WO2001000744A1 - Compose abrasif pour plateau en verre de disque dur - Google Patents

Compose abrasif pour plateau en verre de disque dur Download PDF

Info

Publication number
WO2001000744A1
WO2001000744A1 PCT/JP2000/004172 JP0004172W WO0100744A1 WO 2001000744 A1 WO2001000744 A1 WO 2001000744A1 JP 0004172 W JP0004172 W JP 0004172W WO 0100744 A1 WO0100744 A1 WO 0100744A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium
polishing
abrasive
particles
oxide
Prior art date
Application number
PCT/JP2000/004172
Other languages
English (en)
French (fr)
Inventor
Isao Ota
Tohru Nishimura
Kenji Tanimoto
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to EP00939161A priority Critical patent/EP1201725A4/en
Publication of WO2001000744A1 publication Critical patent/WO2001000744A1/ja
Priority to US10/678,093 priority patent/US7578862B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to an abrasive suitable for polishing the surface of a glass substrate for an optical disk or a magnetic disk.
  • Abrasives for glass substrates for optical disks and magnetic disks are made by dispersing abrasive particles containing cerium oxide obtained by baking and then pulverizing a bastnaesite ore or rare earth chloride in water. is there. Although these abrasives are relatively inexpensive, the content of cerium oxide is at most 590%, and it is difficult to control the purity further since natural minerals are used as raw materials. .
  • the average secondary particle diameter of the powder is 13 m, and it is difficult to reduce the average secondary particle diameter to 1 ⁇ m or less when breaking down into fine particles by a breakdown method such as dry grinding.
  • Japanese Patent Application Laid-Open No. 5-326469 discloses an average particle diameter of 1 ⁇ m or less and a purity of cell oxide of 99.5. /.
  • the above-mentioned abrasive for cerium oxide is described, and Patent No. 28644451 has an average particle diameter of 0.1 m or less and a purity of cerium oxide of 99.5. /. It is described that a high-quality oxide film can be obtained by polishing with the above-mentioned cerium oxide abrasive.
  • Japanese Patent Application Laid-Open No. 11-62882 discloses a method for reducing the content of cerium oxide in polishing liquid to 0.58% by weight. A method for polishing a substrate is disclosed.
  • International Publication No. WO98 / 212989 discloses that an abrasive composition for a magnetic recording medium substrate containing an abrasive, a polishing aid, and water has an average primary particle diameter of 0.0. It describes a method using an abrasive material of 0.23 xm.
  • polishing surface is required.
  • oxidized second-cell abrasive grains which are obtained by calcining bath tonesite ore and rare earth chloride, dry-pulverized cerium oxide with a purity of 590% and an average secondary particle diameter of 13 m, However, it is becoming difficult to obtain a good polished surface.
  • the reduction of the polishing rate due to reducing the average secondary particle diameter of the second oxide particles to 1 ⁇ m or less while reducing the average secondary particle diameter of the second oxide particles is considered.
  • a stable slurry in which second oxide particles having an average secondary particle diameter of 0.10.5 ⁇ m are dispersed in water as an abrasive,
  • a glass hard disk polishing agent characterized by containing CeO 2 at a concentration of 0.230% by weight.
  • the glass material according to the first aspect wherein the proportion of cerium in all the rare earth elements in the abrasive is 95% or more in terms of oxide weight.
  • the second cerium oxide particles are crystalline second cerium oxide particles having an average secondary particle diameter of 0.10.5 ⁇ , preferably 0.20.3 ⁇ m.
  • the average secondary particle size means that a sol in which particles are dispersed in a single particle state or in a state close to this is called a primary sol, and particles in the primary sol are referred to as primary particles.
  • the primary sol is composed of a number of primary particles, which are called secondary sols. These individual aggregates are called secondary particles.
  • a value corresponding to a value corresponding to 50%, that is, a median diameter is referred to as an average secondary particle diameter.
  • the measurement can be performed using a commercially available centrifugal particle size distribution analyzer, for example, CAPA-700 manufactured by Horiba Seisakusho Co., Ltd.
  • the proportion of cerium in all the rare earth elements in the abrasive is 95% or more in terms of oxide weight. This occurs in the cerium oxide particles (acid Cerium oxide) Z (cerium oxide + other rare earth oxides).
  • second oxide particles second oxide particles produced by a known method can be used.
  • Particularly preferred second cerium oxide particles are, as a first production method, a cerium (II) salt and an alkaline substance in an aqueous medium under an inert gas atmosphere at a concentration of 3 to 30 (OH) / ( C e 3 +) after generating a suspension of hydroxide Seri um (III) are reacted in a molar ratio, immediately under atmospheric pressure to the suspension, oxygen or oxygen at a temperature of 1 0 ⁇ 9 5 ° C
  • a cerium (III) salt and an alkaline substance are mixed in an aqueous medium under an inert gas atmosphere with a concentration of 3 to 30 (OH).
  • the reaction is carried out in a molar ratio of) / (C +) to form a suspension of cerium (III) hydroxide, ie ceric hydroxide.
  • the reaction in an inert gas atmosphere is, for example, a reaction in which a cerium (III) salt and an alkaline substance are reacted in an aqueous medium using a reaction vessel equipped with a gas-replaceable stirrer and a thermometer. It is.
  • the aqueous medium is usually water, but may contain a small amount of a water-soluble organic solvent.
  • Gas replacement involves submerging a tubular gas inlet into an aqueous medium, blowing an inert gas into the aqueous medium, and allowing the gas to flow out from an outlet attached to the upper part of the aqueous medium in the reaction vessel. Fill the inside with inert gas. It is preferable to start the reaction after the replacement of the inert gas is completed.
  • This reaction vessel can be made of a material such as stainless steel or glass lining. At this time, it is desirable that the inside of the reaction vessel is under atmospheric pressure, and therefore, it is preferable that the inflow and outflow of gas are substantially the same.
  • the gas inflow and outflow are preferably set at 0.01 to 20 liters / min with respect to 1 liter of reactor volume.
  • the inert gas examples include a nitrogen gas and an argon gas, and a nitrogen gas is particularly preferable.
  • the cerium (II) salt may be, for example, cerium nitrate, cerium chloride, cerium sulfate, cerium carbonate, or ammonium cerium nitrate. (III).
  • the above cerium (III) salts can be used alone or as a mixture.
  • examples of the alkaline substance include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide and organic bases such as ammonia, amine, and quaternary ammonium hydroxide.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • organic bases such as ammonia, amine, and quaternary ammonium hydroxide.
  • ammonia, sodium hydroxide, and a hydration power rim are preferable, and these can be used alone or as a mixture.
  • the above-mentioned cerium (III) salt and an alkaline substance can be added to an aqueous medium and reacted in a reaction vessel.
  • a cerium (III) salt aqueous solution and an alkaline substance aqueous solution are prepared.
  • the two aqueous solutions can be mixed and reacted.
  • the cerium (III) salt is preferably used in an aqueous medium at a concentration of 1 to 50% by weight.
  • Ratio of Se Um (III) salt and Al force re substance in the first production method the ( ⁇ _H) Z (C e 3 +) 3 ⁇ in a molar ratio of 3 0, preferably 6: 1 2.
  • (OH) / case (C e 3 +) molar ratio is less than 3 are not neutralized to parsley um (III) salt is completely hydroxide Seri um (III), a part Seri ⁇ beam (III) It is not preferable because it remains in the suspension as a salt.
  • This cerium (III) salt has a much slower oxidation reaction rate to cerium (IV) than cerium hydroxide (II), so that cerium hydroxide (III) and cerium (III) salt coexist.
  • the reaction time in the first step varies depending on the amount of the charge and is generally about 1 minute to 24 hours.
  • the first step it is possible to react a cellium (III) salt with an alkaline substance in a gas containing oxygen such as air instead of an inert gas. Since cerium hydroxide ( ⁇ ) comes into contact with oxygen, which in turn changes to cerium (IV) salt and cerium oxide, a number of cerium oxide nuclei are generated in the aqueous medium. If the particle size distribution of the obtained second oxide particles is broad and the particle size is uniform, Absent.
  • oxygen or a gas containing oxygen is blown into the suspension formed in the first step at atmospheric pressure at a temperature of 10 to 95 ° C to 0.1 to 0.5. It produces crystalline second oxide particles having an average secondary particle diameter of ⁇ . That is, in the second step, the cell oxide (III) in the suspension obtained in the first step is converted into highly crystalline second cell oxide particles in the presence of oxygen or a gas containing oxygen.
  • oxygen or a gas containing oxygen include gaseous oxygen, air, or a mixed gas of oxygen and an inert gas. Examples of the inert gas include nitrogen and argon. When a mixed gas is used, the content of oxygen in the mixed gas is preferably 1% by volume or more. In the second step, it is particularly preferable to use air because of the ease of production.
  • the second step is performed in the same reaction vessel following the first step, and following the introduction of the inert gas in the first step, the inert gas is immediately replaced with oxygen or a gas containing oxygen immediately. Gas is introduced. That is, oxygen or a gas containing oxygen is blown into the suspension obtained in the first step from a thin gas inlet port submerged in the suspension.
  • the total amount of oxygen or oxygen-containing gas blown into the suspension is an amount capable of converting cerium hydroxide (III) to cerium oxide, ( ⁇ 2 ) It is preferable that the molar ratio of / (Ce 3 + ) is 1 or more. When the above molar ratio is less than 1, cerium hydroxide ( ⁇ ⁇ ) remains in the suspension, which comes into contact with oxygen in the air during washing after the completion of the second step, thereby generating fine particles.
  • the particle size distribution of the obtained second oxide particles may be wide and the particle size may not be uniform.
  • the inflow amount and outflow amount of gas per unit time are preferably set to 0.01 to 50 liters Z per 1 liter of the volume of the reaction tank.
  • the blowing of the inert gas in the first step and the blowing of oxygen or gas containing oxygen in the second step are not temporally continuous, the surface of the suspension obtained in the first step Comes into contact with air, and the surface layer has second oxide particles with various particle sizes. Since the layer containing the rubber particles is generated, the particle diameter of the oxidized second lithium particles obtained in the subsequent second step is not uniform.
  • This second step is preferably performed while stirring the suspension with a stirrer such as a disperser so that oxygen or a gas containing oxygen is uniformly present in the suspension.
  • a stirrer such as a disperser so that oxygen or a gas containing oxygen is uniformly present in the suspension.
  • Oxidation of the cerium hydroxide (II) in the first production method to form crystalline second cerium oxide particles involves the formation of nuclei of crystalline second cerium oxide particles and the growth of the crystals.
  • the nucleation rate and crystal growth rate can be controlled by the cerium salt concentration, the concentration of the alkaline substance, the reaction temperature, the concentration of the oxidizing aqueous solution, and the supply amount.
  • the concentration of cerium salt, the concentration of alkaline substance, the reaction temperature, the concentration of oxidizing aqueous solution, and the supply amount during nucleation and crystal growth can be freely changed. By adjusting these factors, the particle diameter can be arbitrarily controlled within the range of the average secondary particle diameter of 0.1 to 0.5 v.m.
  • the second cerium oxide particles obtained in the first production process of the above particles are taken out as a slurry from the reactor and washed by an ultrafiltration method or a filter press cleaning method to remove impurities.
  • the particles thus obtained can be dispersed in an aqueous medium to form a polishing liquid.
  • the second cerium oxide particles used in the present invention are preferably prepared by mixing a cerium (III) salt and an alkaline substance in an aqueous medium with 3 to 30 (OH) / ( (C e ⁇ -) Molar ratio to produce a suspension of cerium hydroxide, immediately containing oxygen or oxygen at a temperature of 10-95 ° C under atmospheric pressure It is to use crystalline second oxide particles having an average secondary particle diameter of 0.1 to 0.5 ⁇ m (micron) produced by blowing gas.
  • a cerium (III) salt and an alkaline substance are added to an aqueous medium in an open medium under a condition of 3 to 30 (OH) Z. (Ce 3 + )
  • the reaction was performed at a molar ratio to produce a suspension of cerium hydroxide, and in a second step, the suspension produced in the first step was added under atmospheric pressure to 10 to 9 A crystal having an average secondary particle diameter of 0.1 to 0.5 m by blowing oxygen or a gas containing oxygen at a temperature of 5 ° C
  • the purpose of this method is to produce a soluble second oxide particle.
  • cerium (III) salt and alkaline substances are neutralized in open air without using inert gas
  • the produced cerium (III) hydroxide comes into contact with oxygen.
  • the cerium (IV) salt or cerium oxide is gradually changed, and nuclei of cerium oxide are generated in the aqueous medium.
  • the cerium (III) salt is reacted with an alkaline substance in an oxygen-containing gas such as air, and the resulting cerium hydroxide (III) ) Comes into contact with oxygen and changes into a series of (IV) salts and second-order oxides one after another, so the particle size distribution of second-order oxide particles is wider than in the first production method.
  • the particle size becomes non-uniform.
  • a high-quality polished surface can be obtained as an abrasive for a glass hard disk, and cerium oxide obtained by the second production method is also useful.
  • the second cell oxide particles obtained by the above method for producing particles were dried at 110 ° C., and the diffraction pattern was measured with an X-ray diffractometer.
  • the specific surface area of the cerium oxide particles determined by the gas adsorption method (BET method) is 2 to 200 m 2 ng.
  • the second cerium oxide particles obtained by these methods can be used as an abrasive dispersed in pure water, or in an aqueous medium in the presence of an ammonium salt at a temperature of 50 to 250 ° C.
  • Abrasives can be made by heating.
  • aqueous medium water is usually used, but a small amount of a water-soluble organic medium can be contained.
  • ammonium salt having a non-oxidizing component as an anion component can be used.
  • the ammonium salt having a non-oxidizing anionic component is most preferably ammonium carbonate or ammonium hydrogencarbonate, and these can be used alone or as a mixture.
  • Anmoniumu salt having a non-oxidizing anion component of the above 0.5 and with the aqueous medium [N H4 +] / [C e 0 2] molar ratio:! ⁇ 3 0 are preferred, also in an aqueous medium It is preferable for the concentration of the Anmoniumu salt and 1-3 0 weight 0/0.
  • the heat treatment is performed at a temperature of 50 to 250 ° C, preferably 50 to 180 ° C. As a result, crystalline cerium oxide particles having a surface modified can be obtained.
  • the heating time can be from 10 minutes to 48 hours.
  • the heat treatment temperature is 100 ° C. or lower, the reaction is performed using an open reaction vessel, but when the temperature exceeds 100 ° C., the reaction is performed using an autoclave apparatus or a supercritical processing apparatus.
  • the heat-treated second cell oxide particles can be taken out as slurry in the treatment tank and washed by ultrafiltration or filter pressing to remove impurities.
  • the surface-modified secondary oxide particles that have been heat-treated in the presence of an ammonium salt having a non-oxidizing anionic component can be easily dispersed in an aqueous medium to form a polishing liquid.
  • This aqueous medium preferably uses water.
  • the sol containing cerium oxide particles whose surface was modified by heat treatment in an aqueous medium in the presence of an ammonium salt having a non-oxidizing anion component was cleaned to remove impurities.
  • the quaternary ammonium ion (NR 4 + , where R is an organic group) is converted to a molar ratio of (NR 4 +) / (C e ⁇ 2 ) in the range of 0.001-1. It is preferable to add such a compound because the stability of the polishing liquid is improved.
  • the quaternary ammonium silicate is provided by adding a quaternary ammonium silicate, a quaternary ammonium halide, a quaternary ammonium hydroxide, or a mixture thereof, particularly a quaternary ammonium silicate.
  • the addition of quaternary ammonium hydroxide is preferred.
  • the organic group R include a methyl group, an ethyl group, a propyl group, a hydroxyshethyl group, and a benzyl group.
  • the quaternary ammonium compounds that supply the quaternary ammonium ions include, for example, tetramethylammonium silicate, tetraethylammonium silicate, and tetraethanol ammonium silicate.
  • tetramethylammonium silicate tetraethylammonium silicate
  • tetraethylammonium silicate tetraethylammonium silicate
  • tetraethanol ammonium silicate Monoethylammonium ammonium silicate, trimethylbenzylammonium silicate, tetramethylammonium hydroxide, and tetraethylammonium hydroxide.
  • the polishing liquid of the present invention prepared as described above may also contain a small amount of an acid or a base.
  • the pH of the polishing liquid is preferably from 2 to 12.
  • the polishing liquid (sol) is a water-soluble acid [H +] [CeO molar ratio in the range of 0.001 to 1 makes it possible to obtain an acidic polishing liquid (sol).
  • This acidic sol has a pH of 2-6.
  • water-soluble acids include inorganic acids such as hydrogen chloride and nitric acid, organic acids such as formic acid, acetic acid, oxalic acid, tartaric acid, citric acid and lactic acid, acidic salts thereof, and mixtures thereof.
  • the polishing liquid of the invention a water-soluble base [OH -] / [C E_ ⁇ 2] possible to Al force re sol by to be contained in the range of 0.0 0 1-1 in a molar ratio Can be done.
  • This alkaline polishing liquid (sol) has 8 to 11 of 11.
  • the above-mentioned water-soluble base includes, in addition to the quaternary ammonium silicate and the quaternary ammonium hydroxide described above, monoethanolanoreamin, dietananolamine, triethanolamine, aminoeamine. Examples thereof include amines such as chillethanoreamine, N, N-dimethylethanolamine, N-methylethanolamine, monopropanolamine, and morpholine, and ammonia.
  • the second cell oxide particles have a chemical polishing action simultaneously with a mechanical polishing action, and are present in the presence of an ammonium salt having a non-oxidizing anionic component.
  • Heat treatment in an aqueous medium produces a large amount of hydroxyl groups ( ⁇ C e _OH) on the surface of the second cerium oxide particles, and these ( ⁇ C e — OH) groups form hydroxyl groups on the surface of the silicon oxide film. It is thought that the chemical action on ( ⁇ S i -OH) increases the polishing rate.
  • the ammonium salt having a non-oxidizing anionic component exerts a reducing action on the surface of the oxidized second cell particles.
  • the polishing agent for a glass substrate for an optical disk or magnetic disk of the present invention prepared by the above method uses cerium oxide particles having an average secondary particle diameter of 0.1 to 0.5 ⁇ m as the polishing agent. It is a stable slurry dispersed in water. If the average secondary particle diameter of the second oxide ceramic particles is larger than 0.5 ⁇ , the surface roughness is undesirably large. If the average secondary particle diameter of the second cell oxide particles is smaller than 0.1 ⁇ m, the polishing rate is undesirably reduced.
  • the proportion of cerium in the total rare earth elements in the abrasive is preferably 95% or more in terms of oxide weight, and if it is less than 95%, the polishing rate is reduced, and Worse.
  • the concentration of Ce 2 is 0.2 to 30 weight. / 0, preferably 0.2 weight. If it is lower than / 0 , the polishing rate will be slow and the productivity will be poor. If it exceeds 30% by weight, the viscosity of the slurry increases and the polishing resistance becomes extremely large.
  • the polishing liquid of the present invention is stable for a long period of one year or more when left at room temperature. Further, an excellent point of the abrasive of the present invention is that it can be recycled. Usually, once the polishing rate has been reduced (that is, the polishing capacity has been reduced), the polishing agent reduces the productivity in the polishing process, and such a polishing agent discards the polishing agent itself. . However, in the present invention, the used second cerium oxide particles having a reduced polishing ability are converted into an aqueous medium at a temperature of 50 ° C. in the presence of an ammonium salt having a non-oxidizing anion component. By performing the heat treatment, the polishing ability is restored again, and a polishing agent having an improved polishing rate can be obtained.
  • the polishing agent of the present invention described above is very excellent as a polishing agent for glass substrates for high-speed polishing optical disks and magnetic disks.
  • the glass substrate for an optical disk or a magnetic disk includes a crystallized glass hard disk, an aluminosilicate reinforced glass or a soda lime tempered glass disk.
  • the reaction solution is washed with a rotary filter-press (manufactured by Kotopi Giken), and the 2 0 mu S / cm, to obtain a slurries of C e O concentration at 2 wt 0/0.
  • the p H was adjusted to 5 with 1 0% nitric acid, C e 0 2 concentration of 5 wt.
  • a slurry of / 0 was prepared.
  • Example 2 To a 100 liter stainless steel reaction tank was added the second cell oxide slurry of Example 1 and an aqueous solution of ammonium carbonate, which had been washed with a rotary filter press (manufactured by Kotobuki Giken), to reduce the concentration of ammonium carbonate. 10 weight. /. , C E_ ⁇ 2 concentration 1 5 by weight.
  • the slurry was prepared so that the amount of slurry was 100 kg at / 0 .
  • the slurry was heated up to 95 ° C and heated at this temperature for 8 hours.
  • Z rare earth oxide cerium (III) nitrate aqueous solution with purity of 99.0% 762 g
  • the reaction solution was washed pushing water with Nutsche, redispersed Uetsu Tokeki with pure water, conductivity 4 2 z SZ cm, was obtained slurries of C e O concentration 2 3.4 wt 0/0.
  • the scan La Li scratch p H was adjusted to 5 with 1 0% nitric acid, C E_ ⁇ 2 concentration of 5 wt. / 0 slurry was prepared.
  • cerium oxide powder (average secondary particle diameter: 1.4 m, cerium oxide content: 57%, specific surface area determined by gas adsorption method (BET method): 3.0 m 2 / g) water dispersed, C E_ ⁇ 2 concentration of 5 wt. /. Slurry was prepared.
  • Lap master LM-15 A polishing pad made of polyurethane (POLITEX DG (trademark), 38 mm (made by Speed Fam)) of artificial leather type is attached to the board of a polishing machine Polishing was performed with a load of 11 KPa applied to the polished surface.
  • the rotation speed of the platen is 45 rotations per minute, and the supply amount of the abrasive slurry is 10 ml / min.
  • the workpiece was taken out, washed with pure water, dried, and the polishing rate was determined from the weight loss.
  • the average surface roughness (R a) of the polished surface was measured by New View 100 (manufactured by Zygo).
  • Table 1 shows the polishing rate, the average surface roughness (R a), and the ratio of the polishing rate to the average surface roughness.
  • Table 1 Abrasive polishing rate Average surface roughness ratio (polishing rate
  • the average secondary particle diameter is 0.3 ⁇ m and the content of cerium oxide is 99.5% and 99.6% based on the total amount of rare earth oxides.
  • the abrasives of Comparative Examples 1 and 2 had an average secondary particle diameter of 1.4 ⁇ m and a content of cerium oxide of 57%, and had a lower average surface roughness than Comparative Example 1. It can be seen that the polishing rate ratio is high and the polishing characteristics are excellent.
  • polishing rates of the abrasives of Examples 3 and 4 are slightly reduced because a large number of small particles of 230 nm are mixed. However, it has a good average surface roughness and is useful as a precision abrasive for optical disks and magnetic glass disks.
  • Oxygen or an oxygen-containing gas is blown into the cerium hydroxide obtained by reacting the cerium salt with an alkaline substance, and the second oxidizer obtained by the first and second production methods of the present invention. Since lithium particles have a large specific surface area and a large amount of hydroxyl groups per unit weight, they are suitable for chemical mechanical polishing. In other words, the abrasive obtained by dispersing the cerium oxide powder of Comparative Example 1 in water attracts the polished surface against the effect of scratching the polished surface. Abrasives are particularly suitable for applications requiring precise polishing with a good polished surface with little unevenness due to their chemical and mechanical action. Further, the second-cerium oxide abrasive obtained by these methods exhibits a good polishing effect on glass, and is suitable for polishing a glass hard disk.
  • the above abrasive in which the ratio of cerium to the total amount of rare earth elements in the abrasive of the substrate and the total amount of the rare earth elements in the abrasive is 95% or more in terms of oxide weight, has a small average surface roughness and a low average surface roughness. The ratio of the polishing rate to the roughness is increased, and the polishing characteristics are excellent.
  • the abrasive of the present invention can also reduce the average secondary particle diameter of the cerium oxide particles to reduce the average surface roughness and obtain a high quality polished surface.
  • the proportion of cerium in all the rare earth elements in the polishing agent involved in the polishing of the glass hard disk is set to 95% or more in terms of the weight of the oxide. Since the polishing rate is increased to increase the ratio of the polishing rate to the average surface roughness, the productivity of the polishing step can be improved and the cost can be reduced.
  • the abrasive of the present invention is useful as a finish abrasive because a high-quality polished surface can be obtained when polishing a glass substrate for an optical disk or a magnetic disk.
  • the polishing composition of the present invention in which a polishing accelerator such as aluminum nitrate, iron nitrate, or basic aluminum sulfinate is added to the polishing liquid of the present invention is provided on an aluminum disk that can be supplied as an industrial product. It is useful for polishing the surface of a plated layer of Ni—P or the like, the surface of an aluminum oxide layer, or the surface of aluminum, its alloys, or alumite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

明細書 ガラス製 ドディスク用研磨剤 技術分野
本発明は光ディスクや磁気ディスク用ガラス基板の表面研磨に好適な研磨剤に 関する。 背景技術
光ディスクや磁気ディスク用ガラス基板の研磨剤は、 バス トネサイ ト鉱石や塩 化希土を焼成後、 乾式粉砕することによって得られた酸化セリ ゥムを含有する砥 粒を水に分散させたものである。 この砥粒は比較的安価であるが、 酸化セリ ウム の含有率と してせいぜい 5 0 9 0 %であり、 天然鉱物を原料と しているため純 度をこれ以上制御することは難しレ、。また粉末の平均二次粒子径は 1 3 mで、 乾式粉砕などのブレークダウン方式で微粒子化する場合、 平均二次粒子径を 1 μ m以下にすることは困難である。
半導体デバイスの S i O 2 酸化膜の研磨剤に関しては、 特開平 5— 3 2 6 4 6 9号公報に平均粒子径 1 μ m以下で酸化セリ ゥムの純度が 9 9 . 5。/。以上の酸化 セリ ゥムの研磨剤が記載され、 特許第 2 8 6 4 4 5 1号には平均粒子径 0 . 1 m以下で酸化セリ ゥムの純度が 9 9 . 5。/。以上の酸化セリ ゥムの研磨剤で研磨し、 高品質の酸化膜が得られることが記載されている。
一方、 光ディスクや磁気ディスク用ガラス基板の研磨においては、 特開平 1 1 - 6 0 2 8 2号公報に研磨液中の酸化セリ ゥム含有量を 0 . 5 8重量%にする 磁気ディスク用ガラス基板の研磨方法が開示されている。 また国際公開番号 W O 9 8 / 2 1 2 8 9号公報には、 研磨剤と研磨助剤と水とを含む磁気記録媒体基板 用研磨材組成物において、 一次粒子の平均粒径が 0 . 0 0 2 3 x mである研磨 材を用いる方法が記載されている。
近年、 光ディスクや磁気ディスク用ガラス基板の性能は、 ますます高密度化、 高速化していく傾向にあり、 そのため表面粗さや平均うねりの小さい高品質な研 磨面が求められている。 しかし、 バス トネサイ ト鉱石や塩化希土を焼成し、 乾式 粉砕した酸化セリ ゥムの純度が 5 0 9 0 %、 平均二次粒子径は 1 3 mの酸 化第二セリ ゥム砥粒では、 良質な研磨面を得ることが難しくなってきている。 これらを解決するため、 酸化第二セリ ゥム粒子の平均二次粒子径を 1 μ m以下 にし、 一方酸化第二セリ ゥム粒子の平均二次粒子径を小さくすることによる研磨 速度の低下を補うため研磨剤中の全希土類元素に占めるセリ ゥムの含有率を酸化 物の重量換算で 9 5 %以上にすることにより、高品質な研磨面を得ることができ、 しかも高速研磨性の光ディスクゃ磁気ディスク用ガラス基板の研磨剤を見出し本 発明に至った。 発明の開示
本発明は第一観点と して、 0 . 1 0 . 5 μ mの平均二次粒子径を有する酸化 第二セリ ゥム粒子を研磨剤と して水に分散した安定なスラリ一であり、 且つ C e O 2 を濃度 0 . 2 3 0重量%にて含有することを特徴とするガラス製ハー ドデ ィスク用研磨剤である。
更には第二観点と して、 研磨剤中の全希土類元素に占めるセリ ゥムの割合が酸 化物の重量換算で 9 5 %以上であることを特徴とする第一観点に記載のガラス製 ドディスク用研磨剤である。
この酸化第二セリ ウム粒子は、 0 . 1 0 . 5 μ ηι、 好ましくは 0 . 2 0 . 3 μ mの平均二次粒子径を有する結晶性酸化第二セリ ゥム粒子である。
ここで、 平均二次粒子径とは、 粒子が単一粒子の状態で分散しているか、 又は これに近い状態をしているゾルは一次ゾルといい、 この一次ゾル中の粒子を一次 粒子と呼ぶが、一次ゾル中の一次粒子がいくつか集合したものが二次ゾルであり、 この個々の集合体を二次粒子という。 そしてここではこれら二次粒子の積算粒径 分布において、 その値が 5 0 %に相当する粒径、 即ちメディアン径と して表した ものを平均二次粒子径という。 その測定には市販の遠心粒度分布測定装置、 例え ば堀場製作所 (株) 製、 商品名 C A P A— 7 0 0を用いて測定する事が出来る。 本発明において好ましくは、 研磨剤中の全希土類元素に占めるセリ ゥムの割合 は酸化物の重量換算で 9 5 %以上である。 これは酸化第二セリ ウム粒子中で (酸 化セリ ウム) Z (酸化セリ ウム +その他の希土類酸化物) の比率で表すことが出 来る。
酸化第二セリ ゥム粒子は公知の方法で製造された酸化第二セリ ゥム粒子を用い ることが出来る。
特に好ましい酸化第二セリ ゥム粒子は第 1製法と して、 不活性ガス雰囲気下に 水性媒体中でセリ ウム (ΠΙ) 塩とアル力リ性物質を 3〜 3 0の (OH) / (C e 3 + ) モル比で反応させて水酸化セリ ウム (III) の懸濁液を生成した後、 直ちに 該懸濁液に大気圧下、 1 0〜 9 5 °Cの温度で酸素又は酸素を含有するガスを吹き 込む方法で製造された 0. 1〜 0. (ミ クロン) の平均二次粒子径を有す る結晶性酸化第二セリ ゥム粒子である。
上記酸化第二セリ ゥム粒子の第 1製法では第 1工程と して、 不活性ガス雰囲気 下に水性媒体中でセリ ウム (III)塩とアル力リ性物質を 3〜 3 0の (OH) / (C + ) モル比で反応させて水酸化セリ ウム (III) 、 即ち水酸化第一セリ ウムの 懸濁液を生成する。
不活性ガス雰囲気下での反応とは、 例えばガス置換可能な攪拌機と温度計を装 備した反応容器を用いて、 水性媒体中でセリ ウム (III) 塩とアルカ リ性物質を反 応させるものである。 水性媒体とは、 通常、 水が用いられるが、 少量の水溶性有 機溶媒を含有させることもできる。 ガス置換は水性媒体中に細管状のガス導入口 を水没させて、 不活性ガスを水性媒体中に吹き込み反応容器の水性媒体上部に取 り付けられた排出口よりガスを流出させて、 反応容器内に不活性ガスを充満させ る。 不活性ガスの置換が終了後に反応を開始することが好ましい。 この反応容器 はステンレス鋼、 グラスライニング等の材質を使用する事が出来る。 この時、 反 応容器内は大気圧下とする事が望ましく、 従ってガスの流入量と流出量はほぼ同 一量である事が好ましい。 ガスの流入量及び流出量は、 反応槽の容積 1 リ ッ トル に対して 0. 0 1〜 2 0 リ ツ トル/分とする事が好ましレ、。
不活性ガスと しては、 窒素ガス、 アルゴンガス等が挙げられるが、 特に窒素ガ スが好ましい。
上記第 1製法ではセリ ウム (ΠΙ) 塩と して、 例えば、 硝酸第一セリ ウム、 塩化 第一セリ ウム、 硫酸第一セリ ウム、 炭酸第一セリ ウム、 硝酸アンモニゥムセリ ゥ ム (III) 等が挙げられる。 上記のセリ ウム (III) 塩は、 単独または混合物と し て使用することができる。
上記第 1製法ではアルカリ性物質と して、 水酸化ナトリ ウム、 水酸化カリ ウム 等のアルカ リ金属水酸化物またはアンモニア、 ァミ ン、 水酸化第四級アンモニゥ ム等の有機塩基が挙げられるが、 特にアンモニア、 水酸化ナトリ ウム、 水酸化力 リ ゥムが好ましく、 これらを単独または混合物と して使用することができる。 上記のセリ ウム (III)塩及びアル力リ性物質を水性媒体に添加して反応容器中 で反応させることもできるが、 セリ ウム (III) 塩水溶液とアル力 リ性物質水溶液 を作成して、 この両水溶液を混合して反応する事もできる。 セリ ウム (III) 塩は 水性媒体中で 1〜 5 0重量%濃度で使用することが好ましい。
上記第 1製法ではセリ ウム (III) 塩とアル力リ性物質の割合は、 (〇H) Z (C e 3 + ) モル比で 3〜 3 0、 好ましくは 6〜: 1 2である。 (OH) / (C e 3 + ) モ ル比が 3より小さい場合は、 セリ ウム (III) 塩が完全に水酸化セリ ウム (III) に中和されず、 一部セリ ゥム (III) 塩と して懸濁液中に残存する為に好ましくな い。 このセリ ウム (III) 塩は、 水酸化セリ ウム (ΠΙ) より もセリ ウム (IV) へ の酸化反応速度が非常に遅いため、 水酸化セリ ウム (ΠΙ) とセリ ウム (III) 塩 が共存した場合、 結晶性酸化第二セリ ゥムの核生成速度及び結晶成長速度の制御 が困難であるため、 粒子径分布が広くなり粒子径が均一にならないからである。 また、 (OH) Z (C e 3 + ) モル比が 3 0より大きい場合は、 得られる結晶性酸 化第二セリ ゥム粒子の結晶性が低下し、 研磨剤として利用した場合は研磨速度の 低下が起こるので好ましくない。 また、 得られる粒子の粒子径分布が広くなり粒 子径が均一にならない。
そして上記第 1製法では上記第 1工程での反応時間は、 仕込量の大きさにより 異なり概ね 1分〜 2 4時間である。
また、 上記の第 1工程で、 不活性ガスの代わりに、 空気等の酸素を含有するガ ス中でセリ ゥム (III) 塩とアルカリ性物質を反応させることも可能であるが、 生 成した水酸化セリ ウム (ΠΙ) が酸素と接触し、 次々にセリ ゥム (IV) 塩や酸化第 ニセリ ゥムに変化するために、 水性媒体中に酸化第二セリ ゥムの核が多数発生し て、 得られる酸化第二セリ ゥム粒子の粒子径分布が広くなり粒子径が均一になら ない。
次に第 2工程では、 第 1工程で生成した懸濁液に大気圧下、 1 0〜 9 5 °Cの温 度で酸素又は酸素を含有するガスを吹き込むことによって 0 . 1〜 0 . 5 μ ιηの 平均二次粒子径を有する結晶性酸化第二セリ ゥム粒子を製造する。 即ち第 2工程 は、 第 1工程で得られた懸濁液中の水酸化セリ ゥム (I I I) を酸素又は酸素を含有 するガスの存在下に、結晶性の高い酸化第二セリ ゥム粒子を製造する工程である。 酸素又は酸素を含有するガスと しては、 ガス状の酸素、 又は空気、 若しくは酸素 と不活性ガスとの混合ガスが挙げられる。 不活性ガスは窒素、 アルゴン等が挙げ られる。 混合ガスを用いる場合は混合ガス中での酸素の含有量は 1体積%以上が 好ましい。 その第 2工程では製法上の容易さから特に空気を用いることが好まし レゝ
上記第 2工程は第 1工程に続きその同じ反応容器内で行われ、 第 1工程の不活 性ガスの導入に続き、 その不活性ガスを直ちに酸素又は酸素を含有するガスに代 えて連続してガスを導入するものである。 即ち、 第 1工程で得られた懸濁液中に、 該懸濁液中に水没した細管状のガス導入口から酸素又は酸素を含有するガスを吹 き込むことによって行われる。
第 2工程は大気圧下で行われる為に、 懸濁液中に導入された量とほぼ同量のガ スが反応容器内の懸濁液上部に取り付けられた排出口より排出される。
第 2工程では、 懸濁液中に吹き込む酸素又は酸素を含有するガスの総量は、 水 酸化セリ ウム (I I I ) を酸化第二セリ ウムに変化させる事が可能な量であり、 (Ο 2 ) / ( C e 3 + ) のモル比で 1以上とする事が好ましい。 上記モル比が 1未満の 場合は懸濁液中に水酸化セリ ウム(Π Ι) が残り、 これが第 2工程の終了後の洗浄 中に空気中の酸素に接触することで、 微小粒子が生成する事があり、 得られる酸 化第二セリ ゥム粒子の粒子径分布が広くなり粒子径が均一と成らない。
第 2工程でガスの単位時間当たりの流入量及び流出量は、 反応槽の容積 1 リ ッ トルに対して 0 . 0 1〜 5 0 リ ツ トル Z分とする事が好ましレ、。
第 1工程での不活性ガスの吹き込みと第 2工程での酸素又は酸素を含有するガ スの吹き込みとが時間的に連続していない場合は、 第 1工程で得られた懸濁液の 表面が空気と接触することになり、 表面層に粒子径が大小さまざまな酸化第二セ リ ゥム粒子を含む層が生成するので、 その後行われる第 2工程で得られる酸化第 ニセリ ゥム粒子の粒子径が均一にならない。
この第 2工程は、 懸濁液中に酸素又は酸素を含有するガスが均一に存在するよ うに懸濁液をデイスパー等の攪拌機で攪拌しながら行う ことが好ましい。 ガスの 吹き込みによって懸濁液自体が攪拌される場合は、 攪拌機での攪拌は必ずしも必 要ではない。
上記第 1製法での水酸化セリ ウム (ΠΙ) を酸化して結晶性酸化第二セリ ゥム粒 子を生成させることは、 結晶性酸化第二セリ ゥム粒子の核生成とその結晶成長が 行われることであり、 核生成速度及び結晶成長速度は、 セリ ウム塩の濃度、 アル カ リ性物質の濃度、 反応温度、 酸化性水溶液の濃度及び供給量などで制御するこ とができる。 また上記方法では、 核生成及び結晶成長時のセリ ウム塩の濃度、 ァ ルカリ性物質の濃度、 反応温度、 酸化性水溶液の濃度及び供給量などを互いに自 由に変えることができる。 これらの要因を調整することにより、 0. 1〜 0. 5 v. mの平均二次粒子径の範囲で任意に粒子径を制御することが出来る。
上記粒子の第 1製法において得られた酸化第二セリ ゥム粒子は、 反応装置より スラ リーと して取り出し、 限外濾過法またはフィルタ一プレス洗浄法などにより 洗浄することにより、 不純物を除去して得られた粒子を水性媒体に分散し研磨液 とすることが出来る。
本発明に用いる酸化第二セリ ウム粒子は、 好ましい第 2製法と して、 大気開放 中に水性媒体中でセリ ウム (III)塩とアルカ リ性物質を 3〜 3 0の (OH) / (C e ^ - ) モル比で反応させて水酸化セリ ウムの懸濁液を生成した後、 直ちに該懸濁 液に大気圧下、 1 0〜 9 5°Cの温度で酸素又は酸素を含有するガスを吹き込むこ とにより製造された 0. 1〜 0. 5 ^ m (ミ クロン) の平均二次粒子径を有する 結晶性酸化第二セリ ゥム粒子を使用することである。
即ち、 酸化第二セリ ウム粒子の第 2製法は第 1工程と して、 大気開放下に水性 媒体中でセリ ウム (III) 塩とアル力リ性物質を 3〜 3 0の (OH) Z (C e 3 + ) モル比で反応させて水酸化セリ ウムの懸濁液を生成し、 第 2工程と して、 第 1ェ 程で生成した懸濁液に大気圧下、 1 0〜 9 5 °Cの温度で酸素又は酸素を含有する ガスを吹き込むことによって 0. 1〜0. 5 mの平均二次粒子径を有する結晶 性酸化第二セリ ゥム粒子を製造するものである。
第 2製法ではその他の条件及び原料は、 第 1製法と同じである。
上記第 2製法ではセリ ゥム (III) 塩とアル力リ性物質の中和を不活性ガスを使 わずに大気開放中で行う と、生成した水酸化セリ ウム(III)が酸素と接触し、徐々 にセリ ウム (IV) 塩や酸化第二セリ ウムに変化するために、 水性媒体中に酸化第 二セリ ウムの核が発生する。 次の工程で所定温度まで昇温させた後、 空気等の酸 素を含有するガス中でセリ ウム (ΠΙ) 塩とアル力リ性物質を反応させると、 生成 した水酸化セリ ゥム (III) が酸素と接触し、 次々にセリ ゥム (IV) 塩や酸化第二 セリ ゥムに変化するために、 第 1製法に比べて酸化第二セリ ゥム粒子の粒子径分 布が広くなり粒子径が不均一になる。 しかし、 ガラス製ハードディスク用研磨剤 と しては高品質の研磨面が得られ、 この第 2製法で得られる酸化第二セリ ウムも 有用である。
上記粒子の製法によって得られる酸化第二セリ ゥム粒子は 1 1 0°Cで乾燥して、 X線回折装置により回折パターンを測定したところ、 回折角度 2 Θ = 2 8. 6。 、 4 7. 5° 、 及び 5 6. 4° 、 に主ピークを有し、 A S TMカード N o 3 4— 3 9 4に記載の立方晶系の結晶性の高い酸化第二セリ ゥム粒子である。 またこの酸 化第二セリ ウム粒子のガス吸着法 (B E T法) による比表面積値は、 2〜 2 0 0 m 2ノ gである。
これらの方法で得られた酸化第二セリ ゥム粒子は、 純水に分散された研磨剤と する他に、 アンモニゥム塩の存在下に水性媒体中で 5 0〜 2 5 0°Cの温度で加熱 処理して研磨剤とする事も出来る。
上記水性媒体と しては、 通常、 水が用いられるが、 少量の水溶性有機媒体を含 有させることが出来る。
また、 上記で用いるアンモニゥム塩は、 陰イオン成分が非酸化性成分のアンモ 二ゥム塩を使用する事が出来る。 この非酸化性の陰イオン成分を有するアンモニ ゥム塩は、 炭酸アンモニゥム、 炭酸水素アンモニゥムが最も好ましく、 これらを 単独又は混合物と して使用することが出来る。
上記の非酸化性の陰イオン成分を有するアンモニゥム塩は、 水性媒体中の 〔N H4+] / 〔C e 02〕 モル比と して 0. ;!〜 3 0が好ましく、 また水性媒体中で の上記アンモニゥム塩の濃度は 1〜 3 0重量0 /0とする事が好ましい。
陰イオン成分が非酸化性成分のアンモニゥム塩を用い水性媒体中で加熱する場 合にあっては、 5 0〜 2 5 0 °C、 好ましくは 5 0〜 1 8 0 °Cの温度で加熱処理す ることにより、 表面改質された結晶性酸化第二セリ ウム粒子が得られる。 加熱時 間は 1 0分〜 4 8時間とする事が出来る。 加熱処理温度が 1 0 0 °C以下の場合は 開放系の反応容器を用いて行われるが、 1 0 0 °Cを越える温度ではォートクレー ブ装置や超臨界処理装置を用いて行われる。 加熱処理された酸化第二セリ ゥム粒 子は処理槽ょりスラリーと して取り出し、 限外濾過法やフィルタープレス法によ り洗浄し、 不純物を取り除く ことが出来る。
この非酸化性の陰イオン成分を有するアンモニゥム塩の存在下に加熱処理して 表面改質された酸化第二セリ ゥム粒子は、 容易に水性媒体に分散して研磨液とす る事が出来る。 この水性媒体は水を使用する事が好ましい。
また、 非酸化性の陰イオン成分を有するアンモニゥム塩の存在下に水性媒体中 で加熱処理して表面改質された酸化第二セリ ゥム粒子を含有するゾルは、 洗浄に より不純物を取り除いた後、 第 4級アンモニゥムイオン (N R 4 +、 但し Rは有機 基である。 ) を、 (N R 4 + ) / ( C e 〇2 ) のモル比で 0 . 0 0 1〜 1 の範囲に 含有させると研磨液の安定性が向上するので好ましい。 第 4級アンモニゥムィォ ンは、 第 4級アンモニゥムシリケー ト、 ハロゲン化第 4級アンモニゥム、 水酸化 第 4級アンモニゥム、 又はこれらの混合物を添加する事によって与えられ、 特に 第 4級アンモニゥムシリケート、 水酸化第 4級アンモニゥムの添加が好ましい。 有機基 Rはメチル基、 ェチル基、 プロピル基、 ヒ ドロキシェチル基、 及びベン ジル基等が挙げられる。 また、 この第 4級アンモニゥムイオンを供給する第 4級 アンモニゥム化合物と しては、 例えばテ トラメチルアンモニゥムシリケ一ト、 テ トラェチルアンモニゥムシリケー ト、テ トラエタノールアンモニゥムシリケー ト、 モノェチルト リエタノ一ルアンモニゥムシリケート、 ト リメチルベンジルアンモ ユウムシリケ一 ト、 水酸化テ トラメチルアンモニゥム、 水酸化テ トラエチルアン モニゥムが挙げられる。
上記のように調製した本発明の研磨液は少量の酸又は塩基を含有することもで きる。 研磨液の p Hは、 2〜 1 2が好ましい。 上記研磨液 (ゾル) は、 水溶性酸 を 〔H +〕 [C e O モル比で 0. 0 0 1〜 1の範囲に含有させることにより 酸性研磨液 (ゾル) にする事が出来る。 この酸性ゾルは 2〜 6の p Hを持つ。 上 記水溶性酸には、 例えば塩化水素、 硝酸等の無機酸、 蟻酸、 酢酸、 蓚酸、 酒石酸、 クェン酸、 乳酸等の有機酸、 これらの酸性塩、 又はこれらの混合物が挙げられる。 反対に、 本発明の研磨液は、 水溶性塩基を 〔OH -〕 / 〔C e〇 2〕 モル比で 0. 0 0 1〜 1の範囲に含有させる事によりアル力リ性ゾルにする事が出来る。 この アルカリ性研磨液 (ゾル) は、 8〜 1 2の 11を持っ。 上記水溶性塩基には、 上 記記載の第 4級アンモニゥムシリケート、及び水酸化第 4級アンモニゥムの他に、 モノエタノーノレアミ ン、 ジエタノーノレアミ ン、 ト リエタノーノレアミ ン、 アミ ノエ チルエタノーノレアミ ン、 N, N—ジメチルエタノールァミ ン、 N—メチルェタノ ールァミ ン、 モノプロパノ一ルァミ ン、 及びモルホリ ン等のアミ ン類や、 アンモ ニァが挙げられる。
本発明の研磨液においては、 酸化第二セリ ゥム粒子は機械的な研磨作用と同時 に化学的な研磨作用を有していて、 非酸化性の陰イオン成分を有するアンモニゥ ム塩の存在下に水性媒体中で加熱処理を施すことにより酸化第二セリ ゥム粒子表 面に水酸基 (≡ C e _OH) が多く生成し、 この (≡C e— OH) 基がシリ コン 酸化膜表面の水酸基 (≡ S i -OH) に化学的な作用を及ぼし研磨速度が向上す ると考えられる。 また、 非酸化性の陰イオン成分を有するアンモニゥム塩は酸化 第二セリ ゥム粒子の表面に対して、 還元的な作用を及ぼすと考えられる。
以上の方法で調製した本発明の光ディスクや磁気ディスク用ガラス基板の研磨 剤は、 0. 1〜 0. 5 μ mの平均二次粒子径を有する酸化第二セリ ウム粒子を研 磨剤と して水に分散した安定なスラリ一である。 酸化第二セリ ゥム粒子の平均二 次粒子径が 0. 5 μ πιより大きいと表面粗さが大きくなり好ましく ない。 また酸 化第二セリ ゥム粒子の平均二次粒子径が 0. 1 μ mより小さいと研磨速度が遅く なり好ましくない。
また上記したように、 研磨剤中の全希土類元素に占めるセリ ゥムの割合が酸化 物の重量換算で 9 5 %以上であることが好ましく、 9 5 %より少ないと研磨速度 が遅くなり、 生産性が悪くなる。
更に C e〇2 を濃度 0. 2〜 3 0重量。 /0にて含有することが好ましく、 0. 2 重量。 /0より低いと研磨速度が遅くなり生産性が悪くなる。 30重量%を超えると スラ リ一の粘度が高くなり、 研磨抵抗が非常に大きくなる。
なお本発明の研磨液は室温に放置して 1年以上の長期にわたり安定である。 さらに、 本発明の研磨剤の優れた点は再生利用可能なことである。 通常、 ひと たび研磨速度の低下した (即ち、 研磨能力の低下した) 研磨剤は、 研磨工程での 生産性の低下につながるので、 その様な研磨剤は研磨剤自体を廃棄処分すること になる。 ところが本発明では使用済みの研磨能力の低下した酸化第二セリ ゥム粒 子を、 非酸化性の陰ィオン成分を有するアンモニゥム塩の存在下で水性媒体中で 50 2 5 0 °Cの温度で加熱処理することにより、 再度研磨能力を回復し、 研磨 速度が向上した研磨剤とする事が出来る。
以上に示した本発明の研磨剤は高速研磨性の光ディスクゃ磁気ディスク用ガラ ス基板の研磨剤と して非常に優れたものである。 ここで、 光ディスクや磁気ディ スク用ガラス基板には、 結晶化ガラス製ハードディスク、 アルミノ珪酸塩強化ガ ラス又はソーダライム強化ガラス製 ドディスクが含まれる。 発明を実施するための最良の形態
実施例 1
1 00リ ッ トルのステンレス製反応槽に NH3/C e 3 + = 6 (モル比) に相当 する 20 %のアンモニア水溶液 2 3. 8 k gを仕込み、 液温を 3 0 °Cに保ちなが らのガラス製のノズルょり 1 Nm3/時間の窒素ガスを吹き込み、 硝酸第一セリ ゥムを全希土類酸化物中の C e 02の純度で表して 9 9. 0 %を有する硝酸セリ ゥム (III) 水溶液 7 6. 2 k g (C e〇2 換算量と して 8. 0 k g含有) を徐々 に添加して水酸化セリ ウム (III) の懸濁液を得た。 続いてこの懸濁液を 1時間か けて 80°Cまで昇温させた後、 ガラス製のノズルからの吹き込みを窒素ガスから 2 Nm3/時間の空気に切り替えセリ ウム (III) をセリ ウム (IV) にする酸化反 応を開始した。 5時間で酸化反応が終了した。 反応が終了した液を室温に戻し、 淡黄色の微粒子を有する P H= 8. 7、 電導度 8 3 m SZ c mの反応液が得られ た。
反応液をロータ リ一フィルタ一プレス (コ トプキ技研製) にて洗浄し、 電導度 2 0 μ S / c m, C e O 濃度 2 2重量0 /0のスラ リーを得た。 このスラ リーを純 水に分散させた後、 1 0%硝酸で p Hを 5に調整し、 C e 02 濃度 5重量。 /0のス ラ リ一を調製した。
また、得られた粒子の平均二次粒子径を遠心粒度分布測定装置(堀場製作所(株) の CA PA— 7 0 0 ) で測定したところ、 平均二次粒子径が 0. 3 0 mの粒子 であった。 この粒子の収率は、 ほぼ 1 0 0 %であった。 粒子を乾燥して不純物分 析を行ったところ研磨剤中の全希土類元素に占めるセリ ゥムの割合が酸化物の重 量換算で 9 9. 5 %であり、 また粉末 X線回折を測定したところ、 回折角度 2 Θ = 2 8. 6 ° 、 4 7. 5° 及び 5 6. 4° に主ピークを有し、 A S TMカード 3 4 - 3 9 4に記載の立方晶系の酸化第二セリ ゥムの特性ピーク と一致した。また、 ガス吸着法 (B E T法) による比表面積値は、 2 5. 8 m2Zgであった。
実施例 2
1 0 0 リ ツ トルのステンレス製反応槽にロータ リーフィルタープレス (コ トブ キ技研製) で洗浄した実施例 1の酸化第二セリ ゥムスラリ一及び炭酸アンモニゥ ム水溶液を添加し、 炭酸アンモニゥムの濃度が 1 0重量。/。、 C e〇2濃度 1 5重 量。 /0でスラリ一量が 1 0 0 k gになるように調製した。 このスラ リーを 9 5°Cま で昇温させこの温度で 8時間加熱処理を行った。 冷却後、 スラ リーをロータリー フィルタープレス (コ トプキ技研 (株) 製) にて洗浄し、 電導度 2 5 μ SZ c m、 C e 02 濃度 2 3重量%のスラ リーを得た。 このスラ リーを純水に分散させた後, 1 0 %硝酸で p Hを 5に調整し、 C e O 2濃度 5重量。 /0のスラ リ一を調製した。 また、得られた粒子の平均二次粒子径を遠心粒度分布測定装置(堀場製作所(株) の CA PA— 7 0 0) で測定したところ、 平均二次粒子径が 0. 2 8 μ πιの粒子 であった。 この粒子を乾燥して不純物分析を行ったところ研磨剤中の全希土類元 素に占めるセリ ウムの割合が酸化物の重量換算で 9 9. 6 %であり、 また粉末 X 線回折を測定したところ、 回折角度 2 θ = 2 8. 6 ° 、 4 7 · 5° 及び 5 6. 4 ° に主ピークを有し、 A S TM力一 ド 3 4— 3 9 4に記載の立方晶系の酸化第二セ リ ウムの特性ピークと一致した。 また、 ガス吸着法 (B E T法) による比表面積 値は、 2 5. 5 m2/ であった。
実施例 3 1 リ ッ トルのガラス製反応槽に NH3 e 3 + = 6 (モル比) に相当する 2
0 %のアンモニア水溶液 2 38 gを仕込み、 液温を 30°Cに保ちながら C e 02 Z希土類酸化物 = 9 9. 0 %の純度を有する硝酸セリ ウム (III) 水溶液 7 6 2 g
(C e 換算量と して 80 g含有) を徐々に添加して水酸化セリ ウム (III) の懸濁液を得た。 続いてこの懸濁液を 1時間かけて 80°Cまで昇温させた後、 ガ ラス製のノズルから 2 L /分の空気を吹き込みセリ ゥム (III) がセリ ゥム (IV) にする酸化反応を開始した。 5時間で酸化反応が終了した。 反応が終了した液を 室温に戻し、 淡黄色の微粒子を有する p H - 5. 5、 電導度 1 2 7mSZc mの 反応液が得られた。
反応液をヌッチェにて水押し洗浄した後、 ゥエツ トケーキを純水で再分散し、 電導度94 ίu Sノc m、 C e O 濃度 2 5. 5重量。 /0のスラ リーを得た。 このス ラ リーを 1 0%硝酸で p Hを 5に調整し、 C e〇2 濃度 5重量%のスラ リ一を調 製した。
得られた粒子を透過型電子顕微鏡で観察したところ 80〜 1 00 nmの粒子以 外に 20〜 3 0 n mの小粒子が多数みられ粒子径分布が不均一であった。 また平 均二次粒子径を遠心粒度分布測定装置 (堀場製作所 (株) の〇 ?八ー 7 00 ) で測定したところ、 平均二次粒子径が 0. 4 5 μιηの粒子であった。 この粒子の 収率は、 ほぼ 1 00%であった。 粒子を乾燥して不純物分析を行ったところ、 全 希土類元素酸化物の量に基づいて酸化セリ ウムを 9 9. 5%含有し、 また粉末 X 線回折を測定したところ A S TM力一ド 34— 394に記載の立方晶系の酸化第 二セリ ウムの特性ピークと一致した。 また、 ガス吸着法 (B ET法) による比表 面積値は、 2 5. 0 m2/ であった。
実施例 4
1 リ ッ トルのガラス製反応槽に NH3 ZC e 3 + = 6 (モル比) に相当する 2 0%のアンモニア水溶液 2 38 gを仕込み、 液温を 50 °Cに保ちながら C e O 2 Z希土類酸化物 = 9 9. 0 %の純度を有する硝酸セリ ウム (III) 水溶液 7 6 2 g
(C e〇2 換算量と して 8 0 g含有) を徐々に添加して水酸化セリ ウム (III) の懸濁液を得た。 続いてこの懸濁液を 30分かけて 80°Cまで昇温させた後、 ガ ラス製のノズルから 2 L Z分の空気を吹き込みセリ ゥム (ΠΙ) がセリ ゥム (IV) にする酸化反応を開始した。 5時間で酸化反応が終了した。 反応が終了した液を 室温に戻し、 淡黄色の微粒子を有する p H = 6. 1、 電導度 1 2 7 m S/ c mの 反応液が得られた。
反応液をヌッチェにて水押し洗浄した後、 ゥエツ トケーキを純水で再分散し、 電導度 4 2 z SZ c m、 C e O 濃度 2 3. 4重量0 /0のスラ リーを得た。 このス ラ リ一を 1 0 %硝酸で p Hを 5に調整し、 C e〇 2 濃度 5重量。 /0のスラ リ一を調 製した。
得られた粒子を透過型電子顕微鏡で観察したところ 8 0〜 1 0 0 nmの粒子以 外に 2 0〜 3 0 n mの小粒子径が多数みられ粒子径分布が不均一であった。 また 平均二次粒子径を遠心粒度分布測定装置 (堀場製作所 (株) の CA P A— 7 0 0 ) で測定したところ、 平均二次粒子径が 0. 4 7 μ mの粒子であった。 この粒子の 収率は、 ほぼ 1 0 0 %であった。 粒子を乾燥して不純物分析を行ったところ、 全 希土類元素酸化物の量に基づいて酸化セリ ウムを 9 9. 5 %含有し、 また粉末 X 線回折を測定したところ、 AS TMカード 3 4— 3 9 4に記載の立方晶系の酸化 第二セリ ウムの特性ピークと一致した。 また、 ガス吸着法 (B E T法) による比 表面積値は、 2 6. l m2/ gであった。
比較例 1
市販の酸化セリ ウム粉末 (平均二次粒子径 1. 4 m、 酸化セリ ウムの含有率 5 7 %、 ガス吸着法 (B E T法) による比表面積値は、 3. 0 m2/ g) を純水に 分散させ、 C e〇2 濃度 5重量。 /。のスラ リーを調製した。
〔研磨試験〕
ガラス製ハー ドディスクは、 S i O 2分 7 7. 9重量0 /0、 A 1 23分 1 7. 3 重量0 /。、 Z n O分 4. 8重量%からなる 3. 5インチのアルミノ珪酸塩強化ガラ ス製基板を使用した。 尚、 この基板は一次研磨してあり、 平均表面粗さは 7. 3 オングス トロ一ムである。
ラップマスター LM— 1 5研磨機 (ラップマスタ一製) の盤に人工皮革タイプ のポリ ウ レタン製研磨布 (P O L I T E X DG (商標) 、 3 8 mm ( スピー ドファム製) を貼り付け、 これに基板の研磨面に対向させ 1 1 K P aの荷重をか けて研磨した。 定盤の回転数は毎分 4 5回転であり、 研磨剤スラリ一の供給量は 1 0 m l /分 である。 研磨後、 被加工物を取り出し純水で洗浄した後、 乾燥し重量減から研磨 速度を求めた。 研磨面の平均表面粗さ (R a ) は N e w V i e w 1 0 0 (Z y g o社製) で測定した。
第 1表に研磨速度、 平均表面粗さ (R a ) 及び平均表面粗さに対する研磨速度 の比率を示す。 第 1表 研磨剤 研磨速度 平均表面粗さ 比率 (研磨速度
(n m/分) (オン^ス卜ローム) ノ平均表面粗さ · 分) 実施例 1 4 0 2. 8 1 4 2
実施例 2 5 3 3. 0 1 7 6
実施例 3 3 2 2. 7 1 1 9
実施例 4 3 5 2. 8 1 2 5
比較例 1 7 7 6. 5 1 1 8
第 1表から、 平均二次粒子径が 0. 3 μ mで酸化セリ ウムの含有率が全希土類 元素酸化物の量に基づいて 9 9. 5 %及び 9 9. 6 %である実施例 1及び 2の研 磨剤の方が平均二次粒子径が 1. 4 μ mで酸化セリ ゥムの含有率が 5 7 %の比較 例 1 より平均表面粗さが小さく、 しかも平均表面粗さに対する研磨速度の比率が 高く なり研磨特性が優れていることがわかる。
また実施例 3及び 4の研磨剤は、 2 0 3 0 n mの小粒子が多数混在するため に研磨速度が少し低下している。 しかし、 平均表面粗さは良好で、 光ディスクや 磁気ガラス ドディスク用の精密研磨剤と して有用である。
セリ ゥム塩とアルカリ性物質を反応させて得られる水酸化セリ ゥムに、 酸素又 は酸素含有ガスを吹き込む本発明の第 1製法及び第 2製法で得られる酸化第二セ リ ウム粒子は、 比表面積が大きく、 単位重量当たりの水酸基が多いので、 ケミカ ル · メカニカルな研磨に適する。 即ち、 比較例 1の酸化セリ ウム粉末を水に分散 した研磨剤が研磨面を引つ搔く作用に対して、 本発明の第 1製法及び第 2製法に より得られた実施例 1 一 4の研磨剤は、 ケミカル · メカニカルな作用により凹凸 の少ない良好な研磨面が得られ精密な研磨を必要とする用途に特に適する。また、 これらの方法で得られた酸化第二セリ ゥム研磨剤は、 ガラスに対して良好な研磨 作用を示し、 ガラス製ハードディスクの研磨に適する。
以上に述べたように、 本発明の 0 . 1〜 0 . 5 mの平均二次粒子径を有する 酸化第二セリ ゥム粒子が水に分散した安定なスラリ一からなる光ディスクゃ磁気 ディスク用ガラス基板の研磨剤、 更には研磨剤中の全希土類元素に占めるセリ ゥ ムの割合が酸化物の重量換算で 9 5 %以上である上記の研磨剤は、 平均表面粗さ が小さく、 しかも平均表面粗さに対する研磨速度の比率が高くなり研磨特性が優 れている。
本発明の研磨剤は、 また、 酸化セリ ウム粒子の平均二次粒子径を小さくするこ とにより平均表面粗さを小さく し高品質の研磨面を得ることができる。 更に、 本 発明の研磨剤においては、 ガラス製ハ一ドデイスクの研磨に関与する研磨剤中の 全希土類元素に占めるセリ ゥムの割合を酸化物の重量換算で 9 5 %以上にするこ とにより研磨速度を向上させて、 平均表面粗さに対する研磨速度の比率を高める ため、 研磨工程の生産性の向上及び低コス ト化が可能である。
特に本発明の研磨剤は光ディスクや磁気ディスク用ガラス基板を研磨した場合、 高品質の研磨面が得られることから仕上げ研磨剤と して有用である。
また本発明の研磨液に硝酸アルミニウム、 硝酸鉄、 塩基性スルファ ミ ン酸アル ミニゥム等の研磨促進剤を添加した研磨用組成物は、 工業製品と して供給され得 るアルミニウムディスクの上に設けられた N i— P等のメ ツキ層の表面、 酸化ァ ルミニゥム層の表面あるいはアルミニウム、 その合金、 アルマイ トの表面を研磨 するのに有用である。

Claims

請求の範囲
1 . 0 . :! 0 . 5 μ mの平均二次粒子径を有する酸化第二セリ ウム粒子を研 磨剤と して水に分散した安定なスラ リーであり、 且つ C e〇2 を濃度 0 . 2 3 0重量。 /。にて含有することを特徴とするガラス製 ドディスク用研磨剤。
2 . 研磨剤中の全希土類元素に占めるセリ ゥムの割合が酸化物の重量換算で 9 5 %以上であることを特徴とする請求項 1記載のガラス製 ドディスク用研磨 剤。
PCT/JP2000/004172 1999-06-28 2000-06-26 Compose abrasif pour plateau en verre de disque dur WO2001000744A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00939161A EP1201725A4 (en) 1999-06-28 2000-06-26 ABRASIVE COMPOUND FOR HARD DISK GLASS TRAY
US10/678,093 US7578862B2 (en) 1999-06-28 2003-10-06 Abrasive compound for glass hard disk platter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/181449 1999-06-28
JP18144999 1999-06-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09980685 A-371-Of-International 2001-12-07
US10/678,093 Continuation US7578862B2 (en) 1999-06-28 2003-10-06 Abrasive compound for glass hard disk platter

Publications (1)

Publication Number Publication Date
WO2001000744A1 true WO2001000744A1 (fr) 2001-01-04

Family

ID=16100972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004172 WO2001000744A1 (fr) 1999-06-28 2000-06-26 Compose abrasif pour plateau en verre de disque dur

Country Status (3)

Country Link
US (1) US7578862B2 (ja)
EP (1) EP1201725A4 (ja)
WO (1) WO2001000744A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753994B1 (ko) * 2005-08-05 2007-09-06 정인 유리 연마용 세륨계 연마재 조성물의 제조방법 및 이를연마에 사용하는 방법
TW200730243A (en) * 2005-12-15 2007-08-16 Mitsui Mining & Smelting Co Oxygen scavenger and method for producing the same
FR2906800B1 (fr) * 2006-10-09 2008-11-28 Rhodia Recherches & Tech Suspension liquide et poudre de particules d'oxyde de cerium, procedes de preparation de celles-ci et utilisation dans le polissage
EP3083501B1 (en) 2013-12-16 2020-02-12 Rhodia Operations Liquid suspension of cerium oxide particles
CN105538076A (zh) * 2016-02-05 2016-05-04 刘汝河 一种玻璃用抛光膏及玻璃抛光修复方法
CN108821324B (zh) * 2018-09-17 2020-05-19 珠海琴晟新材料有限公司 一种纳米氧化铈及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083541A (ja) 1994-06-17 1996-01-09 Taki Chem Co Ltd 精密研磨剤
JPH08134435A (ja) 1994-11-07 1996-05-28 Mitsui Mining & Smelting Co Ltd 研磨材及び研磨方法
US5543126A (en) 1994-07-11 1996-08-06 Nissan Chemical Industries, Ltd. Process for preparing crystalline ceric oxide
JPH09142840A (ja) * 1995-11-20 1997-06-03 Mitsui Mining & Smelting Co Ltd 酸化セリウム超微粒子及びその製造方法
EP0822164A2 (en) 1996-07-30 1998-02-04 Nissan Chemical Industries, Limited Process for producing crystalline ceric oxide particles, abrasive and polishing method
JPH10152673A (ja) 1996-09-30 1998-06-09 Hitachi Chem Co Ltd 酸化セリウム研磨剤および基板の研磨法
US5772780A (en) * 1994-09-30 1998-06-30 Hitachi, Ltd. Polishing agent and polishing method
EP0875547A2 (en) 1997-04-28 1998-11-04 Seimi Chemical Co., Ltd. Polishing agent for semiconductor and method for its production
WO1999031195A1 (fr) * 1997-12-18 1999-06-24 Hitachi Chemical Company, Ltd. Abrasif, procede de polissage de tranche, et procede de production d'un dispositif a semi-conducteur
JP2000038572A (ja) * 1998-07-24 2000-02-08 Hiroaki Tanaka ガラス、石英用研磨組成物及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2472601A1 (fr) * 1979-12-27 1981-07-03 Rhone Poulenc Ind Procede de fabrication de compositions de polissage a base de cerium
JP3335667B2 (ja) 1992-05-26 2002-10-21 株式会社東芝 半導体装置の製造方法
KR100336598B1 (ko) * 1996-02-07 2002-05-16 이사오 우치가사키 산화 세륨 연마제 제조용 산화 세륨 입자
US5783489A (en) * 1996-09-24 1998-07-21 Cabot Corporation Multi-oxidizer slurry for chemical mechanical polishing
RU2178599C2 (ru) * 1996-09-30 2002-01-20 Хитачи Кемикал Кампани, Лтд. Абразив из оксида церия и способ полирования подложек
JP3856843B2 (ja) 1996-11-14 2006-12-13 花王株式会社 磁気記録媒体基板用研磨材組成物及びこれを用いた磁気記録媒体基板の製造方法
JPH1160282A (ja) 1997-08-05 1999-03-02 Nikon Corp 磁気ディスク用ガラス基板の研磨方法
JP3983949B2 (ja) * 1998-12-21 2007-09-26 昭和電工株式会社 研磨用酸化セリウムスラリー、その製造法及び研磨方法
US6454821B1 (en) * 2000-06-21 2002-09-24 Praxair S. T. Technology, Inc. Polishing composition and method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083541A (ja) 1994-06-17 1996-01-09 Taki Chem Co Ltd 精密研磨剤
US5543126A (en) 1994-07-11 1996-08-06 Nissan Chemical Industries, Ltd. Process for preparing crystalline ceric oxide
US5772780A (en) * 1994-09-30 1998-06-30 Hitachi, Ltd. Polishing agent and polishing method
JPH08134435A (ja) 1994-11-07 1996-05-28 Mitsui Mining & Smelting Co Ltd 研磨材及び研磨方法
JPH09142840A (ja) * 1995-11-20 1997-06-03 Mitsui Mining & Smelting Co Ltd 酸化セリウム超微粒子及びその製造方法
EP0822164A2 (en) 1996-07-30 1998-02-04 Nissan Chemical Industries, Limited Process for producing crystalline ceric oxide particles, abrasive and polishing method
JPH10152673A (ja) 1996-09-30 1998-06-09 Hitachi Chem Co Ltd 酸化セリウム研磨剤および基板の研磨法
EP0875547A2 (en) 1997-04-28 1998-11-04 Seimi Chemical Co., Ltd. Polishing agent for semiconductor and method for its production
WO1999031195A1 (fr) * 1997-12-18 1999-06-24 Hitachi Chemical Company, Ltd. Abrasif, procede de polissage de tranche, et procede de production d'un dispositif a semi-conducteur
JP2000038572A (ja) * 1998-07-24 2000-02-08 Hiroaki Tanaka ガラス、石英用研磨組成物及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1201725A4

Also Published As

Publication number Publication date
US7578862B2 (en) 2009-08-25
EP1201725A1 (en) 2002-05-02
US20040065023A1 (en) 2004-04-08
EP1201725A4 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
US6372003B1 (en) Polishing abrasive of crystalline ceric oxide particles having surfaces modified with hydroxyl groups
JP4202257B2 (ja) ケミカルメカニカルポリシングスラリにおける使用のための粒子の形成方法及び該方法で形成された粒子
EP2438133B1 (en) Polishing slurry containing raspberry-type metal oxide nanostructures coated with CeO2
KR100812052B1 (ko) 탄산세륨 분말, 산화세륨 분말, 그 제조방법, 및 이를포함하는 cmp 슬러리
JP2746861B2 (ja) 酸化セリウム超微粒子の製造方法
JP5090920B2 (ja) Cmpスラリー用酸化セリウム粉末の製造方法及びこれを用いたcmp用スラリー組成物の製造方法
JP5101626B2 (ja) 有機溶媒を用いた酸化セリウム粉末の製造方法及びこの粉末を含むcmpスラリー
JP6694653B2 (ja) 合成石英ガラス基板用研磨剤及びその製造方法並びに合成石英ガラス基板の研磨方法
JP4019453B2 (ja) 結晶性酸化第二セリウムの製造方法
JP3918241B2 (ja) 表面改質された酸化第二セリウム粒子からなる研磨剤及び研磨方法
JP4009823B2 (ja) 酸化セリウムゾル及び研磨剤
WO2001000744A1 (fr) Compose abrasif pour plateau en verre de disque dur
JP4290799B2 (ja) タンタル酸リチウム/ニオブ酸リチウム単結晶材料用精密研磨組成物及びそれを用いたタンタル酸リチウム/ニオブ酸リチウム単結晶材料の精密研磨方法
JP4544379B2 (ja) ガラス製ハードディスク用研磨剤
US20060112649A1 (en) Hydrothermal synthesis of cerium-titanium oxide for use in CMP
JP3831982B2 (ja) アルミニウムディスクの研磨用組成物
JP4557105B2 (ja) 研磨用組成物
JP2001253709A (ja) 結晶性酸化第二セリウム粒子の製造方法
JP6424818B2 (ja) 研磨材の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09980685

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000939161

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000939161

Country of ref document: EP