WO2000062098A1 - Panneau de scintillateur et detecteur d'image rayonnante - Google Patents

Panneau de scintillateur et detecteur d'image rayonnante Download PDF

Info

Publication number
WO2000062098A1
WO2000062098A1 PCT/JP1999/001912 JP9901912W WO0062098A1 WO 2000062098 A1 WO2000062098 A1 WO 2000062098A1 JP 9901912 W JP9901912 W JP 9901912W WO 0062098 A1 WO0062098 A1 WO 0062098A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
film
scintillator
panel
Prior art date
Application number
PCT/JP1999/001912
Other languages
English (en)
French (fr)
Inventor
Takuya Homme
Toshio Takabayashi
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to EP99913617A priority Critical patent/EP1298455B1/en
Priority to PCT/JP1999/001912 priority patent/WO2000062098A1/ja
Priority to CNB998118826A priority patent/CN1161625C/zh
Priority to DE69937125T priority patent/DE69937125T2/de
Priority to KR1020017004196A priority patent/KR100638413B1/ko
Priority to AU31681/99A priority patent/AU3168199A/en
Publication of WO2000062098A1 publication Critical patent/WO2000062098A1/ja
Priority to US09/971,644 priority patent/US6753531B2/en
Priority to US10/851,333 priority patent/US6911658B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers

Definitions

  • the present invention relates to a scintillator panel and a radiation image sensor used for medical X-ray photography and the like. Background art
  • X-ray sensitive films have been used in the past, but radiation imaging systems using radiation detectors have become widespread in terms of convenience and preservation of imaging results.
  • a pixel detector using two-dimensional radiation is acquired as an electric signal by a radiation detector, and this signal is processed by a processing device and displayed on a monitor.
  • a radiation detector having a structure in which a scintillation panel in which a scintillation panel is formed on a substrate made of aluminum, glass, fused quartz, or the like, and an imaging element are bonded.
  • this radiation detector radiation incident from the substrate side is converted into light in a short time and detected by an image pickup device (see Japanese Patent Publication No. 7-216650).
  • An object of the present invention is to provide a scintillator panel with increased light output and a radiation image sensor using the scintillator panel with increased light output. Disclosure of the invention A scintillator panel of the present invention covers a radiation-transmissive substrate, a light-transmissive thin film provided on the substrate, a scintillator deposited on the light-transmissive thin film, and a cover of the scintillator. And a protective film, wherein a refractive index of the light-transmitting thin film is lower than a refractive index of the scintillator.
  • the light-transmitting thin film having a refractive index lower than that of the scintillating light is provided between the substrate and the scintillating light, the light generated by the scintillating light is Since the light can be reflected to the light output side by the light transmitting thin film, the light output of the scintillator panel can be increased.
  • a radiation image sensor includes a radiation-transmissive substrate, a light-transmissive thin film provided on the substrate, a scintillator deposited on the light-transmissive thin film, and protection for covering the scintillator.
  • a light-transmitting thin film wherein a light-transmitting thin film has a refractive index lower than the refractive index of the scintillator panel, and an image sensor is arranged opposite to the scintillator panel of the scintillator panel.
  • the scintillator panel since the scintillator panel has a light-transmitting thin film having a refractive index lower than that of the scintillator between the substrate and the scintillator, the light output of the scintillator panel is reduced. Increase. Therefore, the output of the radiation image sensor can be increased.
  • FIG. 1 is a cross-sectional view of a scintillator panel according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the radiation image sensor according to the first embodiment.
  • FIG. 3A is a diagram showing a manufacturing step of the scintillation overnight panel according to the first embodiment.
  • FIG. 3B is a diagram showing a manufacturing step of the scintillation overnight panel according to the first embodiment.
  • FIG. 3C is a diagram showing a manufacturing process of the scintillation overnight panel according to the first embodiment. It is.
  • FIG. 3D is a diagram showing a manufacturing step for the scintillator panel according to the first embodiment.
  • FIG. 4 is a cross-sectional view of a scintillator panel according to the second embodiment.
  • FIG. 5 is a cross-sectional view of the radiation image sensor according to the second embodiment.
  • FIG. 6 is a cross-sectional view of a scintillator panel according to the third embodiment.
  • FIG. 7 is a cross-sectional view of the radiation image sensor according to the third embodiment.
  • FIG. 1 is a cross-sectional view of the scintillation overnight panel 1
  • FIG. 2 is a cross-sectional view of the radiation image sensor 2.
  • one surface and a side surface of the A1 substrate 10 of the scintillator panel 1 have been subjected to a sand blast treatment, and the other surface has been subjected to a mirror surface treatment.
  • M g F 2 film 1 2 surface scintillation Isseki 1 4 columnar structure for converting incident radiation into visible light is formed.
  • the scintillation layer 14 is covered with a substrate 10 and a polyparaxylylene film 16.
  • the radiation image sensor 2 has a structure in which an image pickup device 18 is attached to the front end side of the scintillator panel 14 of the scintillator panel 1.
  • an image pickup device 18 is attached to the front end side of the scintillator panel 14 of the scintillator panel 1.
  • an MgF 2 film (light-transmitting thin film) 12 as a low-refractive-index material is formed on the other surface of the substrate 10 by vacuum evaporation to a thickness of 10 Onm (see FIG. 3B).
  • a columnar crystal of CsI doped with T1 is grown on the surface of the 1 ⁇ 2 film 12 by vapor deposition to form a scintillator layer 14 with a thickness of 250 / m (see Fig. 3C). .
  • CsI which forms this scintillation stream 14
  • a xylylene film 16 is formed. That is, the substrate 10 on which the scintillation layer 14 is formed is put into a CVD apparatus, and a polyparaxylylene film 16 is formed to a thickness of 10 m. As a result, a polyparaxylylene film 16 is formed on the entire surface of the scintillator 14 and the substrate 10 (see FIG. 3D).
  • the adhesion between the polyparaxylylene film 16 and the substrate 10 can be improved, and the polyparaxylylene film can be improved. Peeling between the substrate 16 and the substrate 10 can be prevented.
  • the radiation image sensor 2 is manufactured by attaching a light receiving section of an image pickup device (CCD) 18 to a front end side of the scintillator panel 14 of the completed scintillator panel 1 so as to face the same (see FIG. 2). .
  • CCD image pickup device
  • the radiation incident from the substrate 10 side is converted into light by the scintillator 14 and detected by the imaging device 18 c .
  • the light output can be increased by 20% as compared with the case of using a scintillation panel in which a scintillation panel is formed on a substrate without providing an MgF 2 film 12. That is, the light generated in the scintillation light 14 travels in all directions, but the light that satisfies the condition for total reflection is reflected by the MgF 2 film 12 as a low refractive index material.
  • the light incident on the portion can be increased.
  • FIG. 4 is a cross-sectional view of the scintillation overnight panel 3
  • FIG. 5 is a cross-sectional view of the radiation image sensor 4.
  • the surface of the A1 substrate 10 of the scintillator panel 3 is sandblasted, and the Ag film 22 as a reflection film is formed on one surface.
  • a scintillator 14 having a columnar structure for converting incident radiation into visible light is formed on the surface of the LiF film 24 .
  • CsI of T1 dope is used for 14 in Chinchile.
  • the scintillation light 14 is covered with a substrate 10 and a polyparaxylylene film 16.
  • the radiation image sensor 4 has a structure in which an imaging element 18 is attached to the scintillation panel 14 side of the scintillation panel 3.
  • the manufacturing process of the scintillator panel 3 will be described. First, the entire surface of a rectangular or circular substrate 10 made of A1 (thickness 1 mm) is subjected to sand blasting using glass beads (# 800), and the surface of the substrate 10 Eliminate the rolling streaks and form fine irregularities on the surface of the substrate 10.
  • an Ag film 22 as a reflective film is formed on one surface of the substrate 10 with a thickness of 100 nm by a vacuum evaporation method, and an L film as a low refractive index material is formed on the Ag film 22.
  • An iF film 24 is formed with a thickness of 100 nm by a vacuum evaporation method.
  • ⁇ ? film? CsI columnar crystals having a dope 1 on the surface are grown by vapor deposition to form scintillation layers 14 with a thickness of 25 O ⁇ zm.
  • a polyparaxylylene film 16 is formed with a thickness of 10 ⁇ m by the CVD method. As a result, a polyparaxylylene film 16 is formed on the entire surface of the scintillator 14 and the substrate 10.
  • the radiation image sensor 4 is attached to the end of the scintillator panel 14 of the completed scintillator panel 3 with the light-receiving section of the image sensor (CCD) 18 facing it. (See Fig. 5).
  • the radiation image sensor 4 of this embodiment when the c detected by the imaging device 1 8 radiation incident from the substrate 1 side 0 in scintillation Isseki 1 4 is converted into light, as a reflection film
  • the optical output is increased by 20% compared to the case of using a scintillation panel in which a scintillation panel is formed on a substrate without providing the Ag film 22 and the LiF film 24 as a low refractive index material. Can be done.
  • the light generated in the scintillator 14 travels in all directions, but due to the Ag film 22 as a reflective film and the LiF film 24 as a low refractive index material, the Ag film 22 and L Since the light traveling in the iF film 24 direction is reflected, the light incident on the light receiving portion of the image sensor 18 can be increased.
  • FIG. 6 is a cross-sectional view of the scintillator panel 5, and FIG. It is sectional drawing. As shown in FIG. 6, the surface of the substrate 26 made of amorphous carbon (a-C) of the scintillator panel 5 has been subjected to sandblasting, and one surface has A 1 as a reflective film. A film 28 has been formed.
  • a-C amorphous carbon
  • a scintillator 14 having a columnar structure for converting incident radiation into visible light is formed on the surface of the SiO 2 film 30, a scintillator 14 having a columnar structure for converting incident radiation into visible light is formed.
  • C sl of T 1 dope is used for 14 days in Shinchire.
  • the scintillating light 14 is covered with the substrate 10 and the polyparaxylylene film 16.
  • the radiation image sensor 6 has a structure in which an image pickup device 18 is attached to the front end portion of the scintillator panel 14 of the scintillator panel 5.
  • an image pickup device 18 is attached to the front end portion of the scintillator panel 14 of the scintillator panel 5.
  • the manufacturing process of the Sinchle overnight panel 5 will be described. First, a rectangle or circle The surface of the a-C substrate 26 (1 mm thick) is subjected to sandblasting using glass beads (# 1500) to form fine irregularities on the surface of the substrate 26.
  • an A1 film 28 as a reflection film is formed on one surface of the substrate 26 to a thickness of 100 nm by a vacuum evaporation method, and a SiO 2 film 30 as a low refractive index material is formed on the A1 film 28.
  • a thickness of S i 0 2 to the T 1 on the surface of the membrane 30 de columnar crystal one-flop the C s I is grown by vapor deposition scintillator Isseki 14 250 m.
  • a polyparaxylylene film 16 having a thickness of 10 zm is formed by a CVD method. As a result, a polyparaxylylene film 16 is formed on the entire surface of the scintillator 14 and the substrate 10.
  • the radiation image sensor 6 is manufactured by attaching a light receiving section of an image pickup device (CCD) 18 to a front end portion of the scintillating screen 14 of the completed scintillating screen panel 5 so as to face the same (see FIG. 7). ).
  • CCD image pickup device
  • the radiation incident from the substrate 10 side is converted into light by the scintillator 14 and detected by the imaging device 18 c
  • the A 1 film as a reflection film The light output can be increased by 15% as compared with the case of using a scintillation panel in which a scintillation panel is formed on a substrate without providing the SiO 2 film 30 as a low refractive index material.
  • the MgF 2 film, the L i F film, or the S i O 2 film is used as the light transmitting thin film, but the L i F, M g F 2 , C a F 2 , S i 0 2, a 1203 , MgO, ⁇ a C 1, KB r, may be film made of a material containing a substance of the group consisting of KC 1 and AgC l.
  • C s I (T 1) Cs I (T 1)
  • the present invention is not limited to this, and Csl (Na), NaI (Tl), LiI (Eu), KI (T1), and the like may be used.
  • a substrate made of A1 or a substrate made of a—C is used as the substrate 10.
  • a substrate having good X-ray transmittance may be used.
  • a substrate made of Ait), a substrate made of Be, a substrate made of glass, or the like may be used.
  • the polyparaxylylene in the above-mentioned embodiment includes, in addition to polyparaxylylene, polymonoxyl paraxylene, polydichloroparaxylylene, polytetraclox paraxylylene, polyfluoroparaxylylene, polydimethyl valaxylylene, polydiethyl Including paraxylylene.
  • the scintillator panel of the present invention since the light-transmitting thin film having a refractive index lower than that of the scintillator is provided between the substrate and the scintillator, light generated by the scintillator is generated by Since the light can be reflected to the light output side by the light transmissive thin film, the light output of the scintillator panel can be increased. Therefore, the image detected by the radiation image sensor using the scintillation panel can be made clear.
  • the scintillation panel since the scintillation panel has a light-transmitting thin film having a refractive index lower than that of the scintillation light between the substrate and the scintillation light, the scintillation light panel is formed. The light output of the panel increases. Therefore, the detected image can be made clear.
  • the scintillator panel and the radiation image sensor of the present invention are suitable for use in medical X-ray photography and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Description

明糸田書
-夕パネル及び放射線イメージセンサ 技術分野
この発明は、 医療用の X線撮影等に用いられるシンチレ一夕パネル及び放射線 イメージセンサに関するものである。 背景技術
医療、 工業用の X線撮影では、 従来、 X線感光フィルムが用いられてきたが、 利便性や撮影結果の保存性の面から放射線検出器を用いた放射線イメージングシ ステムが普及してきている。このような放射線イメージングシステムにおいては、 放射線検出器により 2次元の放射線による画素デ一夕を電気信号として取得し、 この信号を処理装置により処理してモニタ上に表示している。
従来、 代表的な放射線検出器として、 アルミニウム、 ガラス、 溶融石英等の 基板上にシンチレ一夕を形成したシンチレ一夕パネルと撮像素子とを貼り合わせ た構造を有する放射線検出器が存在する。 この放射線検出器においては、 基板側 から入射する放射線をシンチレ一夕で光に変換して撮像素子で検出している (特 公平 7— 2 1 5 6 0号公報参照)。
ところで放射線検出器において鮮明な画像を得るためには、 シンチレ一夕パネ ルの光出力を十分に大きくすることが必用になるが、 上述の放射線検出器におい ては光出力が十分でなかった。
この発明は、 光出力を増大させたシンチレ一夕パネル及び光出力を増大させた シンチレ一夕パネルを用いた放射線イメージセンサを提供することを目的として いる。 発明の開示 この発明のシンチレ一タパネルは、 放射線透過性の基板と、 前記基板上に設 けられた光透過性薄膜と、 前記光透過性薄膜上に堆積したシンチレ一夕と、 前記シンチレ一夕を被覆する保護膜とを備え、 前記光透過性薄膜の屈折率が 前記シンチレ一夕の屈折率よりも低いことを特徴とする。
このシンチレ一夕パネルによれば、 基板とシンチレ一夕の間にシンチレ一夕の 屈折率よりも低い屈折率を有する光透過性薄膜を有するため、 シンチレ一夕によ り発生した光を、 この光透過性薄膜により光出力側に反射することができること からシンチレ一夕パネルの光出力を増大させることができる。
この発明の放射線イメージセンサは、 放射線透過性の基板と、 前記基板上 に設けられた光透過性薄膜と、 前記光透過性薄膜上に堆積したシンチレ一夕 と、 前記シンチレ一夕を被覆する保護膜とを備え、 前記光透過性薄膜の屈折率 が前記シンチレ一夕の屈折率よりも低いシンチレ一夕パネルの前記シンチ レ一夕に対向して撮像素子を配置したことを特徴とする。
この放射線ィメージセンサによれば、 シンチレ一夕パネルが基板とシンチレ一 夕の間にシンチレ一夕の屈折率よりも低い屈折率を有する光透過性薄膜を有する ことからシンチレ一夕パネルの光出力が増大する。 従って放射線ィメ一ジセンサ の出力を増大させることができる。 図面の簡単な説明
図 1は、 第 1の実施の形態にかかるシンチレ一夕パネルの断面図である。 図 2は、 第 1の実施の形態にかかる放射線イメージセンサの断面図である。 図 3 Aは、 第 1の実施の形態にかかるシンチレ一夕パネルの製造工程を示す図 である。
図 3 Bは、 第 1の実施の形態にかかるシンチレ一夕パネルの製造工程を示す図 である。
図 3 Cは、 第 1の実施の形態にかかるシンチレ一夕パネルの製造工程を示す図 である。
図 3 Dは、 第 1の実施の形態にかかるシンチレ一タパネルの製造工程を示す図 である。
図 4は、 第 2の実施の形態にかかるシンチレ一夕パネルの断面図である。
図 5は、 第 2の実施の形態にかかる放射線イメージセンサの断面図である。 図 6は、 第 3の実施の形態にかかるシンチレ一夕パネルの断面図である。
図 7は、 第 3の実施の形態にかかる放射線ィメ一ジセンサの断面図である。 発明を実施するための最良の形態
以下、 図 1、 図 2、 図 3 A〜図 3 Dを参照して、 この発明の第 1の実施の形態 の説明を行う。 図 1はシンチレ一夕パネル 1の断面図であり、 図 2は放射線ィメ ージセンサ 2の断面図である。
図 1に示すように、 シンチレ一夕パネル 1の A 1製の基板 1 0の一方の表面 及び側面はサンドプラスト処理がなされており、 他方の表面には鏡面処理がなさ れている。 また他方の表面には低屈折率材 (シンチレ一夕 1 4よりも低い屈折率 を有する材料) としての M g F 2膜 (屈折率 = 1 . 3 8 ) 1 2が形成されている。 この M g F 2膜 1 2の表面には、 入射した放射線を可視光に変換する柱状構造の シンチレ一夕 1 4が形成されている。 なお、 シンチレ一夕 1 4には、 T 1 ドープ の C s l (屈折率 = 1 . 8 ) が用いられている。 このシンチレ一夕 1 4は、 基板 1 0と共にポリパラキシリレン膜 1 6で覆われている。
また、 放射線イメージセンサ 2は、 図 2に示すように、 シンチレ一夕パネル 1 のシンチレ一夕 1 4の先端部側に撮像素子 1 8を貼り付けた構造を有している。 次に、 図 3 A〜図 3 Dを参照して、 シンチレ一夕パネル 1の製造工程について 説明する。 まず、 矩形又は円形の A 1製の基板 1 0 (厚さ l mm) の一方の表面 及び側面に対してガラスビーズ(# 8 0 0 )を用いてサンドプラスト処理を施す。 このサンドプラスト処理により基板 1 0の表面の圧延スジを消すと共に基板 1 0 の表面に細かい凹凸を形成する (図 3A参照)。 また、 基板 10の他方の表面に 対して鏡面処理を施す。
次に、 基板 1 0の他方の表面に低屈折率材としての MgF2膜 (光透過性薄 膜) 12を真空蒸着法により 10 Onmの厚さで形成する (図 3 B参照)。 次に、 1^ 2膜1 2の表面に T 1をドープした Cs Iの柱状結晶を蒸着法によって成 長させてシンチレ一夕 14を 250 /mの厚さで形成する (図 3 C参照)。
このシンチレ一夕 14を形成する C s Iは、 吸湿性が高く露出したままにして おくと空気中の水蒸気を吸湿して潮解してしまうため、 これを防止するために C VD法によりポリパラキシリレン膜 16を形成する。 即ち、 シンチレ一夕 14が 形成された基板 10を CVD装置に入れ、 ポリパラキシリレン膜 16を 10 m の厚さで成膜する。 これによりシンチレ一夕 14及び基板 10の表面全体にポリ パラキシリレン膜 1 6が形成される (図 3D参照)。 なお、 基板 10の一方の表 面及び側面には、 サンドプラスト処理により細かい凹凸が形成されていることか らポリパラキシリレン膜 16と基板 10との密着性を向上させることができポリ パラキシリレン膜 16と基板 10との剥がれを防止することができる。
また、 放射線イメージセンサ 2は、 完成したシンチレ一タパネル 1のシンチ レー夕 14の先端部側に撮像素子 (CCD) 18の受光部を対向させて貼り付け ることにより製造される (図 2参照)。
この実施の形態にかかる放射線イメージセンサ 2によれば、 基板 1 0側から 入射した放射線をシンチレ一夕 14で光に変換して撮像素子 18により検出する c この場合に、 低屈折率材としての MgF2膜 1 2を設けず基板上にシンチレ一夕 を形成たシンチレ一夕パネルを用いた場合に比較して光出力を 20%増加させる ことができる。 即ち、 シンチレ一夕 14で発生した光は全方向に進行するが低屈 折率材としての M g F 2膜 12により全反射の反射条件を満たす光を反射するこ とから撮像素子 18の受光部に入射する光を増加させることができる。
次に、 この発明の第 2の実施の形態の説明を行う。 なお、 第 1の実施の形態の シンチレ一夕パネル 1、 放射線イメージセンサ 2の構成と同一の構成には、 第 1 の実施の形態の説明で用いたのと同一の符号を付して説明を行う。
図 4はシンチレ一夕パネル 3の断面図であり、 図 5は放射線イメージセンサ 4 の断面図である。 図 4に示すように、 シンチレ一夕パネル 3の A 1製の基板 1 0 の表面は、 サンドブラスト処理がなされており、 一方の表面には、 反射膜として の A g膜 2 2が形成されている。 また、 A g膜 2 2上に低屈折率材 (シンチレ一 夕 1 4よりも低い屈折率を有する材料) としての L i F膜 (光透過性薄膜) (屈 折率 = 1 . 3 ) 2 4が形成されている。 更に L i F膜 2 4の表面には、 入射した 放射線を可視光に変換する柱状構造のシンチレ一夕 1 4が形成されている。なお、 シンチレ一夕 1 4には、 T 1 ド一プの C s Iが用いられている。 このシンチレ一 夕 1 4は、 基板 1 0と共にポリパラキシリレン膜 1 6で覆われている。
また、 放射線イメージセンサ 4は、 図 5に示すように、 シンチレ一夕パネル 3 のシンチレ一夕 1 4側に撮像素子 1 8を貼り付けた構造を有している。
次に、 シンチレ一夕パネル 3の製造工程について説明する。 まず、 矩形又は円 形の A 1製の基板 1 0 (厚さ 1 mm)の全表面に対してガラスビーズ(# 8 0 0 ) を用いてサンドプラスト処理を施して、 基板 1 0の表面の圧延スジを消すと共に 基板 1 0の表面に細かい凹凸を形成する。
次に、 基板 1 0の一方の表面に反射膜としての A g膜 2 2を真空蒸着法により 1 0 0 nmの厚さで形成し、 A g膜 2 2上に低屈折率材としての L i F膜 2 4を 真空蒸着法により 1 0 0 n mの厚さで形成する。 次に、 丄?膜? の表面に丁 1をド一プした C s Iの柱状結晶を蒸着法によって成長させてシンチレ一夕 1 4 を 2 5 O ^z mの厚さで形成する。 次に、 C V D法により 1 0〃mの厚さでポリパ ラキシリレン膜 1 6を形成する。 これによりシンチレ一夕 1 4及び基板 1 0の表 面全体にポリパラキシリレン膜 1 6が形成される。
また、 放射線イメージセンサ 4は、 完成したシンチレ一夕パネル 3のシンチ レー夕 1 4の先端部に撮像素子 (C C D ) 1 8の受光部を対向させて貼り付ける ことにより製造される (図 5参照)。
この実施の形態にかかる放射線イメージセンサ 4によれば、 基板 1 0側から 入射した放射線をシンチレ一夕 1 4で光に変換して撮像素子 1 8により検出する c この場合に、 反射膜としての A g膜 2 2及び低屈折率材としての L i F膜 2 4を を設けず基板上にシンチレ一夕を形成たシンチレ一夕パネルを用いた場合に比較 して光出力を 2 0 %増加させることができる。 即ち、 シンチレ一夕 1 4で発生し た光は全方向に進行するが反射膜としての A g膜 2 2及び低屈折率材としての L i F膜 2 4により、 A g膜 2 2及び L i F膜 2 4方向に進む光を反射することか ら撮像素子 1 8の受光部に入射する光を増加させることができる。
次に、 この発明の第 3の実施の形態の説明を行う。 なお、 第 1の実施の形態の シンチレ一夕パネル 1、 放射線イメージセンサ 2及び第 2の実施の形態のシンチ レータパネル 3、 放射線イメージセンサ 4の構成と同一の構成には、 第 1の実施 の形態及び第 2の実施の形態の説明で用いたのと同一の符号を付して説明を行う c 図 6はシンチレ一夕パネル 5の断面図であり、 図 7は放射線ィメ一ジセンサ 6 の断面図である。 図 6に示すように、 シンチレ一夕パネル 5のアモルファスカー ボン (a— C ) 製の基板 2 6の表面は、 サンドブラスト処理がなされており、 一 方の表面には、 反射膜としての A 1膜 2 8が形成されている。 また、 八1膜2 8 上に低屈折率材 (シンチレ一夕 1 4よりも低い屈折率を有する材料) としての S i〇2膜 (光透過性薄膜) (屈折率 = 1 . 5 ) 3 0が形成されている。 更に S i 0 2膜 3 0の表面には、 入射した放射線を可視光に変換する柱状構造のシンチレ —夕 1 4が形成されている。 なお、 シンチレ一夕 1 4には、 T 1 ド一プの C s l が用いられている。 このシンチレ一夕 1 4は、 基板 1 0と共にポリパラキシリレ ン膜 1 6で覆われている。
また、 放射線イメージセンサ 6は、 図 7に示すように、 シンチレ一夕パネル 5 のシンチレ一夕 1 4の先端部側に撮像素子 1 8を貼り付けら構造を有している。 次に、 シンチレ一夕パネル 5の製造工程について説明する。 まず、 矩形又は円 形の a— C製の基板 26 (厚さ 1 mm) の表面に対してガラスビーズ (# 150 0) を用いてサンドブラスト処理を施して基板 26の表面に細かい凹凸を形成す o
次に、 基板 26の一方の表面に反射膜としての A 1膜 28を真空蒸着法により 100 nmの厚さで形成し、 A 1膜 28上に低屈折率材としての S i 02膜 30 を真空蒸着法により 100 nmの厚さで形成する。 次に、 S i 02膜 30の表面 に T 1をド一プした C s Iの柱状結晶を蒸着法によって成長させてシンチレ一夕 14を 250 mの厚さで形成する。 次に、 CVD法により 10 zmの厚さでポ リパラキシリレン膜 16を形成する。 これによりシンチレ一夕 14及び基板 10 の表面全体にポリパラキシリレン膜 16が形成される。
また、 放射線イメージセンサ 6は、 完成したシンチレ一夕パネル 5のシンチ レー夕 14の先端部側に撮像素子 (CCD) 18の受光部を対向させて貼り付け ることにより製造される (図 7参照)。
この実施の形態にかかる放射線イメージセンサ 6によれば、 基板 10側から 入射した放射線をシンチレ一夕 14で光に変換して撮像素子 18により検出する c この場合に、 反射膜としての A 1膜 28及び低屈折率材としての S i02膜 30 をを設けず基板上にシンチレ一夕を形成たシンチレ一夕パネルを用いた場合に比 較して光出力を 15%増加させることができる。 即ち、 シンチレ一夕 14で発生 した光は全方向に進行するが反射膜としての A 1膜 28及び低屈折率材としての Si02膜 30により、 A1膜 28及び S i02膜 30方向に進む光を反射する ことから撮像素子 20の受光部に入射する光を増加させることができる。
なお、、 上述の実施の形態においては、 光透過性薄膜として、 MgF2膜、 L i F膜又は S i 02膜を用いているが、 L i F, M g F 2, C a F 2, S i 02 , A 1203 , MgO, Ν a C 1 , K B r , KC 1及び AgC lから なる群の中の物質を含む材料からなる膜としても良い。
また、 上述の実施の形態においては、 シンチレ一夕 14として C s I (T 1) が用いられているが、 これに限らず C s l ( N a )、 N a I ( T l )、 L i I ( E u )、 K I ( T 1 ) 等を用いてもよい。
また、 上述の実施の形態においては、 基板 1 0として A 1製の基板又は a— C製の基板が用いられているが、 X線透過率の良い基板であればよいことから、 C (グラフアイ ト)製の基板、 B e製の基板、 ガラス製の基板等を用いてもよい。 また、 上述の実施の形態における、 ポリパラキシリレンには、 ポリパラキシ リレンの他、 ポリモノクロ口パラキシリレン、 ポリジクロロパラキシリレン、 ポ リテトラクロ口パラキシリレン、 ポリフルォロパラキシリレン、 ポリジメチルバ ラキシリレン、 ポリジェチルパラキシリレン等を含む。
この発明のシンチレ一夕パネルによれば、 基板とシンチレ一夕の間にシンチレ —夕の屈折率よりも低い屈折率を有する光透過性薄膜を有するため、 シンチレ一 夕により発生した光を、 この光透過性薄膜により光出力側に反射することができ ることからシンチレ一夕パネルの光出力を増大させることができる。 従って、 こ のシンチレ一夕パネルを用いた放射線イメージセンサにより検出される画像を鮮 明なものとすることができる。
また、 この発明の放射線イメージセンサによれば、 シンチレ一夕パネルが 基板とシンチレ一夕の間にシンチレ一夕の屈折率よりも低い屈折率を有する光透 過性薄膜を有することからシンチレ一夕パネルの光出力が増大する。 従って検出 する画像を鮮明なものとすることができる。 産業上の利用可能性
以上のように、 この発明のシンチレ一夕パネル及び放射線イメージセンサは、 医療用の X線撮影等に用いるのに適している。

Claims

請求の範囲
1. 放射線透過性の基板と、
前記基板上に設けられた光透過性薄膜と、
前記光透過性薄膜上に堆積したシンチレ一夕と、
前記シンチレ一夕を被覆する保護膜とを備え、
前記光透過性薄膜の屈折率が前記シンチレ一夕の屈折率よりも低いこと を特徴とするシンチレ一夕パネル。
2. 前記保護膜は、 更に前記基板を被覆することを特徴とすることを特徴 とする請求項 1記載のシンチレ一夕パネル。
3. 前記光透過性薄膜は、 L i F, Mg F 2, C a F 25 S i 02,
A 1203, MgO, N a C 1 , KB r , K C 1及び A g C 1からなる群の 中の物質を含む材料からなる膜であることを特徴とする請求項 1又は請求 項 2記載のシンチレ一夕パネル。
4. 前記基板は、 光反射性の基板であることを特徴とする請求項 1〜請求 項 3の何れか一項に記載のシンチレ一夕パネル。
5. 前記基板は、 その表面に光反射膜を有することを特徴とする請求項 1〜請求項 3の何れか一項に記載のシンチレ一夕パネル。
6. 前記基板は、 光透過性の基板であることを特徴とする請求項 1〜請 求項 3の何れか一項に記載のシンチレ一夕パネル。
7. 請求項 1〜請求項 6の何れか一項に記載のシンチレ一夕パネルの前 記シンチレ一夕に対向して撮像素子を配置したことを特徴とする放射線イメージ センサ。
PCT/JP1999/001912 1999-04-09 1999-04-09 Panneau de scintillateur et detecteur d'image rayonnante WO2000062098A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP99913617A EP1298455B1 (en) 1999-04-09 1999-04-09 Scintillator panel and radiation ray image sensor
PCT/JP1999/001912 WO2000062098A1 (fr) 1999-04-09 1999-04-09 Panneau de scintillateur et detecteur d'image rayonnante
CNB998118826A CN1161625C (zh) 1999-04-09 1999-04-09 闪烁体面板和射线图象传感器
DE69937125T DE69937125T2 (de) 1999-04-09 1999-04-09 Szintillatorplatte und strahlungsbildsensor
KR1020017004196A KR100638413B1 (ko) 1999-04-09 1999-04-09 신틸레이터 패널 및 방사선 이미지 센서
AU31681/99A AU3168199A (en) 1999-04-09 1999-04-09 Scintillator panel and radiation ray image sensor
US09/971,644 US6753531B2 (en) 1999-04-09 2001-10-09 Scintillator panel and radiation image sensor
US10/851,333 US6911658B2 (en) 1999-04-09 2004-05-24 Scintillator panel and radiation image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001912 WO2000062098A1 (fr) 1999-04-09 1999-04-09 Panneau de scintillateur et detecteur d'image rayonnante

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/971,644 Continuation-In-Part US6753531B2 (en) 1999-04-09 2001-10-09 Scintillator panel and radiation image sensor

Publications (1)

Publication Number Publication Date
WO2000062098A1 true WO2000062098A1 (fr) 2000-10-19

Family

ID=14235453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001912 WO2000062098A1 (fr) 1999-04-09 1999-04-09 Panneau de scintillateur et detecteur d'image rayonnante

Country Status (7)

Country Link
US (2) US6753531B2 (ja)
EP (1) EP1298455B1 (ja)
KR (1) KR100638413B1 (ja)
CN (1) CN1161625C (ja)
AU (1) AU3168199A (ja)
DE (1) DE69937125T2 (ja)
WO (1) WO2000062098A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753531B2 (en) 1999-04-09 2004-06-22 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US7034306B2 (en) 1998-06-18 2006-04-25 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
JP2008082852A (ja) * 2006-09-27 2008-04-10 Toshiba Corp 放射線検出装置
JP2008249335A (ja) * 2007-03-29 2008-10-16 Konica Minolta Medical & Graphic Inc 放射線用シンチレータパネル及び放射線画像撮影装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42281E1 (en) 2000-09-11 2011-04-12 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor and methods of producing them
US7468514B1 (en) * 2007-06-15 2008-12-23 Hamamatsu Photonics K.K. Radiation image conversion panel, scintillator panel, and radiation image sensor
US7732788B2 (en) * 2007-10-23 2010-06-08 Hamamatsu Photonics K.K. Radiation image converting panel, scintillator panel and radiation image sensor
US7465932B1 (en) 2007-06-15 2008-12-16 Hamamatsu Photonics K.K. Radiation image conversion panel, scintillator panel, and radiation image sensor
CN101471307B (zh) * 2007-12-29 2012-07-04 三星电子株式会社 半导体封装体及其制造方法
CN101604023B (zh) * 2008-06-12 2012-11-14 清华大学 用于辐射探测的阵列固体探测器
WO2010109344A2 (en) * 2009-03-25 2010-09-30 Koninklijke Philips Electronics N.V. Method to optimize the light extraction from scintillator crystals in a solid-state detector
JP2011137665A (ja) * 2009-12-26 2011-07-14 Canon Inc シンチレータパネル及び放射線撮像装置とその製造方法、ならびに放射線撮像システム
JP2013029384A (ja) * 2011-07-27 2013-02-07 Canon Inc 放射線検出装置、その製造方法および放射線検出システム
DE102014224449A1 (de) * 2014-11-28 2016-06-02 Forschungszentrum Jülich GmbH Szintillationsdetektor mit hoher Zählrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240887A (ja) * 1988-03-23 1989-09-26 Hitachi Ltd 放射線検出器及びその製造方法
US5227635A (en) * 1991-11-22 1993-07-13 Xsirious, Inc. Mercuric iodide x-ray detector
JPH05203755A (ja) * 1991-09-23 1993-08-10 General Electric Co <Ge> 光収集効率を高めた光検出器シンチレータ放射線撮像装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5689702A (en) 1979-12-21 1981-07-21 Sumitomo Electric Ind Ltd Laser beam reflecting mirror
EP0147561A3 (en) 1983-11-09 1985-08-07 Siemens Aktiengesellschaft Scintillation crystal for a radiation detector and method for producing the same
JPS6173901A (ja) 1984-09-19 1986-04-16 Fujitsu Ltd 赤外線検知装置用金属鏡の製造方法
JPH077114B2 (ja) 1987-03-04 1995-01-30 コニカ株式会社 加熱乾燥手段を有するx線写真増感用蛍光体パネル
JPS63215987A (ja) 1987-03-04 1988-09-08 Hamamatsu Photonics Kk 高解像シンチレ−シヨンフアイバ−プレ−ト
JPH01191087A (ja) * 1988-01-27 1989-08-01 Hitachi Medical Corp 放射線検出器
JPH0697280B2 (ja) 1988-02-05 1994-11-30 富士写真フイルム株式会社 放射線像変換パネル
JPH01267500A (ja) 1988-04-18 1989-10-25 Konica Corp 放射線画像変換パネル
JPH01269083A (ja) 1988-04-21 1989-10-26 Hitachi Ltd 放射線検出素子
US5153438A (en) 1990-10-01 1992-10-06 General Electric Company Method of forming an x-ray imaging array and the array
JP3034587B2 (ja) 1990-11-07 2000-04-17 コニカ株式会社 放射線画像変換パネル
JPH0539558A (ja) 1991-08-06 1993-02-19 Nippon Steel Corp 回転ブラシのバツクアツプロール
JPH0560871A (ja) 1991-09-04 1993-03-12 Hamamatsu Photonics Kk 放射線検出素子
JPH05107362A (ja) 1991-10-16 1993-04-27 Hamamatsu Photonics Kk X線検出素子の製造方法
JP3691077B2 (ja) 1992-01-08 2005-08-31 浜松ホトニクス株式会社 放射線検出素子およびその製造方法
JPH05188148A (ja) 1992-01-13 1993-07-30 Hamamatsu Photonics Kk 放射線検出素子
JPH05299044A (ja) 1992-04-20 1993-11-12 Toshiba Corp イメージインテンシファイヤー
US5315561A (en) 1993-06-21 1994-05-24 Raytheon Company Radar system and components therefore for transmitting an electromagnetic signal underwater
JPH0721560A (ja) 1993-06-30 1995-01-24 Sony Corp 磁気記録媒体の製造方法
JP2721476B2 (ja) 1993-07-07 1998-03-04 浜松ホトニクス株式会社 放射線検出素子及びその製造方法
DE4342219C2 (de) 1993-12-10 1996-02-22 Siemens Ag Röntgenbildverstärker
JP3406052B2 (ja) 1994-03-29 2003-05-12 コニカ株式会社 放射線画像変換パネル
JP3580879B2 (ja) 1995-01-19 2004-10-27 浜松ホトニクス株式会社 電子管デバイス
TW366367B (en) * 1995-01-26 1999-08-11 Ibm Sputter deposition of hydrogenated amorphous carbon film
CN101285888B (zh) 1997-02-14 2012-01-18 浜松光子学株式会社 放射线检测元件及其制造方法
CA2260041C (en) 1997-02-14 2001-10-09 Hamamatsu Photonics K.K. Radiation detection device and method of producing the same
US6031234A (en) * 1997-12-08 2000-02-29 General Electric Company High resolution radiation imager
FR2774175B1 (fr) 1998-01-27 2000-04-07 Thomson Csf Capteur electronique matriciel photosensible
JP3691392B2 (ja) 1998-06-18 2005-09-07 浜松ホトニクス株式会社 シンチレータパネル
CN1140815C (zh) 1998-06-18 2004-03-03 浜松光子学株式会社 闪烁器仪表盘、放射线图象传感器及其制造方法
KR100688680B1 (ko) * 1998-06-18 2007-03-02 하마마츠 포토닉스 가부시키가이샤 신틸레이터 패널 및 방사선 이미지 센서
KR100697493B1 (ko) 1998-06-18 2007-03-20 하마마츠 포토닉스 가부시키가이샤 신틸레이터 패널
AU4168199A (en) 1998-06-18 2000-01-05 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor, and method for producing the same
AU4167999A (en) 1998-06-18 2000-01-05 Hamamatsu Photonics K.K. Scintillator plate, radiation image sensor, and method for manufacturing the same
JP3789646B2 (ja) 1998-06-19 2006-06-28 浜松ホトニクス株式会社 放射線イメージセンサ
JP4220017B2 (ja) 1998-06-23 2009-02-04 浜松ホトニクス株式会社 シンチレータパネル、放射線イメージセンサ及びその製造方法
JP4156709B2 (ja) 1998-06-23 2008-09-24 浜松ホトニクス株式会社 シンチレータパネル、放射線イメージセンサ及びその製造方法
DE69937125T2 (de) * 1999-04-09 2008-06-19 Hamamatsu Photonics K.K., Hamamatsu Szintillatorplatte und strahlungsbildsensor
JP3126715B2 (ja) 1999-04-16 2001-01-22 浜松ホトニクス株式会社 シンチレータパネル及び放射線イメージセンサ
US6835936B2 (en) 2001-02-07 2004-12-28 Canon Kabushiki Kaisha Scintillator panel, method of manufacturing scintillator panel, radiation detection device, and radiation detection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240887A (ja) * 1988-03-23 1989-09-26 Hitachi Ltd 放射線検出器及びその製造方法
JPH05203755A (ja) * 1991-09-23 1993-08-10 General Electric Co <Ge> 光収集効率を高めた光検出器シンチレータ放射線撮像装置
US5227635A (en) * 1991-11-22 1993-07-13 Xsirious, Inc. Mercuric iodide x-ray detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034306B2 (en) 1998-06-18 2006-04-25 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US7408177B2 (en) 1998-06-18 2008-08-05 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US7705315B2 (en) 1998-06-18 2010-04-27 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US6753531B2 (en) 1999-04-09 2004-06-22 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US6911658B2 (en) 1999-04-09 2005-06-28 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
JP2008082852A (ja) * 2006-09-27 2008-04-10 Toshiba Corp 放射線検出装置
JP2008249335A (ja) * 2007-03-29 2008-10-16 Konica Minolta Medical & Graphic Inc 放射線用シンチレータパネル及び放射線画像撮影装置

Also Published As

Publication number Publication date
AU3168199A (en) 2000-11-14
CN1322301A (zh) 2001-11-14
US20020027200A1 (en) 2002-03-07
US20040211918A1 (en) 2004-10-28
EP1298455B1 (en) 2007-09-12
EP1298455A1 (en) 2003-04-02
US6911658B2 (en) 2005-06-28
CN1161625C (zh) 2004-08-11
DE69937125D1 (de) 2007-10-25
US6753531B2 (en) 2004-06-22
KR20010106499A (ko) 2001-11-29
DE69937125T2 (de) 2008-06-19
EP1298455A4 (en) 2003-04-02
KR100638413B1 (ko) 2006-10-24

Similar Documents

Publication Publication Date Title
JP3789785B2 (ja) 放射線イメージセンサ
JP4279462B2 (ja) シンチレータパネル、放射線イメージセンサ及びその製造方法
EP1211521B1 (en) Scintillator panel and radiation image sensor
JP3126715B2 (ja) シンチレータパネル及び放射線イメージセンサ
WO2000062098A1 (fr) Panneau de scintillateur et detecteur d&#39;image rayonnante
US7772558B1 (en) Multi-layer radiation detector and related methods
WO1999066349A1 (fr) Panneau de scintillateur, capteur d&#39;image radiologique et procede de fabrication
EP1862821A1 (en) Scintillator panel and radiation ray image sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99811882.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020017004196

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09971644

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999913617

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017004196

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1999913617

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017004196

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999913617

Country of ref document: EP