WO2000072319A1 - Support d'enregistrement de donnees et procede de fabrication dudit support - Google Patents

Support d'enregistrement de donnees et procede de fabrication dudit support Download PDF

Info

Publication number
WO2000072319A1
WO2000072319A1 PCT/JP1999/002613 JP9902613W WO0072319A1 WO 2000072319 A1 WO2000072319 A1 WO 2000072319A1 JP 9902613 W JP9902613 W JP 9902613W WO 0072319 A1 WO0072319 A1 WO 0072319A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
recording
film
layer
recording medium
Prior art date
Application number
PCT/JP1999/002613
Other languages
English (en)
French (fr)
Inventor
Tomonori Ikeya
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP1999/002613 priority Critical patent/WO2000072319A1/ja
Publication of WO2000072319A1 publication Critical patent/WO2000072319A1/ja
Priority to US09/961,135 priority patent/US6707786B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10584Record carriers characterised by the selection of the material or by the structure or form characterised by the form, e.g. comprising mechanical protection elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00718Groove and land recording, i.e. user data recorded both in the grooves and on the lands
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10576Disposition or mounting of transducers relative to record carriers with provision for moving the transducers for maintaining alignment or spacing relative to the carrier
    • G11B11/10578Servo format, e.g. prepits, guide tracks, pilot signals

Definitions

  • the present invention relates to an information recording medium and a method for manufacturing the same.
  • Conventional technology
  • Various optical recording media and magnetic recording media are known as recording media having a recording film capable of recording and holding information.
  • a rewritable information recording medium a magneto-optical disk, a phase change optical disk, a flobtical disk, a hard disk and the like are known.
  • magnetic domains are formed in the recording film by magnetic means including thermomagnetic recording, or a part in which the arrangement of atoms or molecules constituting the recording film is changed by thermal means. Recording is performed. The recorded information is reproduced by detecting the rotation of the deflecting surface due to the magnetic domain and the change in reflectance.
  • the information recording medium performs recording and reproduction at predetermined positions by means of tracking.
  • a groove called a guide groove (hereinafter, referred to as a groove) is formed.
  • a groove In the magneto-optical disk currently on the market, information is recorded on the recording film on the upper surface of the convex portion (land) between the grooves.
  • a recording / reproducing method (land-groove recording method) has been proposed.
  • both lands and groups are recording tracks,
  • the interval between recording tracks becomes narrower.
  • a cross write phenomenon occurs in which data is also recorded on a track adjacent to a track desired to be recorded
  • a cross erase phenomenon occurs in which information on a track adjacent to a track desired to be erased is also erased.
  • the wall angle is, as shown in Fig. 1, a half of the maximum height of the group (the height difference between the top surface of the land A and the bottom surface of the group B) d in a section perpendicular to the recording track direction. Means the angle between the tangent f of the wall at and the bottom g of the group.
  • a metal transfer mold (so-called stamper) is manufactured from the master on which the group ⁇ uneven bits are formed.
  • the resin is cured.
  • a substrate is produced by peeling off the cured luster.
  • the wall angle is greater than 90 °, that is, a so-called overhang state.
  • manufacturing a substrate in such a state means that the master and the stamper, and the stamper and the substrate, are in a state of being wedge-shaped. Therefore, it was physically impossible with the current technology to peel off both.
  • a film having a low directivity is formed by a film forming method with low directivity to form a film having an angle of 80 ° with respect to the groove bottom surface.
  • a method for manufacturing an information recording medium is provided.
  • An information recording medium comprising at least a recording film formed, wherein the wall surface of the groove has an angle of less than 8 CT with respect to the bottom surface, and the wall surface of the underlying eyebrow has an angle of 80 ° or more with respect to the bottom surface of the groove.
  • an information recording comprising: a substrate having a groove formed therein; an underlayer laminated while rotating the substrate; and a recording film laminated on the underlayer while keeping the substrate stationary. A medium is provided.
  • FIG. 1 is an HI illustrating the definition of the wall angle in this specification.
  • Figure 2 is a graph showing the relationship between wall angle and jitter.
  • FIG. 3 is a diagram for explaining the definition of the relation angle of the underlayer in this specification.
  • FIG. 4 is a diagram illustrating the definition of sharpness of a corner in the present incense.
  • FIG. 5 is a schematic diagram for explaining the method for manufacturing an information recording medium of the present invention.
  • FIG. 6 is a schematic configuration diagram of an apparatus for recording and reproducing information on a magneto-optical information recording medium according to the present invention.
  • FIGS. 7 (a) and 7 (b) are schematic structural views of recording / reproducing information on the magneto-optical information recording medium of the present invention.
  • 8 (a) to 8 (d) are schematic process diagrams of a method for forming a substrate according to the first embodiment of the present invention.
  • FIG. 9 is a graph showing the relationship between the jitter and CNR with respect to the reproduction power of the information recording media of Example 1 and Comparative Example 1 of the present invention.
  • FIG. 10 is a graph showing the relationship between the anneal power and the power of the information recording medium of Comparative Example 1.
  • FIG. 11 is a graph showing the change of the jitter of the information recording medium of Example 2 of the present invention and Comparative Example 2 with time.
  • Examples of the substrate that can be used in the present invention include a resin substrate such as a polycarbonate resin, a glass substrate, and a substrate in which a resin derived from a photopolymer is laminated on a glass substrate. Grooves (groups) are formed in the substrate.
  • a method suitable for mass production a method for forming a group by transfer from a master through a stamper is exemplified.
  • a method of forming directly on a substrate using a drawing means such as a laser there are various methods for forming groups by applying a photopolymer onto a substrate, exposing and cleaning.
  • RIE reactive ion etching
  • the present invention is characterized in that the wall surface of the group has an angle of less than 80 ° with respect to the bottom surface of the group (hereinafter, referred to as the wall surface angle of the substrate). 8 0.
  • the wall surface angle of the substrate By setting the value to be less than the above value, in particular, the separation of the stamper from the master and the separation of the substrate from the stamper can be improved.
  • a particularly preferred angle of the wall surface is 30 to 70. It is.
  • the depth of the group, the width of the bottom of the group and the width of the top of the land are It is preferable to set appropriately according to these recording method and recording density (or recording capacity).
  • the depth of the group, the width of the bottom of the group, and the width of the top surface of the land are 40 to 200 nm, 0 to 0.3111, and 0.4 to 0.4, respectively. It is preferably 0.9 m.
  • the depth of the groove, the width of the bottom of the group, and the width of the top of the land are 40 to It is preferably 200 nm, 0.3-0.8111 and 0.2-0.4 m.
  • Land in the case of group recording the depth of the group, the width of the bottom of the group and the width of the top of the land are 40-200 nm, 0.3-0.6 m and 0.3-0, respectively. Preferably it is 6 zm.
  • an underlayer is formed on the substrate.
  • This underlayer may be a single layer or a plurality of layers.
  • the underlayer may be used as an underlayer protection eyebrow, an enhancement layer, a heat dissipation layer, a reflection layer, or the like.
  • the material constituting the underlying exhibition, Al, Mo, Pt, W , Cr ⁇ Ti, SiN, A IN, S i0 2, Al_ ⁇ is ZnO Hitoshigakyo up.
  • This underlayer is formed so as to cover at least the wall surface of the groove.
  • the underlayer is formed so as to have a wall surface having an angle of 80 ° or more with respect to the bottom surface of the group (hereinafter, referred to as a wall angle of the underlayer). Therefore, it is possible to realize the wall angle, which was difficult to obtain by the conventional method.
  • the wall angle of the underlayer is preferably 90 or more, that is, it is preferably in an overhang state, specifically, it is preferably 90 to 120 °.
  • Fig. 2 shows the relationship between the wall angle and the jitter.
  • the wall angle is about 80. It can be seen that the slope of the curve becomes smaller from about the point where it exceeds, and almost constant jitter is obtained around 90 °. Therefore, the wall angle is preferably 80 ° or more, and this wall angle can be realized by the present invention.
  • the relation angle 0 between the tangent line X to the side wall of the base eyebrows and the tangent line y to the bottom surface is 90 at the constriction P near the end of the land B, as shown in FIG.
  • the following is preferred.
  • the underlayer preferably has a sharpness of 5 nm or less at the corner.
  • the sharpness of the corner means the contents shown in FIG. That is, in the cross section perpendicular to the recording track direction, it means the roundness of the junction (referred to as a corner) Y between the end of the top surface of the land A and / or the end of the bottom surface of the group and the wall surface. This roundness is defined by the radius r of the maximum tangent circle X to the corner Y. A smaller value r indicates better sharpness and sharpness.
  • the thickness of the underlayer can be any thickness as long as a predetermined wall angle of the underlayer can be realized, and for example, is preferably about 30 to 16 Onm.
  • the present invention includes a recording film formed on the bottom surface of the group, the upper surface of the convex portion (land) between the groups, or on both surfaces thereof.
  • any of an optical recording medium material and a magnetic recording medium material can be used.
  • an optical recording medium material for example, an alloy composed of Pb, Te, Se, Ge, Sb, Ag, In and the like can be mentioned.
  • the magnetic recording medium material include one or more rare earth metal elements such as Pr, Nd, Sm, Gd, Tb, Dy, and Ho, and an iron group element such as Fe, Co, and Ni.
  • Rare earth ferrous group alloys composed of one or more kinds are exemplified. Elements such as Cr, Mn, Cu, Ti, Al, Si, Pt, and In may be added to the alloy in small amounts. The mixing ratio of these elements is appropriately set according to the performance (eg, saturation magnetization, coercive force, etc.) required of the magnetic recording medium.
  • These magnetic recording media can also be used as magneto-optical recording media.
  • the another magnetic recording medium Co- Cr- Ta-based alloy, Co- Cr- P t alloy, ⁇ over Fe 2 0 3: Co, BaFeCoT i0 12 , and the like.
  • the configuration of the recording film is not particularly limited, and any configuration known in the art can be employed.
  • the recording mark can be further stabilized.
  • an intermediate layer for controlling recording and reproduction may be provided between the recording layer and the reproduction layer.
  • a reproduction auxiliary layer may be provided on the reproduction layer.
  • the magnetic easy axis of each layer may be either the vertical direction or the in-plane direction, and the layers may be exchange-coupled to each other.
  • the Curie temperatures of the recording layer, the intermediate layer, and the reproducing layer are expressed as Tc3, Tc2, and Tc1
  • Tc1 and Tc2> Tc1 there is a relationship of Tc3> Tc1 and Tc2> Tc1
  • the easy axis of magnetization of the recording layer, middle eyebrow and reproduction layer is perpendicular, combination of perpendicular and in-plane directions, combination of perpendicular direction, in-plane direction and in-plane direction, combination of perpendicular direction, in-plane direction and perpendicular direction are described.
  • the thickness is preferably 20 to 10 Onm.
  • the thickness of the recording / reproducing layer is 20 to 70 nm, and the thickness of the magnetization reversal auxiliary layer is preferably 1 to 1 Onm.
  • the thickness of the recording layer is preferably from 15 to 100 nm, and the thickness of the reproducing layer is preferably from 5 to 50 nm.
  • the thickness of the recording layer is preferably 30 to 10 Onm, and the thickness of the intermediate layer is preferably 2 to 20 nm. Is preferably 20 to 5 nm.
  • a reproduction assisting layer When a reproduction assisting layer is provided, its thickness is preferably 5 to 3 Onm.
  • a protective layer may be formed on the surface. Since the recording film usually contains an element that is easily oxidized, it is formed in the air or later.
  • the protection film can be prevented from being deteriorated by having a configuration that covers the side wall of the recording film, particularly, so that the storage film is not exposed.
  • the protective film may be a single layer or a multilayer. Further, the protective layer may be used as a surface protective layer, an enhancement layer, a heat dissipation layer, a reflection layer, or the like.
  • the material constituting the coercive Mamoruso, Al, Mo, P t W , Cr, T i, S i N, A IN, include S I_ ⁇ 2, A 10, ZnO and the like.
  • the protective film is not a heat radiation layer
  • a method for manufacturing an information recording medium of the present invention will be described with reference to FIG. First, on a substrate 4 on which a group having a wall surface having an angle of less than 80 ° with respect to the bottom surface is formed, a wall surface having an angle of 80 ° or more with respect to the bottom surface of the group is formed by a film forming method with low directivity. Is formed.
  • the film forming method with low directivity include a method such as a sputtering method (for example, a magnetron sputtering method) and a vapor deposition method while rotating the substrate.
  • the underlayer 1 is formed on the entire surface of the substrate 4 including the side wall of the tube, and the underlayer 1 becomes thicker from the lower part to the upper part of the side wall. Therefore, the angle of the wall surface of base layer 1 can be larger than the angle of the side wall of the substrate. Accordingly, it is possible to realize a favorable wall angle of the underlayer for magnetically and thermally separating the recording film. Further, the removability of the substrate from the stamper can be improved.
  • the underlayer 1 is composed of a plurality of layers
  • at least one of the layers may be formed by a film forming method with low directivity.
  • the recording film 2 is formed on the underlayer 1 and on the bottom surface of the group, the upper surface of the convex portion between the groups, or on both surfaces thereof.
  • the recording film is preferably formed by a film forming method having high directivity.
  • a film forming method having high directivity a method such as a sputtering method (for example, a helicon sputtering method or an ion beam sputtering method) and a vapor deposition method while the substrate is kept stationary can be mentioned.
  • a sputtering method for example, a helicon sputtering method or an ion beam sputtering method
  • a vapor deposition method while the substrate is kept stationary can be mentioned.
  • the recording film is formed by a film forming method having high directivity, since the wall surface of the underlayer 1 has an angle of 80 ° or more, it is preferentially formed on the bottom surface of the groove and the top surface of the land. You. Therefore, the recording film 2 can
  • a protective eyebrow 3 can be formed on at least the surface of the recording film 2, but the film forming method may be either a low directivity method or a high directivity method. Of these, a method with low directivity is preferred.
  • the protective film 3 can be formed so that the S3 recording film 2 is not exposed.
  • Specific examples of the film forming method include a method such as a sputtering method (for example, a magnetron sputtering method) and an evaporation method while rotating the substrate. In a method having a high directivity, it is preferable to form a thick protective film so that the side wall of the recording film on the upper surface of the land is not exposed.
  • a heat radiation layer may be formed on the protective film.
  • the film forming method is not particularly limited, and any known method can be used. In particular, it is preferable that this heat dissipation layer is formed only on the recording film via a protective film. However, as a method for forming the heat dissipation layer, the substrate is kept stationary while a sputtering method (for example, Redirector method, ion beam sputtering method), vapor deposition method, etc. are used.
  • a sputtering method for example, Redirector method, ion beam sputtering method
  • vapor deposition method etc.
  • an oxide film formed on the surface or a highly oxidizing gas was adsorbed. Portions may be etched.
  • a substrate on which a groove (group) is formed a substrate on which a groove (group) is formed, a base layer rotated while rotating the substrate, and a recording film laminated on the base layer while keeping the substrate stationary. Is also provided.
  • the recording / reproducing apparatus for recording and reproducing information on and from the information recording medium of the present invention is not particularly limited, and any known apparatus can be used.
  • the recording / reproducing device used for the optical information recording medium has, for example, the following configuration.
  • a light irradiating means such as a laser for irradiating light to a portion where information is desired to be recorded is provided, and information is recorded by changing the crystallinity of a recording film at that portion.
  • a light irradiating means such as a laser for reproducing information by irradiating light at a condition that does not change the crystallinity of a portion where information is recorded to a portion where information is desired to be reproduced.
  • Be prepared I have.
  • the light irradiating means includes, for example, a laser and a light condensing means (for example, a lens) for collecting light from the laser.
  • the recording / reproducing device used for the magnetic information recording medium has, for example, the following configuration.
  • a recording / reproducing device has a slider provided with at least a magnetic head.
  • the magnetic head is for recording and / or reproducing information on an information recording medium.
  • the magnetic head may have a recording head and a reproducing head separately.
  • a recording / reproducing apparatus for use in a magneto-optical information recording medium has, for example, a slider provided with a magnetic head and light irradiation means (for example, a laser).
  • the light irradiating means irradiates the information recording medium with light, thereby raising the temperature of the irradiating portion, thereby facilitating the recording and reproduction of information, and further miniaturizing the recording mark. Play a role.
  • FIG. 6 shows the configuration of an apparatus for recording and reproducing information on the magneto-optical information recording medium.
  • M is an information recording medium
  • 5 is a light irradiation means
  • 6 is a magnetic head including a slider.
  • the laser irradiating means 5 includes a laser 41, a collimator lens 42 for converting the laser beam into parallel light, a splitter 43 for transmitting or reflecting the laser beam, and an objective lens 44 for the information recording medium. They are arranged in order toward M. Further, on the reflection side of the splitter, a ⁇ wavelength plate 45 for rotating the deflecting surface of the laser light and a polarization beam splitter 46 for separating the laser light into a horizontal component and a vertical component are arranged in this order. At the output side of the splitter 43, condensing lenses 47 and 49 are arranged to collect the output light of the water component and the vertical component, respectively. At their output side, photodetectors 48 and 5 are provided. 0 is located each. The photodetectors 48 and 50 calculate the difference between the detection signals An amplifier 51 for amplifying the signal is connected, and a signal from the amplifier 51 is output to a switching terminal 65 of the switch unit.
  • the magnetic head unit 6 receives the electric signal corresponding to the magnetization direction detected by the slider 61 equipped with the magnetic head and inputs the amplified signal, and the amplified circuit 62 receives the amplified signal and shapes the waveform. For the integration.
  • the signal from the integrating circuit 63 is output to the switching terminal 66. Either of the signals output to the switching terminals 65 and 66 is input to the demodulation circuit 64 by the switching of the common terminal 67 of the switch section, and is demodulated and output as a signal.
  • the light irradiating means 5 is provided on the opposite side of the magnetic head 6, but both may be hidden on the same surface side with respect to the information recording medium M. That is, a so-called front illumination system in which information is recorded / reproduced by irradiating light from the side of the recording film opposite to the interface with the substrate can be adopted.
  • FIG. 7 shows a schematic cross-sectional view of this device
  • Fig. 7 (b) shows a plan view
  • 6 a denotes a bias magnetic field H B applying means (e.g., an electromagnet, a permanent magnet or the like).
  • a bias magnetic field H B applying means e.g., an electromagnet, a permanent magnet or the like.
  • the light modulation method different from the magnetic field modulation system, Bruno, 'Iasu field H B application means 6 a is a full track cover - and summer large to be able to.
  • erasing is performed by applying a bias magnetic field in the N or S direction, and irradiating the entire surface with light by a light irradiation unit 5 (for example, DC light, pulsed laser light, or the like).
  • a light irradiation unit 5 for example, DC light, pulsed laser light, or the like.
  • writing can be performed by applying a bias magnetic field in a direction opposite to that of erasing and irradiating light only to a position where recording is desired.
  • a disk-shaped glass substrate with a groove of 1.2 m, a depth of 60 nm and a wall angle of about 60 ° was prepared.
  • the width of the top surface of the land of this substrate and the bottom surface of the group were equal.
  • the glass substrate group was formed through the steps shown in FIGS. 8 (a) to 8 (d). That is, a photoresist 12 was applied on the substrate 11 (see FIG. 8A). Next, by exposing and developing the photoresist 12, the photoresist 12 was patterned into a desired shape (see FIG. 8 (b)). Using the patterned photoresist 12 as a mask, the substrate was etched by the RIE method (see FIG. 8 (c)). Further, the photoresist was removed by asking to form a substrate having a desired shape (see FIG. 8D).
  • a DC magnetron sputtering method (a method with low directivity) was used to form an underlayer eyebrow made of a 9-nm-thick silicon nitride layer on the substrate.
  • the film forming conditions were as follows: the total gas pressure of argon and nitrogen was 0.6 Pa, the input power was 0.8 kW, and the revolution speed was 4 Or pm.
  • the wall angle of the underlayer was about 90 °. Note that the relation angle 0 of the underlayer is 80. Met.
  • a recording film composed of a 3 Onm reproducing layer, a 10 nm intermediate layer and an 80 nm recording layer was formed on the underlayer in this order.
  • the film formation conditions for the recording film were as follows: the target and the substrate were statically opposed to each other, an adjustment plate with a slit was placed between the target and the substrate, and the scattering of particles for forming the recording film was directed.
  • the gas pressure was set at 0.1 lPa and the input power was set at 0.5 kW.
  • the formed reproducing layer is mainly composed of GdFe with a Curie temperature of about 210 ° C
  • the intermediate layer is mainly composed of TbFe with a Curie temperature of about 130 ° C
  • the recording layer is with a Curie temperature of about 300 ° C.
  • TbFe Co was the main component.
  • a protective layer made of a silicon nitride layer having a thickness of 60 nm was formed at least on the recording film.
  • the film formation conditions for the protective layer were as follows: the target and the substrate were statically opposed to each other, and an adjustment plate with a slit was placed between the target and the substrate so that the scattering of particles for forming the recording ⁇ had directivity.
  • the gas pressure was 0.6 Pa and the input power was 0.8 kW.
  • the substrate is taken out of the vacuum apparatus and overcoated with an ultraviolet curable resin (SD-1700 manufactured by Dainippon Ink) to form a 10 nm thick overcoat film to form an information recording medium.
  • SD-1700 ultraviolet curable resin manufactured by Dainippon Ink
  • the obtained information recording medium was evaluated using a tester having a wavelength of 640 nm and an optical system of NAO.55.
  • the evaluation conditions were as follows. Recording was performed by a magnetic field modulation method with a peripheral speed of lmZsec, a recording power of DC-3.5 mW, an AC magnetic field of ⁇ 2500 e, and a recording mark length of 0.2 / in. Reproduction was performed while changing the reproduction speed at a peripheral speed of 1.5 m / sec, and the jitter and CNR at that time were measured. The above evaluation was performed on the recording film at the bottom of the group.
  • Figure 9 shows the relationship between the playback power and the jitter and CNR.
  • Example 2 The same substrate as in Example 1 was prepared. On this substrate, a base layer composed of a silicon nitride layer, a reproducing layer, an intermediate layer, a recording film composed of a recording eyebrow, and a protective layer composed of a silicon nitride layer were formed in this order. The film formation of each of these layers The sheet and the substrate were statically opposed to each other, and an adjusting plate with a slit was arranged between the target and the substrate so that scattering of particles for forming a recording film had directivity. The thickness of each layer was the same as in Example 1. The wall angle of the underlayer was about 60 °.
  • the substrate is taken out of the vacuum device and overcoated with an ultraviolet curing resin (SD-170, manufactured by Dainippon Ink) to form an overcoated film with a thickness of 1 O nm.
  • SD-170 ultraviolet curing resin manufactured by Dainippon Ink
  • the obtained information recording medium was recorded and reproduced under the same conditions as in Example 1, even when the jitter was the smallest, it exceeded 20 ns sec and could not be reproduced properly. Therefore, the lands located on both sides of the recording track were annealed at a peripheral speed of 2 m / sec while changing the laser power (anneal power). With this information recording medium, the jitter was measured in the same manner as in Example 1 except that the reproduction power was changed to 2.9 mW. The results are shown in FIG.
  • the wall angle of the substrate is small, the recording track cannot be separated at both ends unless the wall angle of the underlayer is 80 ° or more. That is, if the underlayer is formed by a directional film forming method, the desired operation is not performed because the recording film is continuously connected over the entire surface of the substrate.
  • the group pitch is 1.2 m
  • the depth is 60 nm
  • the wall tilt angle is A disk-shaped glass substrate of about 60 ° was prepared.
  • the width of the top surface of the land of this substrate and the width of the bottom surface of the group were equal.
  • the group was formed in the same manner as in Example 1.
  • An underlayer consisting of a 90-nm-thick silicon nitride layer was formed on the substrate by DC magnetron sputtering (a method with low directivity) while the substrate was revolving (rotating).
  • the film forming conditions were as follows: the total gas pressure of argon and nitrogen was 0.6 Pa, the input power was 0.8 kW, and the revolution speed was 4 Or pm. The wall angle of the ground eyebrows is about 90. Met.
  • a recording film including a 30-nm reproducing layer, a 10-nm intermediate layer, and a 80-nm recording layer was formed on the underlayer in this order.
  • the film formation conditions for the recording film were as follows: the target and the substrate were statically opposed, an adjusting plate with a slit was placed between the target and the substrate, and the scattering of particles for forming the recording film was directional.
  • the gas pressure was set at 0.1 lPa and the input power was set at 0.5 kW.
  • the formed regenerating layer is composed mainly of GdF e at a Curie temperature of about 210 ° C, the middle layer is a lily with a temperature of about 13 (TbFe of TC as the main component, and the recording eyebrows are TbFe Co with a Curie temperature of about 300 ° C. Was the main component.
  • a protective layer made of a silicon nitride layer having a thickness of 6 Onm was formed at least on the recording film under the same film forming conditions as the underlayer.
  • the information recording medium is obtained by removing the substrate from the vacuum device and overcoating with an ultraviolet curable resin (SD-1700 manufactured by Dainippon Ink) to form an overcoat film with a thickness of 1 Onm.
  • the obtained information recording medium has an optical system with a wavelength of 640 nm and NA of 0.55.
  • the evaluation was performed using a tester. The evaluation conditions were as follows. Recording was performed in the same manner as in Example 1, and reproduction was performed in the same manner as in Example 1 except that the reproduction power was changed to 2.9 mW, and the jitter was measured at regular intervals. The above evaluation was performed on the recording film on the JL surface of the land. Figure 11 shows the change in jitter for each hour.
  • Example 2 The same substrate as in Example 2 was prepared. On this substrate, a base layer composed of a silicon nitride layer, a reproducing layer, an intermediate layer, a recording film composed of a recording eyebrow, and a protective layer composed of silicon nitride were formed in this order.
  • a base layer composed of a silicon nitride layer, a reproducing layer, an intermediate layer, a recording film composed of a recording eyebrow, and a protective layer composed of silicon nitride were formed in this order.
  • the target and the substrate are statically opposed to each other, an adjustment plate with a slit is placed between the target and the substrate, and the scattering of particles for forming the recording film has directivity.
  • I went as follows.
  • the thickness of each layer was the same as in Example 1.
  • the wall angle of the underlayer was 62 °.
  • the substrate is taken out of the vacuum device and overcoated with an ultraviolet curing resin (SD-170, manufactured by Dainippon Ink) to form an overcoat film with a thickness of 10 nm.
  • an ultraviolet curing resin SD-170, manufactured by Dainippon Ink
  • the jitter is stable over time in Example 2 whereas the measurement cannot be performed in a short time in Comparative Example 2. It is considered that the reason for this is that the corrosion of the information recording medium of Comparative Example 2 was promoted by the edge of the recording film being in contact with the overcoat film.
  • Dull bite bite is 1.2 m, depth is 60 nm, wall angle is about 70 ° Was prepared. The width of the top surface of the land of this substrate and the bottom surface of the group were equal.
  • the groove was formed in the same manner as in Example 1.
  • An underlayer consisting of a 90-nm-thick silicon nitride layer was formed on the substrate by DC magnetron sputtering (a method with low directivity) while the substrate was revolving (rotating).
  • the film forming conditions were as follows: the total gas pressure of argon and boron was 0.6 Pa, the input turret power was 0.8 kW, and the revolution speed was 40 rpm.
  • the wall thickness of the underlayer was found to be overhang by more than 90 ° by SEM.
  • a recording film including a 30-nm reproducing layer, a 10-nm intermediate layer, and a 80-nm recording layer was formed on the underlayer in this order.
  • the conditions for forming the recording film were as follows: the target and the substrate were statically opposed to each other, and an adjustment plate containing a slit was placed between the target and the substrate. The scattering of particles for forming the recording film was directional. The gas pressure was set at 0.1 lPa and the input power was set at 0.5 kW.
  • the formed regeneration layer is composed mainly of 001-6 with a Curie temperature of about 210, and the middle layer has a lily temperature of about 130.
  • the main component was TbFe of C, and the recording eyebrows were TbFeCo at a Curie temperature of about 300 ° C.
  • a protective layer made of a silicon nitride layer having a thickness of 60 nm was formed at least on the recording film.
  • the film formation conditions for the protective eyebrows are as follows: the target and the substrate are statically opposed, an adjusting plate with a slit is placed between the target and the substrate, and the scattering of particles for forming the recording film has directivity.
  • the gas pressure was 0.6 Pa and the input power was 0.8 kW.
  • the formation of the underlayer, the recording film, and the protective layer are performed in the same vacuum apparatus.
  • the substrate is taken out of the vacuum device, and the ultraviolet curable resin (Dainippon An information recording medium was obtained by forming an overcoat film having a thickness of 1 Onm by overcoating with an SD-1700 manufactured by Kiki Co., Ltd.
  • the obtained information recording medium was evaluated using a tester having a wavelength of 640 nm and an optical system of NAO.55.
  • the evaluation conditions were as follows. Recording was performed by a magnetic field modulation method with a peripheral speed of 1 m / sec, a recording power of DC-3.5 mW, an AC magnetic field of ⁇ 2500 e, and a recording mark length of 0.2 m. Reproduction was performed with a peripheral speed of 1.5 m / sec and a reproduction power of 2.9 mW, and the jitter was measured at that time.
  • the above evaluation was performed on the recording film at the bottom of the group. Table 1 shows the results.
  • a substrate similar to that in Example 3 was prepared. On this substrate, an underlayer consisting of a silicon nitride layer, a reproducing layer, a recording film consisting of an intermediate eyebrow and a recording layer, and a protective layer consisting of a silicon nitride eyebrow were formed in this order.
  • the target and the substrate are statically opposed to each other, and an adjusting plate with a slit is placed between the target and the substrate, so that the scattering of particles for forming the recording film is directed.
  • the test was conducted in such a way that it had The thickness of each layer was the same as in Example 1.
  • the wall angle of the underlayer was 70 °.
  • the substrate is taken out of the vacuum apparatus and overcoated with an ultraviolet curable resin (SD-1700 manufactured by Dainippon Ink Co., Ltd.) to form an overcoat film having a thickness of 1 Onm, thereby forming an information recording medium.
  • an ultraviolet curable resin SD-1700 manufactured by Dainippon Ink Co., Ltd.
  • Table 1 shows that the information recording medium of Example 3 can reduce the jitter because the side wall angle of the underlayer is larger than that of Comparative Example 3.
  • Group pitch is 1.2 m, depth is 6 Onm, wall angle is about 80 °, width of top of land and bottom of group are equal, disc-shaped board made of poly-pone by stamping and injection molding was prepared. At the time of injection molding, the pressing pressure of the stamper was relaxed and the mold temperature was lowered to improve the transfer. The wall angle of the substrate after annealing was about 70 °. P The sharpness of the corner where the bottom of the group was in contact with the wall was measured to be 6 nm on average.
  • An underlayer consisting of a 9-nm-thick silicon nitride layer was formed on the substrate by DC magnetron sputtering (a method with low directivity) while rotating or rotating the substrate.
  • the film forming conditions were as follows: the total gas pressure of argon and nitrogen was 0.6 Pa, the input power was 0.8 kW, and the revolution speed was 40 rpm.
  • the wall surface was locally overhanging over 90 °.
  • the sharpness of the corner after the formation of the underlayer was 2 nm or less.
  • a recording film composed of a 3 Onm reproducing layer, a 10 nm intermediate layer and an 80 nm recording layer was formed on the underlayer in this order.
  • the film formation conditions for the recording film were as follows: the gate and the substrate were statically opposed to each other, and a slit was inserted between the target and the substrate. An adjustment plate was placed so that the scattering of particles for forming the recording film had directivity, the gas pressure was 0.1 lPa, and the input power was 0.5 kW.
  • the formed reproducing layer is composed mainly of GdFe with a Curie temperature of about 210 ° C
  • the intermediate layer is composed mainly of TbFe with a curry temperature of about 130 ° C
  • the recording layer is composed of TbFeCo with a Curie temperature of about 30 CTC.
  • a protective layer made of a silicon nitride layer having a thickness of 60 nm was formed at least on the recording film.
  • the film formation conditions for the protective layer were such that the target and the substrate were statically opposed, an adjusting plate with a slit was placed between the target and the substrate, and the scattering of particles for forming the recording film had directivity.
  • the gas pressure was 0.6 Pa and the input power was 0.8 kW.
  • the formation of the underlayer, the recording film, and the protective layer were performed in the same vacuum chamber.
  • the substrate is taken out of the vacuum device, and coated with UV curable resin (SD-1700, manufactured by Dainippon Ink Inc.) to form a 10 nm thick overcoat film.
  • UV curable resin SD-1700, manufactured by Dainippon Ink Inc.
  • the obtained information recording medium was evaluated using a tester having a wavelength of 640 nm and an NAO.55 optical system.
  • the evaluation conditions were as follows. Recording was performed by a magnetic field modulation method with a peripheral speed of lm / sec, a recording pulse of DC-3.5 mW, an AC magnetic field of ⁇ 2500 e, and a recording mark length of 0.2 m. Reproduction was performed at a peripheral speed of 1.5 m / sec and a reproduction power of 2.9 mW, and the jet was measured at that time. The above evaluation was performed on the recording film at the bottom of the group. Table 2 shows the results.
  • Example 4 The same substrate as in Example 4 was prepared. On this substrate, from the silicon layer An underlayer, a reproduction eyebrow, a recording film composed of an intermediate layer and a recording layer, and a protective layer composed of a silicon nitride layer were formed in this order. In the film formation of each of these layers, the target and the substrate are statically opposed to each other, and an adjusting plate having a slit is arranged between the target and the substrate, and the scattering of particles for forming the recording film has directivity. I went there. The thickness of each layer was the same as in Example 1. The wall angle of the ground debris was 70 °. The sharpness of the corner after the formation of the underlayer was 6 nm.
  • the substrate is taken out of the vacuum device and overcoated with an ultraviolet-curing resin (SD-170, manufactured by Dainippon Ink Inc.) to form an overcoat film with a thickness of 10 nm.
  • SD-170 ultraviolet-curing resin
  • an information recording medium was obtained.
  • the information recording medium of Example 4 has lower sharpness at the corners than Comparative Example 4, and as a result, the curved surface at the end of the group is smaller, so that the jitter can be reduced. Do you get it.
  • a disk-shaped glass substrate having a group pitch of 1.2, a depth of 60 nm, and a wall angle of about 60 ° was prepared. The width of the top surface of the land of this substrate and the bottom surface of the group were equal.
  • the group was formed in the same manner as in Example 1.
  • a 70-nm-thick silicon nitride layer is formed on the substrate by the DC magnetron sputtering method (a method with low directivity) while rotating (rotating) the substrate.
  • An underlayer was formed.
  • the film forming conditions were as follows: the total gas pressure of argon and nitrogen was 0.6 Pa, the input power was 0.8 kW, and the revolution speed was 4 Orpm.
  • the wall angle of the underlayer was about 85 °.
  • the recording film was formed by DC magnetron sputtering (a method with low directivity) while the substrate was revolving (rotating).
  • the film formation conditions were gas pressure of 0.5 Pa, input power of 0.5 kW, The revolution speed was set to 40 rpm.
  • the formed recording film was composed mainly of TbFeCo at a Curie temperature of about 200 ° C.
  • a protective layer made of a silicon nitride layer having a thickness of 15 nm was formed on at least the above film.
  • the protective layer is formed by a DC magnetron sputtering method (a method with low directivity) while the substrate is revolving (rotating), and the film forming conditions are such that the total gas pressure of argon and hydrogen is 0.6 Pa, The input power was 0.8 kW and the revolution speed was 40 rpm.
  • a heat dissipation layer having a thickness of 100 nm and containing aluminum as a main component was formed on the protective film.
  • the heat-dissipation layer was formed under the conditions that the target and the substrate were statically opposed to each other, an adjusting plate containing slits was placed between the target and the substrate, so that the scattering of particles had directivity, and the gas pressure was reduced.
  • the input power was 0.5 kW and the input power was 0.5 kW.
  • the substrate is taken out of the equipment and over-coated with an ultraviolet-curing resin (SD-1700 manufactured by Dainippon Ink Co., Ltd.) to form an overcoat film with a thickness of 1 nm, thereby recording information. I got the medium.
  • an ultraviolet-curing resin SD-1700 manufactured by Dainippon Ink Co., Ltd.
  • the obtained information recording medium has an optical system with a wavelength of 640 nm and NA of 0, 55.
  • the evaluation was performed using a tester. The evaluation conditions were as follows. Recording was performed at a peripheral speed of 9 m / sec, a pulse duty of 50%, a recording power of 8 mW DC, and a DC magnetic field of +300 e (here, "10" means that the erasing direction is the same). The length of the mark was 0.64 m. Reproduction was performed at a peripheral speed of 9 m / sec and a reproduction power of 1.5 mW, and the CNR was measured. In the above evaluation, the main recording track was recorded as the recording film at the bottom of the group, and was also recorded on the recording film on the upper surface of the land at both ends, and the measurement was performed on the recording film of the group. Table 3 shows the results.
  • a substrate similar to that in Example 5 was prepared. On this substrate, an underlayer made of silicon nitride, a reproducing layer, a recording film, a protective layer made of silicon nitride eyebrows, and a heat dissipation layer were formed in this order. Each of these eyebrows was formed by a DC magnetron sputtering method (a method with low directivity) while the substrate revolved (rotated). The thickness of each layer was the same as in Example 5. The wall angle of the underlayer was 85 °. After the formation of each debris, the substrate is taken out of the emptying device and information is obtained by forming an overcoat film with a thickness of 10 nm by overcoating with an ultraviolet curable resin (SD-1700, manufactured by Dainippon Ink). A recording medium was obtained.
  • SD-1700 ultraviolet curable resin
  • the CNR of the obtained information recording medium was measured under the same conditions as in Example 5, and the results are shown in Table 3.
  • a disk-shaped glass substrate with a group pitch of 1, a depth of 16 Onm, and a wall angle of about 80 ° was prepared.
  • the width of the top surface of the land on this substrate and the bottom surface of the group was 1: 2.
  • the group was formed in the same manner as in Example 1.
  • the substrate was formed on a 9-nm-thick silicon nitride layer by DC magnetron sputtering (a method with low directivity) while rotating or rotating the substrate.
  • the film forming conditions were as follows: the total gas pressure of argon and nitrogen was 0.6 Pa, the input power was 0.8 kW, and the revolution speed was 40 rpm.
  • the wall angle of the underlayer was about 95 °.
  • a recording film composed of a 3 Onm reproducing layer, a 10 nm intermediate layer and an 80 nm recording layer was formed on the underlayer in this order.
  • the film formation conditions for the recording film were such that the target and the substrate were stationary and opposed, an adjusting plate with a slit was placed between the target and the substrate, and the scattering of particles for forming the recording film had directivity.
  • the gas pressure was set to 0.1 Pa and the input power was set to 0.5 kW.
  • the formed again Namaso is mainly composed of GdFe Curie temperature of about 210 ° C, the intermediate layer Kiyuri - a TbFe a temperature of about 130 ° C as a main component, the recording layer of the Curie temperature of about 30 0 9 C Tb F e Co was the main component.
  • a protective eyebrow made of a silicon nitride layer having a thickness of 6 Onm was formed on at least the recording film under the same conditions as the base eyebrow.
  • the substrate is taken out of the vacuum device and overcoated with an ultraviolet curable resin (SD-1700, manufactured by Dainippon Ink) to form an overcoat film with a thickness of 10 nm, thereby forming an information recording medium.
  • SD-1700 ultraviolet curable resin manufactured by Dainippon Ink
  • the obtained information recording medium was evaluated separately for the land and the groove by using a tester having a wavelength of 640 nm and an optical system of AO.55.
  • the evaluation conditions were the same as in Example 1 except that the reproduction was performed with the optimum reproduction power so as to minimize the jitter between the land and the group. Table 4 shows the results.
  • a disk-shaped glass substrate with a group pitch of 0.85Am, a depth of 40 ⁇ , and a wall angle of about 70 ° was used.
  • the width of the top surface of the land of this substrate and the bottom surface of the group was 3: 7.
  • the group was formed in the same manner as in Example 1.
  • An underlayer consisting of a 90-nm-thick silicon nitride layer was formed on the substrate by DC magnetron sputtering (a method with low directivity) while the substrate was revolving (rotating).
  • the film forming conditions were as follows: the total gas pressure of argon and nitrogen was 0.6 Pa, the input power was 0.8 kW, and the revolution speed was 4 Or pm.
  • the wall angle of the underlayer is about 90. Met.
  • a 30 nm reproducing layer, a 10 nm middle eyebrow and 80 nm was formed in this order.
  • the film formation conditions for the recording film were such that the target and the substrate were stationary and opposed, an adjusting plate with a slit was placed between the target and the substrate, and the scattering of particles for forming the recording film had directivity.
  • the gas pressure was set to 0.1 lPa and the input power was set to 0.5 kW.
  • the formed regenerating layer is composed mainly of GdFe at a temperature of about 210 ° C.
  • the intermediate layer is composed mainly of TbFe at a temperature of about 130 ° C.
  • the recording layer is TbFe with a Curie temperature of about 300 ° C. Co was the main component.
  • a protective layer made of a siliconized layer having a thickness of 60 rim was formed at least on the recording film.
  • the film formation conditions for the protective layer were such that the target and the substrate were statically opposed to each other, an adjustment plate with a slit was placed between the target and the substrate, and the scattering of particles for forming the recording film had directivity.
  • the gas pressure was 0.6 Pa and the input power was 0.8 kW.
  • the information recording medium is obtained by removing the substrate from the mounting device and forming an overcoat film with a thickness of 10 nm by overcoating with an ultraviolet curable resin (SD-1700 manufactured by Dainippon Inki). Was.
  • the obtained information recording medium was evaluated using a tester having an optical system with a wavelength of 640 nm and NA of 0.55.
  • the evaluation conditions were the same as in Example 1 except that the length of the recording mark was changed, and the jitter was measured.
  • Table 5 shows the results. Table 5
  • Table 5 shows that this is useful for so-called wide group recording, in which recording is performed only on the recording film at the bottom of the group.
  • a disk-shaped glass substrate with a group pitch of 0.85 ⁇ ⁇ , a depth of 160 nm, and a wall angle of about 70 ° was prepared.
  • the width of the top surface of the land and the bottom surface of the groove of this substrate were set to 2: 8.
  • the dub was formed in the same manner as in Example 1.
  • An underlayer consisting of a 9-nm-thick siliconization layer was formed on the substrate by DC magnetron sputtering (a method with low directivity) while the substrate was revolving (rotating).
  • the film formation conditions were as follows: the total gas pressure of argon and boron was 0.6 Pa, the input power was 0.8 kW, and the revolution speed was 40 rpm.
  • the wall angle of the underlayer was about 90 °.
  • a recording film including an 80 nm recording eyebrow, a 10 nm intermediate layer, and an 80 nm reproducing eyebrow was formed on the underlayer in this order.
  • the film formation conditions for the recording film were as follows: the target and the substrate were statically opposed to each other, the adjusting plate with a slit between the target and the substrate was hidden, and the scattering of particles for forming the recording film was directed.
  • the gas pressure was set at 0.1 lPa and the input power was set at 0.5 kW.
  • the formed reproduction layer is composed mainly of 0 (16) with a Curie temperature of about 2 10
  • the intermediate layer is composed of chili — Tb Fe with a temperature of about 13 CTC
  • the recording layer is composed of a Curie temperature of about 30 CTC. 0.
  • the main component was TbFeCo of C.
  • a protective layer made of a silicon nitride layer having a thickness of 60 nm was formed at least on the recording film.
  • the conditions for forming the protective layer are as follows: the target and the substrate are statically opposed, the adjusting plate with a slit between the target and the substrate is hidden, and the scattering of particles for forming the recording film has directivity.
  • the gas pressure was set to 0-6 Pa and the input power was set to 0.8 kW.
  • the substrate was taken out of the vacuum apparatus, and a silicon-based lubricating film was formed with a thickness of 10 nm to obtain an information recording medium.
  • the obtained information recording medium was passed through a flat glass plate having a thickness of 1.2 mm, using a tester having an optical system with a wavelength of 64 nm and NA of 0.55, using a silicon-based lubricating film. From the side, the recording film at the bottom of the group was evaluated. Evaluation conditions were the same as in Example 1. As a result, recording and reproduction could be performed in the same manner as in Example 1. Therefore, it was found that the Qianho recording medium of Example 8 was also useful for recording / reproducing from the silicon-based lubricating film side, that is, for recording / reproducing by the front illumination method.
  • the present invention can be implemented in the following modes.
  • An information recording medium that is used in a group recording method and has a recording film formed on the bottom of a groove.
  • An information recording medium comprising a substrate having a groove, an underlayer laminated while rotating the substrate, and a recording film laminated on the underlayer while the substrate is stationary.
  • An information recording medium in which the recording film comprises a recording layer, an intermediate layer, and a reproducing layer.
  • the present invention it is possible to increase the wall surface angle by using a substrate having a wall angle that is easy to manufacture, and to form the underlayer, so that a film is formed on the underlayer. Characteristics such as CNR and jitter of the recording film can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Description

明 細 書 情報記録媒体及びその製造方法 技術分野
本発明は、 情報記録媒体及びその製造方法に関する。 従来の技術
情報を記録し、 保持しうる記録膜を有する倩報記録媒体として、 種々の 光記録媒体や磁気記録媒体が知られている。 中でも、 書き換え可能な情報 記録媒体として、 光磁気ディスク、 相変化光ディスク、 フロブティカルデ イスク、 ハードディスク等が知られている。 これら情報記録媒体は、 熱磁 気記録を含む磁気的手段によって記録膜に磁区を形成したり、 又は熱的手 段によって、 記録膜を構成する原子又は分子の配列を変化させた部分を形 成することで記録が行われる。 記録されだ情報は、 磁区による偏向面の回 転や、 反射率の変化等を検出することにより再生される。
情報記録媒体は、 トラッキングという手段で、 記録及び再生を所定の位 置に行っている。
例えば、 光磁気ディスクの場合、 案内溝 (以下、 グル一ブと称する) と よばれる溝が形成されている。 現在市販されている光磁気ディスクでは、 グル一ブ間の凸部 (ランド) の上面の記録膜に対して情報の記録が行われ ているが、 更に、 高密度に記録するためにグループとランドの両方で記録 - 再生を行う方式 (ランド -グルーブ記録方式) が提案されている。
この方式では、 ランドとグループの両方とも記録トラックとなるため、 記録トラック同士の間隔が狭くなる。 そのため、 記録を所望するトラック に瞵接するトラックにも記録してしまうクロスライ ト現象、 更に消去を所 望するトラックに隣接するトラックの情報も消去してしまうクロスィレー ズ現象が生じる。
クロスライ ト及びクロスィレーズを防ぐために、 グループの底面とラン ドの上面の距離、 即ちグループの深さを深くすることが提案されている。 ところが、 グループの深さを深くすると、 グループの底部への記録膜の付 看量が少なくなり、 所望の特性の記録膜が得難いという問題があつた。 この問題を解決する方法が、 特開平 1 0— 2 7 5 3 6 9号公報で報告さ れている。 この公報には、 溝 (グループ) の壁面角度を底面に対して 7 0 〜9 0 ° の範囲とし、 記録膜を指向性の高い方法で形成することが記載さ れている。 このような方法により、 隣接するランドの上面とグループの底 部の記録膜とを、 磁気的及び熱的に分離することができるとしている。 ここで、 壁面角度は、 図 1に示すように、 記録トラック方向に垂直な断 面において、 グループの最大高さ (ランド Aの上面とグループ Bの底面の 高低差) dの 1 / 2の場所での壁面の接線 f と、 グループの底面 gとのな す角度なを意味する。
ここで、 基板を大量に生産する場合、 次のように行われる。 まず、 グル ープゃ凹凸ビットが形成された原盤から、 金属製の転写型 (いわゆるスタ ンパ) を作製する。 次にスタンパに紫外線硬化樹脂又は溶融樹脂を流した 後、 樹 S旨を硬化させる。 更に、 硬化した樹月旨を剥がすことにより、 基板が 作製される。
ところがグル一ブの壁面の角度が大きい場合、 原盤からスタンパを形成 する工程で、 スタンパが剝がれにくくなるという問題あった。 この問題は、 壁面角度が 8 0。 以上の場合顕著であり、 更にグループが深い場合により 深刻になゥていた。
更に、隣接するトラックを磁気的及び熱的に分離するという観点からは、 壁面角度が 9 0 ° より大きい、 いわゆるオーバ一ハング状態であることが 望ましい。 しかしながら、 このような状態の基板を作製することは、 原盤 とスタンパ、 スタンパと基板が互いにくさび状に嚙み合った状態となるこ と意味する。 そのため、 両者を剥がすことは現状の技術では物理的に不可 能であった。
また、 上記方法以外にも、 レーザーのような描画手段で直接グループを 形成する方法も知られているが、 このような方法でも 8 0 ° 以上の壁面角 度のグルーブを形成することは困難であった。 発明の開示
かくして本発明によれば、 底面に対して 8 0 ° 未満の角度の壁面を有す る溝が形成された基板上に、 指向性の低い製膜法により、 溝の底面に対し て 8 0 ° 以上の角度の壁面を有する下地層を形成する工程、 形成された下 地層上で、 かつ溝の底面、 溝間の凸部の上面又はそれら両面に少なくとも 記録膜を形成する工程とを含むことからなる情報記録媒体の製造方法が提 供される。
また、 本発明によれば、 溝が形成された基板、 少なくとも溝の壁面を覆 うように基板上に形成された下地層、 溝の底面、 溝間の凸部の上面又はそ れら両面に少なくとも形成された記録膜とを備え、 溝の壁面が底面に対し て 8 CT 未満の角度を有し、 下地眉の壁面が溝の底面に対して 8 0 ° 以上 の角度を有する情報記録媒体が提供される。 更に、 本発明によれば、 溝が形成された基板、 基板を回転させつつ積層 された下地層、 下地層上に基板を静止しつつ積層された記録膜を備えたこ とを特徴とする情報記録媒体が提供される。 図面の簡単な説明
図 1は、 本明細書中の壁面角度の定義を説明する HIである。
図 2は、 壁面角度とジ タとの関係を示すグラフである。
図 3は、 本明細書中の下地層の関係角の定義を説明する図である。
図 4は、 本明細香中の角部の鋭利性の定義を説明する図である。
図 5は、 本発明の情報記録媒体の製造方法を説明するための概略図であ る。
図 6は、 本発明の光磁気情報記録媒体への情報の記録再生装置の概略構 成図である。
図 7 ( a ) と (b ) は、 本発明の光磁気情報記録媒体への情報の記録再 生装匿の概略構成図である。
図 8 ( a ) 〜 (d ) は、 本発明の実施例 1の基板の形成方法の概略工程 図である。
図 9は、 本発明の実施例 1及び比較例 1の情報記録媒体の再生パワーに 対するジッタ及び C N Rの関係を示すグラフである。
図 1 0は、 比較例 1の情報記録媒体のァニールパワーとジ 夕の関係を 示すグラフである。
図 1 1は、 本発明の実施例 2及び比較例 2の情報記録媒体の絰時時間毎 のジヅタの変化を示すグラフである。 発明の実施の形態
本発明に使用することができる基板としては、 ポリ力一ボネ一トのよう な樹脂基板、 ガラス基板、 更にはガラス基板の上にフォトポリマ一由来の 樹脂が積層された基板等が挙げられる。 基板には溝 (グループ) が形成さ れる。 このグループの形成方法は、 大量生産に適する方法として、 原盤か らスタンパを介して転写により形成する方法が挙げられる。 この方法以外 にも、 レーザのような描画手段を用いて、 直接基板上に形成する方法が挙 げられる。 更に、 基板上にフォトポリマーを塗布し、 露光及び洗浄するこ とにより、 グループを形成する方法が季げられる。 また、 反応性イオンェ ツチング (R I E ) 法のような手段で基板を掘り下げて溝を形成する方法 が挙げられる。
本発明では、 グループの壁面が、 グループの底面に対して 8 0 ° 未満の 角度 (以下、 基板の壁面角度と称する) を有していることを特徴の 1つと している。 8 0。 未満とすることにより、 特に、 原盤からのスタンパの剥 離、 スタンパからの基板の剥離を良好にすることができる。 特に好ましい ¾反の壁面角度は、 3 0〜7 0。 である。
本発明の情報記録媒体は、 ランド記録方式、 グルーブ記錄方式及びラン ド -グループ記録方式のいずれかの方式にも使用するため、 グループの深 さ、 グループの底部の幅及びランドの上面の幅は、 これら記録方式と記録 密度 (あるいは記録容量) に応じて適宜設定することが好ましい。 具体的 には、 ランド記録方式の場合、 グループの深さ、 グループの底部の幅及び ランドの上面の幅は、 それそれ 4 0〜2 0 0 nm、 0 ~ 0 . 3 111及び0 . 4〜0 . 9 mであることが好ましい。 グループ記録方式の場合、 グルー ブの深さ、 グループの底部の幅及びランドの上面の幅は、 それそれ 4 0〜 200 nm, 0. 3〜0. 8 111及び0. 2〜0. 4 mであることが好 ましい。 ランド . グループ記録方式の場合、 グループの深さ、 グル一ブの 底部の幅及びランドの上面の幅は、 それそれ 40〜 200 nm、 0· 3~ 0. 6 m及び 0. 3〜0. 6 zmであることが好ましい。
次に、 基板上に、 下地層が形成される。 この下地層は、 単層でも、 複数 層でもよい。 また、 下地層を、 下地保護眉、 ェンハンス層、 放熱層、 反射 層等として使用してもよい。 下地展を構成する材料としては、 Al、 Mo、 Pt、 W、 Cr\ Ti、 SiN、 A IN, S i02、 Al〇、 ZnO等が挙 げられる。 この下地層は少なくともグル一ブの壁面を覆うように形成され ている。 本発明によれば下地層は、 グループの底面に対して 80° 以上の 角度 (以下、 下地層の壁面角度と称する) を有する壁面になるように形成 される。 そのため従来の方法では得ることが困難であった、 壁面角度を実 現することができる。 さらに、 下地層の壁面角度は、 90 以上、 即ちォ 一バーハング状態であることが好ましく、 具体的には 90〜120° であ ることが好ましい。
なお、 図 2に壁面角度とジッタとの関係を示す。 図 2から分かるように、 壁面角度が約 80。 を越えたあたりから、 曲線の傾きが小さくなり、 90° 付近ではほぼ一定のジ タが得られていることが分かる。 従って、 壁面角 度は 80° 以上であることが好ましく、 本発明によりこの壁面角度を実現 することができる。
また、 下地層は、 図 3に示すように、 ランド部 Bの端部付近のくびれ部 Pにおいて、 下地眉の側壁に対する接線 Xと底面に対する接線 yとの間の 関係角 0が、 90。 以下であることが好ましい。 90° 以下とすることに より、 隣接する記録屉同士が分離した構造を簡便に形成することができる ので、 特にランド *グループ記録方式の場合のクロスライ ト及びクロスィ レースを防止することができる。
更に、 基板がスタンパからの転写により形成される場合、 下地層は、 そ の角部において、 5 nm以下の鋭利性を有することが好ましい。 なお、 本 発明において、 角部の鋭利性とは、 図 4に示す内容を意味する。 即ち、 記 録トラック方向に垂直な断面において、 ランド Aの上面の端部及び/又は グループの底面の端部と壁面との接合部 (角部と称する) Yの丸みを意味 する。 この丸みは、 角部 Yに対する最大接円 Xの半径 rにより定義され、 数値 rが小さければ鋭利性は良好で、 鋭いことを示す。
なお、 下地雇の厚さは、 所定の下地層の壁面角度を実現することができ れば、 いかなる厚さでもよく、 例えば 30〜16 Onm程度が好ましい。 更に、 本発明では、 グループの底面、 グループ間の凸部 (ランド) の上 面又はそれら両面に形成された記録膜を備えている。
記録膜を構成する材料は、 光記録媒体材料及び磁気記録媒体材料のいず れも使用することができる。
光記録媒体材料としては、 例えば、 Pb、 Te、 Se、 Ge、 Sb、 A g、 I n等からなる合金が挙げられる。 磁気記録媒体材料としては、 例え ば、 Pr、 Nd、 Sm、 Gd、 Tb、 D y、 H o等の希土類金属元素の 1 種又は複数種と、 Fe、 Co、 Ni等の鉄族元索の 1種又は複数種とで構 成される希土類一鉄族合金等が挙げられる。 この合金に、 Cr、 Mn、 C u、 T i、 Al、 S i、 Pt、 I n等の元素を少量添加してもよい。 これ ら元索の混合割合は、 磁気記録媒体に要求される性能 (例えば、 飽和磁化、 保持力等) に応じて適宜設定される。 より具体的には、 TbFe、 TbF eCr、 TbFeCo、 D y F e C o, GdCo、 GdFe、 TbCo、 GdTbFe, GdTbFeCo. G d D y F e C o等が挙げられる。 こ れら磁気記録媒体は、 光磁気記録媒体としても使用することができる。 更 に、 他の磁気記録媒体として、 Co— Cr— Ta系合金、 Co— Cr— P t系合金、 ァー Fe 203 : Co、 BaFeCoT i012等が挙げられる。 記録膜の構成は、 特に限定されず、 当該分野で公知の構成をいずれも採 用することができる。 例えば、 記録と再生の両方を行い得る記録再生層の 1層からなる場合、 記録再生層と磁化反転補助屑の積層体からなる場合、 記録層と再生層の積層体からなる場合等が挙げられる。 磁化反転層を設け ることで、 記録マークをより安定化することができる。 更に、 記録層と再 生層の間に、 記録と再生を制御するための中間層を設けてもよい。 また更 に、 再生層の上に再生補助層を設けてもよい。 また、 各層の磁性容易軸は、 垂直方向、 面内方向のいずれでもよく、 各層は互いに交換結合していても よい。
ここで、 記録層、 中間層及び再生眉の穑層体からなる構成は、 例えば、 特開平 7— 244877号公報にその例が記載されているが、 本発明では この構成をいずれも使用することができる。 具体的には、 記録層、 中間層 及び再生層のキュリー温度を、 Tc3、 T c 2及び T c 1と表すと、 Tc 3〉Tc 1及び Tc2>Tc 1の閧係を有し、 更に、 記録層、 中間眉及び 再生層の磁化容易軸が、 垂直方向、 垂直方向及び面内方向の組み合わせ、 垂直方向、 面内方向及び面内方向の組み合わせ、 垂直方向、 面内方向及び 垂直方向の組み合わせから選択される構成が記載されている。
なお、 記録膜が、 記録と再生の両方を行い得る記録再生層の 1層からな る場合、 その厚さは 20〜10 Onmであることが好ましい。 記録再生層 と磁化反転補助層の積層体からなる場合、 記録再生層の厚さは 20〜70 nmであることが好ましく、 磁化反転補助層の厚さは 1〜 1 Onmである ことが好ましい。 記録層と再生層の積層体からなる場合、 記録層の厚さは 15〜100 nmであることが好ましく、 再生層の厚さは 5〜50 nmで あることが好ましい。 記録層、 中間層及び再生雇の稷層体からなる場合、 記録層の厚さは 30〜10 Onmであることが好ましく、 中間層の厚さは 2〜20 nmであることが好ましく、 再生眉の厚さは 20〜5◦ nmであ ることが好ましい。 再生補助層を設ける場合は、 その厚さは 5 ~3 Onm であることが好ましい。
記録膜上には、 その表面に保護層が形成されていてもよい。 記録膜は、 通常酸化されやすい元素を含むため、 大気中、 あるいは後に形成されるォ
—バーコート膜又は潤滑膜に露出する部分が存在すれば酸化され、 その特 性が劣化してしまうこととなる。 そのためこの保護膜は、 記錄膜が露出し ないように、 特に記録膜の側壁を覆うような構成を有することにより、 記 錄膜の劣化を防ぐことができる。
保護膜は、 単層でも、 複数層からなっていてもよい。 また、 保護層を、 表面保護層、 ェンハンス層、 放熱層、 反射層等として使用してもよい。 保 護層を構成する材料としては、 Al、 Mo、 P t W、 Cr、 T i、 S i N、 A IN, S i〇2、 A 10、 ZnO等が挙げられる。
ここで、 保護膜が放熱層でない場合は、 保護膜上に放熱層を積屑するこ とが好ましい。 この放熱層は、 保護膜を介して、 記録膜上のみに形成され ていることが好ましい。 このように形成することで、 隣接するトラック、 ガイ ド溝又はダル一ブの側面を熱的に分離することができるので、 クロス ライ ト及びクロスィレースをより防ぐことができる。
次に、 本発明の情報記録媒体の製造方法を図 5を参照しつつ説明する。 まず、 底面に対して 8 0 ° 未満の角度の壁面を有するグループが形成さ れた基板 4上に、 指向性の低い製膜法により、 グループの底面に対して 8 0 ° 以上の角度の壁面を有する下地層 1を形成する。 ここで、 指向性の低 い製膜法としては、 基板を回転させつつ、 スパヅタ法 (例えば、 マグネト ロンスパヅタ法)、 蒸着法等の方法が挙げられる。 この製膜法により、 ダル ーブの側壁を含む基板 4全面に下地層 1が形成され、 かつ側壁の下部から 上部に向かって下地層 1が厚くなる。 そのため基板の側壁角度より、 下地 層 1の壁面角度を大きくすることができる。 よって、 記録膜を磁気的及び 熱的に分離するのに良好な下地層の壁面角度を実現することができる。 更 に、 基板のスタンパからの剥離性を良好にすることができる。
なお、 下地層 1が複数展からなる場合、 その内の少なくとも 1層が、 指 向性の低い製膜法で形成されていればよい。
次に、 下地雇 1上で、 かつグループの底面、 グループ間の凸部の上面又 はそれら両面に記録膜 2を形成する。 記録膜は、 指向性の高い製膜法で成 膜することが好ましい。 ここで、 指向性の高い製膜法としては、 基板を静 止しつつ、 スパッタ法 (例えば、 ヘリコンスパヅタ法、 イオンビームスパ ッタ法)、 蒸着法等の方法が挙げられる。 記録膜を指向性の高い製膜法で形 成した場合、 下地層 1の壁面が 8 0 ° 以上の角度を有しているため、 グル —ブの底面及びランドの上面に優先的に形成される。 よって、 記録膜 2を 磁気的及び熱的に分離することができる。
記録膜 2上には、 少なくともその表面に保護眉 3を形成することができ るが、 その製膜法は、 指向性の低い方法、 指向性の高い方法のいずれであ つてもよい。 この内、 指向性の低い方法が好ましい。 この方法で製膜する ことで、 S3録膜 2が露出しないように、 保護膜 3を形成することができる。 具体的な製膜法は、 例えば、 基板を回転させつつ、 スパ タ法 (例えば、 マグネトロンスパッタ法)、 蒸着法等の方法が挙げられる。 なお、 指向性の 高い方法では、 ランドの上面の記録膜の側壁が露出しないように、 厚めに 保護膜を成膜することが好ましい。
更に、 保護膜上への放熱層を形成してもよい。 その製膜法は、 特に限定 されず、 公知の方法をいずれも使用することができる。 特に、 この放熱層 は、 保護膜を介して、 記錄膜上のみに形成されていることが好ましいが、 このように形成するための方法としては、 基板を静止しつつ、 スパッタ法 (例えば、 へリコンスパ タ法、 イオンビ一ムスパッタ法)、 蒸着法等を行 う、 指向性の高い方法が挙げられる。
なお、 各層の製膜において、 別々の製膜装置内で製膜する必要がある場 合、 製膜装置を移動させた後、 表面に形成された酸化膜や、 酸化性の強い 気体が吸着した部分をエッチングしてもよい。
更に、 本発明によれば、 溝 (グループ) が形成された基板、 基板を回転 させつつ稷眉された下地層、 下地層上に基板を静止しつつ積層された記録 膜を備えたことを特徴とする情報記録媒体も提供される。
本発明の情報記録媒体に、 情報を記録及び再生する記録再生装置として は、 特に限定されず、 公知の装置をいずれも使用することができる。
光情報記録媒体に使用される記録再生装置としては、 例えば次のような 構成が挙げられる。 まず、 情報の記録を所望する部位に光を照射するため のレ一ザのような光照射手段を備えており、 その部位の記録膜の結晶性を 変化させることにより情報が記録される。 次に、 情報が記録された部位の 結晶性を変化させることのない条件の光を、 情報の再生を所望する部位に 照射することにより情報を再生するためのレ一ザのような光照射手段を備 えている。 前記光照射手段は、 例えば、 レ一ザ及びレ一ザからの光を集光 手段 (例えばレンズ) とからなる。
磁気情報記録媒体に使用される記録再生装笸としては、 例えば次のよう な構成が挙げられる。 例えば、 記録再生装置は、 少なくとも磁気ヘッドを 備えたスライダを有している。 磁気へッ ドは情報記録媒体へ情報を記録及 び/又は再生するものである。 ここで、 磁気ヘッドは、 記録ヘッドと再生 へヅドを別々に備えていてもよい。
更に、 光磁気情報録媒体に使用する場合の記録再生装置は、 例えば磁気 ヘッドを備えたスライダ、 光照射手段 (例えばレ一ザ) を有している。 こ こで、 光照射手段は、 情報記録媒体に光を照射することにより、 照射部の 温度を上昇させ、 それにより情報の記録及び再生を容易にすると共に、 記 録マ一クを更に微小にする役割を果たす。
上記光磁気情報記録媒体への情報の記録再生装置の構成を図 6に示す。 図中、 Mは情報記録媒体、 5は光照射手段、 6はスライダを含む磁気へッ ドである。
光照射手段 5は、 光がレーザー光の場合、 レーザ 4 1、 レーザ光を平行 光にするコリーメ一タレンズ 4 2、 レーザ光を透過又は反射するスブリッ タ 4 3、対物レンズ 4 4が情報記録媒体 Mに向かって順に配置されている。 更に、 スブリツタの反射側には、 レーザ光の偏向面を回転させる 1 / 2波 長板 4 5、 レーザ光を水平成分と垂直成分に分離する偏光ビームスプリツ タ 4 6がこの順に配置されている。 スプリツタ 4 3の出力側には、 水平成 分と垂直成分の出力光をそれそれ集光する集光レンズ 4 7と 4 9が配置さ れ、 それらの出力側には光検出器 4 8と 5 0がそれそれ配置されている。 光検出器 4 8と 5 0には、 これらから得られる検出信号の差を求めてこれ を増幅する増幅器 5 1が接続されており、 増幅器 5 1からの信号はスイツ チ部の切換え端子 6 5に出力されるようになっている。
磁気ヘッド部 6は、 磁気ヘッドを備えたスライダ 6 1で検出された、 磁 化方向に対応する電気信号が入力され、 増幅される増幅回路 6 2、 増幅さ れた信号が入力され波形整形するための積分回路 6 3を備えている。 積分 回路 6 3からの信号は切換え端子 6 6へ出力される。 切換え端子 6 5と 6 6に出力された信号のいずれかは、 スィツチ部の共通端子 6 7の切換えに より復調回路 6 4へ入力され、 復調されて信号として出力される。
図 6の記録再生装置では、 光照射手段 5が磁気へッド 6の反対側に設け られているが、 両者は情報記録媒体 Mに対して、 同一面側に配匿されてい てもよい。 即ち、 基板との界面と反対側の記録膜面側から光を入射するこ とにより情報を記録再生する、 いわゆるフロントイルミネーション方式を 採用することができる。
図 7の記録再生装置は、磁界変調式を採用した装置であるが、 本発明は、 光変調式を採用した装置にも使用することができる。 この装置の概略断面 図を図 7 ( a)に、 平面図を図 7 (b )に示す。 図中、 6 aはバイアス磁界 H B 印加手段 (例えば、 電磁石、 永久磁石等) を意味する。 光変調方式では、 磁界変調方式と異なり、 ノ、'ィァス磁界 H B印加手段 6 aが全トラックをカバ —することができるように大きくなつている。
この光変調方式での基本旳な消去及び霤き込み方法について説明する。 まず、 消去は、 N又は S方向にバイアス磁界を加えておき、 光照射手段 5 (例えば、 D C光、 パルスレーザ光等) により全体に光を照射することに より行う。一方、 書き込みは、 消去と逆方向にバイアス磁界を加えておき、 記録を望む位置のみに光を照射することにより行うことができる。 実施例 1
グル一ブのビツチが 1. 2 m、 深さが 60nm、 壁面角度が約 60° の円盤状のガラス基板を用意した。 この基板のランドの上面及びグループ の底面の幅は等しくした。 なお、 ガラス基板のグループは、 図 8 (a) 〜 (d) の工程を経て形成した。 即ち、 基板 11上に、 フォトレジスト 12 を塗布した (図 8 (a) 参照)。 次に、 フォトレジスト 12を露光及び現像 することにより、 所望の形状にパ夕一ニングした (図 8 (b)参照)。 この パターニングされたフォトレジスト 12をマスクとして、 R I E法により 基板をェヅチングした (図 8 (c)参照)。 更に、 アツシングによりフォト レジストを除去することにより所望の形状の基板を形成した (図 8 (d) 参照)。
この基板を自公転 (回転) させつつ直流マグネトロンスパッタ法 (指向 性の低い方法) により、 基板上に厚さ 9 Onmの窒化シリコン層からなる 下地眉を形成した。製膜条件は、 アルゴンと窒素の全ガス圧を 0· 6Pa、 投入電力を 0. 8kW、 公転速度を 4 Or pmとした。 下地層の壁面角度 が約 90°であった。 なお、 下地層の関係角 0は 80。 であった。
次に、 下地層上に、 3 Onmの再生層、 10 nmの中間層及び 80 nm の記録層からなる記録膜をこの順で形成した。 記録膜の製膜条件は、 ター ゲッ卜と基板を静止対向させ、 タ一ゲッ卜と基板との間にスリットを入れ た調整板を配置し、 記録膜を形成するための粒子の飛散が指向性をもつよ うにし、 ガス圧を 0. lPa、 投入電力を 0. 5 kWとした。 形成した再 生層はキュリー温度約 210°Cの GdFeを主成分とし、 中間層はキュリ 一温度約 130°Cの Tb F eを主成分とし、 記録層はキュリ一温度約 30 0°Cの TbFe Coを主成分とした。 次いで、 厚さ 60 nmの窒化シリコン層からなる保護層を、 少なくとも 記録膜上に形成した。 保護層の製膜条件は、 ターゲットと基板を静止対向 させ、 ターゲットと基板との間にスリットを入れた調整板を配置し、 記録 臊を形成するための粒子の飛散が指向性をもつようにし、 ガス圧を 0· 6 Pa、 投入電力を 0. 8kWとした。
なお、 上記下地層、 記録膜及び保護層の形成は、 同一の真空装置内で行 つた。
この後、 真空装置内から基板を取り出し、 紫外線硬化樹脂 (大日本イン キ社製 SD— 1700) でオーバーコートすることにより厚さ 10 nmの ォ一バーコ一ト膜を形成することにより情報記録媒体を得た。
得られた情報記録媒体を、 波長 640 n m、 NAO. 55の光学系を有 するテスタを用いて評価した。 評価条件は、 次のようにした。 記録は、 周 速を lmZs e c、 記録パワーを DC— 3. 5 mW、 交流磁界を ±250 0e、 記録マークの長さを 0. 2 /inとする磁界変調方式で行った。 再生 は、 周速 1, 5m/sec、 再生パヮ一を変化させながら行い、 その際の ジッタ及び CNRを測定した。 なお、 上記評価はグループの底部の記録膜 に対して行った。 再生パワーに対するジッ夕及び CNRの関係を図 9に示 す。
図 9から、 再生パヮ一を変化させても、 CNRは殆ど変化せず、 ジッタ も許容範囲であることが分かった。
比較例 1
実施例 1と同様の基板を用意した。 この基板上に、 窒化シリコン層から なる下地層、 再生層、 中間層及び記録眉からなる記録膜、 並びに窒化シリ コン層からなる保護層をこの順で形成した。 これら各層の製膜は、 夕ーゲ ットと基板を静止対向させ、 タ一ゲットと基板との間にスリットを入れた 調整板を配置し、 記録膜を形成するための粒子の飛散が指向性をもつよう にして行った。 各層の厚さは実施例 1と同様にした。 下地層の壁面角度が 約 6 0 ° であった。 各層の形成後、 真空装置内から基板を取り出し、 紫外 線硬化樹脂 (大日本インキ社製 S D— 1 7 0 0 ) でオーバ一コートするこ とにより厚さ 1 O nmのオーバ一コート膜を形成することにより倩報記録 媒体を得た。
得られた情報記録媒体を実施例 1と同様の条件で記録し、 再生したとこ ろ、 ジッタが一番小さいところでも 2 0 n s e cを超え、 良好に再生する ことができなかった。 そこで、 記録トラックの両側に位置するランドを、 2 m/ s e cの周速でレーザ一パワー (ァニールパワー) を変えてァニ一 ルした。 この情報記錄媒体を、 再生パヮ一を 2 . 9 mWとすること以外は、 実施例 1と同様にしてジッ夕を測定した。 結果を図 1 0に示す。
図 1 0から、 ァニールパワーが大きくなるにつれてジッタが減少してい ることが分かる。 このことは、 記録トラヅクの両端のランドをァニールす ることにより、 グル一ブの底部の再生層の磁壁移動がスムーズになったこ とを示している。
これは、 基板の壁面角度が小さい場合、 下地層の壁面角度を 8 0 ° 以上 としなければ、 記録トラ クが両端で分離することができないことを意味 している。 即ち、 下地層を指向性の製膜法で形成すると、 記録膜が基板全 面にわたって連続的につながってしまうため、 所望の動作をしなくなるこ とを示している。
実施例 2
グループのピッチが 1 . 2 m、 深さが i 6 0 nm、 壁面の傾斜角度が 約 60° の円盤状のガラス基板を用意した。 この基板のランドの上面及び グループの底面の幅は等しくした。 グル一ブは実施例 1と同様にして形成 した。
この基板を自公転 (回転) させつつ直流マグネトロンスパッタ法 (指向 性の低い方法) により、 基板上に厚さ 90 nmの窒化シリコン層からなる 下地層を形成した。製膜条件は、 アルゴンと窒素の全ガス圧を 0. 6Pa、 投入電力を 0. 8kW、 公転速度を 4 Or pmとした。 下地眉の壁面角度 が約 90。 であった。
次に、 下地層上に、 30nmの再生層、 10 nmの中間層及び 80 nm の記録層からなる記録膜をこの順で形成した。 記録膜の製膜条件は、 ター ゲットと基板を静止対向させ、 タ一ゲットと基板との間にスリットを入れ た調整板を配置し、 記録膜を形成するための粒子の飛散が指向性をもつよ うにし、 ガス圧を 0. lPa、 投入電力を 0. 5kWとした。 形成した再 生層はキュリー温度約 210°Cの GdF eを主成分とし、 中間層はキユリ 一温度約 13 (TCの TbFeを主成分とし、 記録眉はキュリー温度約 30 0°Cの TbFe Coを主成分とした。
次いで、 厚さ 6 Onmの窒化シリコン層からなる保護層を、 下地層と同 —の製膜条件で、 少なくとも記録膜上に形成した。
なお、 上記下地層、 記録膜及び保護層の形成は、 同一の冥空装置内で行 つた。
この後、 真空装置内から基板を取り出し、 紫外線硬化樹脂 (大日本イン キ社製 SD— 1700) でオーバ一コートすることにより厚さ 1 Onmの オーバーコート膜を形成することにより情報記録媒体を得た。 得られた情報記録媒体を、 波長 640 nm、 NA0. 55の光学系を有 するテスタを用いて評価した。 評価条件は、 次のようにした。 記録は、 実 施例 1と同様に行い、 再生は、 再生パヮ一 2 . 9 mWにすること以外は実 施例 1と同様にして行い、 その際のジッ夕を一定時間毎に測定した。 なお、 上記評価はランドの JL面の記録膜に対して行った。 図 1 1に絰時時間毎の ジッタの変化を示す。
比較例 2
実施例 2と同様の基板を用意した。 この基板上に、 窒化シリコン層から なる下地層、 再生層、 中間層及び記録眉からなる記録膜、 並びに窒化シリ コン雇からなる保護層をこの順で形成した。 これら各層の製膜は、 ターゲ ットと基板を静止対向させ、 ターゲットと基板との間にスリッ トを入れた 調整板を配置し、 記録膜を形成するための粒子の飛散が指向性をもつよう にして行った。 各層の厚さは実施例 1と同様にした。 下地層の壁面角度が 6 2 ° であった。 各雇の形成後、 真空装置内から基板を取り出し、 紫外線 硬化樹脂 (大日本インキ社製 S D— 1 7 0 0 ) でオーバ一コートすること により厚さ 1 0 n mのォ一バーコ一ト膜を形成することにより情報記録媒 体を得た。
得られた情報記録媒体を実施例 2と同様の条件で絰時時間每のジ タの 変化を測定した。 結睪を図 1 1に示す。
図 1 1から、 実施例 2では時間が経過してもジッタが安定しているのに 対して、 比較例 2では短時間で測定不能になった。 この理由は、 比較例 2 の情報記録媒体の記録膜の端部がォ一バーコ一ト膜と接していることによ り、 腐食が進むためであると考えられる。
実施例 3
ダル一ブのビツチが 1 . 2 m、 深さが 6 0 nm、 壁面角度が約 7 0 ° の円盤状のガラス基板を用意した。 この基板のランドの上面及びグループ の底面の幅は等しくした。 グルーブは実施例 1と同様にして形成した。 この基板を自公転 (回転) させつつ直流マグネトロンスパッタ法 (指向 性の低い方法) により、 基板上に厚さ 90 nmの窒化シリコン層からなる 下地層を形成した。製膜条件は、 アルゴンと望素の全ガス圧を 0. 6Pa、 投入亀力を 0, 8kW、 公転速度を 40 r pmとした。 下地層の壁面 «度 は、 S EMにより確認したところ、 90° を超えるオーバ一ハング状態と なっていた。
次に、 下地層上に、 30nmの再生層、 10 nmの中間層及び 80 nm の記録層からなる記録膜をこの順で形成した。 記録膜の製膜条件は、 夕一 ゲットと基板を静止対向させ、 タ一ゲットと基板との間にスリツトを入れ た調整板を配置し、 記録膜を形成するための粒子の飛散が指向性をもつよ うにし、 ガス圧を 0. lPa、 投入電力を 0. 5kWとした。 形成した再 生層はキュリー温度約 210 の001? 6を主成分とし、 中間蘑はキユリ —温度約 130。Cの TbFeを主成分とし、 記録眉はキュリー温度約 30 0 °Cの T b F e C oを主成分とした。
次いで、 厚さ 60 nmの窒化シリコン層からなる保護層を、 少なくとも 記録膜上に形成した。 保護眉の製膜条件-は、 ターゲヅトと基板を静止対向 させ、 ターゲットと基板との間にスリットを入れた調整板を配置し、 記録 膜を形成するための粒子の飛散が指向性をもつようにし、 ガス圧を 0. 6 Pa、 投入電力を 0. 8kWとした。
なお、 上記下地層、 記録膜及び保護層の形成は、 同一の真空装置内で行 つ ,こ
この後、 真空装置内から基板を取り出し、 紫外線硬化樹脂 (大日本イン キ社製 SD— 1700) でォ一バーコ一卜することにより厚さ 1 Onmの オーバ一コート膜を形成することにより情報記録媒体を得た。
得られた情報記録媒体を、 波長 640n m、 NAO . 55の光学系を有 するテスタを用いて評価した。 評価条件は、 次のようにした。 記録は、 周 速を 1 m/s e c、 記録パワーを D C— 3. 5 mW、 交流磁界を ± 250 0e、 記録マークの長さを 0. 2 mとする磁界変調方式で行った。 再生 は、 周速 1. 5m/se c、 再生パワーを 2. 9 mWとして行い、 その際 のジ タを測定した。 なお、 上記評価はグループの底部の記録膜に対して 行った。 結果を表 1に示す。
比較例 3
実施例 3と同様の基板を用意した。 この基板上に、 窒化シリコン層から なる下地層、 再生層、 中間眉及び記録層からなる記録膜、 並びに窒化シリ コン眉からなる保護層をこの順で形成した。 これら各層の製膜は、 タ一ゲ ットと基板を静止対向させ、 夕ーゲットと基板との間にスリッ トを入れた 調整板を配置し、 記録膜を形成するための粒子の飛散が指向性をもつよう にして行った。 各層の厚さは実施例 1と同様にした。 下地層の壁面角度が 70° であった。 各層の形成後、 真空装置内から基板を取り出し、 紫外線 硬化樹脂 (大日本ィンキ社製 SD— 1700) でオーバーコ一卜すること により厚さ 1 Onmのオーバーコート膜を形成することにより情報記録媒 体を得た。
得られた情報記録媒体を実施例 3と同様の条件でジツタを測定し、 結果 を表 1に示す。 表 1
Figure imgf000022_0001
表 1から、 実施例 3の情報記録媒体は、 比較例 3より下地層の側壁角度 が大きくなるため、 ジッタを低減することができることが分かつた。
実施例 4
グループのピヅチが 1. 2 m、 深さが 6 Onm、 壁面角度が約 80° 、 ランドの上面及びグループの底面の幅が等しい、 スタンパから射出成形に よりポリ力一ポネートからなる円盤状の基板を用意した。 なお、 射出成形 時に、 スタンパの押し付け圧力を緩め、 かつ金型温度を低く して転写があ まくなるようにした。 ァニール後の基板の壁面角度が約 70° であった p また、 グループの底部と壁面とが接触した角部の鋭利性を測定したところ、 平均 6 nmであった。
この基板を自公転 (回転) させつつ直流マグネトロンスパッタ法 (指向 性の低い方法) により、 基板上に厚さ 9 O nmの窒化シリコン層からなる 下地層を形成した。製膜条件は、 アルゴンと窒素の全ガス圧を 0. 6Pa、 投入電力を 0. 8kW、 公転速度を 40 rpmとした。 SEMにより確認 したところ、 下地層の底部に近いところで、 壁面は局部的に 90° を超え るオーバーハング状態となっていた。 また、 下地層形成後の角部の鋭利性 は 2 nm以下であった。
次に、 下地層上に、 3 Onmの再生層、 10 nmの中間層及び 80 nm の記録層からなる記録膜をこの順で形成した。 記録膜の製膜条件は、 夕一 ゲッ卜と基板を静止対向させ、 タ一ゲットと基板との間にスリットを入れ た調整板を配置し、 記録膜を形成するための粒子の飛散が指向性をもつよ うにし、 ガス圧を 0. lPa、 投入電力を 0. 5kWとした。 形成した再 生層はキュリー温度約 210°CのGdFeを主成分とし、 中間層はキユリ 一温度約 130°Cの TbFeを主成分とし、 記録層はキュリー温度約 30 CTCの TbFe Coを主成分とした 6
次いで、 厚さ 60 nmの窒化シリコン層からなる保護層を、 少なくとも 記録膜上に形成した。 保護層の製膜条件は、 ターゲットと基板を静止対向 させ、 ターゲットと基板との間にスリットを入れた調整板を配置し、 記録 膜を形成するための粒子の飛散が指向性をもつようにし、 ガス圧を 0. 6 Pa、 投入電力を 0. 8kWとした。
なお、 上記下地層、 記録膜及び保護層の形成は、 同一の真空装匿内で行 つた。
この後、 真空装置内から基板を取り出し、 紫外線硬化樹脂 (大日本イン キ社製 SD— 1700) で才一パ一コ一トすることにより厚さ 10 nmの オーバーコート膜を形成することにより情報記録媒体を得た。
得られた情報記録媒体を、 波長 640n m、 NAO. 55の光学系を有 するテスタを用いて評価した。 評価条件は、 次のようにした。 記録は、 周 速を lm/sec、 記録パヮ一を DC— 3. 5 mW、 交流磁界を ±250 0e、 記録マークの長さを 0. 2 mとする磁界変調方式で行った。 再生 は、 周速 1. 5m/sec、 再生パヮ一を 2. 9 mWとして行い、 その際 のジヅ夕を測定した。 なお、 上記評価はグループの底部の記録膜に対して 行った。 結果を表 2に示す。
比較例 4
実施例 4と同様の基板を用意した。 この基板上に、 望化シリコン層から なる下地層、 再生眉、 中間展及び記録層からなる記録膜、 並びに窒化シリ コン層からなる保護層をこの順で形成した。 これら各層の製膜は、 タ一ゲ ットと基板を静止対向させ、 ターゲットと基板との間にスリットを入れた 調整板を配置し、 記録膜を形成するための粒子の飛散が指向性をもつよう にして行った。各層の厚さは実施例 1と同様にした。下地屑の壁面角度は、 7 0 ° であった。 また、 下地層形成後の角部の鋭利性は 6 n mであった。 各層の形成後、 真空装置内から基板を取り出し、 紫外線硬化樹脂 (大日本 ィンキ社製 S D— 1 7 0 0 ) でォ一パ一コートすることにより厚さ 1 0 n mのオーバ一コート膜を形成することにより情報記録媒体を得た。
得られた倩報記録媒体を実施例 4と同様の条件でジッタを測定し、 結果 を表 2に示す。
表 2
Figure imgf000024_0001
表 2から、 実施例 4の情報記録媒体は、 比較例 4より角部の鋭利性が銳 くなり、 その結果、 グループの端部の曲面が少なくなるため、 ジッタを低 減することができることが分かった。
実施例 5
グループのピッチが 1 . 2 、 深さが 6 0 nm、 壁面角度が約 6 0 ° の円盤状のガラス基板を用意した。 この基板のランドの上面及びグループ の底面の幅は等しくした。 グループは実施例 1と同様にして形成した。 この基板を自公転 (回転) させつつ直流マグネトロンスパッ夕法 (指向 性の低い方法) により、 基板上に厚さ 7 0 nmの窒化シリコン層からなる 下地層を形成した。製膜条件は、 アルゴンと窒素の全ガス圧を 0. 6Pa、 投入電力を 0. 8kW、 公転速度を 4 O r pmとした。 下地層の壁面角度 が約 85° であった。
次に、 下地層上に、 25 nmの記録膜を形成した。 記録膜は、 基板を自 公転 (回転) させつつ直流マグネトロンスパッタ法 (指向性の低い方法) で製膜し、 製膜条件は、 ガス圧を 0. 5 Pa、 投入電力を 0. 5 kW、 公 転速度を 40 rpmとした。 形成した記録膜はキュリー温度約 200°Cの TbFe Coを主成分とした。
次いで、 厚さ 1 5 nmの窒化シリコン層からなる保護層を少なくとも記 錄膜上に形成した。 保護層は、 基板を自公転 (回転) させつつ直流マグネ トロンスパッタ法 (指向性の低い方法) により製膜し、 その製膜条件は、 アルゴンと望素の全ガス圧を 0. 6 Pa、 投入電力を 0. 8kW、 公転速 度を 40 r pmとした。
更に、 保護膜上に厚さ 100 nmのアルミニウムを主成分とする放熱層 を形成した。 放熱層の製膜条件は、 ターゲットと基板を静止対向させ、 タ —ゲットと基板との間にスリツ トを入れた調整板を配置し、 粒子の飛散が 指向性をもつようにし、 ガス圧を 0. l P a、 投入電力を 0. 5 kWとし た。
なお、 上記下地層、 記録膜、 保護層及び放熱層の形成は、 同一の真空装 置内で行った。
この後、 具空装置内から基板を取り出し、 紫外線硬化樹脂 (大日本イン キ社製 SD— 1 700) でオーバ一コートすることにより厚さ 1 O nmの オーバーコート膜を形成することにより情報記録媒体を得た。
得られた情報記録媒体を、 波長 640 nm、 NA0, 55の光学系を有 するテスタを用いて評価した。 評価条件は、 次のようにした。 記録は、 周 速を 9m/s e c、 パルスデューティを 50%、 記録パワーを DC 8 mW、 直流磁界を + 300 e (ここで、 "十" とは消去方向を一としているためで ある)、 記録マ一クの長さを 0. 64 mとした。 再生は、 周速 9m/s e c、 再生パワーを 1. 5 mWとして行い、 その際の CNRを測定した。 な お、 上記評価は、 主記録トラックをグループの底部の記録膜として記録し、 更にその両端のランドの上面の記録膜に対しても記録し、 グループの記録 膜において測定した。 結果を表 3に示す。
比較例 5
実施例 5と同様の基板を用意した。 この基板上に、 窒化シリコン屆から なる下地層、 再生層、 記録膜、 窒化シリコン眉からなる保護層及び放熱層 をこの順で形成した。 これら各眉は、 基板を自公転 (回転) させつつ直流 マグネトロンスパッタ法 (指向性の低い方法) により製膜した。 各層の厚 さは実施例 5と同様にした。 下地層の壁面角度が 85° であった。 各屑の 形成後、 具空装置内から基板を取り出し、 紫外線硬化樹脂 (大日本インキ 社製 S D— 1700) でォ一パーコートすることにより厚さ 10 nmのォ —パーコート膜を形成することにより情報記録媒体を得た。
得られた情報記録媒体を実施例 5と同様の条件で CNRを測定し、 結果 を表 3に示す。
表 3
Figure imgf000026_0001
表 3から、 実施例 5の情報記録媒体は、 放熱層がランドの上面及びグル 一ブの底部の記録膜上に、 保護膜を介して形成されているので、 ク Dスラ イ トが軽減され、 その結果、 CNRを低下させずに保持できることが分か つた。
実施例 6
グループのピッチが 1. 、 深さが 16 Onm、 壁面角度が約 80° の円盤状のガラス基板を用意した。 この基板のランドの上面及びグループ の底面の幅は、 1 : 2とした。 グループは実施例 1と同様にして形成した。 この基板を自公転 (回転) させつつ直流マグネトロンスパッタ法 (指向 性の低い方法) により、 基板上に厚さ 9 Onmの窒化シリコン層からなる 下地雇を形成した。製膜条件は、 アルゴンと窒素の全ガス圧を 0. 6Pa、 投入電力を 0. 8kW、 公転速度を 40 r pmとした。 下地層の壁面角度 が約 95° であった。
次に、 下地層上に、 3 Onmの再生層、 10 nmの中間層及び 80 nm の記録層からなる記録膜をこの順で形成した。 記録膜の製膜条件は、 ター ゲットと基板を静止対向させ、 ターゲットと基板との間にスリットを入れ た調整板を配置し、 記録膜を形成するための粒子の飛散が指向性をもつよ うにし、 ガス圧を 0. 1 Pa、 投入電力を 0, 5 kWとした。 形成した再 生層はキュリー温度約 210°Cの GdFeを主成分とし、 中間層はキユリ —温度約 130°Cの TbFeを主成分とし、 記録層はキュリー温度約 30 09Cの Tb F e Coを主成分とした。
次いで、 厚さ 6 Onmの窒化シリコン層からなる保護眉を、 下地眉と同 じ条件で少なくとも記録膜上に形成した。
なお、 上記下地層、 記録膜及び保護層の形成は、 同一の真空装置内で行 つた。 この後、 真空装置内から基板を取り出し、 紫外線硬化樹脂 (大日本イン キ社製 SD— 1700) でォ一バーコ一トすることにより厚さ 10 nmの オーバーコート膜を形成することにより情報記録媒体を得た。
得られた情報記録媒体を、 波長 640n m、 AO . 55の光学系を有 するテスタを用いてランドとグル一ブで別々に評価した。 評価条件は、 ラ ンドとグループのジッタが一番小さくなるような最適な再生パワーで再生 すること以外は、 実施例 1と同様にして行った。 結果を表 4に示す。
表 4
Figure imgf000028_0001
表 4より、 ランドの上面とグループの底部の幅の比が 1でなく、 ランド の上面が狭い場合でも、 両記録膜は同等の品質で記録できることが分かつ た。 よって、 情報記録媒体を安定的に製造することができる。
実施例 7
グループのピッチが 0. 85Am、 深さが 40ηπι、 壁面角度が約 70° の円盤状のガラス基板を用蒽した。 この基板のランドの上面及びグループ の底面の幅は、 3: 7とした。 グループは実施例 1と同様にして形成した。
この基板を自公転 (回転) させつつ直流マグネトロンスパッタ法 (指向 性の低い方法) により、 基板上に厚さ 90 nmの窒化シリコン層からなる 下地層を形成した。製膜条件は、 アルゴンと窒素の全ガス圧を 0. 6Pa、 投入電力を 0. 8kW、 公転速度を 4 Or pmとした。 下地層の壁面角度 が約 90。 であった。
次に、 下地層上に、 30nmの再生層、 10 nmの中間眉及び 80 nm の記録層からなる記録膜をこの順で形成した。 記録膜の製膜条件は、 ター ゲットと基板を静止対向させ、 ターゲットと基板との間にスリットを入れ た調整板を配置し、 記録膜を形成するための粒子の飛散が指向性をもつよ うにし、 ガス圧を 0. l P a、 投入電力を 0. 5 kWとした。 形成した再 生層はキユリ一温度約 2 10°Cの GdFeを主成分とし、 中間層はキユリ —温度約 130°Cの TbFeを主成分とし、 記録層はキュリー温度約 30 0°Cの TbFe Coを主成分とした。
次いで、 厚さ 60 rimの望化シリコン層からなる保護層を、 少なくとも 記録膜上に形成した。 保護層の製膜条件は、 ターゲットと基板を静止対向 させ、 ターゲットと基板との間にスリッ トを入れた調整板を配置し、 記録 膜を形成するための粒子の飛散が指向性をもつようにし、 ガス圧を 0. 6 Pa、 投入電力を 0. 8kWとした。
なお、 上記下地層、 記録膜及び保護層の形成は、 同一の頁空装置内で行 つた。
この後、 具空装置内から基板を取り出し、 紫外線硬化樹脂 (大日本イン キ社製 SD— 1700) でオーバーコートすることにより厚さ 10 nmの オーバーコート膜を形成することにより情報記録媒体を得た。
得られた情報記録媒体を、 波長 640 nm、 NA0. 55の光学系を有 するテスタを用いて評価した。 評価条件は、 記録マークの長さを変化させ ること以外は、 実施例 1と同様にして、 ジッ夕を測定した。 結杲を表 5に 示す。 表 5
Figure imgf000030_0001
表 5から、 グループの底部の記録膜のみに記録する、 いわゆるワイ ドグ ループ記録に有用であることが分かった。
実施例 8
グループのピヅチが 0. 85^πι、 深さが 160nm、 壁面角度が約 7 0° の円盤状のガラス基板を用意した。 この基板のランドの上面及びグル —ブの底面の幅は、 2 : 8とした。 ダル一ブは実施例 1と同様にして形成 した。
この基板を自公転 (回転) させつつ直流マグネトロンスパッタ法 (指向 性の低い方法) により、 基板上に厚さ 9 Onmの望化シリコン層からなる 下地層を形成した。製膜条件は、 アルゴンと望素の全ガス圧を 0. 6Pa、 投入電力を 0. 8kW、 公転速度を 40 rpmとした。 下地層の壁面角度 が約 90° であった。
次に、 下地層上に、 80nmの記録眉、 10 nmの中間層及び 80 nm の再生眉からなる記録膜をこの順で形成した。 記録膜の製膜条件は、 タ一 ゲットと基板を静止対向させ、 夕一ゲットと基板との間にスリットを入れ た調整板を配匿し、 記録膜を形成するための粒子の飛散が指向性をもつよ うにし、 ガス圧を 0. l Pa、 投入電力を 0. 5 kWとした。 形成した再 生層はキュリー温度約 2 10 の0(1 6を主成分とし、 中間層はキユリ —温度約 13 CTCの Tb F eを主成分とし、 記録層はキュリー温度約 30 0。Cの T b F e C oを主成分とした。
次いで、 厚さ 6 0 nmの窒化シリコン層からなる保護層を、 少なくとも 記録膜上に形成した。 保護層の製膜条件は、 ターゲットと基板を静止対向 させ、 ターゲッ卜と基板との間にスリットを入れた調整板を配匿し、 記録 膜を形成するための粒子の飛散が指向性をもつようにし、 ガス圧を 0 - 6 P a、 投入電力を 0 . 8 kWとした。
なお、 上記下地層、 記録膜及び保護層の形成は、 同一の真空装置内で行 つた。
この後、 真空装置内から基板を取り出し、 シリコン系潤滑膜を厚さ 1 0 nmで形成することにより情報記録媒体を得た。
得られた情報記録媒体を、 厚さ 1 . 2 mmの平板状のガラス板を介して、 波長 6 4 0 n m、 N A 0 . 5 5の光学系を有するテスタを用いて、 シリコ ン系潤滑膜側から、 グループの底部の記録膜について評価した。 評価条件 は、 実施例 1と同様にした。 その結果、 実施例 1と同様に記録再生を行う ことができた。 従って、 実施例 8の倩報記録媒体は、 シリコン系潤滑膜側 から記録再生する場合、 即ちフロントイルミネーション方式による記録再 生にも有用であることが分かった。
なお、 本発明は以下の態様でも実施可能である。
( 1 ) ランド ·グループ記録方式に使用され、 記録膜が溝の底面と溝間の 凸部の上面に形成されている情報記録媒体。
( 2 ) グループ記録方式に使用され、 記録膜が溝の底面に形成されている 情報記録媒体。
( 3 ) 基板との界面と反対側の記録膜面側から光を入射することによる愔 報の記録再生に使用される情報記録媒体。 (4) 溝が形成された基板、 基板を回転させつつ積層された下地層、 下地 層上に基板を静止しつつ積層された記録膜を備えた情報記録媒体。
(5) 記録膜が、 記録層、 中間層及び再生層の稷層体からなる情報記録媒 体。
以上、 本発明によれば、 製造することが簡単な壁面角度を有する基板を 使用し、 下地展を形成することにより、 壁面角度を大きくすることができ るので、 下地展上に成膜された記録膜の CNR、 ジッタ等の特性を向上さ せることができる。

Claims

/72319 請 求 の 範 囲
1. 底面に対して 80° 未満の角度の壁面を有する溝が形成された基板上 に、 指向性の低い製膜法により、 溝の底面に対して 80° 以上の角度の壁 面を有する下地層を形成する工程、形成された下地層上で、 かつ溝の底面、 溝間の凸部の上面又はそれら両面に少なくとも記録膜を形成する工程とを 含むことからなる情報記録媒体の製造方法。
2. 指向性の低い製膜法が、 基板を回転させつつ行われるマグネト□ンス パヅタ法である請求項 1に記載の倩報記録媒体の製造方法。
3. 記録膜が、 指向性の高い製膜法としての基板を静止しつつ行うへリコ ンスバ ' タ法又はイオンビームスパッタ法で形成される請求項 1又は 2に 記載の情報記録媒体の製造方法。
4. 溝が形成された基板、 少なくとも溝の壁面を覆うように基板上に形成 された下地層、 溝の底面、 溝間の凸部の上面又はそれら両面に少なくとも 形成された記録膜とを備え、 溝の壁面が底面に対して 80° 未満の角度を 有し、 下地層の壁面が溝の底面に対して 80° 以上の角度を有する情報記 録媒体。
5. 溝の壁面が底面に対して 30° 〜70° の角度を有し、 下地層の壁面 が溝の底面に対して 80° 〜100。 の角度を有する請求項 4に記載の情 報記録媒体。
6. 少なくとも記録膜の表面上に保護層が形成されている諝求項 4又は 5 に記載の情報記録媒体。
7. 下地層が、 5 iim以下の角部鋭利性を有する請求項 4〜 6のいずれか に記載の情報記録媒体。
8. 更に溝の底面、 潸間の凸部の上面又はそれら両面の記録膜上に、 保護 膜を介して放熱層が形成されている請求項 4〜 7のいずれかに記載の情報 記録媒体。
PCT/JP1999/002613 1999-05-19 1999-05-19 Support d'enregistrement de donnees et procede de fabrication dudit support WO2000072319A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1999/002613 WO2000072319A1 (fr) 1999-05-19 1999-05-19 Support d'enregistrement de donnees et procede de fabrication dudit support
US09/961,135 US6707786B2 (en) 1999-05-19 2001-09-21 Optical recording medium having groove wall at specific angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/002613 WO2000072319A1 (fr) 1999-05-19 1999-05-19 Support d'enregistrement de donnees et procede de fabrication dudit support

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/961,135 Continuation US6707786B2 (en) 1999-05-19 2001-09-21 Optical recording medium having groove wall at specific angle

Publications (1)

Publication Number Publication Date
WO2000072319A1 true WO2000072319A1 (fr) 2000-11-30

Family

ID=14235740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002613 WO2000072319A1 (fr) 1999-05-19 1999-05-19 Support d'enregistrement de donnees et procede de fabrication dudit support

Country Status (2)

Country Link
US (1) US6707786B2 (ja)
WO (1) WO2000072319A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439530A1 (en) * 2001-10-09 2004-07-21 Sony Corporation Magneto optical recording medium
EP1473718A1 (en) * 2002-02-06 2004-11-03 Sony Corporation Optical recording/reproducing method and optical recording medium
EP1215665A3 (en) * 2000-12-15 2006-04-05 Pioneer Corporation Optical disc having pits of desired wall angle
US7586833B2 (en) 2002-07-04 2009-09-08 Sony Corporation Magneto-optical recording medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002354490A1 (en) * 2002-12-13 2004-07-09 Fujitsu Limited Magneto-optical recording medium and magneto-optical storage apparatus
DE602004027907D1 (de) * 2003-05-30 2010-08-12 Doug Carson & Associates Inc Verbessertes format für mehrschichtige optische datenträger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149667A (ja) * 1997-11-14 1999-06-02 Toshiba Corp 光記録媒体およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931336A (en) * 1988-01-18 1990-06-05 Fuji Photo Film Co., Ltd. Information recording medium and method of optically recording information employing the same
JP3332458B2 (ja) 1993-04-02 2002-10-07 キヤノン株式会社 光磁気記録媒体
JP2879185B2 (ja) * 1993-04-16 1999-04-05 ティーディーケイ株式会社 光磁気ディスク
JP3088619B2 (ja) 1994-01-17 2000-09-18 富士通株式会社 光磁気記録媒体及び該媒体に記録された情報の再生方法
JPH10275369A (ja) 1997-01-31 1998-10-13 Canon Inc 情報記録媒体の製造方法および該方法による情報記録媒体
WO1998048417A1 (fr) * 1997-04-24 1998-10-29 Matsushita Electric Industrial Co., Ltd. Support d'enregistrement optique et substrat correspondant
JP3499406B2 (ja) * 1997-08-22 2004-02-23 株式会社東芝 光ディスク
JP2000298888A (ja) * 1999-04-15 2000-10-24 Canon Inc 光磁気記録媒体
BR0006081A (pt) * 1999-04-26 2001-03-20 Sony Corp Disco óptico e processo para sua fabricação.
US6212158B1 (en) * 1999-06-01 2001-04-03 Eastman Kodak Company Hybrid optical disc construction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149667A (ja) * 1997-11-14 1999-06-02 Toshiba Corp 光記録媒体およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1215665A3 (en) * 2000-12-15 2006-04-05 Pioneer Corporation Optical disc having pits of desired wall angle
EP1439530A1 (en) * 2001-10-09 2004-07-21 Sony Corporation Magneto optical recording medium
EP1439530A4 (en) * 2001-10-09 2008-01-16 Sony Corp MAGNETO-OPTICAL RECORDING MEDIUM
EP1473718A1 (en) * 2002-02-06 2004-11-03 Sony Corporation Optical recording/reproducing method and optical recording medium
EP1473718A4 (en) * 2002-02-06 2008-05-07 Sony Corp OPTICAL RECORDING / REPRODUCTION METHOD AND OPTICAL RECORDING MEDIUM
US7420910B2 (en) 2002-02-06 2008-09-02 Sony Corporation Optical recording/reproducing method for multiple recording media with different recording density
US7586833B2 (en) 2002-07-04 2009-09-08 Sony Corporation Magneto-optical recording medium

Also Published As

Publication number Publication date
US6707786B2 (en) 2004-03-16
US20020027870A1 (en) 2002-03-07

Similar Documents

Publication Publication Date Title
EP0542910B1 (en) Thermomagnetic recording system having high storage density and direct-overwrite capability
US6180208B1 (en) Information recording medium and method for producing the same
US20060002243A1 (en) Manufacturing method for magneto optical recording medium
US6197440B1 (en) Magnetic recording medium
US7180831B2 (en) Magneto-optical recording medium having a recording layer of columnar structure
US7773343B2 (en) Magnetic recording medium, and manufacturing method, manufacturing apparatus, recording and reproduction method, and recording and reproduction apparatus for the same
US20040057343A1 (en) Magnetic recording medium, method for producing the same and magnetic recording/reproducing apparatus
WO2000072319A1 (fr) Support d'enregistrement de donnees et procede de fabrication dudit support
JP3363409B2 (ja) 光メモリ素子及びその製造方法
WO2006109446A1 (ja) 磁気記録媒体、その記録再生方法および記録再生装置
US7399539B2 (en) DWDD-type magneto-optic recording medium including buffer regions between recording track regions and method of producing the same
US6554974B2 (en) Method of manufacturing information recording medium
US20090103401A1 (en) Magnetic recording medium, production method for the same, and recording/reproducing method for magnetic medium
JPH06302029A (ja) 光磁気記録媒体及びその記録方法
WO2002077987A1 (fr) Support d'enregistrement magneto-optique et procede de reproduction
US7235313B2 (en) Magneto-optical recording medium, method of manufacturing magneto-optical recording medium, method of recording on magneto-optical recording medium, and method of reproduction from magneto-optical recording medium
JP2753583B2 (ja) 光磁気記録媒体
JP2004134064A (ja) 磁気記録媒体、その製造方法及び磁気記録再生装置
JP3484184B1 (ja) 光磁気記録媒体及びその再生方法
JP3484185B1 (ja) 光磁気記録媒体
JPH0734272B2 (ja) 光磁気記録媒体
JP3437845B1 (ja) 光磁気記録媒体及びその再生方法
JP2002042393A (ja) 光磁気記録媒体の製造方法
JP2000348398A (ja) 光磁気記録媒体およびその製造方法
JP2004005887A (ja) 光磁気記録媒体及びその再生方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 620629

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09961135

Country of ref document: US