WO2000077270A1 - Acier fortement nettoye - Google Patents

Acier fortement nettoye Download PDF

Info

Publication number
WO2000077270A1
WO2000077270A1 PCT/JP2000/003975 JP0003975W WO0077270A1 WO 2000077270 A1 WO2000077270 A1 WO 2000077270A1 JP 0003975 W JP0003975 W JP 0003975W WO 0077270 A1 WO0077270 A1 WO 0077270A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
less
inclusions
steel
ratio
Prior art date
Application number
PCT/JP2000/003975
Other languages
English (en)
French (fr)
Inventor
Wataru Yamada
Seiki Nishida
Satoshi Sugimaru
Shinjiro Ueyama
Hiroshi Yatabe
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to BR0006880-2A priority Critical patent/BR0006880A/pt
Priority to KR1020017002034A priority patent/KR20010086358A/ko
Priority to CA002340688A priority patent/CA2340688A1/en
Priority to EP00939092A priority patent/EP1127951A1/en
Publication of WO2000077270A1 publication Critical patent/WO2000077270A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Definitions

  • the inventions described in Japanese Patent Publication No. 6-74484 and Japanese Patent Publication No. 6-74485 mentioned above add Si, Mn and other necessary constituent elements in the molten steel stage in order to soften the inclusions in the steel.
  • Complex deoxidation is performed by adding an alloy containing one or more of Ca, Mg and, if necessary, A1 to make the inclusion composition an inclusion of the composite composition.
  • the Ca and Mg alloys added in the molten steel stage are expensive, and it is preferable to reduce the amount of these expensive alloys because the manufacturing cost is reduced. Disclosure of the invention
  • An object of the present invention is to provide a high cleanliness steel having excellent cold workability and fatigue properties even with a small amount of Ca and Mg alloys used.
  • the first invention is, without the use of A1 to eliminate A 1 2 0 3 in the inclusions as much as possible, Si, Mn, and using one or both of Ca and Mg be invention to perform complex deoxidation
  • the summary is as follows.
  • the ratio of length (1) to width (d) of nonmetallic inclusions with a ratio of 1 Zd ⁇ 5 belonging to the following composition A1 is 20% or more in number ratio.
  • the cooling is characterized by being 80% or more in total belonging to the following composition A1 or B1, and the d of nonmetallic inclusions belonging to the following composition A1 with lZd ⁇ 5 is 40m or less.
  • composition of nonmetallic inclusions Si0 2, MnO, CaO, MgO, determined as 100 the sum of A 1 2 0 3. The same applies to the following inventions.
  • the average composition of the length (1) is, Si0 2: 30% or more, Mn0:. 8 to 65 Cold workability and fatigue, characterized in that d contains 40% or less of non-metallic inclusions where 1 / d ⁇ 5 contains one or both of Ca0: 40% or less and MgO: 12% or less. High cleanliness steel with excellent properties.
  • the average composition of non-metallic inclusions is determined by the average number of non-metallic inclusions whose composition is analyzed from one view of the L cross section of the rolled steel. The same applies to the following inventions.
  • a second invention is actively Ca0, MgO in inclusions, an invention for performing composite deoxidation to contain A 1 2 0 3, the place to Abstracts Oh following "3.
  • Composition A 2 SiO,: Over 75%
  • Composition B 2 Si0 2: 35 ⁇ 75%
  • Al 2 0 3 30% or less
  • Ca0 50% or less
  • Mg 0 containing one or both of 15% or less.
  • the steel composition in the present invention needs to contain 0.1% or more of S and Mn in order to control the inclusion composition, but there is no particular limitation on the other elements. It can be applied to carbon steel, high carbon and austenitic stainless steel. Specifically, it is as shown below.
  • inclusions of lZd ⁇ 5 were softened by compounding the inclusion composition.
  • Si 0 2 composition in inclusions is set to 60% or less to 75% or less. If Si0 2 exceeds this concentration, by the recognition of the Si0 2 inclusions of hard to occur.
  • the composition range of inclusions that are sufficiently soft and crushed by cold rolling or wire drawing to be finely dispersed and made harmless is B (B1, B2), and the inclusions having composition B the composition range of even Si0 2 concentration is high inclusions was a (a 1, a 2) .
  • composition of nonmetallic inclusions with 1 Z d ⁇ 5 20% or more of those belonging to composition A by composition, and 80% or more in total belonging to composition A or B.
  • composition A or B is not less than 80% in total, inclusions composition does not belong to B to A is, there, for example, CaO-based, MgO-based, A 1 2 0 3 based inclusions This is because the ratio of these hard inclusions exceeds 20%, which impairs the cold workability and fatigue properties of steel.
  • the reason why the ratio of the inclusions belonging to the composition A is set to 20% or more is that the inclusions in the composition A increase as the addition amount of the Ca and Mg alloys added in the molten steel decreases, but the inclusions in the composition A increase This is because if the amount of Ca and Mg alloys is reduced to the extent of not less than%, the cost reduction effect, which is the object of the present invention, can be achieved. If the content of the component A is 40% or more, a further cost reduction effect can be exhibited.
  • composition B The reasons for limiting the composition range of the composition B will be described for each of the first invention and the second invention.
  • Si0 In 2 is less than 20%, it occurred CaO or hard inclusions of the MgO-based, not can trigger sufficient miniaturization hot rolling and cold working co.
  • the inclusion composition in the present invention is a force that can be produced by producing an Mn-Silicate by deoxidation of Si and Mn and then adding an appropriate amount of an alloy containing Ca and Mg. It is important to point out that although ⁇ ⁇ tends to disappear with the addition of Ca and Mg alloys, by appropriately controlling the amount of these alloyed irons, M This is to prevent inclusions.
  • a 1 2 0 3 even when controlling the proper deoxidation methods A1 disuse and generates the most about 20%.
  • the inclusions containing A 1 2 0 3 This degree unlike the prior art in the composition of the present invention, rather than generating a hard Kola random or spinel Le, Al 2 0 3: 20% or less is acceptable.
  • the second invention in the composition B 2 the Si0 2: 35 ⁇ 75%, A1 2 0 3: 30% or less, Ca0: 50% or less, Mg0: reason for to include one or both of 15% or less of the following It is as follows.
  • Si, Ca, Mg be used to generate easily deoxidizing element hard inclusions such as Al, Ca0, MgO, Ri by the A 1 2 0 3 in the this coexist with Si0 2 in a range, very Can form soft inclusions.
  • Si0 In 2 is less than 35%, CaO, hard inclusions of the MgO or Al 2 0 3 system occurs, not both can trigger sufficient miniaturization hot rolling and cold working.
  • CaO exceeds 50%, MgO exceeds 15%, when A 1 2 0 3 exceeds 30%, respectively CaO-based, MgO-based, A 1 2 0 3 system, and hard intervention of these composite systems Things occur.
  • CaO is preferably at least 5% in order to reliably obtain the effect of softening inclusions by complex deoxidation.
  • the content of MgO is preferably 3% or more in order to surely obtain the effect of softening inclusions by complex deoxidation.
  • Major feature of the second invention may be thus positively Ca0, MgO, is contained Al 2 0 3, the prior art Kola random, harmful, such as spinel It is extremely excellent in production stability without producing any hard inclusions.
  • MnO, ⁇ is Ca, Mg, have a tendency to disappear by the addition of a strong deoxidizing element, such as A l, in particular as in the present invention, CaO, MgO, A 1 2 0 3
  • a 1 2 0 no 3 of the lower limit has been stipulated, but since the second invention to contain actively A 1 2 0 3, typically in inclusion composition B 2 is the A 1 2 0 3 Contains 5% or more.
  • the present invention As described above, according to the present invention, excellent cold workability and fatigue characteristics can be secured by controlling the composition and size of the inclusions.
  • the number of inclusions belonging to A 1 or A 2 at 1 Zd 5 is observed. In one visual field (5.5 mm ⁇ 11 mm), the number of inclusions is 1 / mm 2 or less, more preferably 0. . by the this to 5 / mm 2 or less, upon drawing Die life can be improved.
  • the composition of nonmetallic inclusions of 1 / d ⁇ 5 instead of specifying the composition of nonmetallic inclusions of 1 / d ⁇ 5 by the ratio of those in the A region and the ratio of those in the A or B region as described above, (3), (3) It can also be specified by the average composition of non-metallic inclusions with l Zd ⁇ 5 as in 6). Details are as follows. Here, the average composition of non-metallic inclusions is determined by the average number of non-metallic inclusions whose composition is analyzed in one view of the L cross section of the rolled steel. For one field of view, for example, a wire with a size of about 5.5 mm X 11 mm is appropriate.
  • the average composition of the length (1) the ratio is 1 / d ⁇ nonmetallic inclusions 5 of width (d) is, Si0 2: 30% or more, Mn0: in 8-65%, One or both of Ca0: 40% or less and Mg0: 12% or less, and d of nonmetallic inclusions with l Zd ⁇ 5 is 40 m or less.
  • Cost reduction effect 2 by the average composition Si0 is an object of the present invention when reducing Ca, and Mg alloy such that 30% or more can be exhibited. Presence of 8% or more of MnO prevents generation of hard inclusions. Order to Si0 2 of 30% or more, MnO upper limit is 65%.
  • CaO is preferably set to 5% or more in order to surely obtain the effect of softening inclusions by complex deoxidation.
  • MgO is preferably set to 3% or more in order to surely obtain the effect of softening inclusions by complex deoxidation. If the Si 0 2 60 percent, it is the this to exert even greater cost Bok reduction. In this case, Mn0 and CaO have an upper limit of 32%, and MgO has an upper limit of 30%.
  • the average composition of the length (1) the ratio is 1 Z d nonmetallic inclusions 5 of width (d) is, Si0 2: 43% or more, Al 2 0 3: 24% or less, Ca0: 40% or less, MgO: 12% or less, d of nonmetallic inclusions with l Z d ⁇ 5 is 40 / m or less.
  • CaO is preferably set to 5% or more in order to reliably obtain the effect of inclusion softening by complex deoxidation.
  • the content of MgO is preferably 3% or more in order to reliably obtain the effect of softening inclusions by complex deoxidation. If Si0 2 : more than 75%, further cost reduction effect can be exhibited.
  • CaO, MgO, the upper limit of A 1 2 0 3 is, Al 2 0 3, respectively: 17% or less, Ca0: 20% or less, MgO: determined as 15% or less.
  • the present invention achieves good results in applications requiring the same severe cold workability and fatigue characteristics as in the past.
  • tire cords have been used in some applications with a large diameter, and the cold workability of the tire cord has been reduced as compared with the conventional one.
  • the life of the wire drawing dies can be manufactured without being affected even if the inclusion level of the steel material is slightly reduced due to improved lubrication. In such applications, the high cleanliness steel of the present invention is particularly effective.
  • One example is carbon steel and low alloy carbon steel wire rods, which are drawn after hot rolling and used for wires, springs, etc. Especially 0.3mm0 or less Wires and hard wires are effective in preventing breakage during wire drawing and burning, and springs are effective in improving fatigue strength.
  • Si and Mn are necessary for deoxidation and inclusion composition control, and if less than 0.1%, there is no effect.
  • the steel which is effective as a steel strengthening element, becomes brittle when the Si content exceeds 1.5% and the Mn content exceeds 1.5%.
  • B is an element that improves the hardenability of steel.
  • its addition is a force that can increase the strength of the steel.
  • the upper limit is set to 0.01% in order to increase precipitates and impair the toughness of the steel. Also, if the amount is too small, there is no effect. Therefore, the lower limit of the amount is set to 0.01%.
  • Mo is an element that improves the hardenability of steel.
  • the addition of Mo can increase the strength of the steel.
  • the addition of an excessive amount hardens the steel excessively and makes working difficult, so the Mo addition range was set to 0.05 to 1.0%.
  • Co improves ductility by the effect of suppressing the formation of proeutectoid cementite in hypereutectoid steel.
  • P and S not only deteriorate the drawability but also the ductility after drawing, so that the content of P and S is preferably 0.02% or less.
  • Another application is austenitic stainless steel. Hot-rolled and then cold-rolled and used as an ultra-thin leaf spring of 0.3 or less, it is effective in improving the fatigue strength of the spring.
  • the composition of steel used in this application is as follows: C: 0.15% or less, Si: 0.1 to 1%, Mn: 0.1 to 2%, Cr: 16 to 20%, N 3.5 to 22% Be represented.
  • Another application is low carbon steel sheet for deep drawing. Hot rolling and cold rolling are performed to make a thin plate of 1.2 mm or less. After annealing and skim pass, deep drawing is performed. It is effective in preventing surface flaws and improving deep drawability.
  • the components of steel materials applied for this purpose are represented by C: 0.12% or less, Si: 0.3% or less, and Mn: 0.50% or less.
  • the wire was subjected to wire drawing, and the die life and wire breaking rate during wire drawing were evaluated. Tables 1 and 2 also show the evaluation results. Since the longer the die life, the better the average die life of the current process material (which is longer than the die life standard) because the longer the dice life, the better the die life, and the X less than the average life of the current process material. In addition, the lower the disconnection rate, the better the lower the average disconnection rate of the current process material (the disconnection rate is less than the allowable disconnection standard), and the higher the disconnection rate of the current process material, X.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

明 細 書 高清浄度鋼 技術分野
本発明は、 冷間加工性および疲労特性の優れた高清浄度鋼、 特に 超高張力線、 極細線、 高強度ばね、 極薄板ばねにおいて優れた性能 を有する高清浄度鋼に関する。 背景技術
薄板ばねやタイヤコ一 ドのように冷間圧延や伸線など強度の冷間 加工を受ける鋼や、 弁ばねのように高い疲労強度を必要とする鋼に おいては、 硬質の非金属介在物は有害であり、 これらの硬質介在物 を起点と して破壊が起ることはよ く知られている。 この対策と して 介在物を軟質化するこ とにより熱間圧延および冷間圧延又は伸線に より延伸させ、 介在物を小型化させるこ とが可能である。 例えば、 特公昭 54— 7252号公報では、 介在物をスぺサタイ トを主成分と し、 Al 203 /Si 20+ A1203 十 MnO 二 0.15〜 0.40とする ことが示されてい るが、 こ こに示された介在物はコラ ンダムを初晶とする領域にまた がっているため、 実際の製造においては極めて硬質で有害なコラ ン ダムの発生を防止するこ とが困難であり、 十分な効果が得られない
また、 特公平 6 — 74484 号公報においては、 圧延鋼材の L断面に おいて、 長さ ( 1 ) と幅 ( d ) の比が l Z d ≤ 5 の非金属介在物の 平均的組成が、 Si02 : 20〜60%、 Mn0:10~80%に、 Ca0:50%以下、 Mg0:15%以下の一方又は両方を含む鋼が開示されている。 更に、 特 公平 6 — 74485 号公報においては、 圧延鋼材の L断面において、 長 さ ( 1 ) と幅 (d) の比が 1 Z d≤ 5 の非金属介在物の平均的組成 が、 Si02 : 35〜75%、 Al 203 :30 %以下、 Ca0:50%以下、 Mg0:25%以 下からなる鋼が開示されている。 これら公報に記載の発明により、 鋼中の介在物は熱間圧延でよ く 延伸するも、 熱間圧延で十分に伸延 しない 1 Z d ≤ 5 の非金属介在物も冷間圧延又は伸線で破砕し微細 に分散するこ とにより、 冷間加工性および疲労特性の優れた高清浄 度鋼を得るこ とができる。
上記特公平 6 - 74484 号公報、 特公平 6 - 74485 号公報に記載の 発明は、 鋼中の介在物を軟質化するため、 溶鋼段階で Si, Mn、 その 他必要成分元素を添加した後、 Ca, Mg, 更に必要により A1の 1 種又 は 2種以上を含む合金を添加する ことによって複合脱酸を行い、 介 在物組成を複合組成の介在物と している。 溶鋼段階で添加する Ca, Mg合金は高価であり、 これら高価な合金の使用量を低減できれば製 造コス 卜が削減されるため好適である。 発明の開示
本発明は、 Ca, Mg合金の使用量が少なく ても冷間加工性および疲 労特性の優れている高清浄度鋼を提供するこ とを目的とする。
第 1 の発明は、 介在物中の A 1203を極力排除するために A1を使用 せず、 Si, Mn、 及び Caと Mgの一方又は両方を用いて複合脱酸を行う 発明であり、 その要旨とすると ころは以下のとおりである。
( 1 ) 圧延鋼材の L断面において、 長さ ( 1 ) と幅 ( d ) の比が 1 Zd≤ 5 の非金属介在物の組成が下記組成 A 1 に属する ものが個数 比で 20%以上、 下記組成 A 1 又は B 1 に属する ものが合計で 80%以 上であり、 かつ l Zd≤ 5 で下記組成 A 1 に属する非金属介在物の dが 40 m以下であるこ とを特徴とする冷間加工性及び疲労特性の 優れた高清浄度鋼。 組成 A 1 : Si02 : 60%超
組成 B 1 : Si02 : 20〜60%、 Mn0:10〜80%に、 Ca0:50%以下、 MgO: 15%以下の一方又は両方を含む。
ただし、 非金属介在物の組成は、 Si02, MnO, CaO, MgO, A 1203の和 を 100と して求める。 以下の発明においても同様である。
( 2 ) 長さ ( 1 ) と幅 (d) の比が l Zd≤ 5 の非金属介在物の組 成が上記組成 A 1 に属する ものの個数が 1 個/龍2 以下であること を特徴とする上記 ( 1 ) に記載の冷間加工性及び疲労特性の優れた 高清浄度鋼。
( 3 ) 圧延鋼材の L断面において、 長さ ( 1 ) と幅 ( d ) の比が 1 Z d ≤ 5 の非金属介在物の平均組成が、 Si02 : 30%以上、 Mn0: 8〜 65%に、 Ca0:40%以下、 MgO: 12%以下の一方又は両方を含み、 1 / d ≤ 5 の非金属介在物の dが 40 m以下であるこ とを特徵とする冷 間加工性および疲労特性の優れた高清浄度鋼。
ただし、 非金属介在物の平均組成は、 圧延鋼材の L断面 1 視野で組 成を分析した非金属介在物の個数平均によって求める。 以下の発明 においても同じである。
第 2 の発明は、 介在物に積極的に Ca0, MgO, A 1203を含有させる 複合脱酸を行う発明であり、 その要旨とするところは以下のとおり あ《3。
( 4 ) 圧延鋼材の L断面において、 長さ ( 1 ) と幅 ( d ) の比が 1 Z d 5 の非金属介在物の組成が下記組成 A 2 に属する ものが個数 比で 20%以上、 下記組成 A 2 又は B 2 に属する ものが合計で 80%以 上であり、 かつ 1 / d ^ 5 で下記組成 A 2 に属する非金属介在物の dが 40/ m以下であるこ とを特徴とする冷間加工性及び疲労特性の 優れた高清浄度鋼。
組成 A 2 : SiO, : 75%超 組成 B 2 : Si02 : 35〜75%、 Al 203 : 30 %以下に、 Ca0:50%以下、 Mg 0:15%以下の一方又は両方を含む。
( 5 ) 長さ ( 1 ) と幅 ( d ) の比が 1 Z d ≤ 5 の非金属介在物の組 成が上記組成 A 2 に属する ものの個数が 1 個 Zmm2 以下であること を特徴とする上記 ( 4 ) に記載の冷間加工性及び疲労特性の優れた 高清浄度鋼。
( 6 ) 圧延鋼材の L断面において、 長さ ( 1 ) と幅 ( d ) の比が 1 Z d ≤ 5 の非金属介在物の平均組成が、 Si02 43%以上、 A 1203 24 %以下に、 CaO 40%以下、 MgO 12%以下の一方又は両方を含み、 1 Zd≤ 5 の非金属介在物の dが 40 m以下であるこ とを特徴とする 冷間加工性および疲労特性の優れた高清浄度鋼。
本発明における鋼組成は、 介在物組成を制御するために Sし Mnを 0.1%以上含むことを必要とするが、 その他の元素については特に 制限はなく 、 必要に応じて合金元素を加えた低炭素鋼、 高炭素およ びオーステナイ ト系ステンレス鋼などに適用することができる。 具 体的には下記に示すとおりである。
( 7 ) 質量%で、 C :0.4〜1.2 %、 Si :0.1〜1.5 %、 Mn:0.1〜1.5 %を含むこ とを特徴とする上記 ( 1 ) 〜 ( 6 ) のいずれかに記載の 冷間加工性および疲労特性の優れた高清浄度鋼。
( 8 ) 質量%で、 C :0.4〜1.2 %、 Si :0.1〜し 5 %、 Mn:0.1-1.5 %に加えて、 Cr : 0.05- 1.0 %、 Ni : 0.05〜1.0 %、 Cu: 0.05〜1. 0 %、 B :0.001-0.01%, Ti :0.001〜0.2 %、 V :0.001〜0.2 %、 Nb:0.001〜0.2 %、 Mo: 0.05-1.0 %、 Co:0.1〜 2 %の 1 種又は 2 種以上を含むこ とを特徴とする上記 ( 1 ) 〜 ( 6 ) のいずれかに記 載の冷間加工性および疲労特性の優れた高清浄度鋼。 発明を実施するための最良の形態 熱間圧延鋼材においては、 低融点の介在物は圧延温度において鋼 材より も軟化するために長手方向に延伸する。 従って圧延後の鋼材 の L断面において、 介在物の長さ ( 1 ) と幅 ( d ) の比 l Z dを測 定するこ とにより、 軟質化の程度を判定するこ とができる。 1 d が大き く 、 具体的には 1 / d 〉 5 になる介在物は伸延性が大き く 、 圧延で伸延されるために無害である。 一方、 l Z dの小さい介在物 であっても、 その後の冷間圧延又は伸線加工により砕かれ、 微細に 分散され無害化される介在物と、 そのまま残存して有害となる介在 物とがあるため、 1 ノ dのみで介在物の良否判定をするこ とはでき ない。
前記の従来技術においては、 介在物組成を複合化するこ とによつ て l Z d ^ 5の介在物を軟質化した。 こ こにおいて、 介在物中の Si 02組成は 60%以下乃至 75%以下と している。 Si02がこの濃度を超え ると、 硬質の Si02系介在物が発生するとの認識による。
本発明者らの検討の結果、 たとえ l Z d≤ 5の介在物の組成が高 S ί 02であっても、 この介在物の大きさが小さければその後の冷間圧 延又は伸線加工においても悪影響を及ぼさないこ とを見出した。 Si 02系介在物は硬質とはいっても CaO系、 MgO系、 A1203系の介在物 に比較すると軟質であり、 その大きさを 40〃 mに抑えさえすれ ば鋼材の冷間加工性および疲労特性は十分良好に保たれるのである 。 l Z d ^ 5で組成が高 Si02の介在物の大きさは、 d≤20〃 mとす ることがより好ま しい。
本発明においては、 十分に軟質で冷間圧延又は伸線加工により砕 かれ微細に分散され無害化される介在物の組成範囲を B ( B 1 , B 2 ) と し、 組成 Bの介在物より も Si02濃度が高い介在物の組成範囲 を A ( A 1 , A 2 ) と した。
第 1 の発明、 第 2 の発明と も、 1 Z d≤ 5の非金属介在物の組成 が組成 Aに属する ものが個数比で 20%以上、 組成 A又は Bに属する ものが合計で 80%以上とする。
組成 A又は Bに属する ものが合計で 80%以上と したのは、 Aにも Bにも属しない組成の介在物は、 例えば CaO系、 MgO系、 A 1203系 の介在物であっても硬質であり、 これら硬質介在物の比率が 20%を 超えると鋼材の冷間加工性および疲労特性を損なうからである。
また、 組成 Aに属する ものが 20%以上と したのは、 溶鋼において 添加する Ca, Mg合金添加量を低減していく と組成 Aに属する介在物 が増大するが、 組成 Aに属する ものが 20%以上となる程度にまで Ca , Mg合金を削減すれば本発明の目的であるコス ト削減効果が発揮で きるからである。 組成 Aに属する ものを 40%以上とすれば、 より一 層のコス ト削減効果を発揮するこ とができる。
組成 Bの組成範囲の限定理由を第 1 の発明、 第 2 の発明それぞれ について述べる。
第 1 の発明において組成 B 1 を Si02 : 20〜60%、 Mn0:10〜80%に 、 Ca0:50%以下、 Mg0:15%以下の一方又は両方を含むと した理由は 下記のとおりである。
Si02が 20%未満では、 CaO又は MgO系の硬質介在物が発生し、 共 に熱間圧延および冷間加工で十分小型化させるこ とができない。 Si 02 : 60%超は組成 A 1 の領域であり、 従来硬質介在物が発生すると して忌避されていた領域である。 本発明における介在物組成は、 Si , Mn脱酸により Mn- Si l icateを生成せしめた後、 Ca, Mgを含む合金 を適量添加するこ とにより製造するこ とができる力 <、 本発明におい て重要な点は、 ΜπΟは Ca, Mg合金の添加により消滅する傾向を有す るけれども、 これら合金鉄の添加量を適正に制御するこ とにより M ηθを 10〜80%存在せしめ、 もって硬質介在物の発生を防止する点で ある。 CaOが 50%を超えると CaO系の硬質介在物が発生し、 MgOが 15%を超えると MgO系の硬質介在物が発生し、 共に、 目的を達成で きない。 CaOは複合脱酸による介在物軟質化の効果を確実に得るた め、 好ま し く は 5 %以上とする。 同じく 、 MgOは複合脱酸による介 在物軟質化の効果を確実に得るため、 好ま し く は 3 %以上とする。
また、 A 1203については極力排除することが硬質な介在物の生成 を防止するために望ま しいが、 第 1 の発明では A1を使用 しない。 し かし、 A1不使用で適正に脱酸方法を制御した場合にも A 1203は 20% 程度以下は生成する ものである。 本発明の介在物組成では従来技術 と異なり この程度の A 1203の含有では、 硬質のコラ ンダムやスピネ ルを生成することはなく 、 Al 203 :20 %以下は許容される。
第 2 の発明において組成 B 2 を Si02 : 35〜75%、 A1203 :30 %以下 に、 Ca0:50%以下、 Mg0:15%以下の一方又は両方を含むと した理由 は下記のとおりである。
Si, Ca, Mg, Alなどの硬質介在物を生成しやすい脱酸元素を使用 しても、 Ca0, MgO, A 1203を一定範囲の Si02と共存させる こ とによ り、 極めて軟質な介在物となすこ とができる。 Si02が 35%未満では 、 CaO, MgOあるいは Al 203系の硬質介在物が発生し、 共に熱間圧延 および冷間加工で十分小型化させる こ とができない。 Si02 : 75%超 は組成 A 2 の領域であり、 従来硬質介在物が発生すると して忌避さ れていた領域である。 また、 CaOが 50%を超え、 MgOが 15%を超え 、 A 1203が 30%を超えると、 それぞれ CaO系、 MgO系、 A 1203系、 およびこれらの複合系の硬質介在物が発生する。 CaOは複合脱酸に よる介在物軟質化の効果を確実に得るためには 5 %以上とするこ と が好ま しい。 同じ く 、 MgOは複合脱酸による介在物軟質化の効果を 確実に得るためには 3 %以上とするこ とが好ま しい。
第 2の発明の大きな特徴は、 このように積極的に Ca0, MgO, Al 2 03を含有させても、 従来技術のコラ ンダム、 スピネルのような有害 な硬質介在物を生成することな く 、 極めて製造安定性に優れている こ とである。 MnOについて特に規定しないのは、 ΜπΟは Ca, Mg, A l のような強力な脱酸元素の添加により消滅する傾向を有し、 特に本 発明のように、 CaO, MgO, A 1 2 0 3の含有量を比較的多く した場合に は通常 20 %以下になる。 また、 MnOは介在物を軟質化させるのに有 効な成分であり、 これを含有しても本発明の効果を妨げるこ とはあ りえないため、 MnOについては特に規定しない。 A 1 2 0 3の下限を規 定していないが、 第 2 の発明では積極的に A 1 2 0 3を含有させるため 、 組成 B 2 の介在物中には通常は A 1 2 0 3が 5 %以上含まれる。
本発明においては、 1 / d ≤ 5 で組成が A 1 又は A 2 に属する介 在物の大きさを d ^ 40 mに抑えるこ とが重要なボイ ン トである。 組成が A 1 又は A 2 に属する介在物は組成が B 1 、 B 2 に属する介 在物に比較してやや硬質であるにもかかわらず、 d ≤ 40 mとする こ とにより、 介在物軟質化の効果を損なう ことがない。
dが 40 /z mを超える大きな介在物は、 脱酸後の溶鋼中に形成され る一次脱酸生成物が主体である。 本発明のように、 1 7 d ≤ 5 とな る介在物の組成が組成 Bを主体とするよう に Ca、 又は Mgを含めた複 合脱酸を行う場合、 上記一次脱酸生成物は結果と して軟質化され、 d > 40〃 mとなる大きな介在物はすべて 1 / dが 5 を越える展延さ れた介在物となる。 本発明においては、 このよう にして 1 / d 5 で組成が A 1 又は A 2 に属する介在物の大きさを d 40 mに抑え るこ とができた。
本発明は、 以上のよう に介在物の組成と大きさを制御するこ とに よつて優れた冷間加工性および疲労特性を確保するこ とができた。 本発明においては更に、 1 Z d 5 で組成が A 1 又は A 2 に属する 介在物個数を観察 1 視野(5. 5mm x 1 1 mm) において 1 個/ mm 2 以下、 より好ま し く は 0. 5個 / mm 2 以下とする こ とにより、 伸線加工時に おけるダイス寿命を向上するこ とができる。
本発明は、 以上のように 1 / d ≤ 5 の非金属介在物の組成が A領 域にある ものの比率と A又は B領域にある ものの比率で特定する代 りに、 上記 ( 3 ) 、 ( 6 ) のよ う に l Zd≤ 5 の非金属介在物の平 均組成で特定するこ と もできる。 詳し く は下記のとおりである。 こ こで、 非金属介在物の平均組成は圧延鋼材の L断面 1 視野で組成を 分析した非金属介在物の個数平均によって求める。 1 視野は、 例え ば線材であれば 5.5mm X 11mm程度の大きさの視野が適切である。 第 1 の発明においては、 長さ ( 1 ) と幅 ( d ) の比が 1 / d ≤ 5 の非金属介在物の平均組成が、 Si02 : 30%以上、 Mn0: 8〜65%に、 Ca0:40%以下、 Mg0:12%以下の一方又は両方を含み、 l Zd≤ 5 の 非金属介在物の dが 40 m以下である。 平均組成で Si02が 30%以上 となるように Ca, Mg合金を削減すれば本発明の目的であるコス ト削 減効果が発揮できる。 MnOを 8 %以上存在せしめ、 もって硬質介在 物の発生を防止する。 Si02を 30%以上とするため、 MnOは上限が 65 %となる。 CaOが 40%を超えると CaO系の硬質介在物が発生し、 M g0が 12%を超えると MgO系の硬質介在物が発生し、 共に、 目的を達 成できない。 1 Z d 5 の非金属介在物の dが 40 m以下である理 由は前述のとおりである。
CaOは複合脱酸による介在物軟質化の効果を確実に得るためには 5 %以上とすると好ま しい。 同じ く 、 MgOは複合脱酸による介在物 軟質化の効果を確実に得るためには 3 %以上とすると好ま しい。 Si 02を 60%超とすれば、 より一層のコス 卜削減効果を発揮する こ とが できる。 この場合、 Mn0, CaOは上限が 32%、 MgOは上限が 30%とな る。
第 2 の発明においては、 長さ ( 1 ) と幅 ( d ) の比が 1 Z d 5 の非金属介在物の平均組成が、 Si02 : 43%以上、 Al 203 :24%以下、 Ca0:40%以下、 MgO: 12%以下からなり、 l Z d ≤ 5 の非金属介在物 の dが 40 / m以下である。 平均組成で Si02が 43%以上となるように Ca, Mg合金を削減すれば本発明の目的であるコス ト削減効果が発揮 できる。 CaOが 40%を超え、 MgOが 12%を超え、 A 1203が 24%を超 えると、 それぞれ CaO系、 MgO系、 A 1203系、 およびこれらの複合 系の硬質介在物が発生し、 共に、 目的を達成できない。 l Z d ≤ 5 の非金属介在物の dが 40 m以下である理由は前述のとおりである o
CaOは複合脱酸による介在物軟質化の効果を確実に得るためには 5 %以上とすることが好ま しい。 同じ く 、 MgOは複合脱酸による介 在物軟質化の効果を確実に得るためには 3 %以上とするこ とが好ま しい。 Si02 : 75%超とすれば、 より一層のコス ト削減効果を発揮す ることができる。 この場合、 CaO, MgO, A 1203の上限が、 それぞれ Al 203 :17%以下、 Ca0:20%以下、 MgO: 15%以下と定まる。
本発明は、 以上のように従来と同様の厳しい冷間加工性および疲 労特性を要求される用途において良好な成績を収める。 さ らに、 最 近はタイヤコ一 ドにおいて用途によっては太径のコ一ドが用いられ 、 冷間加工性についても従来に比較して緩和される ものがある。 ま た、 伸線ダイスの寿命については、 潤滑の改善などにより鋼材の介 在物レベルが若干低下しても影響を受けないで製造を行う ことが可 能になってきている。 このような用途において、 本発明の高清浄度 鋼は特に効果を発揮する。
次に鋼成分について述べる。 本発明は介在物の特性を規定する も のであるから、 鋼成分については特に限定する必要はないが、 利用 分野を具体的に挙げるならば次の分野を挙げるこ とができる。
1 例と して炭素鋼および低合金炭素鋼線材があり、 熱間圧延後伸 線され、 ワイヤ、 ばね等に用いられる。 特に 0.3min0以下の極細軟 線、 硬線においては、 伸線時および燃り線時の断線防止に効果があ り、 ばねにおいては疲労強度の向上に効果がある。
これらの用途に適用される鋼材の成分と しては、 質量%で、 c :o
.6〜1.2 %、 S 0. 1〜し 5 %、 Mn:0. 1〜し 5 %を含み、 必要に応じ て Cr: 0.05〜0.5 %、 Ni : 0.05〜 0 %、 Cu: 0.05〜し 0 %、 B :0 .001〜0.01%、 Ti :0.001〜0.2 %、 V :0.001〜0.2 %、 Nb:0.001〜 0.2 % Mo : 0.05〜1.0 %、 Co:0. 1〜 2 %の 1 種又は 2種以上を含 むものである。
Cは鋼を強化するのに経済的かつ有効な強化元素であり、 硬鋼線 と して必要な強度を得るためには 0.4%以上が必要である。 しかし 、 1.2%を超えると鋼の延性が低下し脆化し、 二次加工が困難とな るため 1.2%以下と した。
一方、 Siと Mnは脱酸と介在物組成コ ン ト ロールのために必要であ り、 0.1%未満では効果がない。 また鋼の強化元素と しても有効で ある力 Siが 1.5%、 Mnが 1.5%を超えると鋼が脆化する。
Crを 0.05〜1.0 %と したのは、 Crはパーライ トラメ ラを微細にし 、 鋼の強度を上げる効果があるため、 この効果を得るために必要な 量が 0.05%であり、 それ以上の添加が望ま しい。 しかし、 1.0%を 超えて添加した場合、 延性を阻害するため上限を 1.0%と した。
Niも Crと同様の効果によって鋼を強化するため、 その効果を発揮 する 0.05%以上の添加が望ま し く 、 延性の低下を招かない 1.0%以 下とする。
Cuはワ イ ヤのスケール特性および腐蝕疲労特性を向上させる効果 があるため、 効果を発揮する 0.05%以上の添加が望ま しいが、 上限 は延性の低下を招かない 1.0%以下とする。
Bは鋼の焼き入れ性を向上させる元素である。 本発明の場合、 そ の添加により鋼の強度を高める こ とができる力く、 過度の添加は Bの 析出物を増加させ、 鋼の靱性を損なうためその上限を 0.01%とする 。 また添加量が少なすぎると効果がないため、 添加量の下限を 0.0 01%とする。
Ti, Nb, Vは析出強化により線材の強度を高める効果がある。 い ずれも 0.001%未満では効果がなく 、 0.2%を超えると析出脆化を 引き起こすため、 その含有量を 0.2%以下とする。 また、 これらの 元素はパテ ンティ ングの際の y粒サイズを小さ く する効果にも添加 することが有効である。
Moは鋼の焼き入れ性を向上させる元素である。 本発明の場合、 そ の添加により鋼の強度を高めるこ とができる力 過度の量の添加は 鋼を過剰に硬化させ、 加工を困難とするため、 Mo添加範囲は 0.05〜 1.0 %と した。 Coは過共析鋼の初析セメ ンタイ 卜の生成を抑制する 効果により延性を向上する。
さ らに、 高炭素鋼においては、 P , Sは伸線加工性を劣化させる のみならず伸線加工後の延性を劣化させるため、 Pと Sの含有量は 0.02%以下が望ま しい。
他の利用分野と してはオーステナイ ト系ステンレス鋼がある。 熱 間圧延後冷間圧延され 0.3 以下の極薄板ばねと して用いられるが 、 ばねの疲労強度の向上に効果がある。 この用途に適用される鋼材 の成分は、 C : 0. 15%以下、 Si :0. 1〜 1 %、 Mn:0. 1〜 2 %、 Cr : 16 〜20%、 N 3.5~22%に代表される。
他の利用分野と して深絞り加工用の低炭素鋼板がある。 熱間圧延 後冷間圧延され 1.2mm以下の薄板とされ、 焼鈍、 スキ ンパス後、 深 絞り加工されるが、 表面疵防止および深絞り加工性の向上に効果が ある。 この用途に適用される鋼材の成分は、 C : 0. 12%以下、 Si :0 .3%以下、 Mn: 0.50%以下に代表される。 実施例
(実施例 1 )
250ト ン転炉で溶製された溶鋼に出鋼時に S i, Mn、 その他必要成 分元素を添加した後、 Ca, Mgの 1 種又は 2種を含む合金を添加し、 表 1 、 表 2 に示す組成の鋼を製造した。 これを 80 %以上の熱間圧延 により線材と し、 L断面の非金属介在物を調査した。 本実施例にお いて、 L断面非金属介在物の個数および組成の調査は、 直径 5. 5mm の線材の 1 コイルから 0. 5 mの長さのサンプルを切り出し、 長さ方 向の任意の 10力所から長さ l lmmの小サンプルを切り出し、 それぞれ 、 長さ方向の中心線を通る縦断面を光学顕微鏡により全面観察する ことによって ί亍った。
更に該線材を伸線加工し、 伸線加工時のダイス寿命と断線率の評 価を行った。 評価結果を同じ く 表 1 、 表 2 に示す。 ダイス寿命は、 長いほどよいため現行工程材の平均ダイス寿命 (ダイス寿命基準よ り長い寿命となる) を越したものを〇、 現行工程材の平均寿命に満 たないものを X と した。 また断線率は、 低い程良いため現行工程材 の平均断線率 (断線許容基準より少ない断線率となる) よ り低いも のを〇、 現行工程材の平均断線率を上回る ものを X と した。
表 1
Figure imgf000016_0001
*1 \ d≤5(D H )fil¾A 1に属するもの及 «£A 1又は B 1に属するも 脾 i2 l/d≤5 3l A 1に属する I
i3 l/d≤5 l ΙΑ 1に属する非 介 mm2
表 2
Figure imgf000017_0001
*1 l/d≤5£¾ m 職 A 1に属するもの及 D¾ A 1又は B 1 { するも 脾 *2 l/d≤5Ti ΙΑ 1に属する
« l/d≤5T¾ ZA 1に属する非 m m ( 画2)
表 3
Figure imgf000018_0002
iの
Iの
!の
Figure imgf000018_0001
表 4
Figure imgf000019_0002
Iの
Iの
Iの
Figure imgf000019_0001
表 3 、 表 4 には、 表 1 、 表 2 に示す各線材の L断面における 1 / d≤ 5 の非金属介在物の平均組成を示す。 表中、 左側は l Zd≤ 5 の全非金属介在物の平均組成、 中央は l Zd≤ 5 の非金属介在物の う ち組成 A 1 に属する非金属介在物の平均組成、 右側は 1 Zd≤ 5 の非金属介在物のう ち組成 B 1 に属する非金属介在物の平均組成で の 。
表 1 、 表 3 の No. 1 〜 21が本発明例であり、 いずれのパラメ ータ も 本発明の範囲内であり、 断線率、 ダイス寿命と も良好な成績を得る ことができた。
表 2、 表 4 の No.22〜29が比較例である。 Να22は 1 Z d ≤ 5 で組成 A 1 に属する非金属介在物の dが 40 mを超えており、 断線率が不 良であった。 No.23は組成 A 1 、 A 1 又は B 1 に属する介在物の比率 が共に不足であり、 ダイス寿命が不良であった。 No.24は Siが高めで あって結果と して組成 A 1 又は B 1 に属する非金属介在物の比率が 不足であり、 ダイス寿命が不良であった。 Να25は Μπが高めであって 結果と して組成 A 1 又は B 1 に属する非金属介在物の比率が不足で あり、 ダイス寿命が不良であった。 No.26は Siが低めであって結果と して組成 A 1 に属する介在物の比率が不足であり、 断線率が不良で あった。 No.27は断線率は良好で本発明の効果を有している ものの、 Mnが低めであって結果と して介在物個数が請求項 2 の範囲から外れ ており、 ダイス寿命が不良であった。 No.28は介在物個数が請求項 2 の範囲から外れており、 ダイ ス寿命が不良であった。 No.29は 1 Z d
≤ 5 で組成 A 1 に属する非金属介在物の dが 40 z mを超えており、 断線率が不良であった。
表 1 、 表 2 に示した本発明例 No. 2 と比較例 No.23について、 直径 5
.5mmの熱間圧延線材を伸線加工により 1.6mmのワイヤと し 950°Cで ァ化処理した後、 560°Cの鉛浴に浸漬して最終パテンティ ングを行 ないパーライ ト組織のワイヤと した。 このワイヤを連続伸線加工で 直径 0. 3匪と しハンター疲労試験により疲労特性を比較した。
表 5 に直径 0. 3mmのワイヤの引張強さ、 及びこのワイヤにおいて ハ ンター疲労試験を行なった結果を疲労限応力と して示す。 表 5 に 示すように、 引張強さは本発明例と比較例とで差はなく 、 ほぼ同一 強度において本発明例は比較例に比べ高い疲労限応力を示す。
表 5
Figure imgf000021_0001
(実施例 2 )
250 ト ン転炉で溶製された溶鋼に出鋼時に S i , Mn、 その他必要成 分元素を添加した後、 C a, g, A 1を含む合金を添加し、 表 6 、 表 7 に示す組成の鋼を製造した。 これを 80 %以上の熱間圧延により線材 と した。 L断面の介在物調査、 伸線加工と伸線加工時の品質評価に ついては、 上記実施例 1 と同様である。 実施例 1 と異なる点は、 A 1 を積極的に添加している点、 及び常に Caと Mgの両方を添加している 点である。
表 6
Figure imgf000022_0002
*1
*2
ネ 3
Figure imgf000022_0001
表 7
Figure imgf000023_0002
n
Figure imgf000023_0001
表 8
Figure imgf000024_0002
Iの
Iの
Figure imgf000024_0001
表 9
Figure imgf000025_0002
Iの
iの
1の
Figure imgf000025_0001
表 8、 表 9 には、 表 6 、 表 7 に示す各線材の L断面における 1 d≤ 5 の非金属介在物の平均組成を示す。 表中、 左側は l Zd ^ 5 の全非金属介在物の平均組成、 中央は 1 Zd≤ 5 の非金属介在物の うち組成 A 2 に属する非金属介在物の平均組成、 右側は l ,d≤ 5 の非金属介在物のうち組成 B 2 に属する非金属介在物の平均組成で め な o
表 6 、 表 8 に示す No.31〜51が本発明例であり、 いずれのパラメ一 タ も本発明の範囲内であり、 断線率、 ダイス寿命と も良好な成績を 得ることができた。
表 7 、 表 9 に示す Να52〜59が比較例である。 52は 1 ノ d ≤ 5で 組成 A 2 に属する非金属介在物の dが 40 mを超えており、 断線率 が不良であった。 No.53は組成 A 2又は B 2 に属する介在物の比率が 不足であり、 ダイス寿命が不良であった。 No.54は S iが高めであって 結果と して組成 A 2、 A 2又は B 2 に属する非金属介在物の比率が 共に不足であり、 ダイス寿命が不良であった。 No.55は Mnが高めであ つて結果と して組成 A 2又は B 2 に属する非金属介在物の比率が不 足であり、 ダイス寿命が不良であった。 Να56は Siが低めであって結 果と して組成 A 2 に属する介在物の比率が不足であり、 断線率が不 良であつた。 No.57は Mnが低めであつて結果と して 1 / d ≤ 5で組成 A 2 に属する非金属介在物の dが 40/ mを超えており、 さ らに介在 物個数が請求項 5 の範囲から外れており、 ダイス寿命が不良であつ た。 No.58は介在物個数が請求項 5 の範囲から外れており、 ダイス寿 命が不良であった。 No.59は 1 / d ≤ 5 で組成 A 2 に属する非金属介 在物の dが 40 z mを超えており、 断線率が不良であった。 産業上の利用可能性
本発明は冷間加工性および疲労特性に優れており、 極薄板ばね、 極細線、 高強度ばね用鋼と して優れた性能を有すると同時に、 高価 な C a合金、 Mg合金の添加量が少なくてすむので、 低コス トで製造で きるという優れた効果を有する ものである。

Claims

請 求 の 範 囲
1 . 圧延鋼材の L断面において、 長さ ( 1 ) と幅 ( d ) の比が 1 / d≤ 5 の非金属介在物の組成が下記組成 A 1 に属する ものが個数 比で 20%以上、 下記組成 A 1 又は B 1 に属する ものが合計で 80%以 上であり、 かつ l Zd≤ 5で下記組成 A 1 に属する非金属介在物の dが 40;/ m以下であることを特徴とする冷間加工性及び疲労特性の 優れた高清浄度鋼。
組成 A 1 : Si02 : 60%超
組成 B 1 : Si02 : 20~60%、 Mn0:10〜80%に、 Ca0:50%以下、 MgO: 15%以下の一方又は両方を含む。
ただし、 非金属介在物の組成は、 Si02, MnO, CaO, MgO, A 1203の和 を 100と して求める。
2. 長さ ( 1 ) と幅 ( d ) の比が 1 Z d ≤ 5 の非金属介在物の組 成が上記組成 A 1 に属する ものの個数が 1 個 Zmm2 以下であること を特徴とする請求項 1 に記載の冷間加工性及び疲労特性の優れた高 清浄度鋼。
3. 圧延鋼材の L断面において、 長さ ( 1 ) と幅 ( d ) の比が 1 Z d ≤ 5 の非金属介在物の平均組成が、 Si02 : 30%以上、 MnO: 8 〜 65%に、 Ca0:40%以下、 MgO: 12%以下の一方又は両方を含み、 1 d ≤ 5 の非金属介在物の dが 40 m以下であるこ とを特徴とする冷 間加工性および疲労特性の優れた高清浄度鋼。
ただし、 非金属介在物の平均組成は、 圧延鋼材の L断面 1 視野で組 成を分析した非金属介在物の個数平均によって求める。
4. 圧延鋼材の L断面において、 長さ ( 1 ) と幅 ( d ) の比が 1
/ ά≤ 5 の非金属介在物の組成が下記組成 A 2 に属する ものが個数 比で 20%以上、 下記組成 A 2 又は B 2 に属する ものが合計で 80%以 上であり、 かつ l / d ≤ 5で下記組成 A 2に属する非金属介在物の dが 40; m以下であることを特徴とする冷間加工性及び疲労特性の 優れた高清浄度鋼。
組成 A 2 : Si02 : 75%超
組成 B 2 : Si02: 35〜75%、 A1203: 30%以下に、 Ca0:50%以下、 Mg 0:15%以下の一方又は両方を含む。
5. 長さ ( 1 ) と幅 ( d ) の比が 1 d ≤ 5の非金属介在物の組 成が上記組成 A 2 に属するものの個数が 1個ノ廳 2 以下であること を特徴とする請求項 4 に記載の冷間加工性及び疲労特性の優れた高 清浄度鋼。
6. 圧延鋼材の L断面において、 長さ ( 1 ) と幅 ( d ) の比が I / d≤ 5の非金属介在物の平均組成が、 Si02 : 43%以上、 Al 203 : 24 %以下に、 Ca0:40%以下、 Mg0:12%以下の一方又は両方を含み、 1 Z d ≤ 5の非金属介在物の dが 40 / m以下であることを特徴とする 冷間加工性および疲労特性の優れた高清浄度鋼。
7. 質量%で、 C :0.4〜1.2 %、 Si :0.1〜 5 %、 Mn:0.1〜1.5 %を含むことを特徴とする請求項 1乃至 6のいずれかに記載の冷間 加工性および疲労特性の優れた高清浄度鋼。
8. 質量%で、 C :0.4〜し 2 %、 Si:0.1〜l, 5 %、 Mn:0.1~1.5 %に加えて、 Cr: 0.05〜 0 %、 Ni : 0.05〜し 0 %、 Cu: 0.05〜し 0 B :0.001-0.01% , Ti:0.001〜0.2 %、 V :0.001〜0.2 %、 Nb:0.001〜0.2 %、 Mo: 0.05〜1.0 %、 Co:0.1〜 2 %の 1 種又は 2 種以上を含むことを特徴とする請求項 1 乃至 6のいずれかに記載の 冷間加工性および疲労特性の優れた高清浄度鋼。
PCT/JP2000/003975 1999-06-16 2000-06-16 Acier fortement nettoye WO2000077270A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR0006880-2A BR0006880A (pt) 1999-06-16 2000-06-16 Aço superlimpo
KR1020017002034A KR20010086358A (ko) 1999-06-16 2000-06-16 고청정도 강
CA002340688A CA2340688A1 (en) 1999-06-16 2000-06-16 Super-clean steel
EP00939092A EP1127951A1 (en) 1999-06-16 2000-06-16 Highly cleaned steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/169470 1999-06-16
JP16947099 1999-06-16

Publications (1)

Publication Number Publication Date
WO2000077270A1 true WO2000077270A1 (fr) 2000-12-21

Family

ID=15887164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003975 WO2000077270A1 (fr) 1999-06-16 2000-06-16 Acier fortement nettoye

Country Status (6)

Country Link
EP (1) EP1127951A1 (ja)
KR (1) KR20010086358A (ja)
CN (1) CN1313912A (ja)
BR (1) BR0006880A (ja)
CA (1) CA2340688A1 (ja)
WO (1) WO2000077270A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681539B1 (ko) 2005-02-25 2007-02-12 한국생산기술연구원 산화칼슘이 첨가된 마그네슘 합금 및 그의 제조방법
JP2009215657A (ja) * 2009-06-24 2009-09-24 Kobe Steel Ltd 高清浄度ばね用鋼

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT414341B (de) 2003-11-07 2010-12-15 Boehler Edelstahl Gmbh & Co Kg Stahl für chemie - anlagen - komponenten
DE102007006875A1 (de) * 2007-02-07 2008-08-14 Benteler Stahl/Rohr Gmbh Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen und Rohrbauteil
KR101745192B1 (ko) * 2015-12-04 2017-06-09 현대자동차주식회사 초고강도 스프링강
CN106148661B (zh) * 2016-08-17 2018-05-08 北京科技大学 一种实现Si脱氧钢中夹杂物尺寸细小化的工艺流程
CN106119491B (zh) * 2016-08-17 2018-05-04 北京科技大学 一种深拉拔切割钢丝中夹杂物尺寸细小化的方法
CN111155024B (zh) * 2020-01-19 2021-05-07 江苏省沙钢钢铁研究院有限公司 一种帘线钢超低熔点塑性夹杂物控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299437A (ja) * 1985-10-26 1987-05-08 Nippon Steel Corp 高清浄度鋼
JPH02107746A (ja) * 1988-10-15 1990-04-19 Nippon Steel Corp 高疲労強度ばね鋼
JPH0361322A (ja) * 1989-07-28 1991-03-18 Nippon Steel Corp 伸線性ならびに冷間圧延性に優れたオーステナイト系ステンレス鋼の製造方法
JPH046211A (ja) * 1990-04-25 1992-01-10 Kobe Steel Ltd 疲労強度の優れたばね用鋼線の製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299437A (ja) * 1985-10-26 1987-05-08 Nippon Steel Corp 高清浄度鋼
JPH02107746A (ja) * 1988-10-15 1990-04-19 Nippon Steel Corp 高疲労強度ばね鋼
JPH0361322A (ja) * 1989-07-28 1991-03-18 Nippon Steel Corp 伸線性ならびに冷間圧延性に優れたオーステナイト系ステンレス鋼の製造方法
JPH046211A (ja) * 1990-04-25 1992-01-10 Kobe Steel Ltd 疲労強度の優れたばね用鋼線の製造法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681539B1 (ko) 2005-02-25 2007-02-12 한국생산기술연구원 산화칼슘이 첨가된 마그네슘 합금 및 그의 제조방법
JP2009215657A (ja) * 2009-06-24 2009-09-24 Kobe Steel Ltd 高清浄度ばね用鋼

Also Published As

Publication number Publication date
CN1313912A (zh) 2001-09-19
EP1127951A1 (en) 2001-08-29
CA2340688A1 (en) 2000-12-21
BR0006880A (pt) 2001-08-07
KR20010086358A (ko) 2001-09-10

Similar Documents

Publication Publication Date Title
JP5162875B2 (ja) 伸線特性に優れた高強度線材およびその製造方法
KR100940379B1 (ko) 연성이 우수한 고강도 강선 및 그 제조 방법
KR100651302B1 (ko) 신선 가공성이 우수한 고탄소강 선재 및 그의 제조방법
JP5157230B2 (ja) 伸線加工性の優れた高炭素鋼線材
JP4718359B2 (ja) 伸線性と疲労特性に優れた鋼線材およびその製造方法
EP2025769A1 (en) High-ductility high-carbon steel wire
JP2003082437A (ja) 耐ひずみ時効脆化特性および耐縦割れ性に優れる高強度鋼線およびその製造方法
JP3294245B2 (ja) 伸線性及び伸線後の耐疲労性に優れた高炭素鋼線材
JP2007131945A (ja) 延性に優れた高強度鋼線およびその製造方法
JP4646850B2 (ja) 耐カッピー断線性に優れた高炭素鋼線材
JP5304323B2 (ja) 高強度鋼線用線材、高強度鋼線及びこれらの製造方法
JP2005256115A (ja) 伸びフランジ性と疲労特性に優れた高強度熱延鋼板
WO1996001335A1 (fr) Tole d&#39;acier au chrome a excellente formabilite a la presse
WO2000077270A1 (fr) Acier fortement nettoye
JPH08337843A (ja) 打抜き加工性に優れた高炭素熱延鋼板及びその製造方法
JPS6299436A (ja) 高清浄度鋼
JP4267375B2 (ja) 高強度鋼線用線材、高強度鋼線およびこれらの製造方法
JP3400071B2 (ja) 疲労特性の優れた高強度鋼線材および高強度鋼線
JP3757027B2 (ja) 溶接性に優れた高強度熱延鋼材及びこれを用いた高強度鋼線並びに高強度棒鋼
WO2006062053A1 (ja) 低炭素快削鋼
JPH07179994A (ja) 高強度高靭延性過共析鋼線及びその製法
JP3388012B2 (ja) デラミネーション発生を抑えたスチールコード用鋼線の製造方法
JP2000001751A (ja) 耐断線性の高強度鋼線
JPH06145895A (ja) 高強度高靭性鋼線材、該鋼線材を用いた極細鋼線およびその製法並びに撚り鋼線
JP3428502B2 (ja) 鋼線材、極細鋼線及び撚鋼線

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00801137.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2001 503708

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09744369

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000939092

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2340688

Country of ref document: CA

Ref document number: 2340688

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017002034

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000939092

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017002034

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2000939092

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020017002034

Country of ref document: KR