、 フラグメン卜が増幅できた。 BamHI消化した DNAフラグメントを铸型として増幅さ れた断片約 1.8kbについて、 塩基配列決定を行った。
表 1 合成ブライマーの塩基配列及びその位置 フ。ライマ- 塩基配列 配列番号 1における 番号 位置 (塩基番号)
1 CGTCTTGCGAGGATTCAGCGAGCTG (配列番号 9 ) ( 3159- -3183)
2 AGCTGGATTTCGGCCATGAATTCTA (配列番号 10 ) ( 3179- -3203)
3 GATCTGTTCGGTCCGCAATCACT (配列番号 11 ) 418 ハ 丄
4 CACTGGTGGAGATGTTCCCTCAGAT (配列番号 12) (4209- -4233)
5 CATCTTCGCAACCGCATCCATGGCC (配列番号 13) (4801- -4825 )
し し し 丄 し し し 丄1 ±ノ (4831- -4854)
7 GGGCCTTGCAGGTGCTTCAGGTGTC (配列番号 15 ) (4888- -4912)
8 CCGCTGTTCTTGGTATTACAGAGCC (配列番号 16 ) (4914- -4938)
9 GCAGCGTCAGCGATGCCATGTTTGC (配列番号 17) ( 5322- -5346)
10 GCTTGGCTCAGGTGTTGCGATCGTC (配列番号 18) ( 5356- -5380)
決定した配列を基に、 合成プライマー 3と 4を合成した。 上記と同様にして、 合成プライマー 3とカセットブライマー 1の組み合せ、 及び合成プライマ一 4と カセットプライマ一 2の組み合わせで、 フラグメントを順次 PCRにより増幅した。 その結果、 染色体 DNAを Pstlまたは BamHIで切断した DNAを錶型にした場合に、 フラ グメントが増幅できた。 Pstl消化した DNA断片を基に増幅したフラグメントについ て塩基配列の決定を行った。
決定した配列をもとに、 合成ブライマー 5と 6を合成した。 合成プライマー 5 とカセヅ トプライマ一 1、 合成プライマー 6とカセヅ トプライマー 2の組み合わ せで、 順次 PCRを行ったところ、 鍩型として EcoT 消化染色体 DNA及び Pstl消化染 色体 DNAを用いた場合に、 増幅断片が確認できた。 前者について塩基配列決定を行 つた。
更に、 合成プライマ一 7と 8を合成し、 上記と同様の操作を行ったところ、 Ec oT14消化染色体 DNAを錶型に用いたときに、 増幅断片が確認できた。 この増幅断片 の塩基配列を決定した。
上記配列を基に、 プライマ一 9と 1 0を合成し、 上記と同様の操作を行ったと ころ、 Spel消化染色体 DNAを铸型に用いたときに、 増幅断片が確認できた。 この増 幅断片の塩基配列を決定した。
塩基配列の決定は、 ABI社製のシーケンスキヅトを用いてプロトコールに従い反 応させた後、 蛍光標識法により増幅フラグメン卜の塩基配列を決定した。
以上の結果を、 配列表の配列番号 1に示す。 同塩基配列中の塩基番号 3684以降 に、 新規に 0RFが存在することが判明した。 0RFは塩基番号 3779〜5761の 1983bpか らなり、 決定した塩基配列を翻訳して得られる蛋白質は 661アミノ酸であると推定 された。 同 0RFについて GENBANK CDSデ一夕ベースにより相同性検索を行った。 そ の結果、 表 2に示すように、 前記 0RFがコードし得るタンパク質は、 シユークロ一 スの取り込みに特異的な蛋白質であるシユークロース P T Sェンザィム I Iと高い 相同性を示した。 以下、 前記 0RFを ptsl lsuc遺伝子と呼ぶ。 表 2 新規 0 R Fの相同性検索の結果 細菌及び遺伝子名 相同性のある既知の蛋白質 相同性 (50
P. pentsaceus scrA Enzymel lscr 48.8
B. subtil is treP trehalose - specif i c enzyme I IBC 43.4
S. xylosus scrA Enzymel lscr 52.2
S.mutans scrA Enzymel lscr 45.4 S. typhi murium
plasmid pUR400 scrA Enzynel l scr 37.6
実施例 2 シユークロース P T Sェンザィム 11遺伝子破壊株の作製 ptsl lsuc遺伝子が破壊されたブレビバクテリゥム · ラクトファーメン夕ムを作 製した。 まず、 遺伝子破壊用のプラスミ ドを構築した (図 1 ) 。 まず、 ブレビバ クテリウム · ラクトフアーメンタム AJ12036の染色体を鍩型に、 前記プライマー 2
(配列番号 1 0 ) 及び以下に示す塩基配列を有するプライマー 1 1 (配列番号 2 1 ) を用いて PCRで増幅した ptsl l suc遺伝子断片を、 TAクローニングキッ ト (Inv i trogen社製) を用いてクローニングし、 同プラスミ ドを pCRS2とした。
(プライマー 1 1 )
CGCTACTGCTGAACGAACATGTCC (配列番号 1の塩基番号 5947〜5924に相当)
PCRS2より、 Xbal、 Spe l消化により切り出した断片を pHSG399の Xbalサイ トに接 続し、 P399S2を構築した。 このプラスミ ドを Hpal、 BamHI消化し、 生じたフラグメ ント (配列番号 1の塩基番号 4385〜4798に相当) を、 Smal、 BamHI消化した pHSG2 99と連結し、 プラスミ ド pdSBを構築した。 次に、 pdSBを BamHI消化し、 プラスミ ド PBCT4を BamHI消化して切り出したコリネ型細菌で複製可能な温度感受性複製起点
(特公平 7-108228号参照) を接続し、 プラスミ ド pdSBTを構築した。 同プラスミ ド は、 5'末端部及び 3'末端部を欠失した ptsl l suc遺伝子を含んでいる。 pdSBTは、 コ リネ型細菌中で、 約 10〜32°Cでは自律複製できるが、 約 34°C以上では自律複製で きない。
尚、 pBCT4は、 次のようにして構築した。 特公平 7- 108228号に記載の温度感受性 ベクタ一 pHSC4を制限酵素 BamHI及び Kpn Iで切断し、 得られた温度感受性複製起点 を含む約 3kbの DNA断片を得た。 得られた DNA断片の両末端を T4 DNAポリメラーゼに より平滑末端化した。 この DNA断片に BamHIリンカ一を接続し、 これを再び BamHIで 切断した後、 同じく BamHIにて切断した PHSG399と接続し、 pBCT4を得た (図 2 ) 。 pdSBTでブレビパクテリゥム . ラクトフアーメンタム AJ12036を形質転換し、 25 g/mlのカナマイシンを含む CM2Sプレート上を用いて形質転換体を選択した。 形 質転換は、 電気パルス法 (特開平 2- 207791号参照) により行った。 取得した形質 転換体を、 AJ12036/pTSBTと命名した。 AJ12036/pTSBT株をカナマイシン 25〃g/ml を含む M- CM2Sプレートに、 プレートあたり 10 3 〜10 5 cfu程度になるように希釈し て塗布した。 このプレートを 34°Cにて一晩培養した後、 薬剤耐性を示す株を染色 体にブラスミ ドが組み込まれた株として取得した。 得られた株について、 相同組 換えにより宿主染色体の pTSI Isuc遺伝子の中にベクタープラスミ ドが組み込まれ ていることを、 PCRにより確認した。 この組み込み株を YdSlと命名した。
YdS 朱について、 糖源をグルコース又はシュ一クロースとする最少培地 (グル コースまたはシユークロース 20g/L、 硫酸アンモニゥム 5g/L、 尿素 2g/L、 KH 2 P04 lg/Lヽ MgS04 - 7H 2 0 0.5g/L, FeS04 0.002g/d MnS04 0.002g/dl、 ピオチン 100〃g/L、 ビタミン B l 2000〃g/L、 DL-メチォニン 10mg/dl、 寒天 15g/L、 pH6.6) にて 34°Cにて培養した。 結果を表 3に示す。 YdS 朱は、 グルコースのみを炭素源 とする最少培地では生育できるが、 シユークロースのみを炭素源とする最少培地 では生育不可能であったことから、 ptsl lsuc遺伝子は、 シユークロース取り込み においてシユークロース特異的な蛋白であるェンザィム 11をコードする遺伝子で あると確認された。 表 3 最少培地上での生育 菌株 炭素源 シユークロース グルコース
AJ12036 可 可
YdSl 不可 可
産業上の利用可能性 本発明により、 コリネ型細菌のシユークロース P T Sェンザィム I Iをコードす る遺伝子、 及びシュ一クロース P T Sが機能しないコリネ型細菌の菌株が提供さ れる。 これらの遺伝子及び菌株は、 糖の取り込み速度やアミノ酸及び核酸等の生 産性が向上した菌株の育種等に利用することができる。

Claims

請求の範囲
1. 下記 (A) 又は (B) に示すタンパク質。
(A) 配列表の配列番号 2に記載のアミノ酸配列を有するタンパク質。
(B) 配列表の配列番号 2に記載のアミノ酸配列において、 1若しくは複数個の アミノ酸の置換、 欠失、 挿入、 付加、 又は逆位を含むアミノ酸配列からなり、 か つ、 シユークロースに結合する活性を有するタンパク質。
2. 下記 (A) 又は (B) に示すタンパク質をコードする D NA。
(A) 配列表の配列番号 2に記載のアミノ酸配列を有するタンパク質。
(B) 配列表の配列番号 2に記載のアミノ酸配列において、 1若しくは複数個の アミノ酸の置換、 欠失、 挿入、 付加、 又は逆位を含むアミノ酸配列からなり、 か つ、 シユークロースに結合する活性を有するタンパク質。
3. 下記 (a) 又は (b) に示す DNAである請求項 2記載の DNA。
(a) 配列表の配列番号 1に示す塩基配列のうち、 塩基番号 3779〜576 1 からなる塩基配列を含む DN A。
(b) 配列表の配列番号 1に示す塩基配列のうち、 塩基番号 3779〜576 1 からなる塩基配列とストリンジェン卜な条件下でハイブリダィズし、 かつ、 シュ 一クロースに結合する活性を有するタンパク質をコ一ドする DNA。
PCT/JP2000/004348 1999-07-02 2000-06-30 Adn codant une enzyme ii de pts de sucrose WO2001002584A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001508356A JP4254103B2 (ja) 1999-07-02 2000-06-30 シュークロースptsエンザイムiiをコードするdna
DE60027161T DE60027161D1 (de) 1999-07-02 2000-06-30 Für das saccharose-pts-enzym ii kodierende dna
BR0012020-0A BR0012020A (pt) 1999-07-02 2000-06-30 Proteìna, e, dna
US10/019,284 US6893852B1 (en) 1999-07-02 2000-06-30 Dna encoding sucrose pts enzyme II
AU55713/00A AU781091B2 (en) 1999-07-02 2000-06-30 DNA encoding sucrose PTS enzyme II
EP00940903A EP1197555B1 (en) 1999-07-02 2000-06-30 Dna encoding sucrose pts enzyme ii

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/189512 1999-07-02
JP18951299 1999-07-02

Publications (1)

Publication Number Publication Date
WO2001002584A1 true WO2001002584A1 (fr) 2001-01-11

Family

ID=16242522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004348 WO2001002584A1 (fr) 1999-07-02 2000-06-30 Adn codant une enzyme ii de pts de sucrose

Country Status (8)

Country Link
US (1) US6893852B1 (ja)
EP (1) EP1197555B1 (ja)
JP (1) JP4254103B2 (ja)
CN (1) CN1298854C (ja)
AU (1) AU781091B2 (ja)
BR (1) BR0012020A (ja)
DE (1) DE60027161D1 (ja)
WO (1) WO2001002584A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054207A2 (en) * 2001-12-21 2003-07-03 Degussa Ag Fermentation process for the preparation of l-amino acids using coryneform bacteria
EP1246922B1 (en) * 1999-07-01 2010-10-13 Paik Kwang Industrial Co., Ltd. Corynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU222503B1 (hu) 1995-06-07 2003-07-28 Ajinomoto Co., Inc. Eljárás L-lizin termelésére
EP1484410B1 (en) 2003-06-05 2011-11-02 Ajinomoto Co., Inc. Fermentation methods using modified bacteria with increased byproduct uptake.
JP4655539B2 (ja) * 2004-08-06 2011-03-23 味の素株式会社 アシラーゼを用いたβアミノ酸の製造方法
KR101058894B1 (ko) * 2009-03-03 2011-08-23 씨제이제일제당 (주) L-아미노산 생산 미생물 및 이를 이용한 l-아미노산 생산방법
CN107709275B (zh) 2015-06-02 2019-01-11 科氏农艺服务有限责任公司 微生物菌剂组合物及其在农业中的用途
CN114369559B (zh) * 2020-10-15 2024-05-03 宁夏伊品生物科技股份有限公司 一种产l-氨基酸的重组菌株及其构建方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724017A2 (en) * 1995-01-30 1996-07-31 Ajinomoto Co., Ltd. Sucrase gene derived from coryneform bacteria
US5556776A (en) * 1992-03-04 1996-09-17 Ajinomoto Co., Inc. Sucrase gene derived from coryneform bacteria

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696561B1 (en) 1909-07-09 2004-02-24 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
JPH07108228B2 (ja) 1990-10-15 1995-11-22 味の素株式会社 温度感受性プラスミド
JP3473042B2 (ja) 1992-04-28 2003-12-02 味の素株式会社 変異型アスパルトキナーゼ遺伝子
CN1179043C (zh) 1993-08-24 2004-12-08 味之素株式会社 突变型磷酸烯醇丙酮酸羧化酶,其基因,和氨基酸的生产方法
JP3783065B2 (ja) 1994-03-04 2006-06-07 味の素株式会社 L−リジンの製造法
FR2736066B1 (fr) 1995-06-30 1998-11-20 Ajinomoto Kk Procede d'amplification d'un gene par transposon artificiel, bacterie coryneforme obtenue par ce procede et procede de production d'un acide amine a l'aide de cette bacterie
JP4035855B2 (ja) 1996-06-05 2008-01-23 味の素株式会社 L−リジンの製造法
JP4075087B2 (ja) 1996-12-05 2008-04-16 味の素株式会社 L−リジンの製造法
SK285201B6 (sk) 1996-12-05 2006-08-03 Ajinomoto Co., Inc. Rekombinantná DNA, autonómne reprodukovaná v bunkách koryneformnej baktérie, koryneformná baktéria a spôsob výroby L-lyzínu, vektor pVK7
JP4066543B2 (ja) 1998-01-12 2008-03-26 味の素株式会社 発酵法によるl−セリンの製造法
JP3997631B2 (ja) 1998-01-12 2007-10-24 味の素株式会社 発酵法によるl−セリンの製造法
MXPA01012844A (es) 1999-06-25 2002-07-09 Basf Ag Genes de corynebacterium glutamicum que codifican proteinas de tolerancia y resistencia al estres.
DE19929363A1 (de) 1999-06-25 2000-12-28 Basf Lynx Bioscience Ag Gene aus Corynebacterium glutamicum für die Folsäurebiosynthese und ihr Einsatz zur mikrobiellen Herstellung von Folsäure
JP2003517291A (ja) 1999-06-25 2003-05-27 ビーエーエスエフ アクチェンゲゼルシャフト 炭素代謝およびエネルギー生産に関連するタンパク質をコードするコリネバクテリウム−グルタミカム遺伝子
SK18912001A3 (sk) 1999-06-25 2002-10-08 Basf Aktiengesellschaft Gény corynebacterium glutamicum kódujúce proteíny zapojené do membránovej syntézy a membránového transportu
KR20070087035A (ko) 1999-06-25 2007-08-27 바스프 악티엔게젤샤프트 대사 경로 단백질을 코딩하는 코리네박테리움 글루타미쿰유전자
AU783697B2 (en) 1999-07-01 2005-11-24 Paik Kwang Industrial Co., Ltd. Orynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins
DE19929365A1 (de) 1999-06-25 2000-12-28 Basf Lynx Bioscience Ag Teilsequenzen der Gene des Primär- und Sekundärmetabolismus aus Corynebacterium glutamicum und ihr Einsatz zur mikrobiellen Herstellung von Primär- und Sekundärmetaboliten
TR200103711T2 (tr) 1999-06-25 2002-07-22 Basf Aktiengesellschaft Homeostas ve adaptasyondaki proteinleri kodlayan corynebacterıum glutamıcum genleri.
JP4623825B2 (ja) * 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
US6395528B1 (en) 2000-01-27 2002-05-28 Ajinomoto Co., Inc. Phosphoserine phosphatase gene of coryneform bacteria

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5556776A (en) * 1992-03-04 1996-09-17 Ajinomoto Co., Inc. Sucrase gene derived from coryneform bacteria
EP0724017A2 (en) * 1995-01-30 1996-07-31 Ajinomoto Co., Ltd. Sucrase gene derived from coryneform bacteria

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GUNASEKARAN P. ET AL.: "Cloning and sequencing of the sacA gene: characterization(sucrase from Zymomonas mobilis)", J. BACTERIOL., vol. 172, no. 12, 1990, pages 6727 - 6735, XP002930778 *
REIZER J. ET AL.: "Novel phosphotransferase system revealed by bacterial genome analysis- a gene cluster encoding a unique enzyme I and the proteins of a fructose-like permease system", MICROBIOLOGY, vol. 141, no. 4, 1995, pages 961 - 971, XP002930779 *
SATO Y. ET AL.: "Characterization and sequence analysis of the scrA gene encoding enzyme II Scr of the streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system", J. BACTERIOL., vol. 171, no. 1, 1989, pages 263 - 271, XP002930782 *
STEFFEN TOBISCH ET AL.: "Identification and characterization of a new beta-glucoside utilization system in bacillus subtilis", JOURNAL OF BACTERIOLOGY, vol. 179, no. 2, 1997, pages 496 - 506, XP002930781 *
WAGNER E. ET AL.: "Cloning and characterization of the srcA gene encoding the sucrose-specific enzyme II of the phosphotransferase system from staphylococcus xylosus", MOL. GEN. GENET., vol. 241, no. 1-2, 1993, pages 33 - 41, XP002930783 *
WEHMEIER U.F. ET AL.: "Molecular analysis of the phosphoenolpyruvate-dependent L-sorbose: phosphotransferase system from klebaiella pneumoniae and of its multidomain structure", MOL. GEN. GENET., vol. 246, no. 5, 1995, pages 610 - 618, XP002930780 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1246922B1 (en) * 1999-07-01 2010-10-13 Paik Kwang Industrial Co., Ltd. Corynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins
WO2003054207A2 (en) * 2001-12-21 2003-07-03 Degussa Ag Fermentation process for the preparation of l-amino acids using coryneform bacteria
WO2003054207A3 (en) * 2001-12-21 2004-01-29 Degussa Fermentation process for the preparation of l-amino acids using coryneform bacteria

Also Published As

Publication number Publication date
EP1197555B1 (en) 2006-04-05
BR0012020A (pt) 2002-07-02
CN1298854C (zh) 2007-02-07
US6893852B1 (en) 2005-05-17
EP1197555A4 (en) 2003-07-09
JP4254103B2 (ja) 2009-04-15
CN1371419A (zh) 2002-09-25
AU5571300A (en) 2001-01-22
AU781091B2 (en) 2005-05-05
EP1197555A1 (en) 2002-04-17
DE60027161D1 (de) 2006-05-18

Similar Documents

Publication Publication Date Title
CN111315876B (zh) Atp磷酸核糖基转移酶突变体以及使用该突变体生产l-组氨酸的方法
US7211421B2 (en) Gene encoding dihydrodipicolinate reductase from Bacillus methanolicus
US5766925A (en) Method of producing L-lysine
JP4075087B2 (ja) L−リジンの製造法
KR100268324B1 (ko) L-리신의 제조 방법
Reid et al. The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon
RU2294370C2 (ru) Способ получения спирта с использованием микроорганизма
WO2001048146A1 (fr) Procede de production d&#39;acide l-amine et nouveau gene
JP3948027B2 (ja) 核酸類の製造方法
WO2001002584A1 (fr) Adn codant une enzyme ii de pts de sucrose
EP1712632B1 (en) Gene for a heat resistant enzyme of the amino acid biosynthetic pathway derived from thermophilic Coryneform bacteria
US7329523B2 (en) Phosphoserine phosphatase of coryneform bacteria and variants thereof
US7033802B1 (en) Penicillin binding protein gene and process for producing L-glutamic acid
JP2000232887A (ja) コリネ型細菌のグルタミン酸ラセマーゼ遺伝子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200200128

Country of ref document: VN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2001 508356

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 55713/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10019284

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000940903

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008121028

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000940903

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 55713/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2000940903

Country of ref document: EP