WO2000079116A1 - Raketenschubkammer - Google Patents

Raketenschubkammer Download PDF

Info

Publication number
WO2000079116A1
WO2000079116A1 PCT/DE2000/001826 DE0001826W WO0079116A1 WO 2000079116 A1 WO2000079116 A1 WO 2000079116A1 DE 0001826 W DE0001826 W DE 0001826W WO 0079116 A1 WO0079116 A1 WO 0079116A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle part
chamber housing
housing
thrust chamber
combustion chamber
Prior art date
Application number
PCT/DE2000/001826
Other languages
English (en)
French (fr)
Inventor
Armin Sowa
Original Assignee
Astrium Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium Gmbh filed Critical Astrium Gmbh
Priority to DE50009041T priority Critical patent/DE50009041D1/de
Priority to EP00947783A priority patent/EP1187979B1/de
Priority to JP2001505442A priority patent/JP4394320B2/ja
Priority to US10/009,726 priority patent/US6705076B1/en
Publication of WO2000079116A1 publication Critical patent/WO2000079116A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/60Constructional parts; Details not otherwise provided for
    • F02K9/62Combustion or thrust chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49346Rocket or jet device making

Definitions

  • the invention relates to a thrust chamber of a propulsion engine for satellites and transport devices for space applications and their position control drive system, and in particular for transport devices that bring satellites from the trajectory of the launch vehicle into the satellite use path.
  • Such drive engines have an injection head through which the fuels, for example the fuel MMH (hydrazine compound) and an oxidizer NiCX (nitrogen tetrooxide) are injected into the thrust chamber attached to the injection head with a combustion chamber, a nozzle part and an expansion nozzle.
  • the fuels for example the fuel MMH (hydrazine compound) and an oxidizer NiCX (nitrogen tetrooxide) are injected into the thrust chamber attached to the injection head with a combustion chamber, a nozzle part and an expansion nozzle.
  • the fuels for example the fuel MMH (hydrazine compound) and an oxidizer NiCX (nitrogen tetrooxide) are injected into the thrust chamber attached to the injection head with a combustion chamber, a nozzle part and an expansion nozzle.
  • the fuels for example the fuel MMH (hydrazine compound) and an oxidizer NiCX (nitrogen tetrooxide) are injected into the thrust chamber attached to the injection head with a combustion chamber,
  • high-temperature materials such as platinum-iridium (Pt-Ir) alloys
  • Pt-Ir platinum-iridium
  • a disadvantage of using such high-temperature materials is that they cannot be adequately welded to the materials that are used for the combustion chamber and the expansion nozzle connected to their nozzle part, for example with chromium-nickel-molybdenum alloys . Due to the differences in the physical properties such as melting point, thermal expansion, specific weight, and in the crystalline structure of Pt-Ir and chromium-nickel-molybdenum alloys, no sufficient crystalline connection takes place when these two metallic alloys are welded together.
  • the thrust chamber according to the invention has the advantage that it can be manufactured relatively easily and at low cost. Another advantage is that it meets the strength requirements at very high temperatures. Another advantage is that existing engine designs can essentially remain and the required operational strength can be achieved with simple modifications.
  • the invention is described below with reference to the attached figure, which shows a thrust chamber according to the invention together with an injection head in a perspective exploded view.
  • the figure shows a thrust chamber 1 and an injection head 2.
  • the thrust chamber 1 is formed rotationally symmetrically and is connected with its end 3 facing the injection head 2 to a flange 4 of the injection head 2, preferably by means of a welded connection.
  • Fuel shut-off valves 5, 6 for the fuel and the oxidizer are attached to the injection head 2. Via these fuel shut-off valves 5, 6, the fuels, ie the fuel and the oxidizer, are fed to the injection head, from where they are swirled to the thrust chamber 1.
  • the thrust chamber 1 Seen from the injection head 2, the thrust chamber 1 is formed from a combustion chamber housing 11, a first intermediate ring 12, a nozzle part 13, a second intermediate ring 14, an adapter ring 15 and an expansion nozzle part 16.
  • the adapter ring 15 and expansion nozzle part 16 together form an expansion nozzle 17.
  • the fuels are swirled into the inner wall of the combustion chamber housing 1 1 and form a cooling film there, which has a directional component in the axial and circumferential direction of the combustion chamber housing 1 1.
  • the combustion of the fuels that have entered the interior of the combustion chamber from the cooling film takes place inside the combustion chamber. In this way, the cooling film breaks down in the axial direction as seen from the injection head 2. This cooling film is no longer present in the area of the nozzle part 13.
  • the tapering of the cross section in the nozzle part 13 results in an increase in the temperature of the combustion gases. For this reason, the thermal load on the nozzle part 13 is significantly higher than that of the combustion chamber housing 1 1.
  • the combustion chamber housing 1 1 is made of a high-temperature steel, preferably a chrome-nickel-molybdenum alloy.
  • the adapter ring 15 and the expansion nozzle part 16 are formed from a high-temperature steel, in particular from a chromium-nickel-molybdenum alloy.
  • the nozzle part 13 is formed from a platinum-iridium alloy.
  • the first intermediate ring 12, which is arranged between the nozzle part 13 and the combustion chamber housing 11, is formed from a platinum-rhodium alloy.
  • the second intermediate ring 14 is formed from a platinum-rhodium alloy.
  • the components of the thrust chamber housing 1 are welded together. This enables a bumpless composition of the pusher chamber 1 from the combustion chamber housing 11, the first intermediate ring 12, the nozzle part 13, the second intermediate ring 14, the adapter ring 15 and the expansion nozzle part 16, so that no unevenness occurs on the inside of the pusher chamber housing 1.
  • the direct shitting of the nozzle part 13 made of the platinum-iridium alloy with the combustion chamber housing 11 made of high-temperature steel, as well as with the adapter ring 15 made of high-temperature steel, is not feasible in terms of welding technology due to the different physical properties of these alloys.
  • the thrust chamber housing 1 can be removed from the combustion chamber housing 11, the expansion nozzle housing 17, and the nozzle part 13 be joined together by welding by means of the first 12 and the second 14 intermediate ring, so that simple manufacture of the thrust chamber housing 1 is possible.
  • the push chamber housing 1 according to the invention with the first intermediate ring 12 and with the second intermediate ring 14 has sufficient strength at the temperatures which usually occur in the push chamber housing 1.
  • Essential physical properties, in particular the thermal expansion property and the elastic ticity under mechanical stress are in the platinum-rhodium alloy, as used for the first 12 and the second 14 intermediate ring, between the values of the alloys, which are provided for the combustion chamber housing 1 1 or the expansion nozzle housing 17 and the nozzle part 13 are. This results in an improved stretching behavior of the areas located in the weld seam area and a reduction in the stress load in the event of vibration.
  • the parts of the thrust chamber housing 1 are preferably welded by means of electron beam welding, since this results in a low heat input into the thrust chamber housing 1 during the manufacture thereof.
  • the expansion nozzle part 16 is preferably formed from a sheet metal by means of pressure rollers.
  • the welded connections between the parts of the thrust chamber housing 1 are preferably checked at several points by means of a three-dimensional ultrasound test method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Schubkammergehäuse (1) für ein Antriebstriebwerk für Raumfahrtanwendungen, das an einem Einspritzkopf (2) mit ihrem ersten Ende (3) befestigt ist und ein Brennkammergehäuse (11) aus einem hochwarmfesten Stahl, einen Düsenteil (13) aus einer Platin-Iridium-Legierung, und ein Expansionsdüsengehäuse (17) aus einem hochwarmfesten Stahl umfasst, wobei das Brennkammergehäuse (11) über einen ersten Zwischenring (12) mit dem Düsenteil (13) und der Düsenteil (13) über einen zweiten Zwischenring (14) mit dem Expansionsdüsengehäuse (17) mittels Schweissverbindungen verschweisst sind, wobei der erste (12) und der zweite (14) Zwischenring aus einer Platin-Rhodium-Legierung gebildet sind.

Description

RAKETENSCHUBKAMMER
Die Erfindung betrifft eine Schubkammer eines Antriebstriebwerks für Satelliten und Transportgeräte für Raumfahrtanwendungen sowie deren Lageregelungs-Antriebssystem, und insbesondere für Transportgeräte, die Satelliten von der Flugbahn der Trägerrakete in die Satelliten-Nutzungsbahn bringen.
Derartige Antriebstriebwerke weisen einen Einspritzkopf auf, durch den die Treibstoffe, die beispielsweise dem Brennstoff MMH (Hydrazin-Verbindung) und einen Oxydator NiCX (Stickstofftetrooxyd) in die an dem Einspritzkopf angebrachte Schubkammer mit einer Brennkammer, einen Düsenteil und eine Expansionsdüse eingespritzt werden. Bei der Verbrennung der Treibstoffe treten sehr hohe Temperaturen auf, die im Kern der Schubkammer, d.h. in den Verbrennungsgasen, im Bereich bis zu 2600° C haben. Dabei wird die Wand des Düsenteils auf eine Temperatur von ca. 1600° C erwärmt. Aus diesem Grund wurden bislang weitgehend Düsenteile verwendet, in deren Wandung Kühlkanäle vorgesehen sind, die mit Treibstoff gekühlt werden, der nachfolgend der Verbrennung zugeführt wird. Derartige regenerativ gekühlte Düsenteile sind jedoch aufwendig in der Herstellung und haben Nachteile im Betriebsverhalten beim Zünden und Abschalten der Triebwerke.
Durch Verwendung von Hochtemperatur-Werkstoffen wie Platin-Iridium- (Pt-Ir-) Legierungen kann auf derartige regenerative Kühlbauweisen verzichtet werden. Ein Nachteil bei der Verwendung solcher Hochtemperatur-Werkstoffe ist, daß diese mit den Materialien, die für die an deren Düsenteil anschließende Brennkammer sowie die Expansionsdüse verwendet werden, z.B. mit Chrom-Nickel-Molybdän-Legierungen, Werkstoffe schweiß- technisch nicht ausreichend verbunden werden können. Durch die Unterschiede in den physikalischen Eigenschaften, wie Schmelzpunkt, Wärmeausdehnung, spezifisches Gewicht, und in den kristallinen Gefügestrukturen von Pt-Ir- und Chrom-Nickel-Molybdän- Legierungen findet beim Verschweißen dieser beiden metallischen Legierungen keine ausreichende kristalline Verbindung statt. Raster-Elektronenmikroskop (REM)- Betrachtungen zeigen in der Schmelzzone eine ausgeprägte kristalline Grenzschicht von wenigen tausendstel Millimetern Dicke (μ-Bereich) bei der Platin-Iridium-Legierung auf. Es kann deshalb von einer klassischen Verschmelzung nicht gesprochen werden. Die dabei erzielten Schweißverbindungen weisen deshalb nicht die erforderliche dynamische Festigkeit auf und führen bei Vibrationsbelastungen zum Bruch.
Es ist daher eine Aufgabe der Erfindung, eine Schubkammer für Satelliten und Raumfahrt- Transportgeräte zu schaffen, bei der die Verwendung von regenerativen Düsenteilen nicht erforderlich ist und bei deren Wandungen eine ausreichende Festigkeit bei Temperaturen bis 1600° C aufweisen.
Diese Aufgabe wird bei einem Gegenstand nach dem Oberbegriff der Erfindung mit dem kennzeichnenden Teil des Anspruchs 1 gelöst. Weitere Ausführungsformen sind in den Unteransprüchen angegeben.
Die erfindungsgemäße Schubkammer hat den Vorteil, daß diese verhältnismäßig einfach und mit geringen Kosten hergestellt werden kann. Ein weiterer Vorteil ist, daß sie die Anforderung bezüglich Festigkeit bei sehr hohen Temperaturen erfüllt. Ein weiterer Vorteil ist, daß bereits vorhandene Triebwerkskonstruktionen im wesentlichen bestehen bleiben können und mit einfachen Modifikationen die geforderte Betriebsfestigkeit erreicht werden kann.
Im folgenden wird die Erfindung anhand der beigefügten Figur beschrieben, die eine erfindungsgemäße Schubkammer zusammen mit einem Einspritzkopf in einer perspektivi- sehen Explosionsdarstellung zeigt. Die Figur zeigt eine Schubkammer 1 und einen Einspritzkopf 2. Die Schubkammer 1 ist rotationssymmetrisch gebildet und ist mit ihrem dem Einspritzkopf 2 zugewandten Ende 3 an einem Flansch 4 des Einspritzkopfs 2 vorzugsweise mittels einer Schweißverbindung verbunden. Am Einspritzkopf 2 sind Treibstoff-Absperrventile 5, 6 jeweils für den Brenn- stoff und den Oxidator angebracht. Über diese Treibstoff-Absperrventile 5, 6 werden die Treibstoffe, d.h. der Brennstoff und der Oxidator dem Einspritzkopf zugeführt, von wo diese drallartig der Schubkammer 1 zugeführt werden.
Von dem Einspritzkopf 2 aus gesehen ist die Schubkammer 1 aus einem Brennkammergehause 1 1, einem ersten Zwischenring 12, einem Düsenteil 13, einem zweiten Zwischen- ring 14, einem Adapterring 15 und einem Expansionsdüsenteil 16 gebildet. Der Adapterring 15 und Expansionsdüsenteil 16 bilden zusammen eine Expansionsdüse 17.
Die Treibstoffe werden drallartig an die Innenwand des Brennkammergehäuses 1 1 eingespritzt und bilden dort einen Kühlfilm aus, der eine Richtungskomponente in axialer und Umfangsrichtung des Brennkammergehäuses 1 1 aufweist. Im Innern der Brennkammer findet die Verbrennung der Treibstoffe statt, die von dem Kühlfilm in das Innere der Brennkammer gelangt sind. Auf diese Weise baut sich der Kühlfilm in axialer Richtung vom Einspritzkopf 2 aus gesehen ab. Dieser Kühlfilm ist im Bereich des Düsenteils 13 nicht mehr vorhanden. Hinzukommt, daß durch die Verjüngung des Querschnitts im Düsenteil 13 eine Temperaturerhöhung der Verbrennungsgase erfolgt. Aus diesem Grund ist die Wärmebelastung des Düsenteils 13 deutlich höher als die des Brennkammergehäuses 1 1. Um eine kostengünstige Herstellung der Schubkammer 1 zu ermöglichen, sind daher unterschiedliche Werkstoffe zur Bildung des Brennkammergehäuses 1 1 und des Düsenteils 13 vorgesehen. Hinzukommt, daß die Materialien, die für die hohen Temperaturen im Düsenteil 13 geeignet sind, ein um ein 21/2-faches höheres spezifisches Gewicht als die für das Brennkammergehause 1 1 vorgesehenen Werkstoffe haben. Da im Expansionsdusengehause 17 ähnliche Temperaturen und Belastungen herrrschen als im Brennkammergehause 1 1, sind für das Expansionsdusengehause 17 üblicherweise diesselben Werkstoffe vorgesehen als für das Brennkammergehause 1 1. Erfindungsgemäß ist das Brennkammergehause 1 1 aus einem hochwarmfesten Stahl, vorzugsweise aus einer Chrom-Nickel-Molybdän-Legierung gebildet. Ebenso sind erfindungsgemäß der Adapterring 15 und der Expansionsdüsenteil 16 aus einem hochwarmfesten Stahl, insbesondere aus einer Chrom- Nickel-Molybdän-Legierung gebildet.
Der Düsenteil 13 ist aus einer Platin-Iridium-Legierung gebildet. Der zwischen dem Düsenteil 13 und dem Brennkammergehause 1 1 angeordnete erste Zwischenring 12, ist aus einer Platin-Rhodium-Legierung gebildet. Ebenso ist der zweite Zwischenring 14 aus einer Platin-Rhodium-Legierung gebildet.
Die Bestandteile des Schubkammergehäuses 1 sind miteinander verschweißt. Dadurch ist eine stoßfreie Zusammensetzung des Schubkammergehäuses 1 aus dem Brennkammergehause 1 1 , dem ersten Zwischenring 12, dem Düsenteil 13, dem zweiten Zwischenring 14, dem Adapterring 15 und dem Expansionsdüsenteil 16 möglich, so daß an der Innenseite des Schubkammergehäuses 1 keine Unebenheiten auftreten.
Das direkte Verscheißen des Düsenteils 13 aus der Platin-Iridium-Legierung mit dem Brennkammergehause 1 1 aus hochwarmfestem Stahl, sowie mit dem Adapterring 15 aus einem hochwarmfesten Stahl ist aufgrund der unterschiedlichen physikalischen Eigenschaften dieser Legierungen schweißtechnisch nicht machbar. Jedoch durch das Zwischenlagern des ersten Zwischenrings 12 zwischen dem Brennkammergehause 1 1 und dem Düsenteil 13 sowie durch Zwischenlagern des zweiten Zwischenrings 14 zwischen dem Düsenteil 13 und dem Adapterring 15 kann das Schubkammergehäuse 1 aus dem Brennkammergehause 1 1 , den Expansionsdusengehause 17, und dem Düsenteil 13 mittels den ersten 12 und dem zweiten 14 Zwischenring schweißtechnisch zusammengefügt werden, so daß eine einfache Herstellung des Schubkammergehäuses 1 möglich ist. Außerdem weist das erfindungsgemäße Schubkammergehäuse 1 mit dem ersten Zwischen- ring 12 und mit den zweiten Zwischenring 14 eine ausreichende Festigkeit bei den üblicherweise im Schubkammergehäuse 1 auftretenden Temperaturen auf. Wesentliche physikalische Eigenschaften, insbesondere die Wärmeausdehnungs-Eigenschaft und, die Elas- tizität unter mechanischer Belastung sind bei der Platin-Rhodium-Legierung, wie sie für den ersten 12 und den zweiten 14 Zwischenring verwendet werden, zwischen den Werten der Legierungen gelegen, die für das Brennkammergehause 1 1 bzw. des Expansionsdusengehause 17 und den Düsenteil 13 vorgesehen sind. Dadurch ergibt sich ein verbesser- tes Dehnverhalten der Bereiche, die im Schweißnahtbereich gelegen sind sowie ein Abbau der Streßbelastung bei Vibration.
Die Verschweißung der Teile des Schubkammergehäuses 1 erfolgt vorzugsweise mittels Elektronenstrahl-Schweißung, da dadurch ein geringer Wärmeeintrag in das Schubkammergehäuse 1 während der Herstellung desselben erreicht wird.
Das Expansionsdüsenteil 16 ist vorzugsweise aus einem Blech mittels Druckwalzen geformt.
Die Schweißverbindungen zwischen den Teilen des Schubkammergehäuses 1 werden vorzugsweise mittels eines dreidimensionalen Ultraschall-Prüfverfah-rens an mehreren Stellen geprüft.

Claims

Patentansprüche
1. Schubkammergehäuse (1) für ein Antriebstriebwerk für Raumfahrt-Anwendungen, das mit einem Ende (3) an einem Einspritzkopf (2) befestigt ist und ein Brennkammerge- häuse ( 1 1) aus einem hochwarmfesten Stahl, ein Düsenteil (13) aus einer Platin-Iridium- Legierung und ein Expansionsdusengehause (17) aus einem hochwarmfesten Stahl aufweist, dadurch gekennzeichnet, daß das Brennkammergehause (1 1) über einen ersten Zwischenring ( 12) mit dem Düsenteil ( 13) und der Düsenteil ( 13) über einen zweiten Zwischenring (14) mit dem Expansionsdusengehause (17) mittels Schweißverbindungen ver- schweißt sind, wobei der erste ( 12) und der zweite ( 14) Zwischenring aus einer Platin- Rhodium-Legierung gebildet sind.
2. Schubkammergehäuse nach dem Anspruch 1, dadurch gekennzeichnet, daß die Schweißverbindungen mittels eines Elektronenstrahl-Verfahrens hergestellt sind.
3. Schubkammer nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Ex- pansionsdüsengehäuse (17) einen Expansionsdüsenteil (16) und einen mit dem zweiten
Zwischenring (14) schweißtechnisch verbundenen Adapterring (15) umfaßt, wobei der Adapterring (15) mit dem Expansionsdüsenteil ( 16) verschweißt ist.
PCT/DE2000/001826 1999-06-17 2000-06-06 Raketenschubkammer WO2000079116A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50009041T DE50009041D1 (de) 1999-06-17 2000-06-06 Raketenschubkammer
EP00947783A EP1187979B1 (de) 1999-06-17 2000-06-06 Raketenschubkammer
JP2001505442A JP4394320B2 (ja) 1999-06-17 2000-06-06 人工衛星や宇宙空間搬送機などに用いる駆動機構の推力室
US10/009,726 US6705076B1 (en) 1999-06-17 2000-06-06 Rocket thrust chamber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19927734A DE19927734C2 (de) 1999-06-17 1999-06-17 Schubkammer eines Antriebstriebwerks für Satelliten und Transportgeräte für Raumfahrtanwendungen
DE19927734.6 1999-06-17

Publications (1)

Publication Number Publication Date
WO2000079116A1 true WO2000079116A1 (de) 2000-12-28

Family

ID=7911610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/001826 WO2000079116A1 (de) 1999-06-17 2000-06-06 Raketenschubkammer

Country Status (6)

Country Link
US (1) US6705076B1 (de)
EP (1) EP1187979B1 (de)
JP (1) JP4394320B2 (de)
DE (2) DE19927734C2 (de)
RU (1) RU2220313C2 (de)
WO (1) WO2000079116A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070012370A1 (en) * 2005-07-18 2007-01-18 Honeywell International, Inc. Facetted high temperature thruster design
JP5098111B2 (ja) * 2006-07-07 2012-12-12 独立行政法人物質・材料研究機構 ガラスプレス用モールドの作製方法
US20080264372A1 (en) * 2007-03-19 2008-10-30 Sisk David B Two-stage ignition system
US8512808B2 (en) * 2008-04-28 2013-08-20 The Boeing Company Built-up composite structures with a graded coefficient of thermal expansion for extreme environment applications
KR101014787B1 (ko) 2008-08-26 2011-02-14 한국항공우주연구원 액체로켓의 연소기 헤드
US8667776B2 (en) * 2009-02-23 2014-03-11 Raytheon Company Pellet-loaded multiple impulse rocket motor
RU2563289C1 (ru) * 2014-05-13 2015-09-20 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" (ФГУП "ГКНПЦ им. М.В. Хруничева") Способ изготовления внутренней оболочки сопла камеры сгорания жидкостного ракетного двигателя (жрд)
RU2768662C2 (ru) * 2017-12-02 2022-03-24 Аэроджет Рокетдайн, Инк. Медная камера сгорания с креплением к форсуночной головке через безмедное вварное переходное кольцо
CN110202320B (zh) * 2019-03-15 2024-06-04 蓝箭航天技术有限公司 用于推力室制备工艺的复合工装及推力室制备工艺
CN110159456B (zh) * 2019-04-16 2020-07-14 上海空间推进研究所 火箭发动机推力室
CN113500439A (zh) * 2021-08-20 2021-10-15 宁夏东方钽业股份有限公司 一种薄壁铌合金推力室焊接面加工夹持装置及其方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2405465A (en) * 1943-05-07 1946-08-06 Aerojet Engineering Corp Jet propulsion motor
DE2166904A1 (de) * 1971-12-01 1976-07-08 Erno Raumfahrttechnik Gmbh Antriebssystem fuer flugkoerper
EP0899448A2 (de) * 1997-08-29 1999-03-03 Hughes Electronics Corporation Herstellung eines Raketenmotors mit einem Verbindungsstück zwischen Verbrennungskammer und Injektor
EP0899449A2 (de) * 1997-08-29 1999-03-03 Hughes Electronics Corporation Raketenmotor mit einem Verbindungsstück zwischen Verbrennungskammer und Injektor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3044257A (en) * 1958-06-02 1962-07-17 Thiokol Chemical Corp Combustion chamber outer jacket
US3167909A (en) * 1961-04-24 1965-02-02 Thompson Ramo Wooldridge Inc Self-cooled rocket nozzle
US3443384A (en) * 1967-05-17 1969-05-13 Nasa Swirling flow nozzle
CA1079078A (en) * 1977-05-25 1980-06-10 Michael N. Clark Rocket nozzle assembly
DE3300930C2 (de) * 1983-01-13 1986-06-12 Heraeus Elektroden GmbH, 6450 Hanau Apparateteile, insbesondere in Form von Ringen, die teilweise mit einem Auflagewerkstoff versehen sind, deren Herstellungsverfahren und Verwendung
US4882904A (en) * 1988-03-24 1989-11-28 Aerojet-General Corporation Two stage rocket combustor
GB9418705D0 (en) * 1994-09-16 1994-11-16 Johnson Matthey Plc Improvements in high temperature articles
US5613299A (en) * 1994-11-09 1997-03-25 Ring; Peter J. Method of fabricating a rocket thrust chamber
DE69820173T2 (de) * 1997-08-29 2004-10-14 Hughes Electronics Corp., El Segundo Verbindungsring für eine Raketenbrennkammer
US6138450A (en) * 1998-05-11 2000-10-31 Hughes Electronics Corporation Rocket engine with integral combustion chamber step structure and its fabrication
US6138451A (en) * 1998-05-11 2000-10-31 Hughes Electronics Corporation Rocket engine with combustion chamber step structure insert, and its fabrication
US6079101A (en) * 1998-05-11 2000-06-27 Hughes Electronics Corporation Rocket engine with one-piece combustion chamber step structure, and its fabrication
US6397580B1 (en) * 1998-07-09 2002-06-04 Bi-Propellant Rocket Research Corporation High performance rocket engine having a stepped expansion combustion chamber and method of making the same
RU2158666C2 (ru) * 1999-02-04 2000-11-10 Открытое акционерное общество НПО Энергомаш им. акад. В.П. Глушко Способ изготовления сварно-паяной конструкции
US6205661B1 (en) * 1999-04-15 2001-03-27 Peter John Ring Method of making a rocket thrust chamber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2405465A (en) * 1943-05-07 1946-08-06 Aerojet Engineering Corp Jet propulsion motor
DE2166904A1 (de) * 1971-12-01 1976-07-08 Erno Raumfahrttechnik Gmbh Antriebssystem fuer flugkoerper
EP0899448A2 (de) * 1997-08-29 1999-03-03 Hughes Electronics Corporation Herstellung eines Raketenmotors mit einem Verbindungsstück zwischen Verbrennungskammer und Injektor
EP0899449A2 (de) * 1997-08-29 1999-03-03 Hughes Electronics Corporation Raketenmotor mit einem Verbindungsstück zwischen Verbrennungskammer und Injektor

Also Published As

Publication number Publication date
US6705076B1 (en) 2004-03-16
EP1187979B1 (de) 2004-12-22
JP2003502572A (ja) 2003-01-21
EP1187979A1 (de) 2002-03-20
DE19927734C2 (de) 2002-04-11
DE19927734A1 (de) 2000-12-28
RU2220313C2 (ru) 2003-12-27
DE50009041D1 (de) 2005-01-27
JP4394320B2 (ja) 2010-01-06

Similar Documents

Publication Publication Date Title
EP0145897B1 (de) Fügeverfahren
EP1187979B1 (de) Raketenschubkammer
DE69812014T2 (de) Raketenmotor mit einem Verbindungsstück zwischen Verbrennungskammer und Injektor
DE1933821A1 (de) Flammrohr fuer Gasturbinenbrennkammern
DE1941296B2 (de) Durch ein fluessiges medium regenerativ gekuehlte brenn kammer mit schubduese
DE19804232A1 (de) Brennkammer für Hochleistungstriebwerke und Düsen
DE60226309T2 (de) Raketentriebwerksglied und ein verfahren zur herstellung eines raketentriebwerksglieds
DE19915082C1 (de) Verfahren zur Herstellung einer gekühlten Düse für ein Raketentriebwerk
DE19858197A1 (de) Triebwerk
DE102017219822B4 (de) Flüssigkeitsraketentriebwerk-Baugruppen und zugehörige Verfahren
DE19505357C1 (de) Verfahren zur Kühlung von Triebwerkswänden und Wandstruktur zur Durchführung desselben
DE69820173T2 (de) Verbindungsring für eine Raketenbrennkammer
DE69908739T2 (de) Verfahren zur Herstellung eines Raketenschubrohres
DE102016212314B4 (de) Verfahren zur Herstellung einer Brennkammer
DE69501555T2 (de) Herstellung von rohrwand-raketenbrennkammern mit hilfe von laser-auftragschweissen
DE102010043336B4 (de) Brennkammervorrichtung
DE102004029029B4 (de) Einspritzkopf
DE2835150C2 (de) Wärmeisoliertes Rohr für den Transport von einem unter hohem Druck stehenden heißen Gas
EP1187978B1 (de) Schubkammer-anordnung
DE4115403C2 (de)
EP1707788B1 (de) Konfiguration eines Feststofftreibsatzes
DE102011000383A1 (de) Triebwerkvorrichtung und Verfahren zum Betreiben einer Triebwerkvorrichtung
DE2418885B2 (de) Wärmeaustauscher, insbesondere regenerativ gekühlte Brennkammer für Flüssigkeitsraketentriebwerke und Verfahren zu ihrer Herstellung
EP2093409A2 (de) Düsenerweiterung und Verfahren zur Herstellung einer Düsenerweiterung
DE102008020198B4 (de) Düsenerweiterung für ein Triebwerk und Verfahren zur Herstellung und Kühlung einer Düsenerweiterung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 505442

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10009726

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000947783

Country of ref document: EP

ENP Entry into the national phase

Ref country code: RU

Ref document number: 2002 2002100639

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000947783

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000947783

Country of ref document: EP