WO2000073660A1 - Drehschieberverdichter oder -vakuumpumpe - Google Patents

Drehschieberverdichter oder -vakuumpumpe Download PDF

Info

Publication number
WO2000073660A1
WO2000073660A1 PCT/EP2000/004787 EP0004787W WO0073660A1 WO 2000073660 A1 WO2000073660 A1 WO 2000073660A1 EP 0004787 W EP0004787 W EP 0004787W WO 0073660 A1 WO0073660 A1 WO 0073660A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring wall
rotor
axis
rotary vane
operating position
Prior art date
Application number
PCT/EP2000/004787
Other languages
English (en)
French (fr)
Inventor
Franz Hillingrathner
Original Assignee
Lmf Leobersdorfer Maschinenfabrik Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lmf Leobersdorfer Maschinenfabrik Ag filed Critical Lmf Leobersdorfer Maschinenfabrik Ag
Publication of WO2000073660A1 publication Critical patent/WO2000073660A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • F04C28/22Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening

Definitions

  • the invention relates to a rotary vane compressor or a rotary vane vacuum pump (hereinafter referred to only as a rotary vane compressor) with the features mentioned in the preamble of claim 1.
  • Rotary vane compressors of this type are used for compressing or
  • the medium enters the compression space at a wide gap between the rotor and the ring wall, and is moved into a narrowing area of the gap by the rotating rotor slide. ' During this movement, the medium is enclosed between two rotor slides and the side walls and is thereby compressed. In front of the narrowest point of the gap, an outlet opening is formed in the ring wall, which opens the compression space towards an outlet line. The compressed medium is pushed out through this outlet opening because it cannot flow through the narrowest point of the gap.
  • Rotary vane compressors are used in motor vehicles, which are driven in conjunction with other units (hydraulic pump, water pump, alternator).
  • other units hydroaulic pump, water pump, alternator.
  • Rotary vane compressors are generally not shut down independently of the other units and always provide a compression and delivery performance.
  • the rotary vane compressor therefore requires drive power even during a kind of "idling" and wears out in the process. Therefore, the aim is to reduce the power loss and wear required to drive the rotary vane compressor in "idle" mode.
  • a rotary piston pump for fluid is known from US Pat. No. 2,685,842, in which part of the pumped fluid is conveyed to a drive which rotates the eccentric ring and adjusts the delivery rate.
  • the leads to the drive are designed such that the eccentric ring is also one
  • An angle of about 45 ° can be rotated. Adjustment of the delivery rate by means of an externally controlled drive is not provided here.
  • Rotary piston pumps are known from US Pat. Nos. 2,649,739 and 2,907,279, in which an eccentric ring which can be rotated by only about 30 ° is used to adjust the delivery rate.
  • Compressors are known from JP 63-140881 (A) and US Pat. No. 3,506,380, in which a rotor is surrounded by an inner housing which is surrounded by an outer housing. In order to change the delivery capacity of the compressor, the inner housing is displaced radially relative to the rotor. The drive for moving the inner housing is fixed in place on the outer housing, whereby sealed bushings are required between the outer and inner housing.
  • a rotary vane compressor for the compression of a cooling gas in a motor vehicle is known from US Pat. No. 5,051,070. This publication proposes to convey the compressed cooling gas through a bypass during idling. The cooling gas is compressed, so that drive power is constantly required. Furthermore, the cooling gas heats up due to the continuous delivery through the bypass. Since the rotary vane compressor is constantly pumping, it is subject to wear even when idling.
  • a rotor machine is known from WO 88/02438, which can be used as an internal combustion engine, fluid motor, fluid pump or compressor. In order to change the delivery capacity of the pump, the rotor can be moved relative to its housing transversely to its axis of rotation by eccentric bearings in the housing. The rotor axis is offset from the axis driving the rotor. This axis offset must be compensated for in a complex manner so that the uniform drive of the rotor is ensured.
  • the object of the invention is to enable energy-saving and wear-reducing idling of the rotary vane compressor in all the cases in which a temporary shutdown of the rotary vane compressor is not possible or too complex, the rotor being positioned exactly in relation to the ring wall in the operating position should be.
  • the invention overcomes this prejudice and proposes to provide at least a rotary movement of 60 °.
  • the axes of the rotor and ring wall must and tread are less distant from each other, so that the adjustment of the ring wall relative to the rotor requires a longer travel, but is done more precisely.
  • the distance between the rotor and the ring wall changes less per angular degree of the adjustment than in pumps of the prior art. Manufacturing and assembly tolerances can be more easily taken into account and compensated for over the longer adjustment path, for example by moving end stops by only a few degrees.
  • the rotary vane compressor according to the invention also has the advantage that the axes mentioned lie closer together and the entire compressor has a smaller overall volume than prior art compressors.
  • the ring wall can be rotated relative to the tread by an angle of more than 90 °, preferably by at least 180 °. With such large adjustment movements, a particularly precise arrangement of the ring wall relative to the rotor in the operating position is possible.
  • the at least one running surface is advantageously formed by a bush in which the rotor is rotatably mounted.
  • the ring wall is connected to the side walls to form a housing which is rotatably mounted on the bush. This creates a compact design in which the housing is accessible from the outside for adjustment on the circumference and on the side surfaces.
  • the at least one running surface is formed by a side wall and the ring wall is mounted radially and / or axially thereon.
  • the ring wall is easily accessible from outside for adjustment.
  • An outer housing can still be provided, but this can be specially designed to hold a drive for the ring wall.
  • the tread axis is particularly advantageously arranged in the center plane between the rotor axis and the ring wall axis. With a minimal size of the compressor, a maximum adjustment of the ring wall axis relative to the rotor axis is possible.
  • the rotor and ring wall axes are in a concentric position in the idling state, so that the rotor and the rotor slides guided in it rotate or rotate about the same axis. There is then no relative movement between them. The rotor slides and the rotor therefore do not wear out in the area of the guides of the rotor slides.
  • the ring wall to be rotated continuously by 180 ° between the operating position and the idling state. Due to the friction between the rotor slides and the ring wall, the ring wall rotates automatically and alternately from the operating position to the idle state or from the idle state to the operating position. According to the invention, the ring wall is locked in the operating position and in the idle state relative to the running surface and can be unlocked for switching. For this purpose, for example, only a sealing locking bolt, which houses part of the outlet line, is required.
  • the ring wall can be reversibly rotated by 180 ° between the operating position and the idling state.
  • the rotor can be adjusted particularly precisely in the housing.
  • the ring wall is advantageously rotatable by a self-locking worm drive.
  • the ring wall can thus be brought continuously into intermediate positions of the total travel.
  • the screw can be driven in a simple manner by an electric motor.
  • the invention provides that the ring wall can be rotated by a rotary vane motor.
  • the rotary vane motor according to the invention can also be externally controlled.
  • the rotary vane motor can, however, also be controlled by the pressure of the rotary vane compressor, in that there are inlet and outlet lines which are led outwards from the compression chamber in such a way that the ring wall is rotated by an angle of more than 90 °, preferably by an angle, by means of the rotary vane motor is rotatable by at least 180 °.
  • the configurations can be developed in such a way that the cross-section of the ring wall deviates from the circular shape and is formed from different circular segments with different radii.
  • the different radii make it possible to specify a suction path in the compression space on the intake side and a compression path on the pressure side.
  • a sealing section can be defined between the compression section and the intake section.
  • a semicircle can be formed with a first radius, through the center of which the ring wall axis runs. The compression distance is thereby lengthened and the sickle height of the compression space at an outlet control edge is increased.
  • a circle segment with a second radius can be arranged directly behind an outlet opening in the direction of rotation, which is almost equal to the radius of the rotor. In this way, an extended sealing section between the pressure side and the suction side is created at the narrowest point between the rotor and the ring wall, which seals better.
  • the circle segment advantageously spans an angle of approximately 30 °.
  • Such a ring wall which is not circular in cross section, can also be used in rotary vane compressors with the features mentioned in the preamble of claim 1.
  • Preferred exemplary embodiments of a rotary vane compressor according to the invention are explained in more detail below with reference to the attached schematic figures. It shows:
  • Fig.l a first embodiment of an inventive
  • FIG. 2 shows the longitudinal section labeled II-II in FIG. 1
  • FIG. 3 shows a second embodiment of a rotary vane compressor according to the invention in a cross section labeled III-III in FIG. 4,
  • FIG.4 the longitudinal section designated IV-IV in FIG. 3
  • FIG. 5 shows a third embodiment of an inventive device
  • FIG. 6 shows the cross section designated VI-VI in FIG. 7
  • FIG. 7 shows the longitudinal section designated VII-VII in FIG. 5
  • FIG. 8 shows a fourth embodiment of a rotary vane compressor according to the invention in FIG. 9 with IIX-IIX drew cross-section, and
  • FIG. 9 shows the longitudinal section designated IX-IX in FIG.
  • FIG. 1 to 9 show a rotary vane compressor or a rotary vane vacuum pump 10 with a housing 12 which surrounds a circular cylindrical rotor 14 with an annular wall 13.
  • the rotor 14 has a rotor shaft 16 which passes through the housing 12 with its two end regions.
  • the rotor shaft 16 is rotatably supported and has a rotor axis 24.
  • the ring wall 13 has a ring wall axis 20 and, together with two side walls 15 and 17, forms a compression space 26.
  • the rotary vane compressor 10 is shown in the operating position.
  • the ring wall axis 20 and the rotor axis 24 extend parallel to one another and are spaced apart from one another in such a way that the rotor 14 almost bears against the ring wall 13 of the compression chamber 26 in the lower region in the figures and between the rotor 14 in the upper region and the annular wall 13 is formed a gap.
  • the Compression chamber 26 narrows in a crescent shape downwards on both sides of rotor 14.
  • Rotor slides 28 are each slidably guided in the rotor 14 to the radius thereof.
  • the rotor slides 28 are designed such that they abut and seal against the ring wall 13 due to their centrifugal force during operation of the rotor 14.
  • the compression chamber 26 is divided into chambers by means of the rotor slides 28 which are in operation.
  • gaseous medium flows into the chambers through an inlet opening 27 (which is provided with a filter fleece in FIGS. 1, 2, 5 and 7).
  • the rotor 14 rotates in the direction of the arrow x, encloses the medium in the chambers between two rotor slides 28 and moves it into the narrowing gap of the compression chamber 26.
  • the medium is compressed in the process.
  • the highly compressed medium flows out through an outlet opening 29, an outlet channel 30 and an outlet line 32.
  • Embodiments are shown in the figures in which the ring wall axis 20 can be brought into a concentric position with respect to the rotor axis 24.
  • adjustment mechanisms are provided in order to put the ring wall 13 out of the operating position into an idle state.
  • the adjustment mechanisms comprise two bushes 18 which are fastened with supports 34 to a base 36 (which is divided into two in FIGS. 1, 2, 5, 6 and 7).
  • the rotor shaft 16 is rotatably mounted in the bores of the bushes 18 with needle bearings 37 ′′ .
  • the housing 12 is rotatably mounted on the outer circumferences of the bushes 18 on treads 19 with needle bearings 39 which extends eccentrically and parallel to the rotor axis 24.
  • the sleeve axis 22 extends eccentrically and parallel to the ring wall axis 20.
  • 1 and 2 show a first embodiment of a rotary vane compressor.
  • the adjustment mechanism also has a worm drive 38 which is arranged on the base 36 and comprises an electric motor 39 and a worm 41 driven thereby.
  • the worm 41 engages tangentially in a toothing 40 which is formed on the outer circumference of the housing 12.
  • the housing 12 and the ring wall 13 can be rotated about the socket axis 22 by means of the worm drive 38.
  • the ring wall axis 20 Since the ring wall axis 20 is eccentric to the bush axis 22, when the ring wall 13 rotates, the ring wall axis 20 moves in the direction of a concentric position with respect to the rotor axis 24.
  • the annular wall 13 is then in the optimal idling state, the rotor 14 not compressing and conveying the medium enclosed in the chambers, but rather only circulating it without pressure.
  • the rotary vane compressor only requires the drive power to overcome the friction between the rotor vanes 28 and the ring wall 13. There is no relative movement and therefore no friction between the rotor vanes 28 and the guide slots of the rotor 14.
  • the ring wall 13 In order to prevent the medium from being conveyed into the outlet line, it is sufficient to enlarge the narrowest gap between the ring wall 13 and the rotor 14 (0.02 to 0.05 mm) by a few centimeters. For this purpose, the ring wall 13 only has to be rotated by a substantially smaller angular amount than 180 °. However, compressed medium is then conveyed to the intake side and blown out there, thus driving power is consumed and inefficiency is generated.
  • an outlet ring 42 is provided which surrounds the housing 12, is sealed to it by means of two seals 43 and is integrally formed on the base.
  • the Outlet ring 42 forms an annular space 45 into which the outlet channel 30 of the housing 12 and the outlet line 32 of the base 36 open. The outlet ring 42 thus connects the outlet line 32 to the outlet channel 30 of the housing 12 both in the operating position and in the idling state and in any intermediate position.
  • FIG. 3 and 4 show a second embodiment of a rotary vane compressor 10, in which the bushings 18 are also connected in one piece to the side walls 15 and 17.
  • the bushings 18 can alternatively be designed as components which are initially separated from the side walls and inserted into them.
  • a locking mechanism with a bolt 44 is provided in addition to the bushings 18.
  • the bolt 44 engages in a first recess 46, which is arranged conically and open to the outside on the circumference of the housing 12.
  • the bolt 44 is biased by a spring 50.
  • the outlet line 32 extends through the bolt 44.
  • a seal 48 is arranged, which seals between the outlet channel 30 and the outlet line 32.
  • a second recess 52 which is similar to the recess 46, is formed on the circumference of the housing.
  • a check valve 54 is arranged within the bolt 44 and temporarily closes the outlet line 32 as an outlet valve. The available space is thus optimally used.
  • the bolt 44 is briefly pulled out of the recess 46 against the spring 50. This can be done pneumatically, hydraulically or electromagnetically.
  • the housing 12 is then freely rotatable about the bushings 18. It is entrained by the rotor 14 due to the friction between the rotor slides 28 and the ring wall 13. It rotates counterclockwise with respect to FIG. 3, while the bolt 44 rests by spring force on the circumference of the housing 12 and slides along it. After rotating the housing 12 through 180 °, the bolt 44 engages in the second recess 52. In this position, the housing 12 and the ring wall 13 are in the idle state and remain there until the bolt 44 is withdrawn again.
  • the bolt 44 can be designed together with actuators in such a way that it is automatically retracted when a minimum or a maximum pressure threshold is reached. In this way, the delivery capacity of the rotary vane compressor can be controlled automatically.
  • a third embodiment of a rotary vane compressor is shown.
  • the housing 12 is partially surrounded by an outer housing 52 in which the supports 34 are integrated.
  • a rotary vane motor 56 is arranged, which is shown in particular in FIG. 6.
  • the rotary vane motor 56 comprises a rotary vane 58 which is connected to the housing 12 and can be reversibly rotated 180 ° in a segment of an annular channel 60.
  • the ring channel 60 is sealed by a seal 54 on the circumference of the side wall 17 between the housing 12 and the outer housing 52.
  • the outlet opening 29 leads into an outlet channel 30 which is guided through the side wall 15 of the housing 12.
  • a flexible outlet line 32 is connected there by means of a rotary connection 64 (swivel screw connection), which enables it to follow the 180 ° rotation of the housing 12 without kinks.
  • a fourth embodiment of a rotary vane compressor 10 is shown.
  • the rotor shaft 16 is rotatably supported in needle bearings 37 in an outer housing 70, which is formed by the side walls 15 and 17 and a housing ring 68 arranged between them.
  • the outer housing 70 is thus part of the housing 12.
  • the ring wall 13 On the inside of the housing ring 68, the ring wall 13 is arranged, and with its axial end regions on the side walls 15 and 17 on bearing surfaces 19, rotatably and axially rotatable, the bearing surface axis 22 of which in the operating position shown is eccentric and parallel to the rotor axis 24 and the ring wall axis 20 is.
  • annular wall 13 of this exemplary embodiment is provided with a rotary wing 58 which projects radially from the annular wall 13 and is formed in one between the annular wall 13 and the housing ring 68
  • Ring channel 60 protrudes.
  • the rotary wing 58 extends essentially over the entire axial width of the housing ring 68 and is reversibly pivotable over an angular range of 180 °.
  • a line 62 leads into the ring channel 60, by means of which compressed air can be supplied so that the rotary wing 58 rotates and adjusts the ring wall 13 in the direction of the running condition.
  • the housing ring 68 can alternatively be designed as two split rings, each of which is integrally connected to the side walls. Furthermore, the housing ring 68 can have radially inward extensions at its axial ends, on which the running surfaces 19 are formed, so that the ring wall 13 is mounted exclusively on the housing ring 68.
  • the inlet and outlet lines 27 and 29, 30 and 32 extend exclusively through the side walls 15 and 17. They are provided with openings 74 and 29, respectively, which are formed on the compression space 26 in the side walls 15 and 17.
  • openings 74 and 29, respectively are formed on the compression space 26 in the side walls 15 and 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Ein Drehschieberverdichter (10) weist eine Ringwand (13) und ein Paar Seitenwände (15, 17) auf, die einen Verdichtungsraum (26) umschließen. Im Verdichtungsraum (26) erstreckt sich ein Rotor (14), dessen Rotorachse (24) in einer Betriebsstellung exzentrisch zu einer Ringwandachse (20) angeordnet ist. Die Ringwand (13) ist an mindestens einer ortsfesten Lauffläche (19) drehbar gelagert, deren Laufflächenachse (22) parallel und exzentrisch zur Ringwandachse (20) und exzentrisch zur Rotorachse (24) ist. Um eine möglichst konzentrische Lage von Rotor (14) und Ringwand (13) im Leerlaufzustand und zugleich ein präzises Positionieren des Rotors (14) relativ zur Ringwand (13) in der Betriebsstellung zu ermöglichen, ist die Ringwand (13) relativ zur Lauffläche (19) zwischen der Betriebsstellung und dem Leerlaufzustand um einen Winkel von mehr als 60° drehbar.

Description

Drehschieberverdichter oder -Vakuumpumpe
Die Erfindung betrifft einen Drehschieberverdichter oder eine Drehschiebervakuumpumpe (im folgenden nur als Drehschieberverdichter bezeichnet) mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.
Derartige Drehschieberverdichter dienen zum Verdichten bzw.
Absaugen von gasförmigen Medien. Dabei tritt das Medium in den Verdichtungsraum an einem breiten Spalt zwischen dem Rotor und der Ringwand ein, und wird durch die umlaufenden Rotorschieber in einen sich verengenden Bereich des Spaltes bewegt.' Das Me- dium ist während dieser Bewegung zwischen jeweils zwei Rotor- schiebern und den Seitenwänden eingeschlossen und wird dadurch verdichtet. Vor der engsten Stelle des Spalts ist in der Ringwand eine Auslaßöffnung ausgebildet, die den Verdichtungsraum zu einer Auslaßleitung hin öffnet. Das verdichtete Medium wird durch diese Auslaßöffnung ausgeschoben, da es nicht durch die engste Stelle des Spalts strömen kann.
In Kraftfahrzeugen werden Drehschieberverdichter eingesetzt, die im Verbund mit anderen Aggregaten (Hydraulikpumpe, Wasser- pumpe, Lichtmaschine) angetrieben werden. Hierbei kann der
Drehschieberverdichter im allgemeinen nicht unabhängig von den anderen Aggregaten stillgesetzt werden und erbringt ständig eine Verdichtungs- und Förderleistung. Der Drehschieberverdichter erfordert also auch während einer Art "Leerlauf" An- triebsleistung und verschleißt dabei. Daher wird angestrebt, die für einen Antrieb des Drehschieberverdichters im "Leerlauf" erforderliche Verlustleistung und den Verschleiß zu verringern.
Aus der DE 22 49 591 B2 , die die Basis für den Oberbegriff des Anspruchs 1 bildet, ist eine fördermengenregelbare Rotationskolbenpumpe mit einem Pumpengehäuse einem darin gelagerten Rotor bekannt, der von einem Exzenterring umgeben ist. Um die Pumpenleistung zu verstellen, soll der Exzenterring durch nicht veranschaulichte Mittel von außen um einen Winkel von ca. 45° gedreht werden. Wie dies geschehen soll, bleibt allerdings offen.
Aus der US-2,685,842 ist eine Rotationskolbenpumpe für Fluid bekannt, bei der ein Teil des gepumpen Fluids zu einem Antrieb gefördert wird, der den Exzenterring verdreht und die Förderleistung verstellt. Die Zuleitungen zum Antrieb sind dabei derart ausgebildet, daß der Exzenterring ebenfalls um einen
Winkel von etwa 45° verdrehbar ist. Ein Verstellen der Fördermenge mittels eines fremdgesteuerten Antriebs ist hier nicht vorgesehen.
Aus US-2,649,739 und US-2,907,279 sind Rotationskolbenpumpen bekannt, bei denen ein um nur ca. 30° verdrehbarer Exzenterring zum Verstellen der Förderleistung verwendet wird.
Aus der JP 63-140881 (A) und der US-3,506,380 sind Kompresso- ren bekannt, bei denen ein Rotor von einem Innengehäuse umgeben ist, das von einem Außengehäuse umgeben ist. Um die Förderleistung des Kompressors zu ändern, wird das Innengehäuse relativ zum Rotor radial verschoben. Der Antrieb zum Verschieben des Innengehäuses ist ortsfest am Außengehäuse angebracht, wobei zwischen Außen- und Innengehause abgedichtete Durchführungen erforderlich sind.
Aus der US-5,051,070 ist ein Drehschieberverdichter für die Kompression eines Kühlgases in einem Kraftfahrzeug bekannt. Diese Druckschrift schlägt vor, während des Leerlaufs das verdichtete Kühlgas durch einen Bypass zu fördern. Dabei wird das Kühlgas komprimiert, so daß ständig Antriebsleistung erforderlich ist. Ferner erhitzt sich das Kühlgas durch das fortlaufende Fördern durch den Bypass. Da der Drehschieberverdichter ständig fördert, unterliegt er auch im Leerlauf einem Verschleiß. Aus der WO 88/02438 ist eine Rotormaschine bekannt, die als Verbrennungsmotor, Fluidmotor, Fluidpumpe oder Kompressor verwendbar ist. Um die Förderleistung der Pumpe zu verändern, ist der Rotor relativ zu seinem Gehäuse quer zu seiner Drehachse durch exzentrische Lager im Gehäuse bewegbar. Dabei wird die Rotorachse zu der den Rotor antreibenden Achse versetzt. Dieser Achsversatz muß aufwendig ausgeglichen werden, damit der gleichmäßige Antrieb des Rotors gewährleistet ist.
Der Erfindung liegt die Aufgabe zugrunde, in all den Fällen, in denen ein zeitweiliges Stillsetzen des Drehschieberverdich- ters nicht möglich oder zu aufwendig ist, einen energiesparenden und verschleißmindernden Leerlauf des Drehschieberverdich- ters zu ermöglichen, wobei der Rotor in der Betriebsstellung genau zur Ringwand positioniert sein soll.
Die Aufgabe ist erfindungsgemäß durch einen Drehschieberverdichter mit den Merkmalen des Anspruchs 1 gelöst.
Gemäß den Druckschriften DE 22 49 591 B2 , US-2 , 685 , 842 , US- 2,649,739 und US-2, 907, 279 werden im Stand der Technik bisher kurze Drehbewegungen verwendet, um eine exzentrische Ringwand relativ zu einer ortsfesten Lagerung bzw. einem Rotor zwischen einem Leerlaufzustand und einer Betriebsstellung zu verstel- len. Durch diese kurze Drehbewegung muß aber ein großer Versatz zwischen Ringwand und Rotor geschaffen werden, um einerseits zu einer möglichst konzentrischen Lage von Ringwand und Rotor zu gelangen und einen verschleißarmen Leerlaufzustand zu erhalten. Andererseits muß der Rotor in der Betriebsstellung sehr präzise zur Ringwand positioniert sein.
Aufgrund der Anordnung von Ein- und Auslaßleitungen und den bisher bekannten Antrieben, erscheint nur eine Verdrehung der Ringwand um einen Winkel von ca. 45° möglich zu sein.
Die Erfindung überwindet dieses Vorurteil und schlägt vor, mindesten eine Drehbewegung von 60° vorzusehen. Bei einer derart großen Drehbewegung müssen die Achsen von Rotor, Ringwand und Lauffläche weniger weit voneinander entfernt sein, so daß das Verstellen der Ringwand relativ zum Rotor zwar einen längeren Stellweg erfordert, dafür aber präziser erfolgt. Pro Winkelgrad der Verstellung ändert sich der Abstand zwischen Rotor und Ringwand erfindungsgemäß weniger als bei Pumpen des Standes der Technik. Fertigungs- und Montagetoleranzen können über den längeren Verstellweg leichter berücksichtigt und ausgeglichen werden, indem beispielsweise Endanschläge um nur wenige Grad versetzt werden.
Der erfindungsgemäße Drehschieberverdichter hat ferner den Vorteil, daß die genannten Achsen näher zusammenliegen und der gesamte Verdichter ein kleineres Bauvolumen aufweist, als Verdichter des Standes der Technik.
Bei einer erfindungsgemäßen Weiterbildung ist die Ringwand relativ zur Lauffläche um einen Winkel von mehr als 90°, bevorzugt um mindestens 180° drehbar. Mit derart großen Verstellbewegungen ist eine besonders präzise Anordnung der Ringwand re- lativ zum Rotor in der Betriebsstellung möglich.
Vorteilhaft ist die mindestens eine Lauffläche von einer Buchse gebildet, in welcher der Rotor drehbar gelagert ist. Die Ringwand ist dabei mit den Seitenwänden zu einem Gehäuse ver- bunden, das auf der Buchse drehbar gelagert ist. Damit ist eine kompakte Bauweise geschaffen, bei der das Gehäuse am Umfang und an den Seitenflächen von außen zum Verstellen insgesamt zugänglich ist.
Alternativ ist die mindestens eine Lauffläche von einer Seitenwand gebildet und die Ringwand unmittelbar an dieser radial und/oder axial gelagert. Die Ringwand ist auch bei dieser Gestaltung von außen zum Verstellen gut zugänglich. Es kann zwar weiterhin ein Außengehäuse vorgesehen sein, dieses kann aber speziell zum Haltern eines Antriebs für die Ringwand ausgebildet sein. Besonders vorteilhaft ist die Laufflächenachse in der Betriebsstellung in der Mittelebene zwischen der Rotorachse und der Ringwandachse angeordnet. Bei minimaler Baugröße des Verdichters ist dadurch ein maximales Verstellen der Ringwandach- se relativ zur Rotorachse möglich. Ist die Laufflächenachse im Zentrum zwischen Rotor- und Ringwandachse angeordnet, so liegen die Rotor- und die Ringwandachse im Leerlaufzustand in konzentrischer Lage, so daß sich der Rotor und die in ihm geführten RotorSchieber um dieselbe Achse drehen bzw. umlaufen. Es findet dann zwischen ihnen keine Relativbewegung statt. Die Rotorschieber und der Rotor verschleißen daher nicht im Bereich der Führungen der Rotorschieber.
Eine vorteilhafte Weiterbildung sieht vor, die Ringwand zwi- sehen der Betriebsstellung und dem Leerlaufzustand um jeweils 180° fortlaufend zu drehen. Aufgrund der Reibung zwischen den Rotorschiebern und der Ringwand dreht sich die Ringwand selbsttätig und abwechselnd aus der Betriebsstellung in den Leerlaufzustand bzw. aus dem Leerlaufzustand in die Betriebs- Stellung. Erfindungsgemäß ist die Ringwand dabei in der Betriebsstellung und im Leerlaufzustand relativ zur Lauffläche verriegelt und zum Umschalten entriegelbar. Dazu ist beispielsweise nur ein abdichtender, einen Teil der Auslaßleitung beherbergender Verriegelungsbolzen erforderlich.
Bei einer weiteren erfindungsgemäßen Verstellmechanik, ist die Ringwand zwischen der Betriebsstellung und dem Leerlaufzustand um jeweils 180° reversibel drehbar. Der Rotor ist so besonders präzise im Gehäuse verstellbar.
Vorteilhaft ist die Ringwand dabei durch einen selbsthemmenden Schneckenantrieb drehbar. Die Ringwand kann so stufenlos auch in Zwischenstellungen des Gesamtstellweges gebracht werden. Der Antrieb der Schnecke kann in einfacher Weise durch einen Elektromotor erfolgen.
Als vorteilhafte Alternative sieht die Erfindung vor, daß die Ringwand durch einen Drehflügelmotor drehbar ist. Im Gegensatz zu dem in US-2, 685, 842 beschriebenen Drehflügel, kann der erfindungsgemäße Drehflügelmotor auch fremdgesteuert sein.
Der Drehflügelmotor kann aber auch vom Druck des Drehschieber- verdichters gesteuert werden, indem Ein- und Auslaßleitungen vorhanden sind, die derart vom Verdichtungsraum nach außen geführt sind, daß die Ringwand mittels des Drehflügelmotors um einen Winkel von mehr als 90°, bevorzugt um einen Winkel von mindestens 180° drehbar ist.
Die Ausgestaltungen können so weitergebildet sein, daß die Ringwand im Querschnitt von der Kreisform abweicht und aus verschiedenen Kreissegmenten mit unterschiedlichen Radien gebildet ist. Die unterschiedlichen Radien ermöglichen es, im Verdichtungsraum auf der Ansaugseite eine Ansaugstrecke und auf der Druckseite eine Verdichtungsstrecke gezielt festzulegen. Zwischen Verdichtungsstrecke und Ansaugstrecke kann eine Abdichtstrecke festgelegt werden.
Mit einem ersten Radius kann ein Halbkreis gebildet sein, durch dessen Mittelpunkt die Ringwandachse verläuft. Die Verdichtungsstrecke ist dadurch verlängert und dabei die Sichelhöhe des Verdichtungsraums an einer Auslaßsteuerkante vergrößert.
Ferner kann in Drehrichtung unmittelbar hinter einer Auslaßöffnung ein Kreissegment mit einem zweiten Radius angeordnet sein, der nahezu gleich dem Radius des Rotors ist. Auf diese Weise ist eine verlängerte Abdichtstrecke zwischen der Druck- und der Ansaugseite an der engsten Stelle zwischen Rotor und Ringwand geschaffen, die besser abdichtet. Das Kreissegment überspannt vorteilhaft einen Winkel von ca. 30°.
Eine derartige, im Querschnitt nicht kreisrunde Ringwand kann auch bei Drehschieberverdichtern mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen verwendet werden. Bevorzugte Ausführungsbeispiele eines erfindungsgemäßen Dreh- schieberverdichters werden im folgenden anhand der beigefügten, schematischen Figuren näher erläutert. Es zeigt:
Fig.l eine erste Ausführungεform eines erfindungsgemäßen
Drehschieberverdichters in einem in Fig. 2 mit I-I bezeichneten Querschnitt, Fig.2 den in Fig.l mit II-II bezeichneten Längsschnitt, Fig.3 eine zweite Ausführungsform eines erfindungsgemäßen Drehschieberverdichters in einem in Fig.4 mit III-III bezeichneten Querschnitt, Fig.4 den in Fig.3 mit IV-IV bezeichneten Längsschnitt, Fig.5 eine dritte Ausführungsform eines erfindungsgemäßen
Drehschieberverdichters im in Fig.7 mit V-V bezeichne- ten Querschnitt,
Fig.6 den in Fig. 7 mit VI-VI bezeichneten Querschnitt, Fig.7 den in Fig. 5 mit VII-VII bezeichneten Längsschnitt, Fig.8 eine vierte Ausführungsform eines erfindungsgemäßen Drehschieberverdichters im in Fig.9 mit IIX-IIX be- zeichneten Querschnitt, und
Fig.9 den in Fig.8 mit IX-IX bezeichneten Längsschnitt.
Die Fig.l bis 9 zeigen einen Drehschieberverdichter oder eine Drehschiebervakuumpumpe 10 mit einem Gehäuse 12 , das mit einer Ringwand 13 einen kreiszylinderförmigen Rotor 14 umgibt. Der Rotor 14 weist eine Rotorwelle 16 auf, die mit ihren beiden Endbereichen das Gehäuse 12 durchsetzt. Die Rotorwelle 16 ist drehbar gelagert und hat eine Rotorachse 24. Die Ringwand 13 weist eine Ringwandachse 20 auf und bildet zusammen mit zwei Seitenwänden 15 und 17 einen Verdichtungsraum 26.
Der Drehschieberverdichter 10 ist in der Betriebsstellung dargestellt. In dieser Betriebsstellung erstrecken sich die Ringwandachse 20 und die Rotorachse 24 parallel zueinander und sind dabei derart voneinander beabstandet, daß der Rotor 14 im in den Figuren unteren Bereich an der Ringwand 13 des Verdich- tungsraums 26 nahezu anliegt und im oberen Bereich zwischen dem Rotor 14 und der Ringwand 13 ein Spalt gebildet ist. Der Verdichtungsraum 26 verengt sich zu beiden Seiten des Rotors 14 im Querschnitt sichelförmig nach unten.
Im Rotor 14 sind jeweils schräg zu dessen Radius Rotorschieber 28 verschiebbar geführt. Die Rotorschieber 28 sind derart gestaltet, daß sie beim Betrieb des Rotors 14 aufgrund ihrer Fliehkraft an der Ringwand 13 anliegen und abdichten. Mittels der im Betrieb anliegenden Rotorschieber 28 wird der Verdichtungsraum 26 in Kammern unterteilt.
Im Betrieb des Drehschieberverdichters strömt durch eine Einlaßöffnung 27 (die in den Fig. 1, 2, 5 und 7 mit einem Filterflies versehen ist) gasförmiges Medium in die Kammern ein. Der Rotor 14 dreht in Richtung des Pfeils x, schließt das Medium in den Kammern zwischen je zwei Rotorschiebern 28 ein und bewegt es in den sich verengenden Spalt des Verdichtungsraums 26. Das Medium wird dabei verdichtet. Im verengten Bereich des Spalts strömt das stark verdichtete Medium durch eine Auslaßöffnung 29, einen Auslaßkanal 30 und eine Auslaßleitung 32 aus .
In den Figuren sind Ausführungsformen dargestellt, bei denen die Ringwandachse 20 in eine konzentrische Stellung zur Rotorachse 24 gebracht werden kann. Hierzu sind Verstellmechanis- men vorgesehen, um die Ringwand 13 aus der Betriebsstellung in einen Leerlaufzustand zu versetzen.
Bei den Ausführungsbeispielen der Fig. 1 bis 7 umfassen die Verstellmechanismen zwei Buchsen 18, die mit Stützen 34 an ei- nem (in den Fig. 1, 2, 5, 6 und 7 zweigeteilten) Sockel 36 befestigt sind. Die Rotorwelle 16 ist mit Nadellagern 37" in Bohrungen der Buchsen 18 drehbar gelagert. Das Gehäuse 12 ist an den Außenumfängen der Buchsen 18 auf Laufflächen 19 mit Nadellagern 39 drehbar gelagert. Die Buchsen 18 weisen als Achse dieser Lauffläche 19 eine Laufflächenachse oder Buchsenachse 22 auf, die sich exzentrisch und parallel zur Rotorachse 24 erstreckt. Zugleich erstreckt sich die Buchsenachse 22 exzentrisch und parallel zur Ringwandachse 20. In Fig. 1 und 2 ist eine erste Ausführungsform eines Dreh- schieberverdichters dargestellt. Der Verstellmechanismus weist hierbei ferner einen Schneckenantrieb 38 auf, der am Sockel 36 angeordnet ist und einen Elektromotor 39 sowie eine dadurch angetriebene Schnecke 41 umfaßt. Die Schnecke 41 greift tan- gential in eine Verzahnung 40, die am äußeren Umfang des Gehäuses 12 ausgebildet ist. Mittels des Schneckenantriebs 38 sind das Gehäuse 12 und die Ringwand 13 um die Buchsenachse 22 drehbar .
Da die Ringwandachse 20 zur Buchsenachse 22 exzentrisch ist, bewegt sich bei einer Drehung der Ringwand 13 die Ringwandachse 20 in Richtung einer konzentrischen Stellung zur Rotorachse 24. Der im Querschnitt sichelförmige Verdichtungsraum 26 wird dadurch zu einem Ringraum, dessen Wandstärke, bei Drehung des Gehäuses 12 um 180°, gleich dick ist. Die Ringwand 13 befindet sich dann im optimalen Leerlaufzustand, wobei der Rotor 14 das in den Kammern eingeschlossene Medium nicht verdichtet und fördert, sondern nur drucklos umwälzt. Der Drehschieberverdichter erfordert nur die Antriebsleistung zum Überwinden der Reibung zwischen den Rotorschiebern 28 und der Ringwand 13. Zwischen den Rotorschiebern 28 und den Führungsschlitzen des Rotors 14 gibt es keine Relativbewegung und daher keine Rei- bung .
Um eine Förderung des Mediums in die Auslaßleitung zu verhindern, genügt es den engsten Spalt zwischen der Ringwand 13 und dem Rotor 14 (0,02 bis 0,05mm) um einige Zentel Millimeter zu vergrößern. Hierzu muß die Ringwand 13 nur um einen wesentlich kleineren Winkelbetrag als 180° gedreht werden. Es wird dann aber verdichtetes Medium auf die Ansaugseite gefördert und dorthin ausgeblasen, somit wird Antriebsleistung verbraucht und Uneffizienz erzeugt.
Am äußeren Umfang des Gehäuses 12 ist ein Auslaßring 42 vorgesehen, der das Gehäuse 12 umgibt, mittels zweier Dichtungen 43 zu diesem abgedichtet und an dem Sockel angeformt ist. Der Auslaßring 42 bildet einen ringförmigen Raum 45, in den der Auslaßkanal 30 des Gehäuses 12 und die Auslaßleitung 32 des Sockels 36 münden. Der Auslaßring 42 verbindet damit sowohl in der Betriebsstellung als auch im Leerlaufzustand und in jeder beliebigen Zwischenstellung die Auslaßleitung 32 mit dem Auslaßkanal 30 des Gehäuses 12.
In den Fig.3 und 4 ist eine zweite Ausführungsform eines Dreh- schieberverdichters 10 dargestellt, bei dem die Buchsen 18 ebenfalls einstückig mit den Seitenwänden 15 und 17 verbunden sind. Die Buchsen 18 können alternativ als von den Seitenwänden zunächst getrennte und in diese eingesetzte Bauteile ausgebildet sein. Zum Verstellen zwischen der Betriebsstellung und dem Leerlaufzustand ist neben den Buchsen 18 ein Verriege- lungsmechanismus mit einen Bolzen 44 vorgesehen. Der Bolzen 44 greift in eine erste Ausnehmung 46, die konisch und nach außen offen am Umfang des Gehäuses 12 angeordnet ist. Der Bolzen 44 ist durch eine Feder 50 vorgespannt. Die Auslaßleitung 32 erstreckt sich durch den Bolzen 44. Zwischen der Ausnehmung 46 und dem Bolzen 44 ist eine Dichtung 48 angeordnet, die zwischen dem Auslaßkanal 30 und der Auslaßleitung 32 abdichtet. Gegenüber der Ausnehmung 46 ist am Umfang des Gehäuses eine zweite, zur Ausnehmung 46 gleichartige Ausnehmung 52 ausgebildet. Innerhalb des Bolzens 44 ist ein Rückschlagventil 54 an- geordnet, welches die Auslaßleitung 32 als Auslaßventil zeitweise verschließt. Damit ist der verfügbare Bauraum optimal ausgenützt.
Um das Gehäuses 12 aus der Betriebsstellung in den Leerlaufzu- stand zu versetzen, wird der Bolzen 44 entgegen der Feder 50 aus der Ausnehmung 46 kurzzeitig herausgezogen. Dies kann pneumatisch, hydraulisch oder elektromagnetisch erfolgen. Das Gehäuse 12 ist dann um die Buchsen 18 frei drehbar. Es wird infolge der Reibung zwischen den Rotorschiebern 28 und der Ringwand 13 durch den Rotor 14 mitgenommen. Dabei dreht es sich bezogen auf Fig.3 entgegen dem Uhrzeigersinn, während der Bolzen 44 durch Federkraft am Umfang des Gehäuses 12 anliegt und an ihm entlanggleitet. Nach Drehen des Gehäuses 12 um 180° rastet der Bolzen 44 in die zweite Ausnehmung 52 ein. In dieser Stellung befindet sich das Gehäuse 12 und die Ringwand 13 im Leerlaufzustand und ver- bleibt dort, bis der Bolzen 44 erneut zurückgezogen wird.
Der Bolzen 44 kann zusammen mit Stellgliedern derart ausgebildet sein, daß er selbsttätig zurückgezogen wird, wenn eine minimale oder eine maximale Druckschwelle erreicht ist. Auf die- se Weise kann die Förderleistung des Drehschieberverdichters selbsttätig gesteuert werden.
In den Fig. 5, 6 und 7 ist eine dritte Ausführungsform eines Drehschieberverdichters dargestellt. Das Gehäuse 12 ist teil- weise von einem Außengehäuse 52 umgeben, in dem die Stützen 34 integriert sind. An der Außenseite der Seitenwand 17 ist ein Drehflügelmotor 56 angeordnet, der insbesondere in Fig. 6 dargestellt ist. Der Drehflügelmotor 56 umfaßt einen Drehflügel 58, der mit dem Gehäuse 12 verbunden und in einem Segment ei- nes Ringkanals 60 180° reversibel drehbar ist. Der Drehflügel
58 weist am Umfang und an den Stirnseiten Labyrinthdichtungen
59 auf und stützt sich in seinen Endlagen an Dämpferscheiben 61 ab. Der Ringkanal 60 ist durch eine Dichtung 54 am Umfang der Seitenwand 17 zwischen dem Gehäuse 12 und dem Außengehäuse 52 abgedichtet.
Die Auslaßöffnung 29 führt bei dieser Ausführung in einen Auslaßkanal 30 der durch die Seitenwand 15 des Gehäuses 12 geführt ist. Dort ist eine flexible Auslaßleitung 32 mittels ei- ner Drehverbindung 64 (Schwenkverschraubung) angeschlossen, die es ihr ermöglicht der 180° -Drehung des Gehäuses 12 knickfrei zu folgen.
Wenn keine Druckluft am Drehflügel 58 wirkt, wird dieser in- folge der Reibung der Rotorschieber 28 oder durch eine Feder (nicht dargestellt) in die in Fig.6 dargestellte Stellung gedrängt. Das Gehäuse 12 und die Ringwand 13 sind dann in der Betriebsstellung. Im Falle des Leerlaufzustandes beim Abstel- len des Motors wird nach kurzer Zeit automatisch der Drehschieberverdichter in die Betriebsstellung gestellt und somit in jedem Falle ein Wiederauffüllen des Druckluftbehälters gewährleistet. Damit wird bei einem leeren Druckluftbehälter, beispielsweise nach einer langen Stillstandsphase eines LKWs, der Drehschieberverdichter aus der Betriebsstellung heraus angefahren.
Steht Druckluft am Drehflügel 58 an, so vollführt dieser aus der Betriebsstellung eine Drehung um 180° und bewegt das Gehäuse 12 und die Ringwand 13 in den Leerlaufzustand.
In den Fig. 8 und 9 ist eine vierte Ausführungsform eines Drehschieberverdichters 10 dargestellt. Die Rotorwelle 16, ist in Nadellagern 37 in einem Außengehäuse 70 drehbar gelagert, das von den Seitenwänden 15 und 17 und einem dazwischen angeordneten Gehäusering 68 gebildet ist. Das Außengehäuse 70 ist somit ein Teil des Gehäuses 12.
An der Innenseite des Gehäuserings 68 ist die Ringwand 13 angeordnet, und mit ihren axialen Endbereichen jeweils an den Seitenwänden 15 und 17 an Laufflächen 19 radial und axial drehbar gelagert, deren Laufflächenachse 22 in der dargestellten Betriebsstellung exzentrisch und parallel zur Rotorachse 24 und zur Ringwandachse 20 ist.
Ähnlich wie beim Ausführungsbeispiel der Fig. 5 bis 7 ist die Ringwand 13 dieses Ausführungsbeispiels mit einem Drehflügel 58 versehen, der von der Ringwand 13 radial absteht und in ei- nen zwischen Ringwand 13 und Gehäusering 68 ausgebildeten
Ringkanal 60 ragt. Der Drehflügel 58 erstreckt sich im wesentlichen über die gesamte axiale Breite des Gehäuserings 68 und ist über einen Winkelbereich von 180° reversibel schwenkbar. In den Ringkanal 60 führt eine Leitung 62, mittels der Druck- luft zugeführt werden kann, so daß sich der Drehflügel 58 dreht und die Ringwand 13 in Richtung des Lehrlaufzustandes verstellt. Der Gehäusering 68 kann alternativ als zwei geteilte Ringe ausgebildete sein, die jeweils mit den Seitenwänden einstückig verbunden sind. Ferner kann der Gehäusering 68 an seinen axialen Enden radial nach innen Fortsätze aufweisen, an denen die Laufflächen 19 ausgebildet sind, so daß die Ringwand 13 ausschließlich am Gehäusering 68 gelagert ist.
Die Ein- und Auslaßleitungen 27 und 29, 30 bzw. 32 erstrecken sich bei diesem Ausführungsbeispiel ausschließlich durch die Seitenwände 15 und 17. Sie sind mit Öffnungen 74 bzw. 29 versehen, die am Verdichtungsraum 26 in den Seitenwänden 15 und 17 ausgebildet sind. Es ist daher im Gegensatz zu der in DE 22 49 591 B2 beschriebenen Rotationskolbenpumpe möglich, daß die Ringwand mittels des Drehflügels 58 um 180° von der Betriebs- Stellung in den Leerlaufzustand gedreht wird.

Claims

Patentansprüche
1. Drehschieberverdichter oder -Vakuumpumpe (10) mit
- einer Ringwand (13) und einem Paar Seitenwände (15, 17), die einen im Querschnitt sichelförmigen Verdichtungs- oder Evakuierraum (26) umschließen, wobei die Ringwand (13) eine Ringwandachse (20) aufweist, - einem Rotor (14) , der sich im Verdichtungsraum (26) erstreckt und ihn nach innen begrenzt, den Verdichtungsraum (26) unterteilende Rotorschieber (28) umfaßt und eine Rotorachse (24) aufweist, die zur Ringwandachse (20) parallel ist,
- mindestens einer ortsfesten und drehfesten Lauffläche (19), an der mindestens die Ringwand (13) drehbar gelagert ist, und die eine Laufflächenachse (22) aufweist, die parallel und exzentrisch zur Ringwandachse (20) und exzentrisch zur Rotorachse (24) angeordnet ist, wobei
- die Ringwand (13) an der Lauffläche (19) verdrehbar ist, derart, daß die Ringwandachse (20) und die Rotorachse (24) mindestens in einer Betriebsstellung in bezug zueinander exzentrisch angeordnet sind, und die Ringwand (13) aus der Betriebsstellung in einen Leerlaufzustand in Richtung auf eine zur Rotorachse (24) konzentrische Lage der Ringwandachse (20) verstellbar ist, dadurch gekennzeichnet, daß die Ringwand (13) relativ zur Lauffläche (19) zwischen der mindestens einen Betriebsstellung und dem Leerlaufzustand um einen Winkel von mehr als 60° drehbar ist.
2. Drehschieberverdichter nach Anspruch 1, dadurch gekennzeichnet, daß die Ringwand (13) um einen Winkel von mehr als 90°, vorzugsweise um einen Winkel von mindestens 180° drehbar ist.
3. Drehschieberverdichter nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß die mindestens eine Lauffläche (19) an einer Buchse (18) ausgebildet ist, in welcher der Ro- tor (14) drehbar gelagert ist, und die Ringwand (13) mit den Seitenwänden (15, 17) zu einem Gehäuse (12) verbunden ist, das auf der Buchse (18) drehbar gelagert ist.
4. Drehschieberverdichter nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß die mindestens eine Lauffläche (19) an einer Seitenwand (15, 17) ausgebildet ist und die Ringwand (13) unmittelbar an dieser Seitenwand (15, 17) radial und/oder axial gelagert ist.
5. Drehschieberverdichter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Laufflächenachse (22) in der Betriebsstellung in der Mittelebene, vorzugsweise im Zentrum zwischen der Rotorachse (24) und der Ringwandachse (20) liegt.
6. Drehschieberverdichter nach Anspruch 5 , dadurch gekennzeichnet, daß die Ringwand (13) zwischen der Betriebsstellung und dem Leerlaufzustand um jeweils 180° fortlaufend drehbar ist.
7. Drehschieberverdichter nach Anspruch 6, dadurch gekennzeichnet, daß die Ringwand (13) in der Betriebsstellung und im Leerlaufzustand relativ zur Lauffläche (19) verriegelt ist und zum Umschalten entriegelbar ist, so daß sie sich infolge Reibung zwischen den Rotorschiebern (28) und der Ringwand (13) aus der Betriebsstellung in den Leerlaufzustand bzw. aus dem Leerlaufzustand in die Betriebsstellung dreht.
8. Drehschieberverdichter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Ringwand (13) zwischen der Betriebsstellung und dem Leerlaufzustand um jeweils 180° reversibel drehbar ist.
9. Drehschieberverdichter nach einem der Ansprüche 1 bis 5 oder 8, dadurch gekennzeichnet, daß die Ringwand (13) durch einen Schneckenantrieb (38) drehbar ist.
10. Drehschieberverdichter nach einem der Ansprüche 1 bis 5 oder 8 , dadurch gekennzeichnet, daß die Ringwand (13) durch einen Drehflügelmotor (56) drehbar ist.
11. Drehschieberverdichter nach Anspruch 10, dadurch gekennzeichnet, daß Ein- und Auslaßleitungen vorgesehen sind, die derart vom Verdichtungs- oder Evakuierraum (26) nach außen geführt sind, daß die Ringwand (13) mittels des Drehflügelmotors (56) um einen Winkel von mehr als 90°, bevorzugt um einen Winkel von mindestens 180° drehbar ist.
PCT/EP2000/004787 1999-05-28 2000-05-25 Drehschieberverdichter oder -vakuumpumpe WO2000073660A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19924645 1999-05-28
DE1999124645 DE19924645A1 (de) 1999-05-28 1999-05-28 Drehschieberverdichter oder -vakuumpumpe

Publications (1)

Publication Number Publication Date
WO2000073660A1 true WO2000073660A1 (de) 2000-12-07

Family

ID=7909581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004787 WO2000073660A1 (de) 1999-05-28 2000-05-25 Drehschieberverdichter oder -vakuumpumpe

Country Status (2)

Country Link
DE (1) DE19924645A1 (de)
WO (1) WO2000073660A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20120237A1 (it) * 2012-03-19 2013-09-20 Vhit Spa Pompa rotativa a cilindrata variabile e metodo di regolazione della sua cilindrata
WO2013140304A1 (en) 2012-03-19 2013-09-26 Vhit Spa Variable displacement rotary pump and displacement regulation method
CN115217577A (zh) * 2021-06-10 2022-10-21 广州汽车集团股份有限公司 曲通调节器、曲通调节系统和曲通调节方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007002031B4 (de) * 2007-01-13 2013-12-24 Audi Ag Pumpe mit einem Verstellelement
ITTO20080911A1 (it) * 2008-12-09 2010-06-10 Vhit S P A Unipersonale Pompa del vuoto con coperchio mobile
ITTO20130735A1 (it) * 2013-09-11 2015-03-12 Vhit Spa Pompa a cilindrata variabile con comando elettrico della regolazione e metodo di regolazione della sua cilindrata

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2649739A (en) 1948-06-04 1953-08-25 Houdaille Hershey Corp Constant pressure variable displacement pump
US2685842A (en) 1948-11-18 1954-08-10 George H Hufferd Variable displacement pump and volume control therefor
FR1183989A (fr) * 1957-10-07 1959-07-16 Blackmer Pump Company Pompe volumétrique à palettes rotatives à débit variable
US2907279A (en) 1955-01-24 1959-10-06 Hydraulic Engineering Co Inc Variable capacity pump
US3200756A (en) * 1962-10-15 1965-08-17 Jr George D Ratliff Variable displacement motors and speed controls therefor
US3506380A (en) 1968-08-22 1970-04-14 Howard H Powell Self-regulating,automatic rotary vane device and system
DE2035355A1 (de) * 1970-07-13 1972-02-17 Maschinenfabrik Karl Wittig Gmbh, 7860 Schopfheim Drehschieberverdichter
DE2249591A1 (de) 1972-10-10 1974-04-25 Danfoss As Fluegelradpumpe
DE2448469A1 (de) * 1974-10-11 1976-04-22 Sartoros Theodore Dipl Ing Stufenlos regelbare doppeltwirkende fluegelzellenpumpe u/o fluegelzellenmotor
WO1988002438A1 (en) 1986-09-26 1988-04-07 H.M.R. Engine Co. Pty. Ltd. Rotary machine
JPS63140881A (ja) 1986-12-03 1988-06-13 Kayseven Co Ltd カ−エアコン用容量制御コンプレツサ
US5051070A (en) 1988-12-29 1991-09-24 Aisin Seiki Kabushiki Kaisha Variable capacity compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1006576B (de) * 1955-06-27 1957-04-18 Soc D Forges Et Ateliers Du Gr Drehkolbenverdichter mit am Rotor angelenkten Schaufeln
DE2056353C3 (de) * 1970-11-17 1974-04-25 Claudius Peters Ag, 2000 Hamburg Zweistufiger Vielzellenverdichter
US3917438A (en) * 1972-08-24 1975-11-04 Stal Refrigeration Ab Rotary compressor of the sliding vane type
US4336004A (en) * 1979-12-26 1982-06-22 The Bendix Corporation Movable end plate for a vacuum pump

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2649739A (en) 1948-06-04 1953-08-25 Houdaille Hershey Corp Constant pressure variable displacement pump
US2685842A (en) 1948-11-18 1954-08-10 George H Hufferd Variable displacement pump and volume control therefor
US2907279A (en) 1955-01-24 1959-10-06 Hydraulic Engineering Co Inc Variable capacity pump
FR1183989A (fr) * 1957-10-07 1959-07-16 Blackmer Pump Company Pompe volumétrique à palettes rotatives à débit variable
US3200756A (en) * 1962-10-15 1965-08-17 Jr George D Ratliff Variable displacement motors and speed controls therefor
US3506380A (en) 1968-08-22 1970-04-14 Howard H Powell Self-regulating,automatic rotary vane device and system
DE2035355A1 (de) * 1970-07-13 1972-02-17 Maschinenfabrik Karl Wittig Gmbh, 7860 Schopfheim Drehschieberverdichter
DE2249591A1 (de) 1972-10-10 1974-04-25 Danfoss As Fluegelradpumpe
DE2448469A1 (de) * 1974-10-11 1976-04-22 Sartoros Theodore Dipl Ing Stufenlos regelbare doppeltwirkende fluegelzellenpumpe u/o fluegelzellenmotor
WO1988002438A1 (en) 1986-09-26 1988-04-07 H.M.R. Engine Co. Pty. Ltd. Rotary machine
JPS63140881A (ja) 1986-12-03 1988-06-13 Kayseven Co Ltd カ−エアコン用容量制御コンプレツサ
US5051070A (en) 1988-12-29 1991-09-24 Aisin Seiki Kabushiki Kaisha Variable capacity compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20120237A1 (it) * 2012-03-19 2013-09-20 Vhit Spa Pompa rotativa a cilindrata variabile e metodo di regolazione della sua cilindrata
WO2013140304A1 (en) 2012-03-19 2013-09-26 Vhit Spa Variable displacement rotary pump and displacement regulation method
US9765778B2 (en) 2012-03-19 2017-09-19 Vhit S.P.A. Variable displacement rotary pump and displacement regulation method
CN115217577A (zh) * 2021-06-10 2022-10-21 广州汽车集团股份有限公司 曲通调节器、曲通调节系统和曲通调节方法
CN115217577B (zh) * 2021-06-10 2023-09-29 广州汽车集团股份有限公司 曲通调节器、曲通调节系统和曲通调节方法

Also Published As

Publication number Publication date
DE19924645A1 (de) 2000-11-30

Similar Documents

Publication Publication Date Title
DE4241320C2 (de) Drehkolbenmaschine
DE69114245T2 (de) Spiralverdichter.
WO2013007470A1 (de) Schraubenverdichter
EP2698541A2 (de) Rotationspumpe mit verstellbarem Fördervolumen, insbesondere zum Verstellen einer Kühlmittelpumpe
EP3295034B1 (de) Kreiselpumpe mit verschiebbarem rotor
DE19907492A1 (de) CO¶2¶-Kompressor
WO2013068531A2 (de) Regelbarer flügelkompressor
WO1994023209A1 (de) Zahnradpumpe zum fördern eines fliessfähigen mediums
EP3894706A1 (de) Drehkolbenpumpe mit innenliegender lagerung
DE69000176T2 (de) Hydraulische drehkolbenmaschine.
DE102017104063B4 (de) Elektrische Gerotorpumpe mit Steuerspiegel
WO2000073660A1 (de) Drehschieberverdichter oder -vakuumpumpe
DE4011671C2 (de) Regelbare Flügelzellenpumpe
EP4217610B1 (de) Motor-pumpe-einheit
DE3826548A1 (de) Fluegelradkompressor mit variabler foerderleistung
EP1488107B1 (de) Exzenterpumpe und verfahren zum betrieb dieser pumpe
EP0650419B1 (de) Hydraulische maschine
DE3922436C2 (de)
EP2412979A2 (de) Verdrängerpumpe mit Absaugnut
DE9207087U1 (de) Rotationskolbenmaschine
DE4234055C2 (de) Spiralkompressor
DE3343520A1 (de) Fluegelzellenverdichter mit variabler foerdermenge
DE3922434C2 (de)
DE19942687C2 (de) Drehschiebermaschine
DE3727281A1 (de) Rotationskolbenkompressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP